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Abstract: Despite the complex mathematical models and physical phenomena on which it is based, 

the simplicity of its construction, its affordability, the versatility of its applications and the relative 

ease of its control have made the electric induction motor an essential element in a considerable 

number of processes at the industrial and domestic levels, in which it converts electrical energy into 

mechanical energy. The importance of this type of machine for the continuity of operation, mainly 

in industry, is such that, in addition to being an important part of the study programs of careers 

related to this branch of electrical engineering, a large number of investigations into monitoring, 

detecting and quickly diagnosing its incipient faults due to a variety of factors have been 

conducted. This bibliographic research aims to analyze the conceptual aspects of the first 

discoveries that served as the basis for the invention of the induction motor, ranging from the 

development of the Fourier series, the Fourier transform mathematical formula in its different 

forms and the measurement, treatment and analysis of signals to techniques based on artificial 

intelligence and soft computing. This research also includes topics of interest such as fault types 

and their classification according to the engine, software and hardware parts used and modern 

approaches or maintenance strategies. 

Keywords: induction electric motors; maintenance strategies; types of faults; detection and 

diagnosis; monitoring; artificial intelligence 

 

1. Introduction 

The discovery of electric current and its transmission through wires opened a vast field of 

research related to the behavior, associated phenomena and practical applications of electricity. As a 

result of this, one of the most amazing and important inventions for the development of humanity 

was produced, the electric motor, as the result of the application of various laws of physics and 

abstract and complex mathematical models, such as Ampere’s law, the Bio-Savart law and 

Maxwell’s laws, which were discovered after many years of arduous investigative work and can be 

included among the most transcendental in history. However, one of the most amazing things is that 

despite the complexity of its foundations, its simple construction paradoxically makes the induction 

engine one of the simplest and most widely-used machines on the planet. 
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In almost any activity of man, it is essential to use the electric induction motor: from our homes 

to the most complex industry, where the transformation between electrical and mechanical energy 

would not be possible without this type of electric machine. The intrinsic dependence that exists 

between electric motors, the continuity of operation at an industrial or micro-enterprise level and the 

financial profitability of any organization have motivated a great amount of investigations to be 

carried out to develop maintenance strategies and specific techniques for the monitoring, detection 

and diagnosis of the variety of faults that can occur in electric induction motors. 

The objective of this article is to conduct a macro or global analysis of the different 

methodologies applied to diagnose the failures that can occur in an induction motor in a timely 

manner and to avoid its exit from service in an unexpected way. For this, the present work is 

organized into five sections. 

The Section 2 includes the historical development of the foundations that serve as a basis for 

understanding the operation of electric induction motors and the principles upon which diagnostic 

techniques are based. The subsections are devoted to issues related to the types of failures, statistics 

and maintenance strategies. Section 3 focuses on invasive and non-invasive maintenance techniques, 

as well as the software and hardware used for monitoring, detection and diagnosis of failures. 

Section 4 analyzes the different types of failures and the techniques used to detect them according to 

the engine part. Section 5 includes the use of Artificial Intelligence (AI) techniques and Soft 

Computing (SC) for the detection of early failures. Finally, Section 6 addresses conclusions and 

recommendations. 

2. Historical Analysis of the Development of the Theoretical Foundations of Electric Induction 

Motors and Fault Types and Statistics 

2.1. Historical Analysis of the Development of the Theoretical Foundations of Electric Induction Motors 

Since ancient times, man has been familiar with materials that have the unique property of 

attracting certain objects. It was also known that, when rubbing amber with the skin, this stone 

acquired the ability to attract pieces of grass [1,2]. According to Shu-hua [3], during the Fourth 

Century BC in the city of Magnesia, the existence of a material called magnetite that could attract 

iron was known. According to the same author, years later, Chinese civilization would record 

several events related to the use of a magnetized needle that could indicate the geographic north or 

south of the planet. Although initially there was no scientific development that could explain 

electromagnetic phenomena, this would have been observed and applied many centuries ago; it 

could even be said that man has always lived with it [4–7]. 

Charles Coulomb was able to measure the small forces of attraction or repulsion exercised 

between electrically loaded pieces of paper or grass for the first time in 1785; he found that the 

measured force behaved just like Newton’s law of universal gravitation. In 1800, Alessandro Volta 

demonstrated that he could produce sparks and other electrical effects by stacking copper and zinc 

disks separated by wet cardboard, which would become the origin of batteries and one of the first 

continuous sources of electric power. In 1820, the Danish physicist Hans Christian Oersted 

demonstrated that an electric current generates a magnetic field that can interact with another field 

(that produced by a magnetized material) [1]. 

German physicist and chemist Johann Schweigger found that the effect of a current on a 

magnetized needle discovered by Oersted could be improved by replacing the conductor with a coil 

made of several wire turns, which would later be known as a galvanometer. In England, William 

Sturgeon wrapped wire on a steel horseshoe, resulting in an electromagnet, stronger than any 

natural magnetic material that was known until then [1]. The magnetic field created in a conductor 

would be negligible such that for practical uses, it is necessary to increase it; this is achieved by 

winding several turns of wire (coil) on a core that is usually made of ferromagnetic iron. The iron 

core is of low reluctance; it avoids dispersion, and it concentrates the lines of the magnetic field, 

increasing the flow and its density within allowable limits before saturation. The number of turns N 

multiplied by the current I is known as the Magnetomotive Force (MMF) [8]. William Sturgeon had 
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reproduced or found the equivalent of magnetic stones, whereas Oersted and Schweigger had 

reproduced the same phenomenon that occurred naturally between a magnetized needle and the 

magnetic field of the Earth. 

Kline [9] states, “In 1824 Francois Arago found that a magnetized needle suspended on a copper 

disk could be rotated when the latter was rotated.” According to the author, this discovery together 

with the production of a rotating magnetic field through electricity would be the foundation of the 

induction motor. In 1821, Michael Faraday demonstrated that a conductor conducting an electric 

current could rotate permanently in the presence of a magnetic field, and in 1831, he would discover 

the principle of electromagnetic induction, according to which a variable magnetic field can induce 

an electric current into a conductor. He further established the concept of lines of force associated 

with the magnetic field, which would become the foundation of electromagnetic theory [4]. 

According to Faraday’s principle of electromagnetic induction, if a conductor is within a variable 

magnetic field, then a voltage (emf) directly proportional to the change rate of the magnetic flux will 

be induced between the conductor terminals through the circuit. According to [10], this voltage can 

be obtained in a coil from the laws of Maxwell (1). 

∮ 𝐸 𝑑𝑙
𝑙

= − 
𝑑

𝑑𝑡
∫ 𝐵 𝑑𝑠 

𝑆
=  − 

𝑑Ф

𝑑𝑡
, (1) 

𝑒 = − 𝑘𝑤𝑁
𝑑

𝑑𝑡
∫ 𝐵 𝑑𝑠 

𝑆
= −𝑘𝑤𝑁 

𝑑Ф

𝑑𝑡
= −𝑘𝑤𝑁

𝑑(𝐵𝐴 cos 𝜃)

𝑑𝑡
, (2) 

where: 

e = Electromotive force (volts) 

𝑘𝑤 = Design factor of the machine 

N = Number of coil turns 

Ф = Magnetic flux (webers) 

B = Flux density (Teslas) 

A = Transversal section crossed by the flow (m2) 

Based on the discoveries made by Michael Faraday, the first electric motors were built, which 

would be the forerunners of modern generators, motors and all types of electrical devices. One of the 

first types of equipment to be tested would be an alternating current generator consisting of two 

permanent magnet poles, which induced a voltage in a winding rotor when rotated; however, as the 

alternating current was not used initially, two slip rings were added to the rotor in such a way that 

continuous current was obtained from brushes. In 1850, a generator with a primary steam engine 

was already being used. In 1860, the permanent magnets were replaced by electromagnets, and in 

1867, Werner von Siemens, Charles Wheatstone and Samuel Varley developed the Dynamo almost 

simultaneously. Due to the instability of the voltage produced by the machines designed until then, 

in 1870, Zénobe-Théphile Gramme created an improved version of the dynamo that replaced the 

single poles by several coils arranged on an iron core that covered the entire stator. Later, he would 

demonstrate that his Dynamo could also function as a motor [1]. 

The disadvantages of DC machines; and the achievement obtained by Zénobe-Théphile 

Gramme in making the Dynamo work as a motor all served as precedent for Nicola Tesla to invent 

and patent the first induction AC motor in 1888. This machine consisted of a winding rotor and a 

stator of four salient poles, which did not cover the entire stator. Despite the significant advances of 

Nicola Tesla, the insufficient starting torque, its low performance, the high frequency of the network 

and the lack of polyphase generation and distribution systems meant that this motor could not be 

exploited commercially on a large scale. Charles Brown and Michael Dolivo-Dobrolowsky would 

improve the work of Tesla by developing the wound rotor and squirrel cage-type induction motor as 

we know it today [1]. 

Research on the construction of induction motors conducted by Dolivo-Dobrolowsky led him to 

deduce that to build AC motor, the distortion of the flux had to be minimized, and the resistance of 

the rotor had to be higher at the start than when at nominal speed. In 1891 in the city of Frankfurt, 

Michael Dolivo-Dobrolowsky exhibited the use of a three-phase motor of 100 hp to pump water, for 
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which he had inverted the rotor with the stator. In the same exhibition, Charles Brown (who had also 

developed a pioneering 3-phase generation and transmission system for the city of Frankfurt) 

presented a three-phase induction engine of 20 hp, with an efficiency of 90 percent, which was used 

to operate a fan. Brown’s engine consisted of a primary stator whose core included slots over the 

entire periphery and whose interior housed the winding that was connected to the network. The 

rotor consisted of a drum with slots on its outer periphery in which insulated copper bars were 

installed, the same are short circuit at the ends through rings. Brown’s engine proved to be more 

efficient, simple, economical and versatile than that designed by Dolivo-Dobrolowsky. However, he 

had the disadvantage of low starting torque. This would be solved in 1920 when General Electric, 

Westinghouse, and AEG perfected the induction motor with a rotor that had a double squirrel cage 

[9]. 

