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ABSTRACT 1 

The significant percentage of the world’s water consumption devoted to industrial use, 2 

along with an increasingly higher environmental concern of society, have awaken the 3 

interest of industry on using municipal reclaimed water for replacing fresh water use 4 

coming from utilities or natural resources. Depending on the type of industry and the 5 

specific application, water must meet certain quality requirements. Therefore, those 6 

water quality standards that are required for those most relevant industrial applications 7 

wherein the use of reclaimed water has noticeably been reported are herewith reviewed. 8 

Although the use of internal water treatments for recycling and reusing their own 9 

effluents has recently and widely been reported within many industrial sectors 10 

worldwide, the substitution of fresh water by reclaimed municipal wastewater has not 11 

been much extended yet. The increasing proportion of municipal wastewater 12 

reclamation plants that rely on membrane filtration technologies versus the total number 13 

of reclamation facilities that are worldwide distributed is also assessed within this 14 

review, including the discussion of their main related drawbacks. 15 

 16 

Keywords: membrane filtration, municipal wastewater reclamation, industrial water 17 

quality, ultrafiltration, reverse osmosis.  18 
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1. INTRODUCTION 1 

Water shortage, an increasing population, and a more stringent legislation regarding 2 

water conservation and environmental compliance, are imposing severe restrictions to 3 

industrial water use since its activity entails about a quarter of the world’s total water 4 

consumption (1). Moreover, predictions inferred from climate change considerations 5 

may even suppose more stringent water use policies in the short term because a 6 

significant impact is expected on water resources quality and availability (2).  7 

Although water recycling within industrial facilities leads to reduce water 8 

consumption figures, it is very difficult to achieve a total closure of their water circuits 9 

because residual contaminants eventually accumulate in reused water (3), and fresh 10 

water intake is always somewhat needed to compensate losses (e.g. by evaporation) in 11 

any case (4). As a consequence, and despite industrial process-water consumption is 12 

progressively being reduced as a result of a higher closure level of water circuits, the 13 

demand for this resource will still be large in the close future. Fortunately, the 14 

remaining water demand after closing water circuits might alternatively be satisfied by 15 

reclaimed water from municipal sewage treatment plants in many cases.  16 

Despite its great application potential, the market for reclaimed water is nowadays 17 

still awaiting a wider exploitation. The major factors limiting the use of reclaimed water 18 

in industry are: availability to ensure continuous operation without water shortage, 19 

meeting quality standards, volume, cost, and reliability (5, 6). In short, reclaimed water 20 

use only satisfied about the 0.4% of the total water use worldwide demanded for 21 

industrial purposes in 1995 (7); whereas this alternative only reached the 1% ten years 22 

later (2005) (8). Agriculture is the main user of reclaimed water (70%), followed by 23 

industry (20%), and domestic uses (10%) (9).   24 
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Beyond these average figures, there are strong significant differences among how 1 

the volume of reclaimed wastewater is distributed in each country. For example, Tunisia 2 

devotes an 86% water use for agricultural purposes, for which a 30-45% of the treated 3 

sewage is also used (10). On the other hand, USA, Singapore, and Germany, 4 

respectively devote a 45%, 51% and 69% of their fresh water capacity to industrial 5 

purposes, and many recycling and reuse projects have therefore been implemented 6 

within their industry (9). Finally, only about the 10% of the fresh water resource of 7 

Spain is consumed by industrial applications (11). Correspondingly, only a 0.3% of the 8 

Spanish reclaimed sewage capacity was consumed by industry in 2009 (≈1 hm3/year) 9 

(12); although an enterprising plan aiming to boost the use of reclaimed water in all 10 

sectors is currently being implemented, estimating an accumulated industrial use of 38 11 

hm3/year (6.2%) at a 2015 horizon (12).  12 

In tune with these considerations, there is much available information regarding 13 

municipal wastewater reclamation initiatives for irrigation purposes in agriculture or 14 

environmental applications (13-15); as well as for implementing treatments to reclaim 15 

the effluent within specific industrial facilities (16-18). However, the use of reclaimed 16 

municipal wastewater for industrial applications is still much less extended; with the 17 

exception of cooling systems, where municipal reclaimed water has been used from 18 

long time ago after a conventional tertiary treatment (19). In addition, reclaimed 19 

municipal water has been also used in several other industrial auxiliary applications, 20 

significantly replacing fresh water intake, such as washing and flushing, and in general 21 

cleaning and watering plants (7, 8).  22 

Nevertheless, the interest in using reclaimed sewage as industrial process water is 23 

expected to increase in the close future, provided its economical (4, 20-21) and constant 24 

quality features (21), and new initiatives being developed and reported within several 25 
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industrial sectors (4, 20, 22, 23). Particularly, it may represent a very interesting 1 

alternative for industrial facilities located within areas suffering water scarcity; 2 

furthermore when authorities (24) and climate change forecast (2) are progressively 3 

imposing more stringent limitations to fresh water consumption. In short, many 4 

companies may also find that the substitution of fresh water by municipal reclaimed 5 

water may be an economically feasible complement to compensate water losses within 6 

their own closed circuits, and/or a good alternative to building on-site specific 7 

treatments for recycling their own effluents (4, 23).   8 

�n general terms, guidelines defining water quality parameters that reclaimed 9 

water must fulfil for its different potential use alternatives follow two main orientations: 10 

(a) those who prefer limiting health hazard to the maximum extent possible, being the 11 

“Californian Title 22” (24) regulation a major example; and (b) those who pretend to be 12 

more realistic and feasible, such as the World Health Organisation’s “Guidelines for the 13 

safe use of wastewater and excreta in agriculture and aquaculture” (1989) (10). In 14 

short, most countries (even states or regions within) have developed their own 15 

guidelines regarding the use of reclaimed water combining quality standards from both 16 

legislation types, so there are no universal water quality standards defined (20).  17 

Nevertheless, although every state has its own legislation within the USA, all of 18 

them are collected within the “Guidelines for Water Reuse” (25). Correspondingly, 19 

some Australian jurisdictions have together implemented the “Australian Guidelines for 20 

Water Recycling: Managing Health and Environmental Risks” (26); as well as they 21 

have developed specific validation requirements for recycled water schemes (27). On 22 

the other hand, there are no current formal definitions or guidelines for water reuse at 23 

the European level. Conversely, there are very different water reuse practices from 24 

North to South, and even among Mediterranean countries (28). In fact, the European 25 
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Union is at least making a big effort to solve this legislation disagreement creating the 1 

“Mediterranean-EU Water Initiative Working Group for Wastewater Reuse”, which is 2 

first one collecting information regarding the current status of wastewater reuse within 3 

the EU and the Mediterranean area in order to implement specific demand-driven 4 

actions (29). Within this framework, “Aquarec” EU’s project has defined seven water 5 

quality categories including microbial and chemical limits for each one (30). 6 

Despite water quality guidelines for industrial use differ among countries and the 7 

standards required for each specific application, health hazard is the main issue that is 8 

always mentioned within all available legislations because special attention should be 9 

paid when workers might be in direct contact with water. In this sense, both 10 

“Californian Title 22” and the Australian guidelines define a minimal water reclamation 11 

process based on a secondary treatment followed by coagulation-flocculation, filtration 12 

or flotation, and disinfection. On the other hand, they differ in the limits related to the 13 

allowed presence levels of microorganisms. For example, “Californian Title 22” 14 

establishes a total coliforms threshold of <23 colony-forming units (CFU)/100 mL for 15 

specific sampling (<2.2 weekly) (24); whereas the Australian standards set <10 16 

CFU/100 mL for E. Coli (26); but both legislations agree limiting turbidity to <2 NTU.  17 

Beyond these considerations, current reclamation treatment trends are focused on 18 

obtaining the highest water polishing grade in order to avoid any health hazard or 19 

operational risk. In this sense, membrane processes (microfiltration, MF; ultrafiltration, 20 

UF; nanofiltration, NF; and reverse osmosis, RO) are taking competitive advantage over 21 

those physico-chemical processes specified in historically used standards within 22 

municipal wastewater treatment plants (mWWTP) (9). In short, membrane processes 23 

produce high quality water regardless the variations in the characteristics of the 24 

inflowing feed water in comparison to other treatment processes (31). Particularly, MF 25 
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and UF are applied as the preferred processes for the retention of microbial and 1 

suspended solids; and as pre-treatments for NF or RO stages, which are able to generate 2 

process water with a very high quality standard, even drinking water (32, 33). 3 

Industrial water use is herein reviewed considering water quality requirements for 4 

different uses, and the possibility of using municipal reclaimed water as an alternative 5 

to fresh water use. Municipal wastewater reclamation facilities that produce treated 6 

water for industrial purposes are also located worldwide providing an overall water 7 

reclamation assessment. In particular, membrane filtration alternatives, including their 8 

potential drawbacks, for reclaiming municipal wastewater for industrial purposes are 9 

also reviewed, provided these technologies are currently taking the lead within the 10 

alternatives to polish sewage. 11 

 12 

2. ASSESSING CURRENT AND POTENTIAL APPLICATIONS FOR 13 

RECLAIMED MUNICIPAL WASTEWATER IN INDUSTRY 14 

Most standards for water use are set to maintain a proper operation of industrial systems, 15 

to preserve the quality of manufactured products, and to protect public and 16 

environmental health. Main water quality guidelines that are applicable to major 17 

industrial water consumers are reviewed next. 18 

 19 

2.1 Utilities 20 

2.1.1 Cooling water 21 

More than 50% of the fresh water consumed by industry is used for cooling (34). 22 

