

Facultad de Ciencias

Trabajo Fin de Máster

Máster en Matemáticas

Numerical resolution of Dynamic Games.

Autor: Beatriz Gómez Martín.

 Tutor: Víctor Gatón Bustillo.

2

Contents

1 Introduction 5

2 From Optimal Control to Game Theory 9
2.1 Optimal Control Theory . 9

2.1.1 Pontryagin maximum principle 12
2.1.2 Hamilton-Jacobi-Bellman 15
2.1.3 Infinite-Horizon problems 18

2.2 Game Theory . 20
2.2.1 Game classification . 20
2.2.2 Ingredients of a game 21
2.2.3 Differential games . 22
2.2.4 Equilibrium points . 23

3 Spectral methods 27
3.1 Chebyshev polynomials . 30
3.2 Chebyshev collocation approach 32
3.3 Chebyshev multidimensional interpolation 35
3.4 Chebyshev tensorial evaluation 37
3.5 Differentiation . 40

4 Numerical methods in Game Theory 41
4.1 Value iteration . 45
4.2 Policy iteration . 50

5 A numerical example 55
5.1 Two regions scenario . 58

5.1.1 Analytical solution . 58
5.2 Three regions scenario . 67

3

5.3 Error analysis . 70
5.3.1 Temporal error in [0, 0.5]× [0, 0.5] 71
5.3.2 Spatial error in [0, 0.5]× [0, 0.5] 72
5.3.3 Spatial error in [0, 2]× [0, 2] 73

5.4 Performance analysis . 75

6 Conclusions 77

4

Chapter 1

Introduction

Nowadays, the necessity of understanding the world around us leads to the
study of complex mathematical models. Modelling physical, social or bio-
logical phenomena helps researchers to understand system evolution and to
study the effects of the different factors influencing the behaviour of a sys-
tem. Furthermore, models can be employed to make predictions on the
performance of an event.

The focus of the present work is on dynamical systems. Dynamical sys-
tems are defined as systems that evolve over time. These systems can be
studied through differential equation models. In some cases, there exist one
or more variables which can be controlled by an agent, and that determine
the dynamic evolution of the system. The objective is then to study the
strategy that an agent has to follow in order to achieve a certain objective.
This is called an Optimal Control problem.

Another aspect to take into account is that a model does not always
present only a single agent. Then, it is essential to study the relations among
several agents. The branch of mathematics that investigates this relations is
called Game Theory. Applying the results in this area, the aim is to achieve
an equilibrium point where all agents maximize their benefits.

In order to obtain the previous equilibrium point, it would be necessary
to solve the dynamics of the problem. However, analytical solution of differ-
ential models is hardly ever conceivable. This is the reason why the design of
numerical methods to approximate system solutions has taken great impor-

5

tance. Additionally, in the recent years this field of study has been boosted
by the computational improvements.

However, even though the computational capacity has improved, the cost
required for solving most practical problems becomes too large. It is im-
portant to note that most numerical methods require a discretization of the
problem dynamics.

Let us illustrate the size of a regular problem with an example. Suppose
a system evolving over a d-dimensional spatial region within a given period
of time. When the space is discretized, the solution must be computed sepa-
rately for each node. Taking N nodes in each dimension, Nd nodes must be
computed. If a refined result is required, for example doubling each dimension
nodes, the magnitude is multiplied by 2d. Furthermore, a time discretization
is also required, so that the numerical method must be computed for each
node at each time step. Finally, the same problem has to be solved for each
of the agents in the system. All these conditions result in a computationally
expensive numerical methods.

For this reason, it is crucial to develop efficient algorithms for computing
numerical approximations to the solutions. The idea is to search the optimal
strategy for each agent iteratively until an equilibrium point is achieved.
There exist two popular algorithms from Control Theory that can be em-
ployed to find an equilibrium point in a multi-agent dynamical system: Value
iteration and Policy iteration.

Both algorithms require the interpolation of certain value functions that
represent the agents objective function. In this work, a Chebyshev inter-
polation scheme is proposed. The Chebyshev interpolation is a very useful
technique that can be applied to obtain numerical approximations in different
problems such as global optimization, ODE solving or integration. Cheby-
shev polynomials are especially helpful because they provide very precise and
numerically efficient approximations.

In essence, the objective of the work is to study methods for finding a
numerical approximation to the solution for multi-agent dynamical systems.
Two different numerical methods are employed to compute the Markovian
Nash equilibrium for a multi-player differential game: Value iteration and

6

Policy iteration.

The present document is organized as follows. In Section 2.1, the most
important results in Optimal Control Theory are detailed. Pontryagin Max-
imum Principle (2.3) and the Hamilton-Jacobi-Bellman theorem (2.7) are
the key results in this section. In Section 2.2 Game Theory is presented and
different equilibrium concepts are explained in this section.

Theoretical aspects and numerical methods to compute the Chebyshev
polynomial interpolation are explained in Chapter 3. Afterwards, two nu-
merical methods to solve multi-agent games are detailed in Chapter 4. These
methods are Value iteration, in Section 4.1, and Policy iteration, in Section
4.2. The previous algorithms are implemented with a Chebyshev interpola-
tion approach.

Finally, a numerical example is detailed in Chapter 5. A transboundary
pollution model developed in [9], which was numerically solved with a spline-
based numerical method, is presented. The model proposes a N -players game
and, for particular cases, analytical solutions are quite straightforward to ob-
tain. Therefore, it is a very useful model to make an error analysis of the
numerical methods. Moreover, the performance of the numerical methods
can be compared with the spline-based solution. The results of the numer-
ical solution of more than two player situations are also shown.

Finally, the conclusions of the work are presented, together with future
work possibilities.

7

8

Chapter 2

From Optimal Control to Game
Theory

2.1 Optimal Control Theory

The Optimal Control Theory is a branch of mathematics that studies the
way to determinate the behaviour of a system in order to maximize a certain
benefit. The systems to control are dynamical systems, that is, systems that
evolve over time.