Today, one-third of the total electric energy generated is converted into mechanical energy by 

electric induction motors employed in all types of activities and environments. Its simplicity 

compared to other types of dynamic electric machines has made it one of the most useful  

inventions [9]. According to Trzynadlowski [11], “Induction motors, the primary workhorse of 

industry, consume over 60% of the total electric power produced in the USA.” Without a doubt, 

within the area of electric machines, the induction motor occupies a preponderant place and has 

become one of the main research topics of new design, construction and maintenance techniques, 

perhaps because the investigations conducted thus far apply to a wide variety of equipment. 

The induction motor is very simple and consists of two main parts: the stator and the rotor. In 

addition, the induction motors used in industrial areas are mostly three-phase which compared to 

DC motors or single-phase AC motors of the same capacity, are much smaller, lighter, economical 

and have a lower starting current [10]. 

At present, the monitoring of the state of the motor is done mainly by the analysis of the signals 

such as the current, which has an undulatory behavior [12]. For this reason, from the historical point 

of view and theoretical foundations we could start this part mentioned to James Maxwell. In his 

work “A Dynamical Theory of the Electromagnetic Field”, published in 1864, Maxwell presented a 

mathematical formulation that related the electrical, magnetic, light undulatory behavior and energy 

of the wave theories. Subsequent works of other scientists, such as Oliver Heaviside, allowed for 

summarization of this theory in four equations that demonstrate the theory of Maxwell in a more 

practical and comprehensible way [1]. From the equations of Maxwell, we can deduce the equation 

that represents the wave behavior of the magnetic flux in the air gap, the voltage and the current in 

terms of time and position [13]. The main wave and its components of these periodic sinusoidal 

signals can be represented by a convergent series of trigonometric functions, that is, the Fourier 

series (3), Ferreira and Van der Merwe [14]. 

𝑓(𝑡) = 𝑎𝑣 + ∑ (𝑎𝑛 cos 𝑛𝜔𝑡 + 𝑏𝑛 sin 𝑛𝜔𝑡 )∞
𝑛=1 , (3) 

𝑎𝑣 =
1

𝑇
∫ 𝑓(𝑡) 𝑑𝑡

𝑡0 + 𝑇

𝑡0
, (4) 

 𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑡) cos 𝑛𝜔𝑡 𝑑𝑡

𝑡0 + 𝑇

𝑡0
, (5) 

ω = 2πf = 2π/T, 
(6) 

f = Frequency; T = Signal period. 

Discarding the DC component, according to [14], (3) can be written in accordance with its 

fundamental wave and its harmonics. 

𝑓(𝑡) = 𝑉1 cos(𝜔𝑡 + 𝜃1) + ∑ 𝑉𝑛 cos(𝑛𝜔𝑡 +  𝜃𝑛)∞
𝑛=2 , (7) 

where: 

f(t) = Signal as a function of time. 

V1 = Signal magnitude. 

θ = Phase angle difference. 
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The representation of a signal in the time domain allows us to know some parameters, such as 

amplitude, frequency, phase, and modulation. Notwithstanding, when it is necessary to know the 

origin or causes of any anomaly, it is preferable to carry out the study of the frequency domain (see 

Figure 1), and this is done with the help of Fourier analysis [15]. 

 

Figure 1. Representation of a signal in the time and frequency domains. (a) Two components of the 

same signal; (b) Time-domain representation; (c) Frequency-domain representation, as shown in 

[15]. 

According to Hansen [16], a periodic and continuous signal can be converted into an aperiodic 

and discrete signal by using the Discrete Fourier Transform (DFT). This signal can be transformed 

back into a continuous one by using the Discrete-Time Fourier Transform (DTFT) after exchanging 

the domains of time and frequency, i.e., by making the first discrete and the second continuous; see 

Figure 2. 

The DFT in its most basic form can be written according to (8). The complex calculations to be 

performed are proportional to N2 and Nlog2N (N is the number of samples of the signal), which 

represent a substantial quantity. For this reason, several algorithms used to obtain the DTF make the 

most of the repetition of the operations, the symmetry and the periodicity of functions to facilitate 

and streamline the calculation. This methodology is known as the Fast Fourier Transform (FFT) (9). 

The energy and spectral density are given by (10) and (11), respectively, and the latter is known as 

the Wiener-Khintchine theorem [17]. 

 

Figure 2. Conversion of a continuous signal to discrete and newly continuous through the Fourier 

transforms, as shown in [16]. Reproduced with permission from John Wiley and Sons, 2017. 
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𝑋𝑁𝑘
𝜔𝑠

𝑁
= ∑ 𝑥𝑁(𝑛)𝑁−1

𝑛=0 𝑒−𝑗2𝜋(𝑘𝑛 𝑁)⁄ =  ∑ 𝑥𝑁(𝑛)𝑁−1
𝑛=0 𝑊𝑁

𝑘𝑛, (8) 

𝑋𝑁𝑘
𝜔𝑠

𝑁
= ∑ 𝑥𝑁(𝑛)𝑁−1

𝑛=0 𝑊𝑁
𝑘𝑛 =  ∑ 𝑥𝑁(2𝑛)

(𝑁 2)⁄ −1
𝑛=0 𝑊𝑁/2

𝑘𝑛 + 𝑊𝑁
𝑘 ∑ 𝑥𝑁(2𝑛 + 1)

(𝑁 2)⁄ −1
𝑛=0 𝑊𝑁/2

𝑘𝑛 , (9) 

∑ |𝑥(𝑛)|2∞
𝑛=−∞ =

1

2𝜋
∫ |𝑥(𝑛)|2 𝑑𝜔

𝜋

−𝜋
=  

1

2𝜋
∫ 𝑆𝑥𝑥 𝑑𝜔

𝜋

−𝜋
 , (10) 

𝛷𝑥𝑥(𝜔) =  ∑ 𝑅𝑥𝑥(𝑘)𝑒−𝑗2𝜋(𝜔 𝜔𝑠)𝑘⁄∞
𝑘= −∞ , (11) 

The DFT is the primary computational tool for the spectrum analysis of a signal, the same that is 

modeled as a sum of sinusoids in which the protruding frequencies can be distinguished. 

Performing the diagnosis by analyzing the signal in the time or the frequency domain 

independently, can be improved by using the time-frequency representation (TFR). It can be further 

improved by using the TFR directly classified in the Doppler ambiguous plane to extract the vectors 

associated with the failures. The authors proposes a decision criterion based on the “distance of 

Mahalanobis” to obtain a safe diagnosis of broken bars, bearing and stator failures [15,16,18]. 

Regardless of the methodology used, as we will see below, the monitoring, detection and 

diagnosis of faults in induction motors, are based on the use of the FFT as the main tool for the 

analysis of the signals. 

2.2. Types of Failures of Induction Motors and Occurrence Statistics 

Many factors contribute to the deterioration of the conditions of an engine and the occurrence of 

several types of faults. For this reason, the failures of the electric motors can be classified from 

different points of view, such as showed in Tables 1–3. Table 1 [19,20], shows a tentative grouping, 

according to the factors of the environment to which the engine is exposed and that could cause the 

appearance of the faults. A factor can belong to more than one group in many cases. Table 2 [19], 

Includes electrical and mechanical faults of the motor grouped as they occur in the rotor or stator 

and according to the factors that cause them, while Table 3 [15,19–22], broadens and shows another 

way of presenting the information in Table 2. 

There are many studies that note the most common failures. Table 4 [19] shows several statistics 

ordered according to the source of the studies. Although there are no coincidences regarding values, 

we can observe that the trend is very similar for the cases that are included. Thus, it could be 

generalized that the parts with greater frequencies of failures, ordered from greatest to least, would 

be the bearings, stator and rotor. O’Donnell [21] determined the contribution of the different types of 

faults in electrical motors over 200 hp and with an age of less than 15 years. One of the most 

interesting parts of the study is the wide variety of failures that are included and their classification, 

see Tables 5 and 6. 

Table 1. Factors causing the failures of induction motors. 

Environmental Operations Equipment Human Electrical Power 

Temperature Vibration  Aging 
Bad selection of electric 

motor 

Transients due to:  

Short circuit  

Fluctuations  

Resonance  

Transfers  

Reconnections  

Capacitors  

Insulation  

Drivers 

Moisture Overload Quality Bad use Voltage drop 

Rust Excessive starts Design defects Lack of maintenance Voltage low 

Ventilation Alignment 
Manufacturing 

defects 

Improper maintenance or 

repairs 
Voltage unbalance 
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Pollution 
Resonance of 

the System 
 

Inappropriate or poor 

quality parts 
Harmonics 

Strange Objects 

Shaft currents  

Stator-rotor 

Friction  

Partial 

Discharge (PD) 

 Lubrication Defective electrical installation 

Table 2. Mechanical and electrical failures according to the parts of the motor. 

