
Sensors 2011, 11, 7110-7126; doi:10.3390/s110707110 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Steering a Tractor by Means of an EMG-Based Human-Machine 

Interface 

Jaime Gomez-Gil *, Israel San-Jose-Gonzalez, Luis Fernando Nicolas-Alonso and  

Sergio Alonso-Garcia 

Department of Signal Theory, Communications and Telematics Engineering, University of Valladolid, 

47011 Valladolid, Spain; E-Mails: ijosgon@ribera.tel.uva.es (I.S.-J.-G.);  

lnicalo@ribera.tel.uva.es (L.F.N.-A.); salonsog@ribera.tel.uva.es (S.A.-G.)  

* Author to whom correspondence should be addressed; E-Mail: jgomez@tel.uva.es. 

Received: 14 June 2011; in revised form: 4 July 2011 / Accepted: 7 July 2011 /  

Published: 11 July 2011 

 

Abstract: An electromiographic (EMG)-based human-machine interface (HMI) is a 

communication pathway between a human and a machine that operates by means of the 

acquisition and processing of EMG signals. This article explores the use of EMG-based 

HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface 

(HCI) from the Emotiv Company, was employed. This device, by means of 14 saline 

sensors, measures and processes EMG and electroencephalographic (EEG) signals from the 

scalp of the driver. In our tests, the HMI took into account only the detection of four 

trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, 

eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes 

looking to the left and jaw closed. The EMG-based HMI guidance was compared with 

manual guidance and with autonomous GPS guidance. A driver tested these three guidance 

systems along three different trajectories: a straight line, a step, and a circumference. The 

accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by 

manual guidance, which was lower in turn than the accuracy obtained by the autonomous 

GPS guidance; the computed standard deviations of error to the desired trajectory in the 

straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation 

between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and 

this difference is not relevant in agricultural steering, it can be concluded that it is possible 

to steer a tractor by an EMG-based HMI with almost the same accuracy as with  

manual steering.  
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1. Introduction 

In recent years, research in agricultural vehicle guidance has been focused on autonomous tractor 

guidance, which has been mainly performed using a satellite-based Global Positioning System  

(GPS) [1-5]. Machine vision [6-9] and multiple sensors [10-13] are positioning methods that have also 

been employed to achieve autonomous guidance. Research in the teleoperation of tractors [14], the  

use of multiple autonomous robots [15], augmented reality, [16] and tractor architecture and 

communications [17] can also be found. 

Scientific literature shows that the employment of human-computer interfaces (HCIs) and  

brain-computer interfaces (BCIs) has allowed some interesting advances in areas loosely related to 

tractor guidance. In the medical research area, HMI and BCI have been employed to allow people with 

disabilities to guide wheelchairs [18-20]. Vehicle guidance could benefit from the use of HMI and 

BCI, which allows for the prediction of voluntary human movement more than one-half second before 

it occurs [21-23], and allows for the detection of driver fatigue [24-26] and driver sleepiness [27-30].  

This article explores the use of new interfaces in the agricultural field by employing an HMI to steer a 

tractor. To the best of our knowledge, no similar research has been reported in an agricultural scenario.  

2. Electrical Signals on the Scalp Surface  

The human nervous system is an organ system composed of the brain, the spinal cord, the retina, 

nerves and sensory neurons [31]. These elements produce electrical activity that can be measured in 

different ways and places. The measurement of this electrical activity in the scalp using  

noninvasive electrodes offers electromyography (EMG) signals related to muscle activation and 

electroencephalographic (EEG) signals related to brain activity.  

The measurement of the EMG signals associated with a muscle’s activation is usually performed 

near it. But the high relative power of the EMG signals makes them propagate far from the muscles. 

EMG signals from the jaw, tongue, eye, face, arm and leg muscles can be measured on specific  

points of the scalp surface. The specific EMG signals corresponding to eye movements are named 

electrooculographic (EOG) signals. 

EEG signals related to brain activity can also be measured on the scalp surface. Due to the high 

power of EMG signals, the measurement of the EEG signals is often contaminated by EMG artifacts, 

which EMG signals present in the EEG recordings. To achieve EEG signals without EMG artifacts:  

(i) the user must avoid moving muscles in the EEG signal acquisition; and (ii) some signal processing 

algorithms can be accomplished to remove EMG artifacts from the EEG signals acquired [32-34]. 
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3. Surface EMG and EEG Signals Applied for Control 

The acquisition and process of EMG signals from voluntary activated muscles offers a 

communication path that, for either disabled or healthy people, can be used in many tasks and in 

different environments. Some of these tasks applied for disabled people are the control of a robotic 

prosthesis [35-37] or a wheelchair [38-40], as well as computer [41-43] or machine [44-46] interaction. 