For a given dynamical system, a control is a variable which can be ad-
justed by an agent and that determines the evolution of the system. Then,
the objective in an Optimal Control problem is to determine a control such
that the benefits are maximized (or in some problems, such that a cost is
minimized).

Formally, the Optimal Control Theory is a branch of mathematics that
deals with finding a control for a given dynamical system over a period of
time, such that an optimality criterion is achieved.

Let us illustrate the previous Optimal Control problem definition with a
simple example, similar to the presented in [19, Ch 1].

Example 2.1. Consider a promoter who owns an initial capital K0. This
capital at time t, denoted K = K(t), can be inverted or consumed. I = I(t)
denotes the capital inverted, and C = C(t) denotes the consumption. It is

9

satisfied that K(t) = C(t) + I(t), t ∈ [t0, t1].

On one hand, the consumed fraction of the capital gives to the promoter
a certain satisfaction, that can be measured by a utility function. Utility
functions are assumed to be strictly increasing (U ′(C) > 0) and concave
(U ′′(C) ≤ 0). Clearly, when the consumption raises, the satisfaction in-
creases. It is also intuitive that a raise in the consumption produces more
satisfaction when the previous consumption was low, than if the consumption
was very high.

On the other hand, the investment I(t) produces some benefits given by
f(I). The inversion benefits will constitute the capital increments in the next
time instant. That is K ′(t) = f(I(t)).

Let α(t) ∈ [0, 1] be the consumed fraction of the capital at time t. Then,
C = αK and I = (1 − α)K. The promoter aims to maximize his utility
function over the time interval [t0, t1]. Therefore, the objective is to maximize
the following functional, ∫ t1

t0

U(α(t)K(t)) dt.

The total capital evolves over time as

K ′(t) = f(I(t)) = f ([1− α(t)]K(t)) , with K(0) = K0.

The promoter has to choose a value of α = α(t), t ∈ [t0, t1]. The variable
α is called the control variable of the system. The best selection for α is called
the optimal control.

Optimal Control Theory is an extension of the Calculus of Variations (see
[15]). The Calculus of Variations is a field that uses variations, which are
small changes in functions, to find the extrema of a function. However, in
the Calculus of Variations there is not a variable that controls the system.

As illustrated in the previous example, in an Optimal Control problem
there exists a variable that determines the dynamics of the system. For the
rest of the work, we denote by u(t) the control variable at the time t.

10

In control problems, there is also a variable x(t) that indicates the state
of the system. For example, in an economic context, the state variable can
be the capital of an enterprise, and the control can represent the inversion
in publicity, which might increase future benefits. The objective is then to
maximize the capital minus the inversion cost.

Apart from the economic context, Optimal Control problems are em-
ployed in several fields, such as social behaviour, engineering, biology or
environment. In [9], a list of contributions to economic growth theory, and
to environmental and resource economics is provided. The referenced articles
mainly study extended versions of the Pontryagin maximum principle (stud-
ied in section 2.1.1) to obtain necessary conditions for optimality in control
problems.

In this section, most important results in Optimal Control Theory are
presented.

For the general case, the aim of a Control problem is to maximize a func-
tion f(s, x(s), u(s)) in a time interval [t, T]. Function f is assumed to be a
benefit. However, if f represents a cost, the minimization problem is equi-
valent to the maximization of −f .

The functional to maximize is

J(t, x0, u) =

∫ T

t

f(s, x(s), u(s)) ds +Ψ(x(T)),

s.t.
.
x(s) = g(s, x(s), u(s)),

x(t) = x0.

(2.1)

where Ψ(x(T)) is a residual value that depends on the model interpretation.

For example, in an economic context, the residual can represent the ex-
pected value of an enterprise at time T.

It should be noted that the state variable evolution over time is expressed
as a function that depends of the control.

11

Definition 2.2. Let u∗ be the control that maximizes the functional J . We
define the value function as

V (t, x0) = J(t, x0, u
∗) = max

u
J(t, x(t), u).

Two of the main results of classical Optimal Control Theory are presen-
ted. The Pontryagin maximum principle provides necessary conditions for
optimality that enable to find a unique solution or, at least, reduce the pos-
sible solutions to a few. Meanwhile, the Hamilton-Jacobi-Bellman equation
provides a sufficient condition for the solution of the problem. The solu-
tion is obtained by backward induction, also called dynamic programming
approach.

2.1.1 Pontryagin maximum principle

The objective of this section is to derive necessary conditions for the opti-
mality of u in the maximization problem

max
u(s)

∫ T

t

f(s, x(s), u(s))ds+Ψ(x(T)),

s.t.
.
x(s) = g(s, x(s), u(s)),

x(t) = x0.

(2.2)

Let u∗(s) be the optimal control for (2.2), and (u∗(s), x∗(s)), s ∈ [t, T]
the control and corresponding optimal state trajectory that maximizes the
value function.

In order to solve the optimization problem with restrictions on the state
variable, we need to define an auxiliary function H (similar to the Lagrangian
in static optimization). Function H is called the Hamiltonian, and sets the
Lagrange multipliers as functions depending on time rather than constants.

The Hamiltonian of problem (2.2) is defined as

H(s, x(s), u(s), λ) = f(s, x(s), u(s)) + λg(s, x(s), u(s)).

The Pontryagin maximum principle provides some necessary conditions
for the optimality of (u∗(t), x∗(t)) when there are no constraints on the final

12

state of the problem.

This result is presented for one control and one state variables. A gener-
alization of the result is presented in [19].

First, some assumptions have to be made (see [19, Ch 2]).

� The set of admissible controls must be a compact set U ∈ Rm. The
control u(s) is allowed to take values at the boundary of U. It is very
usual to assume that the control variable takes values in [0, 1], as it
frequently represents a fraction of total investment or stock.

� The control variable u(s) is assumed to be piecewise continuous.

Depending on the problem, a continuity assumption may be too restrict-
ive. For example, in an economic context the optimal strategy can consist in
investing all the capital only when s ∈ [t, t′].

The control function is then defined as

u =

{
1 s ∈ [t, t′],

0 s > t′.