 ELECTRICAL MECHANICAL 

STATOR 

Factors for 

failures 
Failures Failures 

Factors for 

failures 

Vibration 

of coils 

Radial and tangential movement  

Destruction of winding fastening 

Insulation damage  

Short circuit 

Electromagnetic noise and vibration  

Damage to core due to friction with the stator  

Destruction of insulation and wedges overheating 

Rotor 

eccentricity 

Insulation 

failure 

Short circuit between: turns coils 

phases phase and ground 

Loosening of the core  

Loss of interlaminar insulation  

Destruction of insulation  

Destruction of winding fastening  

Decreased performance 

Overheating 

Tracking 

Insulation perforation and 

destruction  

Circuit formation between 

winding and ground  

Discharge of currents to ground  

Ground fault 

Core damage during assembly  

Core damage during assembly or rewinding 

Applying heat excessive 

Maintenance 

Transients Insulation destruction Overheating 
Lack of 

ventilation 

ROTOR 

Vibration 

of coils 

Radial and tangential movement  

Destruction of winding fastening 

Insulation damage  

Short circuit 

Shaft breakage  

Bearing, fan and couplings failure  

Friction with the stator  

Centrifugal and thermal stresses  

Stresses in the blades and bars 

Dynamic 

Failures 

Insulation 

failure 

Short circuit between: turns coils 

phases phase and ground 

Electromagnetic noise and vibration Damage to 

core due to friction with the stator  

Bearing failure  

Shaft currents  

Production of sparks by discharges 

Static and 

dynamic 

eccentricity 

Electromag

netic faults 

Displacements accompanied by 

deflection and stresses of  

the bars 

Eccentricity, twist, break, residual stresses, 

overload, damage during repairs or mounts 
Shaft 

Magnetic 

faults 

Broken bars  

Noise  

Vibration  

Shaft twisting  

Bearing failure  

Friction with the stator  

Loosening core  

Loss of interlaminar insulation  

Bearing failure 

Overheating 

Overheating 
Lack of 

ventilation 

Eccentricity electromagnetic noise and vibration 

Damage to core due to friction with the stator  

Shaft currents  

Production of sparks by discharges 

Bearing 
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Table 3. Effects according to the type of efforts to which the parts of an induction motor are subjected. 

Stresses 

 
 

Mechanical Electrical Magnetic Thermal Environmental Residual Dynamic 
Vibration or 

Shakes 

Dynamic 

and Static 

Charges 

Others 

 Stator 

Winding 

Friction between 

coils 

Degradation of 

the dielectric 

 

Aging Humidity 

  

  

 

Rotor strikes Crown effect 
Voltage 

variation 
Abrasion 

  

Rotor defects Transient Load Chemicals 
  

Impact of objects 
 

Ventilation Ventilation 
  

  
Environment Temperature 

  

Effects Rotor 

Cast Iron 

Impurities 

 

Noise 
Thermal 

overload 
Humidity 

Concentration 

of stresses 
Vibration 

  

Poor design or 

Manufacturing 

defects 

Destruction of 

sheets 

Circulation of 

currents 

Thermal 

imbalance 
Abrasion 

 
Friction 

  
Transient torques 

Fatigue Vibrations 
Excessive rotor 

losses 
Chemicals 

Unequal 

stresses on 

bars 

High 

speeds   
Core or bars wear 

Misaligned 
Core 

saturation 
Sparks Poor ventilation 

 

Cyclic 

stresses   

Rotation direction 

wrong 

Material 

deviations  
Hot spots Overheating 

 

Centrifugal 

forces    

Incorrect settings 
  

Pollution 
     

Effects 

Bearings 

Loss of slack 
Misaligned 

rotor  
Friction Condensation 

  
Vibration Radial 

 

Misaligned 
Electrostatic 

charge  
Lubrication 

Materials 

foreign    
Axial 

 

Bearing housing 

wear 

Electrostatic 

coupling  
Environment Overheating 

  

Coupling 

equipment 
Preload 

 

 

Frequency 

variations   
Ventilation lack 

  
  

  

Shaft 

Overload and 

flexion  
Lateral loads 

Temperature 

gradients 
Corrosion 

 
Cyclic loads 

  

Manufacturing 

processes 

Torsional load 
   

Moisture 
 

Shakes 
   

Axial loads 
 

Gap 
 

Erosion 
    

Repair processes 

        Wear           
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Table 4. Failures according to the engine part (%). 

REFERENCES [21] [23] 
[24] 

[25] [26] [22] [27] [28] [29] 
IEEE-IAS EPRI Allianz 

Bearings 41 69 44 41 13 40–50 44 51 40 40–50 42 

Stator 23 21 26 36 66 28–43  26 38 30–40 31 

Inter-turn short circuits       26     

Rotor 10  8 9 13 5–10   10   

Broken bars/end ring  7     8 5  5–10 9 

Shaft/coupling  3      2    

Unknown causes        10    

External causes        16    

Others 12  22 14 8 12 22  12  12 

Table 5. Failures according to the severity level. 

Failure % 

Failure Initiator 

Transient overvoltage 1.5 

Overheating 3.2 

Other insulation breakdown 12.3 

Mechanical breakage 33.1 

Electrical fault or malfunction 7.6 

Stalled motor 0.9 

Other 31.4 

Failure Contributor 

Persistent overloading 4.2 

High ambient temperature 3.0 

Abnormal moisture 5.8 

Abnormal voltage 1.5 

Abnormal frequency 0.6 

High vibration 15.5 

Aggressive chemicals 4.2 

Poor lubrication 15.2 

Poor ventilation or cooling 3.9 

Normal deterioration from age 26.4 

Other 19.7 

Underlying Failure Cause 

Defective component 20.1 

Poor installation/testing 12,9 

Inadequate maintenance 21.4 

Improper operation 3.6 

Improper handling/shipping 0.6 

Inadequate physical protection 6.1 

Inadequate electrical protection 5.8 

Personnel error 6.8 

Outside agency other than 

personnel 
3.9 

Motor-driven equipment mismatch 4.9 

Other 13.9 
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Table 6. Failures according to the electric motor parts. 

Bearing Related % 

Sleeve bearings 16 

Antifriction bearings 8 

Seals 6 

Thrust bearing 5 

Oil leakage 3 

Other 0.9 

Total 41 

Stator Related 

Ground insulation 23 

Turn insulation 4 

Bracing 3 

Wedges 1 

Frame 1 

Core 1 

Other 4 

Total 37 

Rotor Related 

Cage 5 

Shaft 2 

Core 1 

Other 2 

Total 10 

2.3. Maintenance Strategies 

According to Das et al. [30], the application of strategies for the monitoring, detection and 

diagnosis of failures can be traced back to 1931 when Walter Shewhar used the control charts to 

determine if a process was under statistical control. At the end of the nineteenth century, the 

demand for industrialized products exceeded the supply, so companies focused on quantity rather 

than quality. In these conditions, the early technological development gave rise to a corrective type 

of maintenance applied to electric motors. That is, repair work was done when the damage became 

very noticeable or the electrical motor was completely damaged, focusing on changing bearings, 

repairing cashiers, cleaning, increasing insulation and rewinding. 

The industrial development and the increased competition made that competitiveness a key 

factor in the success of any company. Production stopped focusing on quantity to focus on quality 

and the customers, which meant delivering flawless products with warranties and on time. 

Unexpected production stoppages could not be allowed due to all the internal costs i.e., bad 

reputation, customer dissatisfaction and losses, and costs related specifically to the repair or 

replacement of electric motors. The competitive and changing environment in which companies 

were found motivated them to develop and apply new methods to improve the reliability of the 

equipment that was part of the production system within which electric motors have always 

constituted one of the most important parts. Once again, scientific and technological progress made 

it possible to develop and implement maintenance techniques to reduce unforeseen interruptions 

due to sudden engine failures. 

Maintenance operations are characterized by their complexity since they can involve a large 

number of variables, and some of them are difficult to predict and have high cost and risk; these 

factors require the following: 

 Careful planning and control. 

 Optimization of the resources. 

 Adherence to safe working procedures. 
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 Continuous research and development of integrated management tools. 

If the decision to provide maintenance over the life of the equipment has been made, several 

strategies have been designed over time. These can be preventive, diagnostic (expert system), Total 

Productive Maintenance (TPM), proactive and predictive [27,31]. Each of these techniques is 

characterized by the strategies used and the associated costs, such as financial, quality of service, 

administrative, unproductive times, skilled labor, tools, applied technology, logistics and spare 

parts. 

Although preventive and corrective maintenance have traditionally been used, due to 

technological development, reliability and cost reduction, the trend is changing. Predictive 

maintenance for the early detection of both mechanical and electrical failures based on the study of 

frequency spectra using artificial intelligence techniques has been implemented more frequently, 

Aroui et al. [32]. According to the same author, some of the advantages of predictive maintenance 

are the following: 

 Reduction of repair costs caused by a breakdown. 

 Increased availability or useful life of the machines. 

 More targeted planning of the maintenance work. 

 Better protection of industrial equipment, since it takes into account the state of the components 

to prevent failure thereof. 

 Detect anomalies immediately, at the control or diagnostic center. 

 Record the behavior of the machine. 

 Collect data in extreme climate situations. 

 Minimize unnecessary maintenance actions. 

 Allows the remote and automatic monitoring of the components and provides abundant 

information regarding the operation thereof. 

According to [31], among the different types of maintenance, the predictive approach is 

characterized by the implementation of Computerized Maintenance Systems (CMMS); investment in 

staff training; technologies for the monitoring of conditions (Conditions Monitoring (CM)) and 

Centered Reliability Maintenance (CRM); as well as failure analysis, statistical modeling, critical 

analysis and failure effects. The maintenance approach based on expert systems is highlighted by the 

use of technologies of remote and automatic diagnostics. According to Thomson and Fenger [33], 

these strategies are widely used in the industry and one of the main features is the continuous 

monitoring of electrical equipment to extract timely and early information associated with different 

types of failures. 

In what refers strictly to the part corresponding to the Process to Monitor and Detect the 

Failures (PMFD) of electric motors, according to [30], the techniques employed depending on the 

diagnostic strategies are classified according to Table 7, while the advantages and disadvantages of 

each of the factors that should be considered when developing a PMFD are included in Table 8. 