The interfaces for games [47-49] and virtual reality [50-52] are environments where healthy people 

can communicate through EMG signals. 

In contrast to the acquisition and process of EMG signals from voluntarily activated muscles, the 

acquisition and process of EEG signals is focused for people with severe disabilities that lose all voluntary 

muscle control, including eye movements and respiration. In this way, robotic prosthesis [53-55] or 

wheelchair control [56-58] are also tasks in which EEG-based interfaces can be useful. Moreover, 

healthy people can also employ EEG-based interface environments such as, again, interfaces for  

games [59-61] and virtual reality [62-64].  

EMG computer interface [65], human-computer interface (HCI) [66], EMG-based human-computer 

interface [67], EMG-based human-robot interface [68], muscle-computer interface (MuCI) [69],  

man-machine interface (MMI) [70], and biocontroller interface [71] are different terms used in the 

scientific literature to name communication interfaces that can employ EMG signals, among others. In 

contrast, the widely accepted name for brain communication through exclusively EEG signals that are 

independent of peripheral nerves and muscles is brain-computer interface (BCI).  

The block diagram of an EMG-based HMI or a BCI applied to control a machine usually comprises 

three blocks: a signal acquisition block where EMG or EEG signals are acquired from the user by 

means of electrodes, a signal processing block where the signals acquired are processed to obtain 

information about the user status, and a device control block that acts on the machine (Figure 1). The 

EMG or EEG signal acquisition can be done with electrodes placed on the body or scalp of the user, or 

with electrodes placed inside the body, being these acquisitions referred to as non-invasive or invasive, 

respectively. The statistical analysis [72], Bayesian approaches [73], neural networks [74], time 

frequency procedures [75], and parametric modeling [76] are usual techniques employed in the signal 

processing block, estimating the user status from the acquired EMG or EEG signals. This is the most 

complex part of EMG-based HCIs or BCIs, because it needs to process jointly the signals acquired 

from all electrodes. Furthermore, each electrode signal is composed in turn by the sum of a large 

number of signals at the same and at different frequencies, which comes to each electrode from 

different parts of the user body or brain. On-off switch [77], proportional-integral-derivative [78], and 

fuzzy logic [79] control are control types usually employed in the device control block. 

Figure 1. Block diagram of the application of a human-machine interface applied into a 

tractor steering. 
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4. Materials and Methods 

4.1. The Emotiv EPOC Interface 

The EPOC is a low cost Human-Computer Interface (HCI) that is comprised of: (i) a neuroheadset 

hardware device to acquire and preprocess EEG and EMG user brainwaves, and (ii) the software 

development kit (SDK) to process and interpret these signals. It can be purchased from the Emotiv 

Company website for less than one thousand US dollars [80]. 

The neuroheadset acquires brain neuro-signals with 14 saline sensors placed on the user scalp. It 

also integrates two internal gyroscopes to provide user head position information. The communication 

of this device with a PC occurs wirelessly by means of a USB receiver.  

Emotiv provides software in two ways: (i) some suites, or developed applications, with graphical 

interface to process brain signals, to train the system, and to test the neuroheadset; and (ii) an 

application programing interface (API) to allow users to develop C or C++ software to be used with 

the neuroheadset. 

The Emotiv EPOC can capture and process brainwaves in the Delta (0.5–4 Hz), Theta (4–8 Hz), 

Alpha (8–14 Hz), and Beta (14–26 Hz) bands. With the information from signals in these bands, it can 

detect expressive actions, affective emotions, and cognitive actions.  

The expressive actions correspond to face movements. Most movements have to be initially trained 

by the user, and as the user supplies more training data, the accuracy in the detection of these actions 

typically improves. The eye and eyelid-related expressions blink, wink, look left, and look right cannot 

be trained because information about these expressions relies on the Emotiv software. 

The affective emotions detectable by the Emotiv EPOC are engagement, instantaneous excitement, 

and long-term excitement. None of these three has to be trained.  

Finally, the Emotiv EPOC works with 13 different cognitive actions: the push, pull, left, right, up 

and down directional movements, the clockwise, counter-clockwise, left, right, forward and backward 

rotations and a special action that makes an object disappear in the user mind.  