Power generation plants, petroleum refineries, chemical manufacturers, metal 23 

processors, and food (i.e. mainly meat and dairy products) and beverage manufacturers, 24 

are the major consumers of cooling water. In 2004, power generators from the USA 25 
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accounted for approximately the 40% of the freshwater withdrawal within the country 1 

(35). Although this value finally only accounts for about the 3% of the total freshwater 2 

consumption in the USA (the rest 37% is returned back), it still represents a significant 3 

demand of freshwater use (36). The United States Environmental Protection Agency 4 

(USEPA) established the cooling tower water quality requirements within their 5 

“Guidelines for water reuse” (EPA/625/R-92/004), published in 1992 (37) (Table 1), 6 

which have not been modified so far. 7 

Figure 1 shows water use intensity for different fuel types and cooling systems in 8 

thermoelectric power plants where cooling towers are typically placed (38). In short, the 9 

amount of required water depends on the type of cooling system and the efficiency of 10 

the turbine, which increases as the difference between steam and condensation 11 

temperatures increases as well. Therefore, more efficient plants require less cooling 12 

effort to produce the same amount of energy. For example, coal plants nowadays 13 

operate at higher temperatures than nuclear ones, so they consume less water.  14 

In recirculating cooling systems, such as cooling towers or spray ponds, water 15 

evaporates as it dissipates process heat, so the water solution become concentrated 16 

many times (typically 4-8 times) (39). As a consequence of both an elevated 17 

concentration of diverse matter and such high water temperature, scaling, corrosion and 18 

biofouling trouble may be promoted in the system. Particularly, ammonia is a critical 19 

compound that may form metal complexes affecting metals solubility and release, as 20 

well as it may also promote biological growth and bio-corrosion. In fact, it is especially 21 

corrosive to copper alloys at a concentration greater than 2 mgN/L (40). In addition, 22 

silica may precipitate when its concentration threshold favours silicic acid 23 

polymerization until the solubility limit of amorphous silica is reached, which is further 24 

decreased by the presence of trace amounts of aluminum (41); as well as iron content is 25 
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able to deactivate polymers that are used to inhibit calcium phosphate scaling (421). 1 

Finally, organic matter content thresholds that may induce the formation of metal 2 

complexes, which may further increase metal release as well, or promote biological 3 

growth and consequent bio-corrosion trouble in cooling systems, may be controlled 4 

monitoring total organic carbon (TOC) concentration in the solution (1). 5 

Moreover, cooling water systems (particularly open recirculating ones such as 6 

cooling towers) provide a favourable environment (i.e. T= 25-45 ºC; pH= 5.5-8.5) for 7 

the growth of bacteria, algae, fungi, protozoa, and viruses (43-44); being the gram 8 

negative aerobic bacteria Legionella pneumophila especially dangerous for public 9 

health, as it is the responsible to cause the fatal infectious Legionellosis disease. All 10 

these microorganisms can be drifted into the environment through cooling equipment 11 

aerosols causing other diverse illnesses (45-49). In short, all of them may enter the 12 

system in makeup water, through the air, or from process leaks; and they will then begin 13 

to proliferate if an effective preventive monitoring and maintenance programme is not 14 

implemented. Finally, microbial growth on wetted surfaces ultimately leads to the 15 

formation of biofilms, which are made up by the accumulation of microorganisms 16 

themselves, extra-cellular secreted products, and other organic and inorganic debris. 17 

These biofilms affect equipment performance adversely and also promote metal 18 

corrosion (43, 50-51). 19 

The key to limit bio-growth, and the consequent slime formation, in any water 20 

system reside in controlling nutrients contents circulating in water streams. Besides 21 

nitrogen- and phosphorous-based compounds, nutrients may be provided by scale (Ca 22 

and Mg based), suspended solids, corrosion products, or trapped organic or inorganic 23 

molecules supplied by the incoming water (43). Although corrosion and scaling are 24 

relatively easy to control in cooling systems keeping water chemical contents under the 25 
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values reported in Table 1 (37), corrosion inhibitors and sequestrating agents are 1 

normally added to their water circuits. In order to avoid biological contamination, it is 2 

really important to initiate an appropriate biocide treatment program at system’s start-3 

up; and continue thereafter on a regular basis following the instructions received from 4 

the supplier of the implemented biocide treatment (52). 5 

 6 

2.1.2 Boiler-feed water 7 

Water quality requirements for boilers are clearly more restrictive than those for cooling 8 

water (Table 1) (37) due to the higher temperatures and pressures that are required for 9 

steam production; particularly when the heat source is in direct contact with the tubes. 10 

As boiler-feed water quality requirements depend on the applied pressure, more 11 

restrictive water quality figures are in general required at higher pressures (38).  12 

 In short, those critical quality parameters that have been associated to boiler water 13 

use are alkalinity, and silica, iron, manganese, and copper (37, 38). Two operational 14 

problems have been associated to high alkalinity figures: (a) as water temperature 15 

increases, CO2 is released increasing corrosion potential; and (b) carbonate can 16 

contribute to foaming, which leads to deposit formation in the superheater, reheater, 17 

and/or turbines (1). In addition, silica can form scale if pressure is below 600 psig. 18 

Above this threshold, silica starts to volatize, passing over with steam to potentially 19 

form deposits on the steam turbine diaphragms and blades (53). Finally, the most 20 

common type of galvanic corrosion that is found in boiler systems is that caused by the 21 

contact of dissimilar metals, such as iron and copper (53). 22 

  23 

2.1.3 Sealing water 24 

The amount of water required for sealing vacuum pumps may represent a high fresh 25 
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water consumption within common industrial processes. For example, the total sealing 1 

water quantity that is used in the vacuum pumps of a paper mill may sum up to 5-10 m3 2 

per tonne of paper produced (54).   3 

 Those quality requirements that have been reported for sealing water are also 4 

comparatively listed in Table 1 (55). The most restrictive parameter to consider is the 5 

proportion of abrasive matter content. In short, if solids are incorporated as water flows, 6 

they may cause premature seal failure and, ultimately, damage to the pumps. 7 

Temperature and salts content must be also carefully controlled, provided the precise 8 

role of sealing water is keeping the rotor system cool, and particularly considering that 9 

scaling is susceptible to occur inside the system.  10 

 11 

2.2 Process water 12 

The alternative use of reclaimed water in industrial processes mainly depends on its 13 

final application (Table 1). Electronic and pharmaceutical industrial processes, for 14 

example, require process water of almost distilled quality for some production 15 

applications. In fact, four different water quality standards are typically defined for 16 

pharmaceutical industrial use: potable water, purified water, highly purified water 17 

(HPW) and water for injections (WFI). In short, HPW requirements are shown in Table 18 

1 (56). In addition, food processing operations are a bit less restrictive, only requiring 19 

drinking water quality when there is direct process water contact with the products that 20 

are going to be consumed by people. On the other hand, leather-tanning industrial 21 

processes require relatively low-quality water use. Textile, pulp and paper, and metal 22 

industrial sectors usually demand intermediate requirements. The quality standards that 23 

are required for process water within those main industrial sectors using reclaimed 24 

water for their applications are considered next. 25 
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 1 

2.2.1 Pulp and paper industry 2 

Fresh water is mainly used as dispersion and transport media for fibrous raw materials 3 

and additives along the production process developed in paper mills, from pulping to 4 

forming. In addition, water is also required as heat exchanging fluid, sealant in vacuum 5 

systems, lubricant agent, for the production of steam, and in high and low pressure 6 

showers (55-57).  7 

At the beginning of the 20th century, water consumption in the pulp and paper 8 

sector was estimated to be over 600 m3 per tonne of pulp produced. Nowadays, 9 

depending on the type of final paper product, raw material used, and the optimization of 10 

water use (including the installation of internal kidneys), modern paper mills just 11 

consume 4-100 m3 per tonne (58-60). In short, Figure 2 shows maximum and minimum 12 

fresh water consumption values in modern paper mills manufacturing different types of 13 

paper (55). Actual consumption figures mainly depend on the water circuit optimization 14 

level that has been achieved within each paper mill. 15 

Depending on the specific application where it is going to be used and the paper 16 

grade being produced, process water must meet certain chemical and physical criteria 17 

(Table 1) (61); which can be complemented by an even more restrictive set of values if 18 

recommended by industrial equipment suppliers. In short, the control of hardness and 19 

alkalinity is required to avoid the formation of calcium aggregates with organic colloids 20 

in the pulp suspension, and scaling in machinery and process circuits. In fact, the 21 

presence of colloidal material may produce losses in paper resistance and quality. 22 

Moreover, it could block showers, affecting the quality of the final product as well. In 23 

addition, some metals (Fe, Al, or Mn), chlorides, and sulphates, are highly corrosive; 24 

the latter may also produce scaling and odour problems (62-63). 25 
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 1 

2.2.2 Textile industry 2 

The typical processing operations of the textile sector (e.g. washing, scouring, dyeing, 3 

printing, bleaching and finishing) require a great variety of water consumption 4 

thresholds. In short, it has been quantified that wool and felted fabrics processes are 5 

larger water consumers than other fabrics such as woven, knits, stock and carpet (Figure 6 