However, as indicated by [30], “The review reveals that there is no single strategy that can address 

all aspects related to process monitoring and fault detection efficiently, and there is a need to mesh 

the different techniques from various PMFD strategies to devise a more efficient PMFD strategy. 

Greater emphasis needs to be given to the development of PMFD strategies based on amalgamation 

of two or more techniques in order to deal with complex ever-evolving manufacturing processes.” 
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Table 7. Techniques applied to the strategies of monitoring and fault detection. 

Applied 

Techniques 

(Data-Based Approach)  

Data-Driven Techniques 

Prior Knowledge-Based Techniques 

(Model-Based Approach) 
Hybrid Models 

Fundamentals 

Empirical models constructed 

primarily from the process 

history data 

Relies on an explicit model of the process 

primarily based on first principles, 

input-output or state space models 

Amalgamation of 

the data-based 

and model-based 

approaches Classification 

Statistical Techniques  

Artificial Intelligence 
Parameter-based estimation method 

Technique based (artificial 

neural network and  

fuzzy logic) 

Observer-based method 

Artificial Neural Network 

(ANN)-fuzzy logic 
Based on parity relations 

Table 8. Comparison between strategies of the monitoring process and fault diagnosis. 

Characteristics 

Data-Based Approach Prior Knowledge-Based or Model-Based Approach 

Statistical Techniques AI Parameter Estimation 
Observer 

Based 

Parity 

Relations 

Ease of  

development 
Easy Easy Relatively tough Tough Tough 

Diagnostic 

ability 
Satisfactory  Very Good Good Good Good 

Detection speed Quick Quick 

Quick for abrupt faults, 

but relatively slow for 

developing faults 

Quick for  

abrupt  

faults 

Quick for  

abrupt  

faults 

Robustness to 

noise 
Good Very good Poor Poor Poor 

Generalization  

capability 
Poor Poor Good Good Good 

Handling of  

nonlinearity 
Good Excellent Satisfactory Satisfactory Satisfactory 

Failure types  

addressed 

Mainly process 

component or 

equipment failures 

 
Mainly actuator and 

sensor failures 
  

Industrial 

applicability 

Predominantly process  

industries 

Varied 

applications 

Predominantly 

mechanical and airspace 

industries 

  

3. Maintenance of Electric Induction Motors 

At first, the protection of induction motors was limited to the use of devices against 

overcurrent, overvoltage and ground faults, Nandi [34]. However, as soon as diverse applications 

began to be used extensively, where conversion between electrical and mechanical energy was 

necessary, the need to repair, diagnose and predict the failures associated with this type of machine to 

ensure the continuity of operations also appeared. The problems associated with the unexpected exit 

of the electric motor, including repair or replacement costs, stopping production processes with 

consequent economic losses, the reputation of the company, and customer satisfaction, motivated the 

continuous evolution of maintenance strategies in parallel to the constant improvement in the design 

of the motors. This evolution started with the corrective model and then extended to the programmed 

and predictive model, until the present time that the philosophy of Total Productive Maintenance 

(TPM) is used. 

Regarding the operative part, since the electric motors began to be used, the maintenance of 

these equipment has evolved from the visual inspection, empirical analysis, repairs in the 

workshops, use of invasive diagnostic techniques (test of high potential, index of Polarization), 

non-invasive techniques that are based on the acquisition, treatment and analysis of the spectrum of 

signals, to the present day where the results of the mentioned techniques are used to feed programs 

based on Artificial Intelligence (AI) technique such as Artificial Neural Networks (ANN), Fuzzy 

Logic and Support Vector Machines (SVM), all of which attempt to cover as many potential causes of 
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breakdowns as possible, minimize uncertainty, and provide reliable diagnostics to ensure engine life 

in demanding environments and ensure the profitability of both the equipment manufacturer and 

the customer. Several invasive and non-invasive maintenance techniques have been designed, 

which, according to Aroui et al. [32], may include: 

 Electromagnetic field monitoring, search coils, and coils wound around motor shafts (axial flux 

related detection). 

 Temperature measurements. 

 Infrared recognition. 

 Radio Frequency (RF) emissions monitoring. 

 Noise and vibration measurements and monitoring. 

 Chemical analysis. 

 Acoustic measurements. 

 Motor Current Signature Analysis (MCSA). 

3.1. Maintenance through Invasive Techniques 

Initially, besides the analysis in the time domain, part of the techniques developed with the 

purpose of knowing the state of the electric motors are what are known as invasive tests, so called 

because in order to realize them, it is necessary to apply a signal of voltage or current to the motor. In 

this type of tests, one of the key indicators of the winding state is the insulation of turns, coils and 

phases and the insulation between the latter and the ground. According to Peña et al. [35], the tests 

for measuring insulation are divided into analytical tests and by Type. Analytical tests measure 

insulation from the ground and include reading, polarity index and stepped voltage. Type tests 

include high potential (HiPot) and comparison of voltage impulses. The invasive tests used to test a 

new or repaired motor and to diagnose its conditions are described in the IEEE 1415 standard, [19]; 

see Table 9. 

Despite the technological advances and benefits of the invasive tests, they have the 

disadvantages of stressing the insulation and windings, require expensive equipment, can be 

dangerous for the people who perform them and must be done when the machine is not operating, 

In some cases it is required to disassemble the motor (this is critical in large machines) and specific 

tests must be performed for each type of fault. 

Table 9. Invasive tests. 

Test Description Effectiveness Test Precautions/Considerations 

AC high potential 
Overvoltage test applied from 

conductor-to-ground. 

Pass/Fail Test; not effective for 

trending. 
Potentially destructive. 

Capacitance 
AC test to measure insulation 

capacitance line-to-ground. 

Effective in manufacturing; 

possibly effective for trending. 

Effective on single coils during 

manufacturing of medium-voltage 

machines. 

Core loss (loop) 
Test for shorted stator core 

laminations. 

Pass/Fail Test; not typically 

effective for trending, 

although may be used for 

trending under controlled 

conditions. 

Be prepared to stop test abruptly if 

core damage is suspected. 

DC high potential 

Overvoltage test applied line 

to ground test, measures 

leakage current plus charging 

current. 

Effective for trending and as 

pass/fail. 

DC high potential test should only be 

undertaken after passing the  

PI test. 

Dielectric 

absorption 

Ratio of the 60-s IR reading to 

the 30-s IR reading. 
Effective for trending 

 

Dissipation factor 

and power factor 

AC test measuring 

dissipation-capacitance 

line-to-ground. 

Effective on single coils during 

manufacturing of 

medium-voltage machines; 

possibly effective for trending. 

 

Grease analysis 

Appearance, smell, grit, 

content of grease sample 

grease lubricated machine 

bearings. 

Effective for trending. 
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Growler 

Tests of rotor core and squirrel 

cage of disassembled machine 

by introducing an external 

magnetic field, and monitoring 

temperatures, magnetic 

patterns or current patterns of 

the rotor. 

Pass/fail test; not effective for 

trending.  

Insulation 

resistance 

Measures resistance of 

insulation between conductor 

and ground. 

Effective for trending. 

Temperature correction required for 

trending. Adequate scale range 

required. 

Oil analysis 

Analysis of oil for lubricant 

characteristics and foreign 

particle concentration for  

oil-lubricated  

machine bearings. 

Effective for trending. 
 

Partial discharge 

AC test that measures partial 

discharge (corona)  

line-to-ground. 

Requires experienced 

operator; effective for trending 

with some technologies. 
 

Phase angle 

Timed measurement of 

voltage and current angle  

in degrees. 

Effective for trending. 
 

Phase balance 

(Inductance and 

Impedance) 

AC frequency test to measure 

stator line-to-line inductance 

or impedance balance. 

Effective for trending. 
Correct for winding temperature and 

rotor position. 

Polarization 

index 

Ratio of ten-minute IR to  

one-minute IR. 
Effective for trending. 

Should have adequate scale range. 

Note: form-wound coils only. 

Single-phase 

rotor test 

Monitors the AC current level 

while the machine is single- 

phased at lower voltage level, 

while the shaft is  

rotated manually. 

Pass/fail. 
WARNING: possible hazard to 

operator; risk of single-phase start. 

3.2. Maintenance through Non-Invasive Techniques 

The disadvantages of invasive testing and the need to find alternative and complementary 

methods to monitor, detect and diagnose a variety of failures in a precise, simple and economical 

way without putting people at risk or stopping operations resulted in a significant amount of 

research. These studies were conducted due to the progress in the development of new 

mathematical models to describe and predict the behavior of the electric motor, electronic analog 

and digital, hardware and software development in the field of communications, specifically related 

to the generation, transmission, acquisition, treatment and monitoring of signals. 

Signals from stator currents, magnetic field, vibrations, noise and temperature contain valuable 

information. The non-invasive techniques are based on several mathematical models that allow one 

to treat, decompose and analyze the spectrum of signals to identify irregularities that are associated 

with the failures that can occur in the induction motor while it operates normally without leaving 

the production line, Drozdowski and Duda [36]. The same authors mentions that the identification 

of the faults has allowed for the creation of databases that can be used to train intelligent systems 

capable of autonomously detecting any deviation from the normal operation of the equipment and 

mainly at an early stage. 

According to Narwade et al. [37], one of the most popular and accurate techniques for detecting 

faults in induction motors is currently the MCSA. The monitoring, detection and diagnosis of the 

engine conditions can be done while the machine is operating by using the current and voltage 

transformers used in the protection system. MCSA includes parametric analysis methods (signal 

analysis as a function of time, frequency spectrum), non-parametric methods (techniques such as 

Fast Fourier Transform) and high-resolution or sub-space methods (these obtain the autocorrelation 

matrix, and their eigenvalues separate the subspaces corresponding to the signal and noise). When 

the signal is not stationary, diagnostic techniques are mainly based on higher order spectral analysis 

(time-frequency), such as bispectrum and trispectrum, and higher order statistical methods to obtain 

the density of the frequency spectrum [34,38]. 