Figure 2(a) shows an Emotiv EPOC neuroheadset photograph, and Figure 2(b) shows with intuitive 

colors the contact quality of the neuroheadset on the user head. This picture was screen-captured from 

a software application provided by Emotiv.  

Figure 2. (a) The Emotiv EPOC neuroheadset and the wireless USB receiver. (b) A picture 

that shows with intuitive colors the contact quality of the neuroheadset on the user head.  

  

(a)     (b) 
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4.2. Hardware of the Developed System 

Figure 3(a) shows the hardware components of the system and the connections between them. All 

components were mounted on a 6400 John Deere tractor (Figure 3(b,c)). As mentioned, the HMI 

model was an EPOC, from the Emotiv Company [80]. 

A DC RE-30 Maxon motor was installed to move the steering wheel by means of a reducer gear and 

a striated pulley. A controller box was specially designed to steer the tractor continuously according to 

the commanded orders sent by the laptop [81]. To achieve the desired angle, the box uses fuzzy logic 

control technology to power the DC motor by means of a PWM signal. This controller box measures 

the steering angle with a magnetic encoder.  

An R4 Trimble receiver was used to measure the real trajectories of the results section and to 

perform the autonomous GPS guidance. The update of positions was configured to a rate of 5 Hz. This 

receiver employed real time kinematic (RTK) corrections to achieve an estimated precision of 2 cm. 

The corrections were provided by a virtual reference station (VRS) managed by the ITACyL, a 

Spanish regional agrarian institute.  

A laptop computer ran our developed application, which was continuously: (i) obtaining 

information from the BCI about the driver brain activity, (ii) sending steering commands to the 

controller box about the desired steering angle, and (iii) saving the followed trajectory, obtained from 

the GPS. 

Figure 3. (a) Schematic of the connections between the hardware components of the 

developed system. (b) Tractor used in the tests. (c) Photo of the driver inside the tractor. 
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4.3. Software of the Developed System 

The Emotiv EPOC includes the Emotiv API, a C++ API, which allows communication with the 

Emotiv headset, reception of preprocessed EEG/EMG and gyroscope data, management of  

user-specific or application-specific settings, post-processing performing, and translation of the 

detected results into an easy-to-use structure called EmoState. The EmoEngine is the logical 

abstraction of the Emotiv API that performs all the processing of the data from the Emotiv headset. 

The EmoEngine is provided in a edk.dll file, and its block diagram is shown in Figure 4.  

Figure 4. Diagram of the integration of the EmoEngine and the Emotiv API with an application.  

 

The Emotiv EPOC, by means of the Emotiv API, provides to external applications information 

about the event type that the device estimates emanates from the user brain and reports the event 

power, which represents the certainty of the event estimation. A neutral event is reported when no 

actions are detected.  

Figure 5. Simplified flow chart of the (a) system training of the four events that the BCI 

has to detect and (b) system test following a trajectory with the tractor.  
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 the user eyes looking to the left when the user’s jaw is open; 

 the user eyes looking to the right when the user’s jaw is open; 

 the user eyes looking to the left when the user’s jaw is closed; 

 the user eyes looking to the right when the user’s jaw is closed. 

The test driver was trained to use these events. In the training process, the EmoEngine analyzes the 

driver brainwaves to achieve a personalized signature of each particular event as well as one of a 

neutral background state. These signatures are stored in the EmoEngine memory. In the tractor steering 

process, the EmoEngine analyzes in real time the brainwaves acquired to detect signatures that match 

one of the previously stored signatures in the EmoEngine memory, and when this occurs, it 

communicates to the application that a specific event with a specific power emanated from the user brain. 

4.4. Methods 

The steering using the Emotiv EPOC was compared with the two usual methods of tractor steering: 

manual steering and autonomous GPS steering. A healthy driver tested the tractor guidance manually 

and through the Emotiv EPOC interface. The Emotiv EPOC training was completed by the driver 

before testing the system with the tractor. The guidance speed to test the system was approximately 1 m/s. 

The 5 Hz GPS rate allowed acquiring positions in the tractor trajectories approximately 20 cm apart. 

The trajectories where this comparison was accomplished were: (i) a straight line longer than 50 m; 

(ii) a 10 m step; and (iii) a circumference of 15 m radius. These three trajectories were drawn over the 

plot with a mattock, taking into account GPS reference points, in order that the driver testers could 

follow the trajectories in the tests of manual guidance and in the tests performed through the Emotiv 

EPOC Interface. These three trajectories were programed with the computer for the autonomous GPS 

guidance tests. 