Next theorem is known as Pontryagin maximum principle. Given the
previous assumptions, the Pontryagin maximum principle provides neces-
sary conditions for optimality.

Theorem 2.3 (Pontryagin maximum principle).
Let u∗(s) be a piecewise continuous control defined on [t, T], which solves
(2.2), and let x∗(s) be the associated optimal path. Then, there exists a
continuous function λ(s), piecewise continuously differentiable, such that
∀s ∈ [t, T] the following conditions are satisfied:

� u∗(s) maximizes the Hamiltonian,

fu(s, x
∗(s), u∗(s)) + λ(s)gu(s, x

∗(s), u∗(s)) = 0. (2.3)

� Except at the points of discontinuities of u∗(s) it holds

−
.
λ(s) = fx(s, x

∗(s), u∗(s)) + λ(s)gx(s, x
∗(s), u∗(s)). (2.4)

13

� −λ(T) + Ψ′(x∗(T)) = 0 (natural transversality condition).

The optimal solution satisfies also the initial conditions

� x∗(t) = x0.

�

.
x∗(s) = g(s, x∗(s), u∗(s)).

In general, to solve a control problem by the Pontryagin maximum prin-
ciple, the Hamiltonian is derived with respect to u and x. Replacing in the
conditions and solving the resulting differential equations, the number of pos-
sible optimal solutions is restricted to a few or just one.

Let us see an example of a problem resolution by the Pontryagin max-
imum principle.

Example 2.4. A company owner wants to maximize the value of his en-
terprise (in millions of dollars) over the next 20 years. The objective is to
find the optimal trajectories for the inversion I = I(t) and the capital stock
K = K(t). That is, the aim is to solve the following problem

max
I(t)

J(K) = max
I(t)

∫ 20

0

(
2K(t)− I(t)− 1

2
I(t)2

)
dt+K(20),

s.t.
.
K(t) = I(t)− 0.2K(t), K(0) = 25.

(2.5)

In this problem the control variable is the inversion, and the state is the
capital stock. The Hamiltonian of the problem is

H(t,K(t), I(t), λ) = 2K(t)− I(t)− 1

2
I(t)2 + λ(I(t)− 0.2K(t)).

Applying the Pontryagin maximum principle, the following relations are ob-
tained.

1. By (2.3) HI = −1− I(t) + λ(t) = 0, so I(t) = λ(t)− 1.

2. By (2.4) HK = 2− 0.2λ(t) = −
.
λ(t).

3. The transversality condition reads λ(20) = 1.

4. The initial conditions are satisfied
.
K(t) = I(t)− 0.2K(t), K(0) = 25.

14

Conditions 2 and 3 allow to find the value of λ(t) solving the differential
equation. Once the value of λ(t) is obtained, it is immediate to find the
optimal control with condition 1.

Finally, substituting 1 in 4 we obtain

.
K(t) = λ(t)− 1− 0.2K(t), K(0) = 25.

Solving the previous differential equation, the optimal trajectory of K(t)
is obtained.

2.1.2 Hamilton-Jacobi-Bellman

The Hamilton-Jacobi-Bellman approach to control problems is based on the
Dynamic Programming (DP) principle. According to this principle, given an
optimal trajectory, any subtrajectory must also be optimal.

Therefore, the problem can be decomposed in an infinite number of sub-
problems, one for each time instant. The DP principle allows solving prob-
lems by backward induction, what might be numerically easier to address.

The following lemma shows that the optimal solution for a control prob-
lem must be optimal in any subinterval of time in [t, T].

Lemma 2.5. Let (u∗, x∗) be the optimal solution of problem (2.2). Let û be
the optimal control for the following problem in [t+∆t, T]

max
u(s)

∫ T

t+∆t

f(s, x(s), u(s))ds+Ψ(x(T)),

s.t.
.
x(s) = g(s, x(s), u(s)),

x(t+∆t) = x∗(t+∆t).

(2.6)

It must hold that û = u∗ (in an optimality sense) for all s ∈ [t+∆t, T].

Proof. Suppose that û gives a better solution than u∗. Define a new strategy

v(s) =

{
u∗(s) if s ∈ [t, t+∆t],

û(s) if s ∈ [t+∆t, T].

15

Set also

xv(s) =

{
x∗(s) if s ∈ [t, t+∆t],

x̂(s) if s ∈ [t+∆t, T],
.
xv(s) = g(s, x(s), v(s)),

xv(t) = x0.

Therefore,

J(t, x0, v) =

∫ T

t

f(s, xv, v)ds+Ψ(xv(T))

=

∫ t+∆t

t

f(s, xv, v)ds+

∫ T

t+∆t

f(s, xv, v)ds+Ψ(xv(T))

>

∫ t+∆t

t

f(s, x, u∗)ds+

∫ T

t+∆t

f(s, x, u∗)ds+Ψ(x∗(T))

= J(t, x0, u
∗).

This leads to a contradiction since J(t, x0, u
∗) was the optimal solution

with initial conditions (t, x0). Consequently û = u∗ in an optimality sense
∀s ∈ [t, T].

Lemma 2.6 (Bellman’s principle of optimality).
An optimal policy has the property that, whatever the initial state and ini-
tial decision are, the remaining decisions must constitute an optimal policy.
Following this principle, the problem (2.2) can be rewritten as

V (t, x0) = max
u(s)

∫ t+∆t

t

f(s, x(s), u(s))ds+ V (t+∆t, x(t+∆t)),

s.t.
.
x(s) = g(s, x(s), u(s)),

x(t) = x0.

(2.7)

On the basis of the previous result, the next theorem provides some suf-
ficient conditions for optimality.

Theorem 2.7 (Hamilton-Jacobi-Bellman).
If the value function V is continuously differentiable, then it satisfies

−Vt(t, x) = max
u

{f(t, x, u) + Vx(t, x)g(t, x, u)},

16

and the condition
V (T, x(T)) = Ψ(x(T)).