Energies 2017, 10, 1056 15 of 34 

 

Each type of failure that occurs in the induction motors will specifically affect the signal that is 

being analyzed. For this reason, the central objective of MCSA is to determine the differences in 

signal patterns (spectrum) of an engine in good condition and another that features a failure. In this 

way, it is possible to monitor and diagnose failures associated with the rotor (broken bars, 

eccentricity, bearings and shaft), bearing problems and stator short circuits. According to Thomson 

and Fenger [33], to choose the appropriate monitoring technique in industrial environments, it must 

be taken into account that, to trust that the diagnosis is correct, to quantify the severity of the 

problem, to determine the origin of the failure, and to give a pre-diagnosis of the remaining 

operation time, it must be verified that the sensor is reliable and non-invasive. Moreover, due to the 

effect that this may have on the diagnosis, the design of the machine, the power range, the coupled 

mechanical components, the conditions and the load characteristics should be considered. Bellini et 

al. [23] classified the procedures using MCSA according to Figure 3. 

 

Figure 3. Methods of analysis using Motor Current Signature Analysis (MCSA), as shown in [23]. 

In general terms, it is known that the asymmetries will be reflected in the motor signals in the 

form of sidebands distributed with a certain uniformity around the main component. However, this 

spacing can be altered due to factors such as load variation, which should be kept in mind when 

making a diagnosis. Moreover, the assumption of uniformity may be valid for the model of one 

machine but not for others [23]. In many cases, the noise or the applied technique makes it difficult to 

distinguish the failures, so it is necessary to use an adequate technique of decomposition of the 

signal to obtain the instantaneous frequencies. According to Clemente [39], the disadvantages of the 

analysis methods of non-parametric signals using the Fourier transform are bandwidth limitation, 

distortion due to low sampling speed (aliasing), distortion due to finite signal length of the signal 

(leakage), the Picket fence effect, and speed variations. When using the Fourier analysis, the results 

obtained include the unwanted part of the signal (noise) due to these factors. This often occurs in the 

transient operating states, such as the starters of induction motors. 

As an alternative to these inconveniences, one of the methods for decomposing the signal is 

through Empirical Mode Decomposition (EMD), thus obtaining a set of Intrinsic Mode Functions 

(IMFs) of different frequencies containing the sidebands. The next step is to get the amplitude and 

frequency of each IMF using the Hilbert Transform (HT); for this reason, this method is called the 

Hilbert-Huang Transform, Batista et al. [26]. Figure 4 is an example of the results obtained. 
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Figure 4. Spectrum of the phase current signal of a motor. (a) Fast Fourier Transform (FFT); (b) 

Demodulation. The red line indicates health status, while the blue line indicates failure, as shown in 

[40]. Reproduced with permission from IEEE, 2017 

According to Stranneby and Walker [17], several methods of treatment and filtering (Infinite 

Impulse Response (IIR), Finite Impulse Response (FIR), Low Pass, high Pass, Band Pass, Stop 

Butterworth, Chebysheff, Eliptical or Cauer, Bessel and Total Pass Filters) of the signal have also 

been developed, which serve as alternatives to overcome the inconveniences that mean the 

elimination of unwanted components that hinder the correct diagnosis of the failures in the motor. A 

sample of the techniques used to treat the signal is included in Figure 5, [37,39]. Each method has its 

advantages and disadvantages, thus motivating the continuous development of new mathematical 

models to ensure the following, according to Kia et al. [38]: 

 Reducing computation time. 

 Saving memory space. 

 Security in the specified frequency range. 

The emergence of the drivers signified a great advance in the operation and control of electric 

motors, but the harmonics that these generate posed a new challenge in the development of 

methodologies for the monitoring, detection, and diagnosis of the failures in the machines that 

worked with converters, Bellini [23]. According to Duque-Pérez et al. [41], to design a method that is 

valid for any power source and frequency of operation, it is necessary to consider and identify the 

influence of the different operating conditions. For this, [41] proposes an experimental study, a 

statistical analysis based on an additive model that allows for recognition of the effect the power 

supply has on the field harmonics, the same ones that will be affected by any failure in the motor. 

This method can detect the broken bars of a motor when it is fed in five different ways, directly to 

the power supply network and through four converters of various brands and models. 

García-Escudero et al. [42] also present a method based on statistical techniques (Control Quality) to 

determine the early failures in inverter-powered motors. According to the authors, this method for 

running engines is a robust proposal for the detection of broken bars, mixed eccentricity, and 

bearings. 

When motors work with AC variable speed drivers, another diagnostic alternative is based on 

Park’s vector. According to Henao et al. [40], the dependence of the load and the sensitivity to the 

variations of velocity that were the major disadvantages in carrying out the diagnosis have been 

overcome by recent techniques based on the approach of Park’s vector. The same author mentions 

four techniques that have demonstrated high effectiveness even for low loads and that are simple to 

implement, operate independently, have low computational demand and limit the need for 

hardware. These methods are Errors of Normalized Currents Average Absolute Values 

(ENCAAVs), Current Park’s Vector Phase and Currents Polarity (CPVPCP), Normalized Currents 

Average Values (NCAVs) and Normalized Reference Current Errors (NRCEs). 
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Figure 5. Methods of treatment and analysis of the signals, as shown in [37,39]. 

Referring to techniques for the forecasting of the electrical energy demand, Hernández et al. 

[43] state that, in recent times, thanks to the development of computers and their ability to solve 

complex problems, there has been a proliferation and evolution of techniques and systems. A similar 

situation has occurred with the field related to the monitoring, detection, diagnosis and prediction of 

failures of electric induction motors, giving rise to a significant number of publications in this field, 

and since it would be complicated to analyze them all, this research is limited to the fundamentals. 

Table 10 shows a matrix relationship among the failures, applied techniques and investigations 

conducted. 
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Table 10. Publications according to applied methodology and detected failures. 

  
Broken Bars Bearings Eccentricity 

Unbalance 

Shaft 

Winding 

Short 

Rotor 

Asymmetry 

Voltage 

Unbalance 

Insulation 

between Turns 

Signal Applied Technique 
        

Current 

Fast Fourier Transform (FFT) [23,24,34,37,44,45] [23,24,37,40] [24,31,46] 
 

[23,24,33] 
 

[37] [47] 

Short Time Fast Fourier Transform (STFT) [48] 
 

[48] 
   

[48] 
 

Music, Root music [25,37,49] [23,25,49] [23] [49] 
  

[25] 
 

Wavelets [50] [51] 
      

Time Frequency Representation (TFR) 

Mahalanobis Distance 
[18] [18] 

  
[18] 

   

Wavelet Transform Decomposition Wavelet 

Power Spectral Density  
[52] 

   
[52] 

   

Park’s Vector Square Modulus (PVSM) and 

Park-Hilbert (P-H) 
[53] 

 
[54] 

 
[53] 

   

Input Power [12] [12] [12] 
  

[12] 
  

Finite Element 
  

[55] 
     

Current 

(drivers) 

Statistical analysis based on additive model [40,41] [42] [42] 
     

Wavelet Packet Decomposition (WPD) [56] 
 

[56] 
  

[56] 
  

External radial 

flux 

Empirical Demodulation (ED) Hilbert 

Transform (HT)  
[40,44] 

   
[27,40] 

 
[27] 

 

Vibration 

MCSA (FFT) [45] [24,47,49] [49] 
 

[27,53] 
 

[27,53] 
 

Fault Frequency Highlighting (FFH) 
    

[53] 
 

[53] 
 

Gaussian Mixture Models and Bayesian 

classification   
[57] 

      

Wavelet (Gaussian envelope oscillation) [58] [58] 
 

[58] 
 

[58] 
  

Empirical Mode Decomposition (EMD) Time 

series trending for condition assessment and 

prognostics  
 

[59] 
      

Envelope Order Spectrum (EOS) tacholess 

envelope order analysis technique   
[60] 

      

Higher Order Spectra (HOS) [61] 
 

[61] 
 

[61] 
   

Zero sequence 

voltage  
[33,49] 

 
[36] 

  
[36] 

 
[62] 

Thermal 
  

[24]  
   

[24]  
  

Acoustic 
  

[24]  
      

Torque 

variations  
[44] 

       

Equivalent 

circuit  
[63] 
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3.3. Software and Hardware Used for Monitoring, Detection, and Diagnosis of Failures 

Despite the complexity of the physical concepts and mathematical models developed and 

utilized for the diagnosis of electric motor failures, the software and hardware tools used today in 

each of the stages of this process have significantly facilitated this task. The process of applying any 

of the techniques or methodologies to monitor, detect and diagnose faults in electric motors has 

stages that are common to all, and the differences are due to the particularities of each technique. 

The generic steps for a process of detecting and diagnosing failures in electric induction motors 

include sensing, acquiring, filtering, processing and monitoring the signal for detection and 

diagnosis (see Figure 6) [64,65]. The equipment used in each of these phases is shown in Table 11. 

 

Figure 6. Stages of the process for the monitoring, detection and diagnosis of early failures. Fault 

diagnosis through WPD, FFT and ANN, as shown in [64]. Reproduced with permission from 

Springer, 2017. 

Table 11. Software and hardware used according to the stage of the diagnostic process. 