2) (64-68). Moreover, the amount of water used within the same fabric processing 7 

subcategory varies within a wide range depending on the achieved level of water circuit 8 

closure and the efficiency of the mill.  9 

It would be pretty difficult defining a general quality standard for reclaimed water 10 

to be used within textile mills because water quality characteristics that are required 11 

within this industry are strongly linked to the type of fibre being processed (silk, cotton, 12 

polyester, etc.), the textile process itself (scouring, desizing, dyeing, washing, etc.), and 13 

the quality of the fabric produced. In general, turbidity and colour are undesirable for 14 

many textile purposes (Table 1) (5). Moreover, whether colour is produced by the 15 

presence of some organic compounds, it may exert demand for chlorine in the bleaching 16 

stage, and therefore reduce the effectiveness of chlorine as bleaching agent. In addition, 17 

suspended solids may also include organisms that could cause spots, or degradation of 18 

dressing and/or finishing solutions (66). 19 

Furthermore, iron salts could be harmful to textile processing in many ways (69). 20 

In scouring and bleaching stages, they may provide yellow tinge to white material. In 21 

dyeing stages, iron may combine with some dyes and cause dulling effects. On the other 22 

hand, other metal ions may also act as catalysts in the decomposition of bleaching 23 

agents (70). Finally, hardness may cause deposits on textiles causing problems in those 24 

processes using soap (71, 72). All these basic parameters that must be monitored when 25 
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considering the use of reclaimed water in processes within textile industry are shown in 1 

Table 1 (5). 2 

 3 

2.2.3 Food industry 4 

Food processing plants need water for many purposes: washing and transporting raw 5 

materials and products, cleaning installations and equipments, thawing, canning, 6 

cooling, steam generation, etc. (73). Figure 3 shows a summary of the reported water 7 

consumption volumes for the majority of food, drink, and milk (FDM) sectors (74). 8 

Dairy sector particularly, followed by fish processing mills, and deodorization processes, 9 

account for those significant maximum water consumption figures.   10 

As water may be in contact with food in some processes, the use of reclaimed 11 

water for food industrial applications may raise certain controversy in many countries. 12 

For example, the use of reclaimed water for food processing applications is currently 13 

forbidden under Spanish and Italian legislations (75-76). In general terms, the contact 14 

between food and reclaimed water is not allowed; as well as water quality must meet the 15 

standards of drinkable water in any other case. In this sense, the minimum drinking 16 

water requirements that are called for within the European Union are described in the 17 

Council Directive 98/83/EC (77), which defines water quality standards for human 18 

consumption. Correspondingly, all water contacting food should meet the standards set 19 

by their “Drinking Water Guidelines” in Australia (78); and there is a similar situation 20 

in the USA, where only potable water quality is allowed for cooking or being added to 21 

food products, as well as the quality of the final product must not be affected (i.e. water 22 

must be free of dissolved minerals that could make water excessively hard or affect taste 23 

somehow) (73, 79). 24 

 25 
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2.2.4 Electronic industry 1 

Electronic microchip manufacturing requires a large volume of ultrapure water (UPW); 2 

as this is the primary cleaning agent that is used in silicon wafer production processes 3 

(80). In short, UPW is mainly required for rinsing circuits, channels, and gates in order 4 

to remove chemicals that have been added along the manufacturing process. In fact, 5 

inorganic salts, and organic matter that may remain or be deposited on the wafer surface 6 

during processing, directly affect the number of usable devices that may be produced 7 

from a single silicon wafer (80); so rinsing with high purity water can therefore 8 

significantly increase electronic microchip production. Since water contacts wafer 9 

surface several times during manufacturing, its quality demand must be the highest. 10 

For example, a typical 200 mm-wafer fabrication plant that produces 40,000 units 11 

per month uses as much water as 50,000 people would consume in a month (80). A 12 

survey developed in 2005 for Hsin-Chu Science-based Industrial Park (HSIP, Taiwan) 13 

showed that 0.79, 4.0, and 7.3 m3 of water were necessary to produce one single 6-in, 8-14 

in, and 12-in wafer, respectively (81). In addition, 0.2266 m3 per wafer were reported to 15 

be required for the fabrication of one LED crystal; 0.025 m3 per wafer were addressed 16 

for a single nickel-plated aluminium plate; and 0.94 L per set were necessary to produce 17 

a wireless card (81).  18 

In general, the water quality standards that are demanded within the electronic 19 

industrial sector are discretionarily set by the owner of each production plant; and they 20 

are not specifically regulated by any public or private organism besides the existent 21 

general legislation in rule regarding health hazard and environmental concern in each 22 

country. Therefore, each manufacturing operation develops an internal quality 23 

specifications demand from its own processing requirements, or from sources of 24 

standards and general specifications such as the American Society for Testing and 25 
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Materials (ASTM), Semiconductor Equipment and Materials International (SEMI), 1 

Balazs Labs, or Sematech. Particularly, ASTM D5127-99 corresponds to the “Standard 2 

Guide for Ultrapure Water Used in the Electronics and Semiconductor Industry” (82). 3 

In short, general reference specifications for water quality within the electronic industry 4 

are collected in Table 1 as well (83). 5 

 6 

2.2.5 Chemical industry 7 

It has been recently reported that the chemical industry is consuming the 11% of 8 

the total water withdrawal in Europe (84), which approximately represents the 3% of the 9 

water directly abstracted by all industry (85). Nevertheless, the general trend is showing 10 

a significant reduction of these values; that is, the European Chemical Industry Council 11 

(CEFIC), for example, has reported that chemical industrial facilities have reduced their 12 

water consumption about an 8% from 2003 to 2007.  13 

Water quality requirements and consumption figures widely differ among 14 

chemical industrial applications, provided this sector includes such a great diversity of 15 

manufactured products (e.g. basic chemicals, steel, fuel, petrochemicals, coal, other 16 

mining products, plastics, detergents and toiletries, medicines, paint, pesticides, etc.) 17 

For example, the total amount of water that is used in oil refineries has been estimated as 18 

0.25-0.34 m3 of water per crude oil barrel (86); and extracting 1 barrel of bitumen from oil 19 

sand takes 2 to 3 barrels of water (87). In short, Table 1 also summarizes USEPA’s 20 

general guidelines for process water quality demands in the chemical industry, and the 21 

basic quality standards that are required in the petrochemical and coal sectors (88). 22 

 23 

3. MEMBRANE TECHNOLOGIES FOR WATER RECLAMATION 24 

Membrane filtration is basically based on placing a selective barrier between two phases. 25 
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As a result of exerting a driving force to one side of the membrane, components are 1 

transported towards the membrane surface. Therefore, some components pass through 2 

the membrane (permeate) and others are retained according to their size (retentate). 3 

Considering a particular industrial application, different membrane systems and 4 

configurations might be arranged, including pre-treatments and other treatment stages 5 

based upon different technologies, in order to meet those target water quality standards 6 

that this industrial application may specifically demand from reclaimed municipal 7 

wastewater. 8 

 9 

3.1. Types of membrane systems available for wastewater reclamation 10 

In general terms, membrane technologies may be classified according to the nature of 11 

the applied driving force (i.e. type of pressure or vacuum), or by the operating size 12 

ranges for filtration. In short: microfiltration (MF) can separate 0.1-10 μm particles 13 

from solvents or other low-molecular components, for which an operating pressure of 14 

0.1-2 bar is required; ultrafiltration (UF) is applied to retain macromolecules or sub-15 

micrometrical particles (0.002-0.1 m), requiring operating pressures of 0.1-5 bar; 16 

nanofiltration (NF) is very useful for removing micro-pollutants, herbicides, and 17 

bivalent ions (Ca2+, Mg2+, SO4
2-, CO3

2-) due to its 0.5-2 nm pore-size filtration range, 18 

for which a 3-20 bar pressure is necessary; and reverse osmosis (RO) is able to separate 19 

macromolecules and low molecular mass compounds (>1-0.1 nm), such as monovalent 20 

ions (Na+, K+, Cl-, NO3-, etc.) and sugars, working at higher pressure thresholds (5-120 21 

bar) in order to overcome higher osmotic pressure values in the solution (89).  22 

A complete membrane treatment unit comprises membranes (in assembled 23 

modules), a pressure support structure, a feed inlet, a concentrate outlet, and an overall 24 

support structure. The main types of membrane modules that are used for wastewater 25 



 18

treatment are: plate-and-frame, pleated cartridge, tubular, capillary, hollow fibre and 1 

spiral wound. Each type of module shows specific advantages and disadvantages 2 

depending on feed water quality, their design, and maintenance protocols (90); whereas 3 

main differences among them are related to the allowed filtration area and their capacity 4 

to promote turbulence to reduce fouling occurrence.  5 

In addition, manufacturers offer membrane modules made of a wide variety of 6 

materials (e.g. polypropylene, polysulfone, polyvinylidene difluoride, polyether-7 

sulfone, cellulose acetate, aromatic polyamide, regenerated cellulose, titanium oxide, 8 

etc.) showing different physico-chemical behaviours (e.g. mechanical strength, oxidant 9 

tolerance, pH operating range, etc.). In short, their compatibility to each specific 10 

operational set of conditions should be verified by end-users (89-91).  11 

The direction of feed-water flow in relation to the surface of the membrane 12 

determines the type of filtration in MF and UF systems. For example, an encased 13 

membrane system may use a cross-flow design, where part of the feed stream is 14 

withdrawn as permeate, whereas the other part is forced to flow across the membrane 15 

surface; or it may operate in dead-end mode, where the total feed water volume passes 16 

through the membrane, leaving all components that are larger than its pores in the feed’s 17 

phase. This option results effective when the concentration of particles in the feed 18 

stream is low (turbidity <10 NTU), or the packing tendency of the filtered material does 19 

not produce large pressure drop across the membrane (90). On the other hand, water 20 

streams characterized by a higher concentration of particles or macromolecules (i.e. 10-21 