Proof. Let us consider the problem

V (t, x) = max
u(s)

∫ t+η

t

f(s, x(s), u(s))ds+ V (t+ η, x(t+ η))

. By the Bellman’s principle of optimality 2.6, any subtrajectory of the
optimal control must be optimal. This means that the previous value function
does not depend on the value of η,

∂V (t, x)

∂η
= 0.

Therefore, for all η we have

∂V (t, x)

∂η
= max

u(t)

{
f(t+ η, x(t+ η), u(t+ η)) +

∂V

∂t
(t+ η, x(t+ η))

+
∂V

∂x
(t+ η, x(t+ η))

dx

dt
(t+ η)

}
= 0.

Note that
dx

dt
(t+ η) = g(t+ η, x(t+ η), u(t+ η)).

Taking the limit when η → 0, the following equation is obtained

0 = max
u

{f(t, x, u) + Vx(t, x)g(t, x, u) + Vt(t, x)}.

As the value function does not depend on u, it is concluded that

−Vt(t, x) = max
u

{f(t, x, u) + Vx(t, x)g(t, x, u)}.

The control U∗ that maximizes the Hamiltonian

U∗(s, x(s), Vx) = argmax
u

H(t, x, u, Vx(t, x))

= argmax
u

{f(t, x, u) + Vx(t, x)g(t, x, u)}.

17

is called the feedback solution. With the obtained feedback control, the op-
timal trajectory can be derived by solving{ .

x∗(s) = g(s, x∗(s),U∗(s, x∗(s)),

x∗(t) = x.

Finally, we get that the optimal control u∗(s) satisfies

u∗(s) = u∗(s, x∗(s)) = U∗(s, x∗(s), Vx).

2.1.3 Infinite-Horizon problems

In the previous sections finite-time horizon problems were considered. A re-
sidual value Ψ(T) was included to represent the reward at the end of the
time interval.

In some applications, such as economic ones, problems with an infinite-
horizon time arise. In infinite-horizon problems, the payoff does not include
a terminal reward. Instead, a running cost is included in the optimization
problem. The payoff to maximize is then

J(u, x0) =

∫ ∞

0

f(s, x(s), u(s))e−ρt dt,

where ρ ≥ 0 is a discount rate.

The term e−ρt is called the discount factor, and it depends on the running
time t.

It should be remarked that in infinite-horizon problems, specifications
where function f does not depend explicitly on time t, i.e. autonomous prob-
lems, are very much employed, since they have a very natural interpretation,
specially in the field of Economy.

Theorems 2.3 and 2.7 where stated under a finite time assumption. For
an infinite time horizon, some changes have to be made.

For the Pontryagin maximum principle, the transversality condition λ(T) =
Ψ′(x∗(T)) turns to the following condition

lim
t→+∞

e−ρtλ(t) = 0.

18

For the Hamilton-Jacobi-Bellman, the transversality condition

lim
t→∞

e−ρtV (x∗(t)) = 0,

is added to ensure convergence.

The problems considered in this work will be infinite time horizon prob-
lems.

19

2.2 Game Theory

In Optimal Control Theory, there is only one agent determining the control
or controls with the objective of maximizing a payoff. However, if the aim
to study is the relations among several agents, the Optimal Control Theory
must be extended to the field referred as Game Theory.

Game theory can be seen as a generalization of an optimal control problem
involving multiple players and multiple payoffs. There are other extension
possibilities, such as Multi-Objective optimization problems (1 player, mul-
tiple payoffs) and Team Theory (multiple players, 1 payoff).

Formally, Game Theory is the study of strategic interactions, which might
evolve over time, among rational agents. In this section, basic concepts in
Game Theory are presented.

2.2.1 Game classification

Games can be classified following several criteria, such as players interaction,
available information, evolution over time... The most important features
employed to classify games are:

� Discrete / Continuous games: In continuous games, each player
has an infinite number of available actions, whereas the set of possible
actions in a discrete game is finite.

� Cooperative / Non cooperative: In a non cooperative game, every
player chooses an action without any previous agreement with the other
players. In a cooperative game, players are able to form alliances to
improve their benefits.

� Zero-sum / Non-zero-sum: In zero sum games, the total benefit
remains constant. This means that one player’s gain implies another
player’s loss. In non-zero sum games, the previous condition is not
forced, so all players can have benefits or losses at the same time.

� Simultaneous / Sequential (or dynamic): In simultaneous or
static games, all players act at the same time. The game is played

20

in one step and there is no need of a state variable. Simultaneous
games are usually represented in normal form, that is, by a matrix
containing the players, strategies, and payoffs.

Sequential or dynamic games are played in multiple steps, and there
is an established order of action. Later players have information (per-
fect or imperfect, see below) about the actions of previous players. A
state variable summarizes the information in each step. The sequential
character of these games allows a representation in extensive or tree
form.

� Perfect, imperfect and complete information: In a game of per-
fect information, all players know the previous movements of the other
players. A game that is not perfect is called imperfect.

On the other side, complete information requires that every player
knows the strategies and the payoffs available to other players, but not
necessarily the actions taken. A game that is not complete is called
incomplete.

2.2.2 Ingredients of a game

A game in normal form can be represented as a tuple {J ;U1,U2, ...,Un;V}
where

� The set J = {1, 2, ..., n} is the set of players.

� The set Ui is the set of actions or strategies of the player i, i ∈ J .

� A n-uple u = (u1, u2, ..., un) where each ui ∈ Ui is an action profile.
The expression u−i = (uj)j∈J,j ̸=i denotes the action profile of all players
except i, and (u1, ..., un) = (ui, u−i).

� The function V : U1 ×U2 × ...×Un 7−→ V ⊆ Rn is the payoff function.
We can write V = (V1, V2, ..., Vn), Vi being the payoff of player i. The
payoff is assumed to be a profit. Therefore, players aim to maximize
its value.

A game in extensive form includes the previous elements, plus a state
variable X and a family of information sets H (see [17, Ch 1]). A collection of
information sets Hi is available for each player. The game can be represented
as a tuple {J ;U1,U2, ...,Un;V,X,H} where

21

� X is the set of game nodes. Each node represents a possible situation
of the game. For discrete space games, a sequential game begins at a
starting node O (origin) and finishes at the terminal nodes. A node is
called terminal if it does not have any subsequent nodes.