The control law of Equation (1) was employed in the automatic GPS guidance. In this equation  is 

the steering angle, x is the distance of the tractor from the desired trajectory,  is the difference 

between the tractor orientation and the reference trajectory orientation in the trajectory point nearest to 

the tractor, L is the distance between the tractor axles, and k1, k2 are the control gains [3,10,13]:  

 = 𝑎𝑟𝑐𝑡𝑎𝑛  −𝑘1 ·𝑥 − 𝑘2 ·𝑡𝑎𝑛  𝐿 ·𝑐𝑜𝑠3  (1) 

The four muscle events enumerated in the Software of the Developed System section were initially 

trained with the driver who tested the system. Later, these events were used to perform the guidance 

through HMI along the three different trajectories. When the driver failed to follow the desired 

trajectory by EMG-based HMI guidance because he was not completely attentive, another attempt was 

performed. The authors’ initial intention was to train and use only the first two events, but we noticed 

that the trained events were detected during real tests in the HMI system when the driver only looked 

to the right or to the left, independently of the jaw status. To provide the system more information 

about jaw status, it was necessary to train and use all four events instead of only two. 
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5. Results and Discussion 

5.1. Experimental Results 

Real tests were accomplished in Pozal de Gallinas, Spain, in March 2011, along the trajectories and 

with the procedures presented in the Methods section. The autonomous guidance control law of 

Equation (1) was experimentally tuned, and k1 = 0.1 and k2 = 0.35 were obtained. Figure 6 shows the 

obtained results along the three trajectories. Table 1 presents the mean, standard deviation, and range 

of the distance from the performed trajectory by the tractor to the 50 m straight desired trajectory 

(Figure 6(a)). The step trajectory of Figure 6(b) was considered as a step input to the system for 

obtaining the step response. Table 2 presents the settling distance produced by the 10 m step response 

in the system. The settling distance is the horizontal distance that the tractor needed to advance after 

the 10 m step for the tractor to be in ±5% of the step size from the final desired trajectory, that is, to be 

between ±0.5 m from the final desired trajectory. Table 3 presents the mean, standard deviation, and 

range of the distance from the performed trajectory to the 15 m radius circular desired trajectory 

(Figure 6(c)).  

As it can be perceived from the trajectories of and from the data of Tables 1, 2 and 3, the guidance 

accuracy through the HMI was lower than that obtained when the driver employed his hands, and this 

was lower than that obtained by the autonomous GPS guidance. 

Figure 6. Real test guidance results through the HMI, with manual guidance, and with 

automatic GPS steering, taking as desired trajectories (a) a straight line, (b) a step and  

(c) a circumference. 
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Table 1. Mean, standard deviation, and range of the distance from the performed trajectory 

to the desired trajectory in the 50 m straight line. 

 GPS guidance Manual guidance HMI guidance 

Mean (cm) 1.2 2.9 10.6 

Standard deviation (cm) 4.2 8.7 15.8 

Range (cm) 0–17.2 0–24.3 0–52.3 

Table 2. Settling distances for the 10 m step reference trajectory. 

 GPS guidance Manual guidance HMI guidance 

Settling distance (m) 13.3 14.3 23.1 

Table 3. Mean, standard deviation, and range of the distance from the performed trajectory 

to the desired trajectory in the 15 m radius circumference. 

 GPS guidance Manual guidance HMI guidance 

Mean (cm) 1.9 3.9 13.7 

Standard deviation (cm) 6.6 11.2 26.6 

Range (cm) 0–25.0 0–27.6 0–74.5 

5.2. Discussion 

The tests comparing the HMI guidance with the manual or autonomous GPS tractor guidance show 

that the EMG-based HMI guidance system: (i) offers lower accuracy, because the precision achieved 

with the HMI was lower than that obtained with manual steering, which was also below that obtained 

by the autonomous GPS tractor guidance; (ii) requires extra training time, because the guidance 

through the HMI required a lengthy training process; and (iii) requires higher user concentration, 

because the drivers employing the HMI needed to be very focused to follow the desired trajectories 

successfully. Therefore, the authors consider that at present, vehicle guidance through EMG-based 

HMIs might be of interest only for people with disabilities who cannot manage a steering wheel by 

hand. Nevertheless, the EMG-based HMI guidance offers reasonably good accuracy, with only 16 cm 

standard deviation of error, which is acceptable for most agricultural tasks, and is not very different 

from the 9 and 4 cm obtained by means of manual steering and automatic GPS steering, respectively.  