100 NTU) will rapidly compact the cake if operated in dead-end mode, so an 22 

unacceptable quick pressure drop will be driven (92).  23 

Similarly, semi-permeable membranes of NF and RO systems do not allow the 24 

passage of organics or salts, so dead-end filtration will result in plugging or fouling(90); 25 
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although NF filtration may be operated at both modes. In this sense, cross-flow systems 1 

are the best alternatives to keep stable filtration rates; despite they consume more 2 

energy because their pumping systems have to guarantee high superficial velocities (1-6 3 

m/s) through a constant recirculation loop (90, 93, 94).  4 

Summing up, although any membrane design can be applied for wastewater with 5 

a low suspended solids content, only specifically designed membranes and operation 6 

modes would be able to handle effluents carrying high amounts of solids. Particularly, 7 

higher cross-flow velocities would be required in these cases. In short, it is highly 8 

recommended to perform optimization trials whenever a specific membrane filtration 9 

system is designed and implemented for reclaiming a specific wastewater quality.  10 

Besides an encased design, membrane modules can be arranged conforming a 11 

submerged membrane system inside a tank containing wastewater, where filtration is 12 

performed by the application of vacuum. A lower sensitivity to fouling and a lower 13 

filtration pressure requirement are the main advantages of submerged systems; whereas  14 

some disadvantages can be also addressed, namely: i) foam episodes; ii) fouling may be 15 

boosted by high recovery rates, as a higher discharge frequency is required; iii) a higher 16 

potential health hazard as a consequence of the exposition of workers to wastewater 17 

contact; and iv) the operation of bubbling agitation (which facilitates filtration and 18 

reduces fouling) has to be balanced with its operational cost (4).  19 

In addition, the direction and orientation of feed water across the surface of the 20 

membrane define inside-out and outside-in operation modes. Feed water surrounds the 21 

membrane in outside-in systems, so filtrate is collected inside the hollow fibre (lumen). 22 

In an inside-out system, feed water enters to the fibres at one end of the membrane 23 

element, and discharge stream passes through the element exiting at the opposite side. 24 

In this system, filtrated water is collected inside the element on the outside of the fibres. 25 
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In general, inside-out systems are more sensitive to fouling; therefore requiring more 1 

intense wastewater pre-treatment, and more frequent cleaning (95). 2 

 Finally, membrane bioreactors (MBRs) represent a particular configuration of 3 

submerged systems, where biological degradation of waste products is integrated with 4 

membrane filtration (96). As a consequence, the separation of solids does not depend on 5 

settling, and a smaller reactor volume is needed. In addition, they may be used with 6 

high filamentous bacteria contents and floating sludge, allowing a very long retention 7 

time for solids and generating much less sludge (96-99). In addition, MBR effluents are 8 

suitable for feeding RO polishing stages without installing additional pre-treatment 9 

processes in between. On the other hand, MBRs are relatively expensive to install and 10 

operate; as well as they address other limitations imposed by a low oxygen transfer 11 

efficiency (due to a high organic presence), pressure, temperature, and pH requirements 12 

(96-99). 13 

There are two main MBR configurations: 1) submerged membranes (S-MBR), 14 

where the filtration unit is integrated inside the bioreactor; and 2) side-stream MBR 15 

(external circulation), where a separate membrane module recycles the rejected stream 16 

back to the bioreactor. As permeate flux is relatively low in S-MBR configurations, it 17 

can be held for extended periods of time without decline; but membrane permeability 18 

could suffer rapid losses if solids content is high (>20 g/L), as well as an important 19 

membrane fouling may be generated at low mean cell residence times ( 2 days) (98). 20 

On the other hand, both flux and fouling rates are much higher in side-stream MBRs; as 21 

well as they require more frequent, and rather more aggressive, cleaning operations, 22 

which can be properly performed backwashing or adding chemicals. 23 

Summing up both operational and cost issues, it has been reported that submerged 24 

configurations operate more effectively than side-stream ones when they are applied to 25 
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reclaim domestic wastewater, considering both energy consumption and cleaning 1 

requirements (99). Specifically, aeration results to represent the main operating cost 2 

component of these systems because it is required for both mixing and transferring 3 

oxygen. In addition, S-MBRs operate at lower flux regimes requiring a greater 4 

membrane area, which also implies a greater associated investment. In particular, it has 5 

been demonstrated that a side-stream UF-MBR system fed with urban wastewater may 6 

produce reclaimed water of enough quality for municipal watering, toilet flushing, and 7 

car washing. Moreover, it could be also used for cooling; even as process water after 8 

softening (100).  9 

 10 

3.2. Challenges to improve the application of membrane filtration to reclaim 11 

municipal wastewater 12 

Although membrane filtration generally produce high grade quality water requiring low 13 

footprint, and its implementation is nowadays following an increasing trend for 14 

municipal wastewater reclamation, they must also face some drawbacks and challenges 15 

for a future wider application. 16 

 17 

3.2.1 Fouling and cleaning 18 

It is widely known that fouling is the main cause for membrane’s loss of performance 19 

because it leads to flux decline, trans-membrane pressure increase, higher energy 20 

requirements, membrane biodegradation, and a greater salt passage rate (101, 102). 21 

Several types of membrane fouling have been identified, including those caused by 22 

suspended solids and particles, colloids, scaling, metal oxidation, organics, extracellular 23 

polymeric substances (EPS), and biological organisms (102-105) In fact, membranes 24 
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are usually affected by one or two different types of fouling at the same time, which are 1 

summarized in Table 2 (104, 106-109).  2 

In general, dissolved organic matter (effluent organic matter, EfOM) typically 3 

present in municipal wastewater (TOC ≈ 5-20 mg/L; BOD5 ≈ 3-10 mg/L) (110), is 4 

composed of a wide range of constituents (polysaccharides, proteins, aminosugars, 5 

nucleic acids, humic and fulvic acids, organic acids, EPS, and cell components). 6 

Together to other colloidal matter is able to partially pass (depending on the pore size) 7 

through MF or UF membranes causing important fouling to those subsequent NF or RO 8 

membranes that are disposed in serial (111). In particular, polysaccharides have been 9 

found to play the most important role in fouling NF and UF membranes (112); as well 10 

as the presence of soluble EPS (biomass supernatant) has been widely reported to play 11 

the main role in the formation of biofouling on MBR’s membranes (109). 12 

Although effluents from mWWTPs contain much lower total dissolved solids 13 

contents than seawater (1,500 versus 38,000 mg/L, respectively), scaling may also 14 

cause special trouble in RO membrane systems (113). Rivers, groundwater, rainfall, 15 

seawater, and municipal wastewater, contain basic or acidic inorganic species that are in 16 

equilibrium with precipitates, or with other potential scaling components, mainly: OH-, 17 

F-, CO3
2-, SO4

2-, PO4
3- and Si(OH)4; whereas cationic species that (directly or indirectly) 18 

are more likely to form precipitates in water include: Ca2+, Mg2+, Fe3+ and Al3+. All 19 

these inorganic species are responsible to form those main precipitates (phosphates, 20 

sulphates, carbonates, hydroxides, and fluorides) that have been identified to cause 21 

scaling in reclaiming municipal wastewater RO systems (108). 22 

Hydrophobicity, surface charge, pore size, and roughness, are membrane 23 

properties that have been related to greater fouling occurrence. In fact, it has been 24 

reported that if there are no crevices in the surface of the membrane, no material will be 25 
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deposited there because the boundary layer formation becomes less pronounced, and 1 

cross-flow will be then able to remove it at a faster rate than it could be deposited (114).  2 

In addition, the effect of membrane charge is mainly reflected by its role in 3 

controlling electrostatic adsorption and pore clogging. Particles populating wastewater 4 

are generally negatively charged due to the presence of organic matter that came from 5 

every source of water that made it up (original drinking water, human activity, surface 6 

run-off, etc.), as well as from the bacterial activity that may have been developed along 7 

sewage transport (115, 116). Therefore, membranes showing a neutral to negative net 8 

surface charge tend to show hydrophilic interaction or electrostatic repulsion with these 9 

constituents, further reducing biofouling episodes (117, 118). Finally, other water 10 

quality properties, such as pH value or its ionic strength, may also influence organic 11 

matter deposition (119). For example, these compounds usually show carboxyl 12 

(−COOH) or phenolic (−OH) functional groups, which further increase the 13 

concentration of negative charges as the pH value turns higher (120). 14 

The diversity of materials that may be used to manufacture commercial UF/MF 15 

membranes span the range from fully hydrophilic polymers (e.g. cellulose acetate, CA) 16 

to fully hydrophobic ones (e.g. polypropylene, PP;  and polyethylene, PE). Between 17 

both well-defined groups of polymers, the polysulfone (PS) - polyethersulfone (PES) 18 

family, polyacrylontrile (PAN), and polyvinylidene fluoride (PVDF) show an 19 

intermediate behaviour; and they may be blended with additives and pore formers in 20 

order to design moderate hydrophilic membranes (121). Particularly, sulfone (e.g. PS 21 

and PES) polymers are characterized by their mechanical strength, thermal and 22 

chemical stability, and excellent film forming properties; as well as their hydrophilic 23 

character, and their consequent biofouling resistance as well (122), may be easily 24 
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increased blending them with other polymers thanks to their high inherent solubility. As 1 

a result, they may even achieve CA membranes hydrophilicity figures (123-124). 2 

Considering all these properties favouring or preventing membrane fouling, much 3 

research effort has been recently devoted to modify membrane surface properties in 4 