Stage Equipment References 

Current sensor 

Fluke Hall Effect probe [41,42] 

Micro electromechanical systems (MEMS) 

model CSA-1V 
[39,66] 

Wireless XBEE [57] 

3035B DYTRAN accelerometers [29] 

Current Clamp [67] 

Vibration sensor 

MEMS model LIS3L02AS4 [25] 

DeltaTron accelerometer type 4517 [26] 

Wireless XBEE [57] 

Kistler: Type 8702B100 [64] 

Sound sensor OLYMPUS WS 200S [68] 

Acquisition signal 

PCI-6250 M DAQ NI [37,41,52,64,69] 

NI-6251 [26,41] 

NI-9234 [70] 

AT-MIO-16D data A/D card [56] 

DSP 56F8357 [51] 

13-channel IO Tech [71] 

ARCOM acquisition board [68] 

MEMS model ADS7841 [25] 

FPGA-based System  [67] 

Accessories for NI BNC-2110 [64] 
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acquiring signals NI cDAQ-9172 [70] 

Signal analysis 

MATLAB and LabVIEW [41,42,64,69] 

MATLAB [32,37,41,51,53,59,67,69,70,72–74] 

LabVIEW [44] 

NI Sound and Vibration Assistant software [70] 

NI DAQ Ware 4.5 [56] 

One of the most used technologies for this purpose is that developed by the company National 

Instruments (NI), which offers tools for each of the stages mentioned. Of the papers considered, 50% 

use 6250 or 6251 cards for data acquisition, and 100% use LabVIEW or MATLAB for the monitoring 

and analysis of the signal at a basic or advanced level, either in academic or commercial 

environments. LabVIEW can handle complex problems with a basic level of programming, while 

MATLAB is used for the mathematical tools that it offers for the analysis and treatment of the 

signals. NI technology is usually implemented in conjunction with MATLAB. The signal is acquired 

and conditioned by a card, such as NI-6251, monitored by LabVIEW and treated by MATLAB. 

Ranga and Chandel [75] state that “LabVIEW” is the best alternative for condition monitoring, 

diagnosis and parameter identification of induction machines. In addition to signal measurements 

are very easy, LabVIEW allows realizes virtual instruments. According the authors, applications 

developed with LabVIEW include the following: 

 On-line health monitoring of induction motors by using LabVIEW to diagnose the  

mechanical faults. 

 Analysis of induction motor performance. 

 Internet technology-based development of remote diagnosis to check the machine status 

through the Internet and mobile terminals. 

 CM of AC motors through intelligent fault diagnosis based on programmable logic controllers. 

 Analysis of three-phase induction motor using the current Park’s vector. 

The constant evolution in the development of new methodologies for monitoring and detecting 

failures in induction motors has also reached the tools and instrumentation to capture, treat and 

analyze the signals. According to Son et al. [66], traditional vibration sensors, sound, temperature, 

filters, current and voltage transformers are being replaced by Micro Electromechanical Systems 

(MEMS). MEMS technology refers to microscopic electromechanical devices built on a chip, which 

can be combined with artificial intelligence techniques. Although this technology is not yet 

completely tested and requires many improvements before its application in the monitoring and 

detection of faults in induction motors, the authors demonstrate in their experimental study the 

sufficiency of MEMS to replace conventional sensors in the detection of shaft twists, mass imbalance, 

defective bearings and broken bars. 

Alarcón [39], uses the CSA-1V sensor (5 mm long by 4 mm wide, Figure 7), with CMOS 

technology using the Hall effect, to measure the current of bars broken by fatigue. According to the 

author, this type of sensor does not introduce new resistances that alter the measurement and can be 

used in reduced spaces that do not allow the utilization of another type of sensor. Additionally, 

these sensors tolerate the electromagnetic effect, tolerate up to 125 degrees Celsius and have an 

insulation capacity of up to 600 V. 

 

Figure 7. MEMS sensors for current and accelerometers, as shown in [66]. Reproduced with 

permission from Elsevier, 2017. 
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Wireless sensors represent a new technological breakthrough. Aydın et al. [57] proposed a 

network of these types of sensors to monitor and diagnose the failures of several motors 

simultaneously through the signals of current and voltage. The author uses the current signal 

obtained along with a Fuzzy Logic approach to diagnose stator faults. For bearing problems, the 

signal from the vibration sensors is normalized to construct the phase space and analyze their 

changes with machine learning techniques based on Gaussian Mixture Models and Bayesian 

classification. 

4. Failures According to the Part of the Machine and Diagnostic Methods 

In this section, we intend to summarize the identification of the faults through the application of 

what has been described thus far in the present work. For this, the section is divided according to 

one of the methods of grouping the different types of faults of the induction motors, that is, as faults 

occur in the stator, rotor or bearings. Each of these parts may have several types of faults and these 

can be detected by the use of various types of signals and methods, as below. 

4.1. Rotor Failures 

4.1.1. Broken Bars 

The presence of broken bars in the rotor can be detected by several methods, including analysis 

of the equivalent circuit of the motor, VA and MCSA. As seen thus far, several faults may occur in 

the rotor. Concerning the bars, damage in this part of the machine will be reflected in the current 

signal in the form of harmonics, being the most important those located at ±2sf of the fundamental 

wave, where s means the slip, and f means the frequency of the network. The severity of bars 

damage depends on the amplitude of the harmonic. Thus, the greater the difference with respect to 

the amplitude of the fundamental wave, the greater the damage, Thomson and Fenger [33], Soto and 

De la Torre [45]; see Figure 8 and Table 12. Benbouzid [46] stated that current analysis does not allow 

for detection of the distribution of bars in the rotor when these are broken and located in various 

parts of the engine. However, when the amplitude of the harmonics is 50 dB, smaller than the 

fundamental wave, it could be considered that the motor is in good condition. 

 

Figure 8. FFT spectrum of the current signal of a motor with a broken bar, as shown in [33]. 

Reproduced with permission from IEEE, 2017. 

Table 12. Difference of amplitude between the fundamental harmonic and sidebands. 

Motor Condition Amplitude Difference (dB) 

Healthy 54–60 

Acceptable 48–54 

Half section broken bar 42–48 

One broken bar 36–42 

Many broken bar 30–36 

Severe problems <30 
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According to Benbouzid et al. [49], the components of the current spectrum of a motor, 

produced by irregularities of the magnetic field due to broken bars, are given by (12). Where due to 

the winding configuration, k/p = 1, 2, 3, … 

𝑓𝑏𝑟𝑏 = 𝑓 {𝑘
(1−𝑠)

𝑝
+/− 𝑠}, (12) 

Since rotor failures are not so common and it may take some time for the machine to collapse, 

the most interesting investigations are focused on quantifying the magnitude of the failure in its 

early state. In these case MCSA would be useful if mathematical models considered saturation, bar 

currents, and magnetic asymmetries. For this reason the mentioned variables are found in several 

models presented by the authors in their study, which includes Table 13, showing the indices related 

to several failures and their associated wave components [23]. 

where: 

I = Magnitude of the fundamental component of the current 

𝐼1 = Amplitude of the left lateral component (stator current) referred to its original component 

𝑁𝑟 = Number of rotor bars 

𝑛𝑟 = Number of continuous broken bars  

P = Number of poles 

𝛾 = (2𝜋 / (𝑁𝑟 𝑃)⁄ ) n𝑟 

𝐼𝑑𝐵 = [20log10( 𝐼1 𝐼⁄ ) +  20 log10( 𝐼1 𝐼⁄ )]/2 

Table 13. Quantitative methods for detecting rotor failures. 

Signal Components 𝒏𝒓 

(1 − 2𝑠)𝑓 
𝐼1

𝐼
=

𝑠𝑖𝑛 𝛾

2 𝑃 (2𝜋 − 𝛾)
 𝛾 =

2𝜋

𝑁𝑟 𝑃⁄
 𝑛𝑟 

(1 + −⁄ 2𝑠) 
𝐼1

𝐼
=

𝐼1+ 𝐼𝑟

𝐼
 ≅  

𝑛𝑟

𝑁𝑟
  

(1 + −⁄ 2𝑠)𝑓 𝑛𝑟 =
2𝑁𝑟

10−
𝐼𝑑𝐵
20  + 𝑃

 

When the vibration signal is used, according to [45], a bar breakage is manifested as harmonics 

in the vibration spectrum, whose width is given by (13). 

𝑑 = 2𝑝
𝑁𝑠−𝑁

60
, (13) 

where: 

P = Number of pole pairs of the motor 

Ns = Sync speed (rpm) 

N = Asynchronous speed (rpm) 

Perhaps as a qualitative step in the analysis of the behavior of induction motors through its 

equivalent circuit proposed by Steinmetz in 1897 and thanks to the advance of other branches of the 

sciences such as electronics, computation, and signal analysis, it has been possible the development 

and use of new mathematical models derived from the equivalent circuit of the motor to detect 

asymmetries in its current, torque, speed, etc. Filippetti et al. [12] suggested two techniques based on 

the equivalent circuit (Figure 9) to identify broken bars by relating them to the equivalent rotor 

resistance and the relation between the currents induced in the stator by the components of the rotor 

current. The first component of the field in the air gap rotates in the same direction as the rotor and 

will induce a current I in the stator, while the second component rotating in the opposite direction 

will induce a current I2. Considering that both I2 and I depend on the slip and the number of broken 

bars, the ratio I2/I is indicative of a failure in the rotor, as well as increased rotor resistance. 

According to the authors, since several assumptions are made and the temperature effect on the 

resistance increase is not considered, these techniques would be valid for motors with a broken bar. 
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Figure 9. Equivalent motor circuit in a stable state with rotor asymmetries, as shown in [12]. 

Reproduced with permission from IEEE, 2017. 