� Xi ⊆ X is the set of nodes where player i makes a decision, and Ui(x)
the set of possible actions at node x ∈ Xi. The function ui(x) ∈ Ui(x)

ui(x) : Xi −→ X
x 7−→ ui(x) = x′,

denotes the action for player i that takes the game from node x to a
following node x′. Actions that start in the same node and lead to
different nodes must be different.

� The function V(x) is the payoff function at node x.

� H is the family of information sets. U(Hx) is the set of actions available
at node x for an information set H ∈ H.

2.2.3 Differential games

Differential games (see [2, Ch 9]) are characterized by a state variable (of one
or more dimensions) whose evolution is determined by a differential equation

.
x = g(x, u1, ..., uN), x(t0) = x0,

where x0 is the initial state value.

Differential games can also be seen as a generalization of Optimal Control
problems. In an optimal control problem there is a single control u(t) and
a single criterion to be optimized, while differential game theory generalizes
this to multiple players, their controls u1, u2, ..., un, and multiple optimiza-
tion problems. Consequently, each player aims to control the state of the
system in order to maximize his payoff.

22

2.2.4 Equilibrium points

When considering a game, the aim is to find an equilibrium solution where
all players maximize their payoffs. The common way to define the solution
for non-cooperative games is the Nash equilibrium.

Definition 2.1. An action profile (u∗
1, u

∗
2, ..., u

∗
n) is a Nash equilibrium if

Vi(u
∗
i , u

∗
−i) ≥ Vi(ui, u

∗
−i) ∀ui ∈ Ui, ∀i ∈ J.

where recall that u−i denotes the strategies of all players but player i.

In other words, a Nash equilibrium is an action profile such that no player
can get a better payoff by deviating from it, assuming that the other players
do not change their actions.

Definition 2.2. The best-response set for player i is the set

Bi(u−i) = {u∗
i ∈ Ui | Vi(u

∗
i , u−i) = max

ui∈Ui

Vi(ui, u−i)}.

In a Nash equilibrium, all players actions are the best responses to the
other players actions, that is u∗

i ∈ Bi(u−i) for all i ∈ J .

Existence of a Nash equilibrium
Using the Kakutani’s (fixed point) theorem, Nash proved the existence of a
Nash equilibrium for non-zero sum games with a finite number of players.
The existence is proved under the following conditions:

� Each player set of actions is a compact and convex subset of Rn.

� The payoff functions are continuous and concave.

The ε−Nash equilibrium is another commonly used solution for non-
cooperative games, weaker than the Nash equilibrium.

Definition 2.3. An action profile (u∗
1, u

∗
2, ..., u

∗
n) is an ε - Nash equilibrium

if, for a given ε > 0,

Vi(u
∗
i , u

∗
−i) ≥ Vi(ui, u

∗
−i)− ε ∀ui ∈ Ui, ∀i ∈ J.

23

The ε-Nash equilibrium equals the Nash equilibrium for ε = 0.

In Chapter 4, a time discretization of a non-cooperative infinite time ho-
rizon differential game is proposed. In [7], it is proved that, under certain
regularity hypothesis, the discrete-time Nash game equilibrium is an ϵ−Nash
equilibrium of the continuous game. This result is crucial to ensure that a
time-discretization can be applied to find an approximation to the continu-
ous time solution, with an error which depends on the magnitude of the time
discretization step (see [7]).

When considering sequential games, in which there is an explicit order
of events, subgame perfect Nash equilibrium solutions arise. A subgame is
defined as a subset of game nodes that still forms a game.

Definition 2.4. Let u∗ = (u∗
1, u

∗
2, ..., u

∗
n) a Nash equilibrium action profile.

We say that u∗ is a subgame perfect Nash equilibrium of a game if the re-
striction of u∗ to any subgame constitutes a Nash equilibrium of the subgame.

Subgame perfectness is a property of prime importance in applications.
This is due to the fact that, in dynamic games with perfect and complete
information, backward induction can be employed to compute subgame per-
fect Nash equilibrium solutions.

Backward induction, also called dynamic programming, is an algorithm
that consists in studying subgames from the terminal state to the initial state
of the game.

In the process of backward induction, an optimal strategy is identified for
each decision node. Consequently, the obtained action profile is a subgame
perfect Nash equilibrium.

Strategies in game theory can be classified in open-loop and closed-loop
strategies (see [1]).

Definition 2.5. Assuming that the admissible control sets Uj are not state
dependent, an open-loop strategy selects a control action depending only on
time s for a fixed initial state x0,

u∗
j = γj(s, x0), where γj : R× Rn → Uj.

24

Definition 2.6. A closed-loop strategy or state-feedback strategy selects a
control depending on time s and on the state at time s

u∗
j = U∗

j (s, x
∗(s)), where U∗

j : R× Rn → Uj(x, t).

The function U∗
j (s, x

∗(s)) is called the feedback function.

A state-feedback strategy is also called Markovian, in contrast to open-
loop. One can look for an equilibrium point in open-loop strategies, or in
closed-loop strategies. The main drawback of an open-loop Nash equilibria
is that it is not subgame perfect, in opposition to feedback strategies.

In the present work, the aim is to obtain Markovian Nash equilibria
through the dynamic programming approach. Nash equilibria are studied
in non-cooperative scenarios. However, other equilibrium concepts for the
cooperative case can also be analysed.

Cooperation among players offers the possibility to improve the value of
the non-cooperative payoff. We introduce the concept of Pareto optimality.

Definition 2.7. An action profile uP = (uP
1 , u

P
2 , ..., u

P
n) is said to be Pareto

optimal if there exists no other profile u = (u1, u2, ..., un) such that for i =
1, ..., n

Vi(u) > Vi(u
P) and V−i(u) ≥ V−i(u

P).

In other words, given a Pareto optimal solution, it is not possible to
strictly increase the payoff of one player without strictly decreasing the pay-
off of other player.