order to further enhance their anti-fouling behaviour (125-127). Particularly, a double 5 

repulsive NF hollow fiber membrane, with a positively charged selective layer and a 6 

negatively charged substrate, has recently been developed with the ability to effectively 7 

retain diverse dye molecules contained in textile industrial wastewater over a wide 8 

range of pH values (127). 9 

Another common strategy to control fouling relies on installing aeration devices 10 

in MF, UF, or even in some NF, systems in order to enhance surface membrane shear 11 

and therefore reduce foulant layer thickness. Bubbling can be applied within membrane 12 

modules, or externally to them in submerged systems; its effectiveness has been 13 

reported to be the same (128). In contrast, aeration may represent the 70% of the total 14 

energy cost of the treatment, so current research efforts aim to optimize this operation 15 

and its associated cost figures. In fact, it has already been reported that only the 10% of 16 

the actual operational time is optimally devoted to perform this task (129). Finally, 17 

enhancing shear rate via mechanical means seems it would be a potential alternative to 18 

bubbling as a mean for fouling control, as it has been shown by magnetically induced 19 

membrane vibration in MBRs (130). 20 

Furthermore, fouling can be classified as reversible or irreversible depending on 21 

the effectiveness of both, fouling controlling strategies and selected cleaning 22 

technologies. Reversible fouling can be described as the fraction that can be effectively 23 

removed by one or a combination of the following methods: 1) flow inversion 24 

(backwashing or permeate backflushing); 2) forward flush (cross-flow at high flow 25 
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rates); and 3) membrane surface scouring using relaxation breaks like it has been 1 

reported in MBR systems (131), or just bubbling air (128), among other alternatives. 2 

In short, flux decline caused by irreversible fouling cannot be recovered unless 3 

membranes are cleaned by chemical agents, or ultimately replaced (90). Particularly, NF 4 

and RO membranes do not allow backwashing, so chemical treatment (namely the 5 

clean-in-place (CIP) operation) is the only feasible alternative for them (4, 90). The 6 

selection of those chemicals that are going to be used in CIP operation mainly depends 7 

on the type of foulant; although they generally belong to one of the following six 8 

categories: acids (e.g. HCl, HNO3, H2SO4, H3PO4, oxalic acid, and citric acid), caustics 9 

(e.g. NaOH, KOH, and NH4OH), sequestering complexes (e.g. EDTA), detergents (e.g. 10 

alkyl sulphate, and sodium dodecyl sulphate), enzymatic chemicals (e.g. alpha-CT, CP-11 

T, and perozidase), oxidizing disinfectants (e.g. NaOCl, H2O2, and KMnO4), and 12 

commercial blends (e.g. 4Aquaclean, Divos, Triclean, and Ultrasil/Aquaclean) (132, 13 

133). 14 

In addition, cleaning effectiveness may be enhanced combining physico-chemical 15 

cleaning methods, which are those mechanical cleaning processes (i.e. backwashing) 16 

that are assisted by the addition of certain chemical agents (i.e. NaOCl or citric acid). 17 

For example, a chemically enhanced cleaning operation that is generally applied for 18 

cleaning MBRs daily consist on performing backwash using permeate to which certain 19 

chemical products have been added in small quantities (109).  20 

Summing up, the selection of the best cleaning strategy (type of chemical, 21 

cleaning conditions, and frequency) for backwashes and CIP is the key to achieve both, 22 

a constant membrane system performance, and the lowest possible contribution to 23 

operational cost (4, 134). While mechanical cleaning is directly related to the 24 

operational cost of membrane treatment because energy consumption is mainly derived 25 
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from air supply; CIP step shows certain controversy because it requires long operation 1 

time, chemicals are consumed, and some membranes may be degraded (135, 136); as 2 

well as it may cause corrosion in the system, and it could result harmful to the 3 

environment when waste streams are discharged (137).  4 

Current research on this topic focuses enhancing cleaning efficiency and reducing 5 

all the above mentioned drawbacks.  Particularly, an “enhanced flux maintenance” 6 

(EFM) strategy has been recently postulated advantageous versus traditional CIP 7 

operation (138). In short, EFM firstly consists on flushing/soaking, or recirculating, the 8 

chemical solution to the membrane for a short period of time. The chemical solution is 9 

thereafter drained, and the membrane is ultimately flushed with feed water. As a result, 10 

an automated EFM strategy only requires 30-40 min to be completed, whereas CIP 11 

typically lasts several hours. Savings up about the 30% in the lifetime cost of membrane 12 

systems, as well as a 20% smaller footprint (a lower number of membranes is required), 13 

have already been reported for EFM (138).  14 

Although an enzymatic cleaning is especially effective for protein-fouled 15 

membranes, and despite it is considered environmentally friendly, its associated cost is 16 

still prohibitive for large-scale applications; so chemical-free cleaning strategies 17 

(mechanical, mainly) are taking competitive advantage nowadays. Particularly, a new 18 

concept of mechanical cleaning (without chemicals) has been recently developed in 19 

MBR systems based on the use of a granular material that is introduced inside the 20 

membrane tank holding activated sludge. The operation mode consists on performing a 21 

constant filtration, without backwash and relaxation, where the granules touch or beat 22 

the surface of the membranes; therefore producing the desired cleaning effect (139). 23 

Moreover, it was confirmed that this application enhanced fluxes about a 20%, whereas 24 

the presence of the granules did not have a negative impact on the behaviour of the 25 
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membrane (140). In addition, it has also recently been demonstrated that prepared inert 1 

salt solutions (e.g. NaCl, NaNO3, Na2SO4, KCl, CsCl, and NH4Cl), seawater, or brines 2 

from desalination plants, can be used as effective cleaning agents for organic fouling in 3 

RO systems because they are able to react with foulants through ion-exchange processes 4 

(141).  5 

Furthermore, sonication cleaning protocols have ultimately been assessed in both 6 

MBRs (109) and NF systems (142). In short, this process is essentially based on 7 

breaking the fouling cake down into smaller fragments. However, it may not be 8 

effective for those fouling types causing blockage of the pores. Nevertheless, its 9 

combination with other cleaning processes may surely lead to achieve higher flux 10 

recovery figures. Finally, the application of shear-enhanced filtration systems has been 11 

also assessed as an alternative membrane cleaning process. Particularly, the use of a 12 

magnetically induce membrane vibration system has been reported to achieve promising 13 

results at lab-scale MBRs (130).   14 

 15 

3.2.2 The management of rejects 16 

Another significant problem that arises when operating membrane processes (NF and  17 

RO systems, mainly) for water reclamation in mWWTPs is the production of a 18 

concentrated stream (or brine) that is characterized by a high concentration of 19 

micropollutants, including: organic matter, refractory chemicals (e.g. pesticides, 20 

personal care products, and endocrine disruptors), residuals from wastewater treatment 21 

itself (e.g. soluble microbial products, partially biodegraded organics, and anti-scaling 22 

chemicals), and biological materials (e.g. bacteria, viruses, oocysts, and cell fragments) 23 

(143). These substances can negatively affect the environment if they are freely 24 

disposed without appropriate treatment (144). Whether UF and MF systems also 25 
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produce rejected streams, they are not constantly being generated along operation; they 1 

are tightly linked to backwash frequency. 2 

Although the diversity of harmful compounds that are contained within these 3 

rejected streams is pretty well-known, discharging them to surface water, oceans, and 4 

groundwater (depending on availability), has mainly been used as their predominant 5 

management alternative (145, 146). Halophyte irrigation has also been considered (144), 6 

but only when the original water source is not wastewater. Therefore, the development 7 

of alternative technologies that may allow recycling and reusing municipal wastewater 8 

within industrial processes, or in other applications, is highly encouraged under a more 9 

environmentally-friendly wastewater management perspective.  10 

Different initiatives regarding the removal of hazardous components from 11 

concentrated streams have been reported to date in order to increase their quality 12 

standard before disposal. For example, advanced oxidation processes (AOPs), such as 13 

ozonation (147-149), Fenton processes, and UV/TiO2 (150), have been demonstrated to 14 

be very efficient in the oxidation of a wide variety of pollutants typically present in 15 

retentated streams; as well as they may result even more efficient if a biodegradation 16 

stage is thereafter implemented (150). 17 

In addition, electrolysis, followed by oxidation with hypochlorite, resulted 18 

successful to remove total ammonia nitrogen, COD, and colour, from RO concentrated 19 

effluents flowing out a mixed domestic and textile wastewater treatment plant (1519). 20 

Furthermore, denitrification has also successfully been reported using a bioactive 21 

fluidized bed adsorber reactor (152).  22 

Biological methods (e.g. single sequential batch reactor and sequential anaerobic-23 

aerobic two-sludge system) have been also reported capable to decolorize and reduce 24 
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COD values of the retentate produced by NF membranes used to polish textile effluents, 1 

for example (153).  2 

Particularly, both, adsorption onto granular ferric hydroxide, and chemical 3 

precipitation with NaOH, were reported to be effective removing phosphate from NF 4 

concentrate (154). In addition, phosphate removal has been also assessed using 5 

polymeric ligand exchange resins that are able to recover phosphate forming struvite 6 