4.1.2. Eccentricity 

The eccentricity can be static, dynamic or mixed and can be caused by a deviated or twisted 

shaft and defective or poorly positioned bearings. According to the studies, the phenomena 

associated with eccentricity are reflected in the speed and torque of the machine, which is observed 

in the frequency spectrum of the current as side bands given by (14), Bellini et al. [23]: 

𝑓𝑒𝑐 = 𝑓1 {(𝑅 +/− 𝑛𝑑)
(1−𝑠)

𝑝
+/− 𝑛𝑤𝑠}, (14) 

where: 

𝑓𝑒𝑐 = Components associated with eccentricity 

𝑓1 = Frequency of the network  

R = Number of rotor slots 

s = Sliding 

p = Pairs of poles 

𝑛𝑑 = ±1 

𝑛𝑤𝑠 = 1, 3, 5, 7… 

Benbouzid [46], proposed a method for determining the components of the velocity and torque 

spectrum (𝑓𝑠𝑙𝑜𝑡+𝑒𝑐𝑐) and another that defines the lateral bands (𝑓𝑒𝑐𝑐) of the motor power supply. 

𝑓𝑠𝑙𝑜𝑡+𝑒𝑐𝑐 = 𝑓𝑠 {(𝑘𝑅 +/− 𝑛𝑑)
(1−𝑠)

𝑝
+/− 𝑛𝑤}, (15) 

𝑓𝑒𝑐𝑐 = 𝑓𝑠 {1 + −⁄  𝑚(
(1−𝑠)

𝑝
)}, (16) 

When the eccentricity is dynamic, the air gap change alters its flux density and the machine 

inductance, producing components in the signal of the stator current, which are given by (17) [49]. 

𝑓𝑠𝑠𝑜 = 𝑓 {𝑘
(1−𝑠)

𝑝
+/− 1}, (17) 

4.1.3. Rotoric Asymmetry 

According to [49], when rotor asymmetry occurs, it will create a disturbance in the air-gap flux 

density. The disturbance rotates at the same speed as the rotor and will be reflected in the current 

signal of the stator in the form of bands, caused by: 

𝑓𝑟𝑎 = 𝑓 {𝑘
(1−𝑠)

𝑝
+/− 𝑠}, (18) 

4.2. Bearings 

Vibrations, continuous internal stresses, eccentricity, rotor and shaft currents, contamination, 

corrosion, lack of lubrication, high temperature, poor installation, natural wear due to the time of 

use and damage of engine covers are causes for failures of the spheres and mainly the inner and 
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outer tracks of the bearings. These failures cause the natural vibrations and sounds of any machine 

to increase substantially, in addition there will be oscillations of speed and torque with characteristic 

frequency spectra. Bearing failures can be detected using stator current, temperature, vibration and 

acoustic analyses. Of these alternatives, the most commonly used are vibrational analysis and 

MCSA; although both are of a different nature, some studies relate the two signals [23]. 

4.2.1. Failure Detection through Stator Currents 

The lateral bands associated with the eccentricity of the rotor caused by defects in bearings are 

given by (19) [49]. 

𝑓𝑏𝑛𝑔 = 𝑓 +/− 𝑛𝑏
𝑛

2
𝑓𝑟 [1 + −⁄  

𝐵𝐷

𝑃𝐷
cos 𝛽], (19) 

where: 

𝑓 = Frequency of the network 

𝑛𝑏 = Number of spheres 

𝑓𝑟 = Mechanical speed of the rotor (Hz) 

𝐵𝐷 = Diameter of the spheres 

𝑃𝐷 = Bearing pitch diameter 

𝛽 = Contact angle between the spheres and the tracks 

𝑛 = 1, 2, 3, … 

If the number of spheres is between six and twelve, the characteristic frequencies of failures can 

be approximated in most bearings by (20) and (21) [46]. 

𝑓0 = 0.4𝑛𝑓𝑟, (20) 

𝑓𝑖 = 0.6𝑛𝑓𝑟, (21) 

For the bearings, according to [23], the frequencies of the components associated with the 

failure are given by: 

𝐹𝑐 =
1

2
𝐹𝑅(1 − 

𝐷𝑏 cos 𝛽

𝐷𝑐
), (22) 

𝐹𝑜 =
𝑁𝐵

2
𝐹𝑅(1 − 

𝐷𝑏 cos 𝛽

𝐷𝑐
), (23) 

𝐹𝐼 =
𝑁𝐵

2
𝐹𝑅(1 + 

𝐷𝑏 cos 𝛽

𝐷𝑐
), (24) 

𝐹𝐵 =
𝐷𝐶

𝐷𝑏
𝐹𝑅 [1 − (

𝐷𝑏 cos 𝛽

𝐷𝑐
)2], (25) 

where: 

𝐹𝑐 = Failure frequency of the cage 

𝐹𝑜 = Failure frequency of the internal track 

𝐹𝐼 = Failure frequency of the external track 

𝐹𝐵 = Failure frequency of the spheres 

𝐷𝑏 = Diameter of the spheres 

𝐷𝑐 = Pitch diameter 

4.2.2. Detection of Failures through Vibrational Analysis 

For stationary signals, such as current or voltage during normal operation of the electric motor, 

MCSA is the best option for failure detection; however, for non-stationary signals, such as when 

starting the electric motor, it is preferable to use the analysis of noise and vibrations that are 

generated in all types of electric machines and can be of magnetic, mechanical or aerodynamic 

origin. 
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There are four essential characteristics of the vibration signal that are needed to determine the 

asymmetries in the motor (through FFT); these are the amplitude (level of problem severity), 

frequency, phase, and modulation (the amplitude response of a frequency before another signal with 

a lower frequency). In the time domain, the analysis can be performed with the help of static 

measures, such as Root Mean Square (RMS), crest factor, and kurtosis [37]. When the bearings 

feature failures, they will be reflected in the frequency vibrations given by: 

𝑓𝐵𝑃𝐹𝑂 =  
𝑛

2

𝑁

60
(1 −

𝑑

𝐷
cos 𝛽), (26) 

𝑓𝐵𝑃𝐹𝐼 =  
𝑛

2

𝑁

60
(1 +

𝑑

𝐷
cos 𝛽), (27) 

where: 

𝑓𝐵𝑃𝐹𝑂 = Ball pass frequency outer ring 

𝑓𝐵𝑃𝐹𝐼 = Ball pass frequency inner ring 

n = Number of balls  

N = Rotational speed (rpm)  

d = Ball diameter  

D = Bearing pitch diameter  

β = Ball contact angle with the race. 

4.3. Detection of Stator Failures 

Failures that occur in the stator, such as short circuits and unbalanced voltage, can be analyzed 

by the MCSA, the same signal used to determine several failures in other parts of the motor, such as 

the rotor and bearings. 

4.3.1. Detection of Stator Shortcuts through MCSA 

It is also possible to detect failures due to short circuits in the motor stator through MCSA. 

According to [33], the components of this type of failure in the stator current of low-voltage motors, 

induced by the rotational flux wave, are given by (28). An example of the application can be seen in 

Figure 10. 

𝑓𝑠𝑡 = 𝑓1 {
𝑛

𝑝
(1 − 𝑠) +/− 𝑘}, (28) 

where: 

𝑓𝑠𝑡 = Components associated with the short circuit 

𝑓1 = Frequency of the network 

s = Sliding 

p = Pairs of poles 

n = 1, 2, 3, 4, … 

k = 1, 3, 5, 7, … 

 

Figure 10. Spectrum FFT of the current signal of a motor with 20% burnt turns, as shown in [33]. 

Reproduced with permission from IEEE, 2017. 
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4.3.2. Stator Asymmetry 

Among the most widespread and simple methods for the early detection of stator asymmetries, 

the tracking of the negative sequence of motor currents occupies a prominent place. Through current 

(29) and voltage signals, the negative sequence impedance values are obtained, and the magnitude 

of the difference of these with respect to the average values of the machine indicates the severity of 

the failure. An effective procedure through the negative current sequence should distinguish 

between failures due to voltage unbalance, saturation, winding asymmetries, eccentricity and short 

circuits; however, a short circuit between turns is a failure that is difficult to detect, and generally, 

the machine will continue to work until it is out of service, Bellini et al. [23]. 

[

𝐼�̅�

𝐼�̅�

𝐼0̅

] =
1

3
[
1 𝛼 𝛼2

1 𝛼2 𝛼
1 1 1

] [

𝐼�̅�

𝐼�̅�

𝐼�̅�

], (29) 

where: 

𝐼�̅�, 𝐼�̅�, 𝐼0̅ = Positive, negative and zero sequence currents, respectively 

𝐼�̅�, 𝐼�̅�, 𝐼�̅� = Line currents 

𝛼 = 𝑒𝑗
2𝜋
3  

Another important alternative for diagnosing stator asymmetries, especially in a transient state, 

is the modeling of the machine under fault conditions through equivalent circuits that can integrate 

the electrical and magnetic behavior. Bellini [23], describes several models, but according to the 

author, despite their scientific value, these still need to be investigated in depth to improve their 

accuracy and reliability and to make them applicable at an industrial level. One of the problems to be 

solved is the time lag between the identification of the failure and the collapse. 

When MCSA is used for the determination of stator asymmetries in a fault-free motor, the most 

vital components are, according to [49], the first (50 Hz) and the fifth (250 Hz) harmonics, while in 

case of a voltage imbalance in the stator and regardless of the load, the affected components are the 

first and third harmonics (150 Hz); see Figure 11. 

 

Figure 11. Frequency spectrum determined by music for a motor in good condition and another with 

voltage imbalance problems, as shown in [49]. Reproduced with permission from IEEE, 2017. 

According to Drozdowski and Duda [36], the magnetic motor saturation will be reflected in the 

zero sequence voltage (VN) signal, as well as the machine asymmetries, where the VN spectrum in the 

stator can be used to detect rotor faults, which would be given by (32) and (33). 