The Emotiv Company declares that the EPOC device acquires and processes EEG signals [80], and 

therefore, is a BCI. Moreover, most scientific literature considers the Emotiv EPOC as a BCI [59,82-89]. 

A BCI is a direct communication between the brain and a computer. This communication is based on 

the capture and process of EEG signals of brain activity and is independent of nerve and muscle 

activity. In turn, HCI and HMI are communications methods that encompass a wide variety of 

mechanisms, including the acquisition and processing of EMG signals associated to muscle 

movements. In our research, guidance tests by means of the Emotiv EPOC interface were unsuccessful 

when the Emotiv EPOC training and testing did not imply muscle movements, which means, when the 

drivers have only the cognition but have not performed the movements, steering was not possible. 

Therefore, the authors trained and employed events related with eye and jaw muscle movements, 

which were better detected by the EPOC. For this reason, the authors consider that the Emotiv EPOC 

is an HCI that proceses mainly EMG signals of muscle movements, but not a real BCI that only 
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proceses EEG brainwaves. Moreover, since the tests performed with this HCI device is applied to a 

machine, the authors refer to the developed EPOC system as an EMG-based HMI. 

The steering of vehicles by means of devices such as steering wheels or joysticks need to update the 

steering wheel or the joystick positions approximately every second. This steering can be performed by 

EMG-based HMIs, as this article proves. The actual BCI technology can only update the steering 

wheel or the joystick position at rates lower than 0.5 Hz, because the mean time to transmit a 

command is greater than 2 s [90-95]. Therefore, the vehicle guidance by means of BCI technology is 

usually achieved in the research literature by just choosing destinations from a list or selecting the 

branch in each intersection of the possible paths [56,57,96]. After the selections of the destination by 

means of the BCI, a completely autonomous guidance system steers the vehicle without user 

intervention. In summary, an EMG-based HMI guidance system allows for continuously updating the 

steering, but this updating is hard to perform through BCIs because the time to transmit a command by 

BCIs is greater than 2 s. One limitation of the EMG-based HMI tractor guidance is that the drivers 

need to be completely focused to follow the desired trajectory successfully. 

The EMG-based HMI presented may be useful in practice compared to standard manual control for 

people with physical disabilities. Comparing the EMG-based HMI presented by other interfaces for 

people with disabilities based on mechanical sensors that measure movements in the user body 

produced by healthy muscles, the proposed system could offer three advantages. First, an easier 

installation and removal, because it is simpler to don and doff a helmet than install a mechanical sensor 

on some body parts. Second, a simpler calibration, because it could be simpler to train movements by 

the Emotiv EPOC software than to calibrate specific sensors attached to the driver’s body. Third, a 

lower price, because the Emotiv EPOC is a general purpose device, and this allows the Emotiv EPOC 

hardware to be purchased for less than $500, whereas specific purpose acquisition and installation of 

sensors on the body of the user would probably surpass this cost. 

Moreover, future lines of research with tractors steering through HMIs that integrate both EMG and 

EEG signals could provide additional advantages over conventional guidance. One possible advantage 

may be the capability of this system to detect fatigue [24-26] or sleepiness [27-29] from the EEG 

signals, and to employ this information for evaluating the concentration of the driver and for 

suggesting necessary breaks. In this way, safer farm work might be achieved. Another line of research 

may be if HMIs could detect in advance, with regard to muscle movement, some special situations 

where the tractor needs to be immediately stopped. Research literature indicates that voluntary human 

movements can be predicted more than one-half second before they occur [21-23]. This advantage may 

also contribute to safer farm work. Finally, future research will also have to show if the BCI 

communication could allow people with severe physical disabilities to steer tractors only by thinking. 

6. Conclusions 

In summary, it is possible to steer a tractor through an EMG-based HMI. In comparison with 

manual or automatic GPS guidance, the accuracy was lower in the EMG-based HMI. Nevertheless, 

since the difference between the standard deviation of error to the desired trajectory in the real test 

between EMG-based HMI guidance and manual steering was only a few centimeters, and this 
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difference is not relevant for most agricultural tasks, it can be concluded that is possible to steer a 

tractor by an EMG-based HMI with almost the same accuracy as with manual steering.  
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