(MgNH4PO4·6H2O), which may be finally used as a fertilizer (155).  7 

Nevertheless, none of these treatments would totally solve the problem. Although 8 

some compounds are removed, others equally dangerous remain, especially when the 9 

original stream is sewage. For example, evaporating retentate in ponds requires a large 10 

surface and, although the installation of multi-effect evaporators reduces footprint, it 11 

could finally result very expensive (156). 12 

In short, the best management alternative for these streams would be finding 13 

direct applications for them, namely recycle them. For example, the successful use of 14 

membrane filtration retentate from a paper mill effluent for brick manufacturing has 15 

been recently reported (157). Finally, some preliminary studies have demonstrated that 16 

bipolar membrane electrodialysis and electrochlorination are suitable treatments for 17 

generating mixed acid and base streams, and some chlorine generation, respectively; 18 

which can be directly applied to RO systems, as well as in other upstream pre-19 

treatments (158). 20 

 21 

4. WORLDWIDE DISTRIBUTION OF FACILITIES RECLAIMING MUNICIPAL 22 

WASTEWATER FOR INDUSTRIAL APPLICATIONS  23 

Freshwater scarcity for human consumption and agricultural purposes may be 24 

significantly reduced in the close future as current freshwater intake would be 25 
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substituted by reclaimed municipal wastewater within those main industrial sectors 1 

which water quality requirements have previously been reviewed. Nevertheless, the 2 

number of facilities that nowadays supply municipal reclaimed sewage for industrial 3 

applications worldwide is still low (Figure 4) compared to the amount of them dedicated 4 

to produce reclaimed water for agriculture or urban purposes (10). In addition, 5 

important differences could be observed among different countries, continents even.  6 

For example, reclaimed water is becoming of great importance in Australia, 7 

where legislation and standards impose that a minimum water use of the 20% should be 8 

supplied by reused water by 2012 (159). This requirement has represented a real driving 9 

force for industries and municipalities, encouraging them to actively develop research 10 

on water reuse and recycling. All municipal facilities serving reclaimed water for 11 

industrial purposes that have been found located in this country are based on multi-12 

barrier membrane systems, namely MF/UF+RO (Table 3), and are mainly concentrated 13 

in the seaside area of Queensland and New South Wales (160-165). Only one membrane 14 

installation was found in Western Australia, Perth specifically (Figure 4). Sewage 15 

reclamation is not well extended yet in this area maybe because it has the highest 16 

amount of distributed water (≈30%) originated from groundwater resources (166), and 17 

their increased water demand has mainly been afforded by desalination facilities (167). 18 

Two main water reclamation cores for industrial application can be clearly 19 

distinguished in Asia, namely Singapore and China (Figure 4 and Table 4). In order to 20 

reduce the amount of freshwater being imported from Malaysia, the government of 21 

Singapore has strongly promoted water reclamation projects. As a result, Singapore is 22 

the world’s current leader implementing wastewater reclamation plants, including the 23 

creation of the first NEWater facilities in 2003, Bedok and Kranji plants (23- 168). 24 

NEWater is the brand name given to reclaimed water being produced by the 25 
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Singapore’s Public Utilities Board (PUB). This reclaimed water has undergone very 1 

stringent purification and treatment processes using advanced dual-membrane systems 2 

(MF/RO or UF/RO) and ultraviolet disinfection technologies (Table 4). NEWater 3 

represents the 30% of Singapore’s total water supply nowadays (169), in part because it 4 

has been demonstrated that NEWater costs half the price for desalinated water (170-5 

171). Seven wastewater reclamation facilities have currently been located in Singapore 6 

(Figure 4); five of them producing NEWater (Table 4), which is not only used as 7 

process water for industrial purposes, but also serves as drinking water.  8 

Wastewater reclamation is also especially important in North-Eastern China 9 

(Figure 4), where severe water shortage is emerging as a result of both a large 10 

population demand and increasing water pollution levels (172). However, municipal 11 

wastewater reclamation still needs a wider development within this country in order to 12 

increase its recycle rate (water recycled/water discharged) from the 2.7% achieved in 13 

2007 up to the aimed 20% in 2015 (173). These figures particularly contrast Israel’s 14 

75% water recycling rate (174). Nevertheless, China’s 11th five-year plan (2006-2010) 15 

clearly aimed to improve water reclamation infrastructure by awarding new projects and 16 

upgrading facilities that were already in operation (175). As a result, most water 17 

reclamation facilities that have been found located in China (Figure 4) were started-up 18 

during this period of time (176); and those implementing membrane filtration are the 19 

same in number, although their capacity is lower, than those applying other treatments 20 

based on the “California Title 22” (24, 176).   21 

Europe locates just a few municipal wastewater reclamation facilities devoted to 22 

supply reclaimed water for industrial applications (Figure 4). In addition, all of them are 23 

of small capacity (Table 5); and main reuse projects in the Mediterranean region are 24 

related to agricultural, landscape irrigation, or groundwater recharge requirements (177). 25 
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Particularly, those plants located in Peterborough (UK) and Madrid (Spain) are based on 1 

multi-barrier membrane systems. The first one (MF+RO) started up in 2002, and it 2 

produces 1,200 m3/day of permeate for steam generation at Peterborough’s Power 3 

Station (178). Madrid’s one (UF+RO) is currently being built inside “Cuenca Media-4 

Alta de Arroyo Culebro” mWWTP, and it will provide more than 10,000 m3/day of 5 

reclaimed water to Holmen Paper Company, which will become the first paper mill in 6 

Europe producing 100% recovered paper from 100% reclaimed water (4). In addition, 7 

plants located in Florence (Italy) and Villefranque (France) rely on MBR technology 8 

(179-180); whereas UF membranes were installed in Turin (Italy) and Katowice 9 

(Poland) (180-181). 10 

All water reclamation projects that have been found within the African continent 11 

are located in South Africa (Figure 4), and all of them reclaim municipal wastewater for 12 

pulp and paper mills; although treatment characteristics are only available for Durban’s 13 

water reclamation plant, which supplies 47,000 m3/day of tertiary treated water 14 

(sedimentation + ozonation + activated carbon filtration + chlorination) to Mondi Paper 15 

Mill (182). 16 

Finally, the USA gather most of the municipal wastewater reclamation projects 17 

aiming to supply process water to industrial applications that were found in America; 18 

whereas only two were found in Mexico, and another one in Canada. None were found 19 

located in Central and South America (Figure 4). Among them, there are two well 20 

differentiated types of facilities: a) those based on membrane technologies; and b) those 21 

consisting on tertiary treatments based on “Californian Title 22” recommendations or 22 

slight modifications of them. The main difference between both treatment schedules is 23 

whether the main objective is obtaining water just for cooling use, or if higher water 24 

quality standards are required, for which multi-barrier membranes systems would be  25 
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installed (Table 6). In short, most plants located from Florida to Massachusetts produce 1 

make-up water for cooling operations through conventional tertiary treatments; whereas 2 

membrane filtration is preferred in those plants located from Middle to West USA 3 

(California and Arizona, mainly), and they are generally of bigger capacity. This may be 4 

expected provided California pioneered water reclamation initiatives creating Title 22 5 

quality guidelines, and starting-up the first municipal facility using RO systems for 6 

water reclamation in 1977 (183). 7 

  8 

5. GENERAL OVERVIEW AND DISCUSSION CONSIDERING ACTUAL 9 

FACILITIES RECLAIMING WATER WORLDWIDE 10 

Conventional tertiary treatment (typically, flocculation + clarification + filtration + 11 

disinfection) is usually applied when reclaimed water would just be used for cooling 12 

applications; whereas membrane filtration is further required  for the production  of 13 

boiler make-up water at least, or when reclaimed water is going to be used within the 14 

process (Tables 3-6). Most of the facilities that use membrane systems to reclaim 15 

sewage rely on the combination of MF or UF with RO; and less are based on MBRs. 16 

Although there were approximately 3,000 MBRs operating worldwide in 2008, 17 

the number of facilities that are nowadays applying this technology to reclaim 18 

municipal wastewater for industrial applications is still very low (Tables 3-6); although 19 

it is progressively increasing, and several pilot trials have been carried out to 20 

demonstrate the feasibility of combining MBR+RO technologies in new water 21 

reclamation projects (184-186).  22 

Regarding NF treatment, it has been successfully used for reducing hardness, 23 

color and high organic content in feed water, at the same time that it represents an 24 

effective barrier for cysts and viruses (187). In comparison to RO, NF works at a lower 25 
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operating pressure and at a higher permeate flux; but it only achieves partial 1 

nitrites/nitrates reduction (188), it reaches lower salts rejection results (e.g. 78% in NF 2 

versus 95% in RO), and COD would not totally be removed (189). Even considering 3 

RO treatment superiority, actual NF application to filtrate secondary effluents of 4 

municipal wastewaters is still very limited (190-191). Nevertheless, some good essays 5 

considering the implementation of NF technology to reclaim biologically treated 6 

wastewater from textile, and pulp and paper industries, have been reported to date (127, 7 

192-194). In short, NF may be considered a promising water reclamation alternative to 8 

RO filtration in order to reduce the cost of the treatment in those applications where NF 9 

limitations would not be limiting the accomplishment of those defined target water 10 

quality requirements.  11 

In general, and regardless the type of membrane being used, membrane 12 

processes are widely extended for treating industrial effluents and recycle them back 13 

into the process. For example, there are twenty Indian dyeing mills that have already 14 

implemented zero liquid discharge systems to recycle their effluents and reduce fresh 15 

water consumption; and even though each one has implemented its own specific 16 

wastewater treatment system, all of them use RO technology as the final treatment stage 17 

(156).  Other companies within the textile industry, or other mills belonging to other 18 

industrial sectors, provide other good application alternatives. In short, it may be: an 19 