𝑓𝑠1 = 𝑓𝑠 |(1 − 𝜇) −
𝐼𝑍𝑟 

𝑝
(1 − 𝑠)|, (30) 

𝑓𝑠2 = 𝑓𝑠 |(1 − 𝜇) + (−
𝐼𝑍𝑟 

𝑝
+ 2 + 6𝑘)(1 − 𝑠)|, (31) 

𝑓𝑠3 = 𝑓𝑠1 − (𝑛1 + 1)𝑠𝑓𝑠|𝑛1=1= 𝑓𝑠1 − 2𝑠𝑓𝑠 , (32) 

𝑓𝑠4 = 𝑓𝑠1 − (𝑛1 + 1)𝑠𝑓𝑠|𝑛1=1 = 𝑓𝑠2 − 2𝑠𝑓𝑠 , (33) 
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4.4. Combined Failures 

Most studies focus on the diagnosis of a determined type of failure or several of them but isolate 

each one. It is less frequent to find investigations focused on determining the presence of combined 

faults through signal analysis, García-Perez [25]. The author indicates that a safe and reliable 

alternative to determine single or multiple combined failures is through a FIR filter bank combined 

with high-resolution spectral-analysis (MUSIC). Applying this methodology, the bandwidths 

associated with different failures were identified and are shown in Table 14. Figure 12 shows the 

frequency spectra for a motor with more than one fault at the same time. 

 

Figure 12. Detected components related to different combinations of failures through MUSIC, as to 

the signal of current and vibration, as shown in [25]. Reproduced with permission from IEEE, 2017. 

Table 14. Bandwidth associated with failures. 

Failure Bandwidth (Hz) 

Broken bars 45–75 

Defective Bearings (current signal) 104–124 

Defective Bearings (vibration signal) 164–184 

Phase Unbalance 45–65 

5. Predictive Maintenance Based on Artificial Intelligence Techniques 

Despite the advances in the methodologies developed for the diagnosis of failures in their initial 

phase, the techniques to capture, treat, monitor and diagnose based on the analysis of the signal 

have not been sufficient when working independently or isolated. It was necessary to develop expert 

systems that include the use of probability functions, incomplete data, and nonlinear systems. Thus, 

in this context, AI, which is a set of techniques that try to emulate the biological behavior of living 

entities, such as man (see Table 15), to autonomously be able to learn, adapt and make the best 

decisions, would become the new alternative to solve many complex problems in both science and 

engineering, such as that of autonomously, accurately and reliably interpreting the information 

contained in the signals of the induction motors to provide an early warning of failures, [63,76,77]. 
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Table 15. AI techniques. 

Techniques Emulated Phenomenon 

ANN Learning and classifying patterns like the human brain 

Fuzzy Logic 
How the brain handles inaccurate information and makes inferences 

Stores the experience in a linguistic form 

Fuzzy Sets How the brain handles inaccurate and accurate information. 

Neuro-Fuzzy System 

(Hybrid Systems) 

Learning and classifying patterns like the human brain, making 

inferences based on inaccurate information and storing experience in 

a linguistic form 

Genetic Algorithm 

Crossing and evolution of individuals 

Selection of the best adapted 

Chromosomes, Genes 

Support Vector 

Machine (SVM) 
Based on statistical learning theory 

K-nearest neighbors 

(KNN) 
Estimates the probability that an element belongs to a given set 

Data Mining 
Techniques to process large databases to find patterns of trends that 

explain their behavior 

Case-Based 

Reasoning (CBR) 
Troubleshooting based on similar previous cases 

Expert Systems 
Computer system that performs inferences based on stored data and 

received information 

In addition to the classical analysis techniques, which are based on studying the frequency 

spectrum of signals, AI techniques such as fuzzy logic, ANN, and approximate sets have recently 

been implemented. While the techniques analyzed thus far are based on deterministic models, 

artificial intelligence techniques use probability functions to handle uncertainty, imprecision, 

nonlinear systems and incomplete data [31,78]. According to the authors, predictive maintenance is 

currently based on online monitoring of the conditions, detection, and diagnosis of failures and 

measurement of the effectiveness of the maintenance actions applied using AI techniques. AI 

techniques cannot be analyzed separately from MCSA-based methods; they are a complement, 

extension or step forward in the effort to refine the procedures applied to give a more accurate, 

reliable and efficient diagnosis of the emerging failures in induction engines. In fact, all the 

asymmetries detected with the aid of non-invasive techniques that were analyzed in section two are 

the same failures that are to be diagnosed through AI, whose mathematical models are fed by the 

signals treated through MCSA techniques. 

According to Ding [58], AI techniques constitute the core of SC and, along with other modern 

technologies, have an unprecedented influence on intelligent systems that imitate a human being in 

learning, reasoning and intelligence. These have been applied to solve several engineering problems, 

including on-line monitoring and diagnosis of emerging failures in electric motors. 

Additional examples of SC techniques applied to the predictive maintenance of induction 

machines include the Terology Integrated Modular System (SMIT) and the Intelligent System for 

Predictive Maintenance (SIMAP). SIMAP employs neural networks, fuzzy expert systems, and fuzzy 

genetic algorithms, while SMIT uses Support Vector Regression (SVR), Autoregressive Moving 

Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA) [31]. According to 

Bellini et al. [23], so that AI-based diagnostic systems have a minimum configuration, provide a 

proper diagnosis and apply to the industrial field, the best alternative would be to combine several 

AI techniques. This would allow us to meet the minimum requirements, which are as follows: 

1. To be as simple as possible, i.e., having a minimum number of indicators, neurons, and rules. 

2. To require minimum prior knowledge. 
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3. To have the most important steps of a system that uses SC techniques to perform a diagnosis as 

shown in Figure 13. 

 

Figure 13. Stages of the monitoring, detection and diagnosis process using Soft Computing (SC) 

techniques, as shown in [23]. 

At present, there are many studies on the application of AI and SC for the monitoring and 

diagnosis of almost all failures in electric induction motors. Despite this being an extensive subject, a 

summary of the works considered in the present research is provided in Table 16, grouped 

according to the type of failure and the technique applied. 

The techniques based on artificial intelligence are one of the last evolutionary stages of science 

and technology applied to the monitoring, detection, and diagnosis of failures in the electric 

induction motors. Due to mechanical, electrical, electronic and software equipment, the signals are 

captured and conditioned to feed complex mathematical models capable of detecting failures, 

interpreting and performing the best diagnosis. As Benjamin Lamme said in the 1890s, referring to 

the years between 1880 and 1890, “We are in the decade of the induction motor,” [9]. Today, in 

reference to the monitoring, detection and diagnosis of the state of electric motors, we could say that 

we are in the days of AI. 

Table 16. AI techniques according to the type of fault analyzed. 

 Faults 

Signal Applied Techniques 
Broken  

Bars 
Bearings 

Eccentri

city 
Unbalance 

Windings 

Short 

Voltage 

Unbalance 

Degradation 

of 

Components 

Prediction 

Current 

ANN 

Feed Forward 

Propagation 
[32,79] [32] [32] [32]    

Recurrent 

Dynamic 
 [80] [80]  [80]   

Feed Forward 

Propagation 

Adaptive 

linear network 

[67] [67]  [67]    

Negative 

sequence 

current 

    [51]   

Fuzzy logic      [57,81] [57,81]  

Hybrid 

systems 

Feed-forward 

MLP ANFIS 
    [73]   

Fuzzy sets  [82] [82] [82]  [82]   

Vibrati

on 

ANN 

Back 

propagation 
   [80]   [64] 

MLP [71]       

SVM 

  [48] [48] [48]    

Hilbert-Huan

gttransform 

(HHT), SVR 

 [29]      

Sparse 

representation 
 [65]      

wavelet 

packet 

decompositio

n 

 [77]      

KNN     [83]    

Hybrid 

Systems 

Left Right 

type fuzzy 

numbers 

ANN Wavelet 

 [84]      
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decompositio

n 

Fuzzy Logic 

 ANFIS  [85] [85]     

6. Conclusions and Recommendations 

Until now, a significant number of techniques and methodologies has been developed to 

monitor, detect and diagnose the failures of electric induction motors. Many of these studies have 

high scientific utility for modeling the behavior of the motor in the diverse situations associated with 

the types of failures that may occur. However, a good number of them assume many idealizations, 

making them not immediately applicable, but their study should be deepened to a level where they 

may even be standardized, along with other existing techniques and methodologies. There are few 

studies on possible solutions to the faults being investigated, which could lead us to studies related 

to the materials used to build the engines, new designs and manufacturing processes. 

We cannot discard further research to improve the traditional detection and diagnostic 

techniques in methods that could range from using the equivalent circuit of the motor to simulate 

and predict its behavior to specific methods for the wide variety of failures featured by this type of 

machine, such as short circuits between turns, or to determine the length of time that a motor can 

continuing working after detecting a fault. However, the latest wave in methodologies for the 

diagnosis of induction motor failures is SC based on AI techniques. Investigations should be 

deepened to achieve systems as close as possible to human systems, capable of diagnosing each of 

the failures individually and the combination of several of these when they occur simultaneously. 

Despite the advances in techniques for early diagnosis of induction motor failures, the IEEE 

1415–2006 standard states that “there are no test programs that can replace the need for a visual 

inspection.” This paradigm should suppose a major challenge to break. Just as invasive and 

non-invasive tests that rely on the analysis of frequency spectra, many works on the application of 

SC to diagnose specific types of failure are reported. However, it is rare to find cases where AI is part 

of a more advanced system applied to our field, that is, able to learn, answer questions by voice 

command, find the means to locate and communicate with a person about any anomaly, schedule 

maintenance and even solve problems. 
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