Noncooperative strategies are not, in general, Pareto optimal. For this
reason, players might get organized under a unique decision maker, whose
objective is to maximize the weighted sum of players payoffs (see [20]).

For the payoff weights vector α = (α1, ..., αn),
∑n

j=1 αj = 1 and αj > 0,
the value function of the cooperative game is

Wα(t, x0) = max
u1(s),u2(s)...un(s)

n∑
j=1

αj

(∫ T

t

fj(s, x(s), uj(s), u−j(s))ds

)
+Ψ(x(T)),

25

subject to the dynamics

.
x(s) = g(s, x(s), u(s)), x(t) = x0.

In order to ensure that the Pareto optimal solution holds, the weight
coefficients α must satisfy

αjW
α(t, x0) ≥ Vj(t, x0), j = 1, ..., n,

where Wα is the Pareto optimal value function and Vj is the non-cooperative
payoff for player j.

26

Chapter 3

Spectral methods

Prior to the description of the techniques employed in the numerical res-
olution of Optimal Control and Game Theory problems, a review of the
interpolation methods and algorithms that will be employed in order to dis-
cretize the spatial variable is presented.

Spectral methods (see [3]) are a collection of techniques that can be em-
ployed to solve differential equations. Most of those methods are based only
on a spatial discretization and they employ a suitable family of trial basis
functions. The approximate solution is represented as a linear combination
of trial functions (also called expansion or approximating functions, that are
combination of the basis functions) weighted by test (or weight) functions.

Let us show how spectral methods are employed. Consider a differential
equation

∂u

∂t
= L(u) (3.1)

with an initial condition u(x, 0) and suitable boundary conditions. L(u) is
an operator (linear or nonlinear) containing all the spatial derivatives of u
(for the moment, we assume only a spatial dimension for simplicity).

Let us consider the expansion of the solution of (3.1), u(x, t), on N trial
functions ϕn(x), with coefficients ĉn(t) n = 0, ..., N − 1

u(x, t) ≃
N−1∑
n=0

cn(t)ϕn(x) = uN(x, t).

27

In general, the residual

RN(x, t) =
∂uN

∂t
− L(uN)

will not vanish everywhere.

The approximation coefficients ĉn(t) are obtained by selecting a set of
test functions wk and requiring∫ b

a

RN(x, t)wn(x) dx = 0,

where [a, b] is the spatial domain.

The choice of the trial functions depends on the characteristics of the
problem. If the problem considered is periodic, the Fourier basis functions are
commonly used. Chebyshev or Legendre polynomials are useful for bounded
domains.

For unbounded domains (see section 2.6 of [3]) usual choices are Hermite
polynomials in (−∞,∞) and the Laguerre polynomials in [0,∞). Also, an
expansion in a set of Jacobi polynomials can be applied when mapping an
unbounded domain into a bounded one, or when truncating an unbounded
domain.

Depending on the choice of test functions, some relevant spectral ap-
proaches are the Galerkin, the collocation and the tau methods. For the
Galerking and tau schemes, the test functions are the same as the trial ones.
The weigth functions must satisfy the boundary conditions in the case of
Galerking methods. For tau methods, the previous condition is not necessar-
ily true, but a supplementary set of equations is set to apply the boundary
conditions.

In the collocation method, the weights are the Dirac delta functions
centered at certain collocation points. The differential equation must be
satisfied exactly at the collocation points. The collocation points for both
the differential equations and the boundary conditions are usually the same
as the physical grid points. The most effective choice for the grid points are

28

those that correspond to quadrature formulas of maximum precision.

In the present work, a Chebyshev collocation approach is proposed. In the
next section, definition and basic properties of the Chebyshev polynomials
are presented.

29

3.1 Chebyshev polynomials

Definition 3.1. Let
Tn(x) = cos(n arccos(x)), (3.2)

where n is a nonnegative integer and x ∈ [−1, 1].

It is known (see [18]) that this function is a polynomial, referred as the
Chebyshev polynomial of degree n

Proposition 3.2. Chebyshev polynomials satisfy the following recursive prop-
erty

Tn+2(x) = 2xTn+1(x)− Tn(x) (3.3)

Proof. Consider the trigonometrical properties

cos((n+ 2)θ) = cos((n+ 1)θ) cos(θ)− sin((n+ 1)θ) sin(θ)

cos(nθ) = cos((n+ 1)θ) cos(θ) + sin((n+ 1)θ) sin(θ).
(3.4)

The addition of the previous expressions gives

cos((n+ 2)θ) = 2 cos((n+ 1)θ) cos(θ)− cos(nθ)

Taking x = cos(θ) and employing the fact that that T1(x) = x, gives the
following expression

Tn+2(x) = 2xTn+1(x)− Tn(x) (3.5)

The previous recursive expression shows that (3.2) is indeed a polynomial
of degree n. The first Chebyshev polynomials are, for x ∈ [−1, 1]

T0(x) = 1, T1(x) = x,

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.
(3.6)

Definition 3.3. Let N ∈ N. The N+1 Chebyshev nodes in [−1, 1] correspond
to the extrema of Tn(x). The points x ∈ [−1, 1] at which |Tn(x)| = 1 are called
the extrema, and are given by

αk = cos

(
πk

N

)
, k = 0, ..., N.

30

Any point in x ∈ [−1, 1] can be expressed in an interval [a, b] via the
following affine transformation:

x̃ =
b− a

2
x+

b+ a

2
.

Therefore, the N + 1 Chebyshev nodes in [a, b] are defined by

α̃k =
1

2

(
(b+ a) + (b− a) cos

(
πk

N

))
, k = 0, ..., N.

Some properties of Chebyshev polynomials are

� |Tk(x)| ≤ 1, −1 ≤ x ≤ 1.

� The Chebyshev polynomials Tn(x) form a complete orthogonal set on

the interval [−1, 1] with a weight function
1√

1− x2
.