MBR treating bleaching water of cotton raw material (156); a combined UF+NF 20 

membrane system reducing freshwater use to its maximum extent in a mill producing 21 

fine and magazine quality papers (194-195); an MBR followed by an RO stage 22 

generating boiler feed water from a frozen-vegetables processing plant effluent (1); or 23 

an UF+RO membrane system implemented in order to satisfy boiler make-up water 24 



 35

demand in a power plant (196). They all succeeded in recycling effluents inside their 1 

industrial processes keeping a competitive product fabrication cost. 2 

Nevertheless, it is also very important to highlight one more the fact that using 3 

drinkable water quality in some industrial applications would not be necessary (e.g. 4 

cooling, or sealing applications). For example, some paper mills use clarified water 5 

from dissolved air flotation units for this purpose (197); and evaporator and boiler 6 

condensed streams can also be used as pump sealing water (198). In addition, other 7 

mills and facilities have reported the use of municipal tertiary treated effluent 8 

(biological oxidation + alum coagulation + filtration + disinfection) (199). In short, 9 

water and energy savings may turn crucial in the future against a higher water scarcity 10 

threshold that would be imposed under the foreseen climate change. On the other hand, 11 

even though it would not always be required to generate water of drinkable grade for 12 

many industrial applications, the inherent health hazard that is attributed to municipal 13 

sewage management will always be a major concern. 14 

Industrial effluent recycling is probably the most extended option used to reduce 15 

freshwater consumption because the facilities are generally located far away from 16 

mWWTPs; and wastewater transport to a mill may not result economically feasible. 17 

Besides, municipal wastewater reclamation usually faces a general population 18 

disapproval, sometimes even for irrigation purposes (200), due to the presence of micro-19 

pollutants (i.e. natural and synthetic hormones, pesticides, pharmaceuticals or personal 20 

care products), and microorganisms meaning potential health hazard. In short, final 21 

reclaimed water quality is always suspicious of carrying undesired hazards. As a 22 

consequence, many surveys have been performed in order to guess which would be the 23 

potential public willingness to use reclaimed sewage (201-202). Its main conclusion 24 

stated that the best way for promoting its acceptance is providing factual information 25 
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regarding the production process, rather than launching persuasive campaigns. 1 

Moreover, in the same way people are nowadays concerned about plastic, glass, and 2 

paper recycling, the society should work on achieving the same concern for water use 3 

(industrial water use, particularly).  4 

Summing up, Table 7 shows a summary of the general treatment removal 5 

efficiencies that are achieved for those main water quality parameters (e.g. TSS, TDS, 6 

COD, BOD5, TOC, inorganic concentrations, biological contents, etc.) after applying 7 

different technological alternatives to reclaim municipal wastewater (4, 203). In short, 8 

Table 7 provide a first approximation to an appropriate reclamation treatment selection 9 

chart considering average municipal wastewater quality figures, and the requirements 10 

that should be considered for a specific industrial application, which were previously 11 

reviewed.  12 

 13 

4. CONCLUSIONS 14 

Environmental sustainability may be significantly enhanced reclaiming municipal 15 

wastewater. Particularly, it enables the replacement of fresh water use for industrial 16 

purposes in areas suffering water scarcity.  17 

Depending on the type of industry, and on the specific application where 18 

reclaimed water is going to be used, water quality requirements that should be fulfilled 19 

are variable, so the implementation of those suitable reclamation technologies must be 20 

timely designed. The most important challenges that reclaimed facilities using 21 

membrane technologies must face are fouling and the management of the generated 22 

rejected streams.  23 

The number of facilities that reclaim urban wastewater for different industrial 24 

applications has recently increased very quickly. Most of them rely on the use of multi-25 
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barrier membranes systems consisting of MF, UF or MBR units followed by RO 1 

systems, which are able to produce water of a very high quality (drinkable grade).  2 

Screening worldwide mWWTPs relaying on the use of membrane systems for 3 

producing reclaimed water for industrial applications, it has been found that 19 4 

membrane filtration-based facilities over a total 28 water reclamation plants are 5 

currently located in Asia (6 of them placed in Singapore); 15 of 45 in America, 9 of 10 6 

in Australia, and 4 of 6 in Europe. Only four plants, all of them related to paper mills, 7 

were found reported in South Africa, but it could not be verified whether they apply 8 

membrane technologies. No sewage reclamation facilities were currently found located 9 

in Central and South America. 10 

 11 
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Table 1. Quality guidelines that reclaimed water must fulfill for its use as fresh water in different industrial applications. 
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pH 6.9-9.0 8.2-10.0 >7.0 - - - - - 6.5-7.5  - - 6.5-7.5 6.2-8.3 - 6-9 

TSS, mg/L 100 5 - 40 10 10 10-30 10-30 <5  5 5 - 5 - 10 
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Conductivity, mS/cm - - <2.0 - - - - - <0.5  - - - - ≤1.1 - 

Turbidity, NTU 50 - - 70 35 40 140 14-56 -  - - - - - - 

Colour, PCU - - - 30 5 25 30-100 5-25 <30  5 5 - 20 - - 

COD, mg/L 75 5 - - - - - - <5  - - - - - - 

BOD5, mg/L 25 - - - - - - - -  - - - - - - 

TOC, mg/L - - - - - - - - -  - - 0.25 - 0.5 - 

Hardness, mgCaCO3/L 650 1.0 <200 100-200 100-200 100 200 100 <200  25 25 - 250 - 350 

Alkalinity, mgCaCO3/L 350 100 - 75-150 75-150 75 150 75-125 <100  - - - 125 - - 

Ammonia-N, mg/L 1.0 0.1 - - - - - - <0.5  - - - - - - 

PO4
3-, mg/L 4.0 - - - - - - - -  - - - - - - 

HCO3
- , mg/L 24 120 - - - - - - -  - - - 128 - - 

NO3
-, mg/L - - - - - - - - -  - - - 5 ≤0.2 - 

Si, mgSiO2/L 50 10 - 50 20 50 100 9-20 <5  - -  50 - - 
aData are for highly purified water class;  bHeavy metals in general must be ≤ 0.1 mg/L. 
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Table 1 (continuation). Quality guidelines that reclaimed water must fulfill for its use as fresh water in different industrial applications. 
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Al, mg/L 0.1 0.1 - - - - - - 0.1  - - - - - - 

Fe, mg/L 0.5 0.3 - 0.3 0.1 0.2 1.0 0.1 <0.1  0.3 0.1 - b 0.1 1.0 

Mn, mg/L 0.5 0.1 - 0.1 0.05 0.1 0.5 0.03 <0.05  0.05 0.01 - b 0.1 - 

Ca, mg/L 50 0.4 - - - - - - <60  - - - - 68 75 

Mg, mg/L 0.5 0.25 - - - - - - <15  - - - - 19 30 

SO4
2-, mg/L 200 - <200 trace - - - 100-300 <100  - - - - 100 - 

Cl-, mg/L 500 - <200 75 75 200 200 200 <50  - - - - 500 300 

Cu, mg/L - 0.05 - - - - - - <0.001  0.01 - - b - 0.05 

Zn, mg/L - 0.01 - - - - - - -  - - - b - - 

Na, mg/L - - - - - - - - -  - - 0.01 - - - 

Dissolved oxygen, mg/L - 0.007 - - - - - - -  - - - - - - 

Methylene-blue active substances - 1 - - - - - - -  - - - - - - 

Carbon tetrachloride extract - 1 - - - - - - -  - - - - - - 

Evaporation residue, mg/L - - - - - - - - -  - - 0.5 - - - 

Resistivity, MΩ·cm at 25ºC - - - - - - - - -  - - >18 - - - 

Abrassive matter (>10µm) - - <40-50 - - - - - -  - - - - - - 

Aerobic bacteria (CFU/mL) - - - - - - - - -  - - - ≤10 - - 

Bacteria endotoxins  (IU/mL) - - - - - - - - -  - - - ≤0.25 - - 
aData are for highly purified water class;  bHeavy metals in general must be ≤ 0.1 mg/L.
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Table 2. Effect of common foulants on membrane performance (104, 106-109). 
 

FOULANT TYPE SALT PASSAGE PRESSURE DROP PRODUCT FLOW 

Inorganic salts 10-15% increase 10-40% increase <10% decrease 

Metal (hydro)oxides >200% rapid increase >200% rapid increase 20-40% decrease 

Colloids >200% gradual increase >200% gradual increase >50% gradual increase 

Organic matter increase or decrease small increase >50% decrease 

Biofouling > 200% rapid decrease >200%  rapid increase >50% decrease 
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Table 3. Wastewater reclamation facilities based on membrane systems located in Australia.  

FACILITY NAME  LOCATION SYSTEM APPLICATION 

Bundamba AWTPa (162) Ipswich MF + RO + UV Cooling water 

Eraring Power Station (1) Lake Macquarie MF + ROe 
Boiler makeup water 

Cooling water 

Gibson Island AWTPa (163) Brisbane MF + RO + UV Power stations 

Kwinana Water Reuse Project (204) Perth MF + ROe -d 

Luggage Point WTPb (160) Brisbane MF + ROe -d 

Luggage Point AWTPa (161) Brisbane MF + ROe 

Boiler feed water 

Cooling tower make-up  

Other process uses 

Northern Water Plant (205) Victoria UF + ROe Refinery 

Illawarra RWPc (160) Sydney MF + ROe At Bluescope Steel facility 

WRAMS-2000 Olympic Site (206) Sydney MF + RO + UV -d 

Secondary treatment is specified when RO is used without membrane pretreatment. aAWTP: Advanced Water Treatment Plant; bWTP: 
Water Treatment Plant; cRWP: Recycled Water Plant; dIndustrial, but not specified; eNot specified whether disinfection exists after RO. 
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Table 4. Wastewater reclamation facilities based on membrane systems located in Asia.  