∫ 1

−1

Tm(x)Tn(x)
dx√
1− x2

= 0, m ̸= n

and for m = n ∫ 1

−1

T 2
n(x)

dx√
1− x2

= ωn
π

2
, (3.7)

where the previous coefficients ωn are given by

ωn =

{
2 n = 0

1 n ≥ 1

In this section, we exposed the basic Chebyshev polynomials properties
that are needed to compute a Chebyshev interpolation scheme. For further
results on Chebyshev polynomials see [18].

31

3.2 Chebyshev collocation approach

To solve the dynamics of a differential game, a good choice might be a col-
location scheme based in Chebyshev polynomials. This choice is due to the
fact that Chebyshev polynomials are a versatile set of trial functions, that
supply very precise and numerically cheap approximations.

Let ũ be a continuous function defined in [a, b], and {α̃j}Nj=0, the corres-
ponding N + 1 Chebyshev nodes in [a, b].

Since it is easier to work in [−1, 1], the corresponding function u in [−1, 1]
is defined as

u(x) = ũ(x̃), where x̃ =
b− a

2
x+

b+ a

2
, x ∈ [−1, 1].

The interpolating polynomial, denoted by INu, is given by

INu =
N∑

n=0

ĉnTn,

where Tn is the Chebyshev polynomial of degree n.

At the collocation points, the Chebyshev nodes αj, the polynomial satis-
fies

u(αj) = INu(αj) =
N∑

n=0

ĉnTn(αj), j = 0, ..., N.

The ĉn terms are called the expansion coefficients and they are given by
the inverse relationship

ĉn =
1

γk

N∑
j=0

u(xj)Tn(xj)wj, n = 0, ..., N, (3.8)

where

γn =
N∑
j=0

T 2
n(xj)wj. (3.9)

The test or weight functions are obtained by the Gauss-Lobato integra-
tion formula in [−1, 1].

32

Gauss-Lobatto integration
Consider the polynomial

q(x) = pN+1(x) + apN(x) + bpN−1(x),

where a and b are chosen so that q(−1) = q(1) = 0.

Let −1 = x0 < x1 < ... < xN = 1 be the N + 1 roots of the polynomial
q(x), and let ω0, ..., ωN be the solution of the linear system

N∑
j=0

(xj)
kωj =

∫ 1

−1

xkω(x)dx, 0 ≤ k ≤ N.

Then the following equality holds

N∑
j=0

p(xj)ωj =

∫ 1

−1

p(x)ω(x)dx

for all p ∈ P2N−1.

With the Gauss-Lobato integration formula, the following collocation
points and weights are obtained

xj = cos

(
πj

N

)
, wj =

π

2N
j = 0, N

π

N
j = 1, ..., N − 1.

Note that the defined Chebyshev quadrature points are ordered from right
to left. This breaks the general convention in which collocation points are
ordered from left to right.

For the previous nodes xj, the following must be satisfied

u(xj) =
N∑

n=0

ĉnTn(xj)

=
N∑

n=0

ĉn cos(n arcos(xj)) =
N∑

n=0

ĉn cos

(
n

(
πj

N

))
.

33

Also, from (3.8) we get that

ĉn =
N∑
j=0

2

Nωjωn

cos

(
πjn

N

)
u(xj), n = 0, ..., N,

where

ωl =

{
2 l = 0, N,

1 l = 1, ..., N − 1.

We used the fact that combining (3.9) with the Chebyshev polynomials
property (3.7) and the Gauss-Lobato integration formula, the normalization
factors are given by

γj =

π j = 0, N,

π

2
j = 1, ..., N − 1.

This particular choice for the collocation points enables to use the fast
fourier transform (FFT) algorithm in the evaluation of the function u.

The employed algorithm to determinate the expansion coefficients is the
suggested in [3], as proposed in [5].

Algorithm 1:'

&

$

%

1. Construct

z = [u(α0), u(α1), ..., u(αN−1), u(αN), ..., u(α1)]
T .

2. Compute

y =
real(FFT (z))

2N
.

3.
ĉ0 = y(1)

ĉn = y(n+ 1) + y(2N − (n− 1)) 0 < n < N

ĉN = y(N)

34

3.3 Chebyshev multidimensional interpolation

Let {αj
k}

Nj

k=0 the Nj + 1 Chebyshev nodes for dimension j, j = 1, ..., d. The
notation αn = (α1

n1
, α2

n2
, ..., αd

nd
), 0 ≤ nj ≤ Nj, refers to the d-dimensional

Chebyshev nodes in [−1, 1]d.

In the same way, α̃n = (α̃1
n1
, α̃2

n2
, ..., α̃d

nd
) are the Chebyshev nodes in an

interval Π = [a1, b1]× [a2, b2]× ...× [ad, bd].

Let x̃ = (x̃1, ..., x̃d), and ũ(x̃) be a continuous function defined in Π. The
corresponding function u(x), x = (x1, ..., xd) in [−1, 1]d is defined as

u(x) = ũ(x̃), where x̃j =
bj − aj

2
xj +

bj + aj
2

, j = 1, ..., d. (3.10)

Let N = (N1, ..., Nd). The N-degree interpolation polynomial INu is a
d-dimensional polynomial that satisfies, at the Chebyshev nodes,

INu(αn) = u(αn) = ũ(α̃n).

INu is given by

INu(x) =

N1,N2,...,Nd∑
n1,n2,...,nd =0

ĉ(n1,n2,...,nd)T(n1,n2,...,nd)(x)

=

N1,N2,...,Nd∑
n1,n2,...,nd =0

ĉ(n1,n2,...,nd)Tn1(x1)Tn2(x2)...Tnd
(xd),

(3.11)

where the term ĉ(n1,n2,...,nd) is an expansion coefficient in R, and xj ∈ [−1, 1]
for j = 1, ..., d.

We use the following algorithm to determinate the coefficients ĉ(n1,n2,...,nd),
proposed in [5].

First we define

� An array Γ of dimension (N1+1)× (N2+1)× ...× (Nd+1), containing
the evaluation of u at the Chebyshev nodes

Γ (n1 + 1, n2 + 1, ..., nd + 1) = u(α1
n1
, α2

n2
, ..., αd

nd
).