FACILITY NAME LOCATION SYSTEM APPLICATION 

Bedok NEWater plant (23, 207) Bedok/Singapore UF + RO + UV 

Electronics industry  
Wafer fabrication 
Air conditioning 
Cooling water 
Boiler feed water 

Kranji NEWater plant (23, 209) Kranji/Singapore MF + RO + UV 

Electronics industry  
Wafer fabrication 
Air conditioning 
Cooling water 
Boiler feed water 

Seletar NEWater plant (23, 209) Seletar/Singapore MF + RO + UV 

Electronics industry  
Wafer fabrication 
Air conditioning 
Cooling water 
Boiler feed water 

Changi NEWater (210) Changi/Singapore UF + RO + UV 

Electronics industry  
Wafer fabrication 
Air conditioning 
Cooling water 
Boiler feed water 

Ulu Pandan NEWater plant (23, 186) 
Ulu 
Pandan/Singapore 

MF + RO + UV 

Electronics industry  
Wafer fabrication 
Air conditioning 
Cooling water 
Boiler feed water 

Xinxinban WWTPa (209) Hohhot/China MBR + IEl  Cooling water 

Secondary treatment is specified when RO is used without membrane pretreatment.aWWTP: Wastewater Treatment Plant; bWRP: Water Recycling 
Plant; cSTP: Sewage Treatment Plant; dIndustrial, but not specified; eNot specified whether disinfection exists after the last treatment; fSF: Sand filter; 
gEDI: Electrodeionization; hCMF: Classical matched filter; iCF: Cartridge filter; jGF: Gravity filter; kAC: Activated carbon; lIE: Ionic exchange. 
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Table 4 (continuation). Wastewater reclamation facilities based on membrane systems located in Asia.  

FACILITY NAME LOCATION SYSTEM APPLICATION 

Jurong WRPb (210) 
Jurong 
Island/Singapore 

SFf + ROe -d 

Jurong WRPb (210) 
Jurong 
Island/Singapore 

MBRe -d 

CNPC Dalian Petrochemical Company Ltd. (211) Dalian/China UF + ROe Boiler feed water 

ShanXi DaTong Co-gen Ltd. (212) DaTong/China UF + RO + EDIg Boiler feed water 

Tianjin Ji Zhuang Zi STPc (8) Tianjin/China MFe -d 

Tianjin TEDA STPc (8) Tianjin/China MF + ROe -d 

STP of Beijing EDA (176) Beijing/China CMFh + ROe Process water 

Gajwa WWTP (9) 
West Inchen/North 
Korea 

Flocculation + media filtration + 
ROe (MF is applied to protect RO 
against process breakdown) 

Cooling water  

Sewage Treatment of Changshou industry park 
(176) 

Changshou/China UFe 
Cooling water 
Boiler make-up water  
Industrial process water 

Madras Fertilizers Limited (8) Chennai/India 
SFf  + ammonia stripping +  
carbonation + chlorination +  
filtration +dechlorination +CFi +ROe 

Cooling tower makeup 

Petromin Refinery (Aramco) (213, 214) Riyadh/Saudi Arabia 
Lime clarification + GFj + ACk + RO 
+ decarbonation + IEl  

Cooling tower makeup 
Desalter water makeup 
Boiler feed water 

Sulaibiya WWTP (215, 216) Sulaibiya/Kuwait UF+RO+UV -d 

Secondary treatment is specified when RO is used without membrane pretreatment. aWWTP: Wastewater Treatment Plant; bWRP: Water 
Recycling Plant; cSTP: Sewage Treatment Plant; dIndustrial, but not specified; eNot specified whether disinfection exists after the last 
treatment; fSF: Sand filter; gEDI: Electrodeionization; hCMF: Classical matched filter; iCF: Cartridge filter; jGF: Gravity filter; kAC: Activated 
carbon; lIE: Ionic exchange. 
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Table 5. Wastewater reclamation facilities based on membrane filtration systems located in Europe.  

FACILITY NAME LOCATION SYSTEM APPLICATION 

Cuenca Media-Alta de Arroyo Culebro WWTPa (4) Madrid/Spain SF + AC + UF + RO + UV 

Process water in a paper mill  

Cooling tower makeup 

Boiler feed water 

Flag Fen Sewerage Treatment Plant (217) Peterborough/UK MF+ chloramines +RO +IE Boiler feed water 

E.C. Katowice Power Plant (181) Katowice/Poland UF Cooling water 

Villefranque (180) Villefranque/France MBR Washing water in a tannery 

Empoli MWRF (179) Florence/Italy MBR Industrial (but not specified) 

Collegno (180) Turin/Italy SF + UF + AC Industrial (but not specified) 

Secondary treatment is specified when RO is used without membrane pretreatment aWWTP: Wastewater Treatment Plant; b *Type of disinfection not 
specified; ** Not specified whether disinfection exists after RO. MWRF: Municipal Water Reclamation Facility. SF: Sand filtration; CF: Cartridge 
filtrate; IE: Ionic exchange; AC: Activated carbon; DMF: Dual media filters. 
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Table 6. Wastewater reclamation facilities based on membrane systems located in America.  

FACILITY NAME LOCATION SYSTEM APPLICATION 

South Bay ARWTFa ICF (218) Sta. Clara & S. Jose/ California MF+RO+UV Cooling and processing 

Toppan Electronic WWTPb (219) San Diego/California MF + ROd Process water 

Millender-McDonald Carson Regional WRPc  (8) Carson/California MF + ROd Cooling tower makeup 

Mobil Boiler Feed Facility (8) Torrance/ California MF + ROd Boiler feed water 

West Basin WRPc (220) El Segundo/California MF + ROd Boiler feed water 

Terminal Island Treatment Plant (8) Los Angeles/California MF + RO + chlorination Boiler feed water 

Pinellas County Resource Recovery Facility (221) Pinellas/Florida MF + RO + chlorination Boiler feed water 

City of North Las Vegas WRPc (222) Las Vegas/Nevada MBR + chlorination Cooling water 

Kyrene WRPc (223) Tempe/Arizona MBR + UV Industrial processing 

Wyodak Power Plant (200) Gilette/Wyomin SF +CF +RO + recarbonation +IE 
Boiler make-up  
Dust suppression 

Redbud Power Plant (224) Luther/Oklahoma Secondary + ROd 
Cooling tower makeup  
Boiler feed water 

Harlingen WWTPb (225) Harlingen/Texas SF + ROd Process water 

Honouliulu WWTPb (226) Eva Beach/Hawaii MF + RO + disinfectione Boiler feed water 

City of Edmonton Gold Bar WWTPb (227) Edmonton/Canada UF + ROd 
Hydrogen and steam production 
Process alternate feedstocks 

Met-Mex Peñoles (228) Torreon/Mexico DMFf + ACg + CFh + ROd 
Cooling tower makeup  
Boiler feed water 
Zinc electrolytic process 

Secondary treatment is specified when RO is used without membrane pretreatment. aARWTF: Advanced Recycled Water Treatment Facility; bWWTP: Wastewater 
Treatment Plant; cWRP: Water Reclamation Facility; dNot specified whether disinfection exists after RO; eType of disinfection not specified; fDMF: Dual media filters; 
gAC: Activated carbon; hCF: Cartridge filter. 
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Table 7. Removal efficiencies (%) of different treatments applied to reclaim municipal sewage (4, 203). 

Parameter CASa CAS 
+ filtration 

CAS +BNRb CAS +BNR
+ filtration 

MBR MBR +IE 
CAS +MF / UF +RO  

MBR+RO 

TSS, mg/L 96-94 98 95-96 99 >98 >98 >99 

TDS, mg/L 0 0-19 0-19 0-19 0-19 - 85-98 

VOCs, µm 90 90 90-95 90-95 90-95 90-95 >99 

COD, mg/L 84-90 88-91 92-95 92-96 >96 >96 96-99 

BOD5, mg/L 93-95 94-95 95-96 98-99 >99 >99 >99 

TOC, mg/L 85-88 88-90 90-92 98-99 >98 >98 99.0-99.9 

Total nitrogen, mg/L 25-50 25-50 85-89 90-93 >86c >80 >95 

Total phosphorous, mg/L 0-17 0-33 75-83 >83 58-93d >80 >86 

Metals, mg/L 33-40 33-40 33-40 33-40 trace trace - 

Total coliforms, CFU/100mL 99.0-99.9 >99.9 99.0-99.9 99.0-99.9 >99.9 >99.9 ~100 

Protozoan cysts and oocysts, 
CFU/100 mL 

0-99.9 >99.9 >99.9 >99.9 >99.9 >99.9 ~100 

Viruses, PFU/100mL 0-90.0 0-99.9 0-90.0 0-90.0 >90 >90 ~100 
aCAS: conventional activated sludge + nitrification. bBNR: biological nutrient (N and P) removal ; cWith anoxic stage; dWith coagulant addition. 
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Figure 1. Water consumption for cooling towers at thermoelectric power plants (38). 

 

Figure 2. Maximum and minimum fresh water consumption values in paper mills (55) 

and textile industry (65). Data are scaled by tonne of final product. 

 

Figure 3. Water consumption thresholds (maximum and minimum) within food 

industry (74). Data are scaled per tonne of product*, or per tonne of raw material**. 

 

Figure 4. Worldwide distribution of municipal water reclamation facilities where 

reclaimed water is used for industrial activities. 
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