35

� A dimension permutation operator P . Let B an array of dimension
b× a1× ...× am. The array D such that D = P(B) has a size a1× ...×
am × b and for any 0 ≤ ji ≤ ai, i = 1, ...,m,

D(j1, ..., jm, :) = B(:, j1, ..., jm). (3.12)

where we denote the vector B(:, j1, ..., jm) = {B(j, j1, ..., jm)}bj=1, and
similar D(j1, ..., jm, :) = {D(j1, ..., jm, j)}bj=1.

The algorithm to obtain the coefficients ĉn of the interpolant is:

Algorithm 2:'

&

$

%

1. B1 = Γ .

2. For i = 1 : d

� {m1,m2, ...,md} = dim(Bi).

� For j2 = 1 : m2, for j3 = 1 : m3, ..., for jd = 1 : md

Ci(:, j2, j3, ..., jd) = Algorithm1 (Bi(:, j2, j3, ..., jd)).

� Bi+1 = P(Ci).

3. ĉ(n1,n2,...,nd) = Bd+1(n1 + 1, n2 + 1, ..., nd + 1).

36

3.4 Chebyshev tensorial evaluation

In the previous section, an algorithm to obtain the coefficients of the inter-
polating polynomial was described. Suppose now that we need to evaluate
this polynomial at certain values for each dimension. The number of query
points in dimension j is denoted qj. Let Θ be the set containing this points

Θ = {x̃ = (x̃1, x̃2, ..., x̃d) / x̃j ∈ {x̃1
j , ..., x̃

qj
j }, x̃k

j ∈ [aj, bj], 1 ≤ k ≤ qj},
(3.13)

where |Θ| = q1q2...qd.

The approximation of the values at the previous set of points is carried
out with the interpolant INu(x) in [−1, 1], where the relation between x and
x̃ is given in (3.10).

The interpolation can be efficiently computed in a set of points like Θ by
tensorial evaluation. First the tensorial array operation has to be defined,
making use of the permutation operator defined in (3.12).

Definition 3.1. Let A and B be two arrays of dimensions (A)a×a1×a2×...×am

and (B)a×b. We define the tensorial array operator C = A⊗B as the array
(C)a1×a2×...×ak×b given by

C(j1, ..., jm, :) = P(BtA(:, j1, ..., jm)),

where BtA(:, j1, ..., jm) is the usual product of matrix times a vector.

To implement the tensorial evaluation in Matlab, it is useful to employ
function multiprod, that makes the tensorial operation in all variables at the
same time in a very efficient way. It was implemented by Paolo de Leva (see
[11]).

It should be mentioned that if multiprod is employed, it has to be im-
posed that qj > 1, j = 1, ...,m. Multiprod does not recognise arrays of size
q1 × ...× qi−1 × 1× qi+1 × ...× qm, and collapses to an array q1 × ...× qi−1 ×
qi+1 × ... × qm, something which may cause technical difficulties in the im-
plementation due to the permute operator. It should also be mentioned that
the latest versions of Matlab have the pagemtimes function, which performs
a similar operation as multiprod.

37

Let
C = permute(multiprod(B′A), [2 : m 1]),

where permute is a command that rearranges array dimensions.

Let us see the algorithm presented in [5] to evaluate Chebyshev interpo-
lation in set Θ ((3.13)).

The algorithm has two steps.

Algorithm 3:

Step 1: One dimensional Chebyshev evaluation

First, evaluate the Chebyshev polynomials in each dimension nodes.
For a fixed dimension j = 1, we need to evaluate the qj nodes {x̃k

j}
qj
k=1.

We denote by µj = {xk
j}

qj
k=1 the previous nodes after the change of variables

(3.10).
Making use of the recurrence relation (see (3.3))

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2, n = 2, 3, ...,

we compute

T(µ1) = T(µ1)(N1+1)×q1 =
(
Tn(x

k
1)
)
0≤n≤N1, 1≤k≤q1

,

T(µ2) = T(µ2)(N2+1)×q2 =
(
Tn(x

k
2)
)
0≤n≤N2, 1≤k≤q2

,

.

.

.
T(µd) = T(µd)(Nd+1)×qd =

(
Tn(x

k
d)
)
0≤n≤Nd, 1≤k≤qd

,

where Nj + 1 is the number of Chebyshev nodes in dimension j.
Each evaluation is stored in a two dimensional array.

Step 2: Multidimensional tensorial evaluation

The second step is to compute the tensorial product of the evaluation
arrays obtained in Step 1.

This tensorial product provides the evaluation of INu(x) at the whole set
of points Θ.

38

Suppose that (C)(N1+1)×(N2+1)×...×(Nd+1) is the array that contains the
interpolation polynomial coefficients,i.e.,

C(n1 + 1, n2 + 1, ..., nd + 1) = ĉ(n1,n2,...,nd).

After the following tensorial evaluation

INu(Θ) = (...[(A⊗T(µ1))⊗T(µ2)]...)⊗T(µd),

we obtain an array of dimension q1 × q2 × ... × qd containing the evaluation
at the entire set Θ.

39

3.5 Differentiation

The derivative of a regular function u can be approximated from the Cheby-
shev expansion. This derivative is given by (see [3]),

u′ =
∞∑
n=0

d̂nTn,

where

d̂n =
2

ωn

+
∑

p=n+1, p+kodd

p ĉp, k ≥ 0,

ωk =

{
2 k = 0

1 k ≥ 1

The previous expression is a consequence of the relation

2Tn(x) =
1

n+ 1
T ′
n+1(x)−

1

n− 1
T ′
n−1(x).

However, the previous relation provides a more efficient way of computing
the derivative.

Algorithm 4:

We know that for n ≥ N , the coefficient d̂n = 0.

The coefficients of the derivative can be computed in decreasing order by
the recursion relation

ωnd̂n = d̂n+2 + 2(n+ 1)ĉn+1, 0 ≤ n ≤ N − 1.

40

Chapter 4

Numerical methods in Game
Theory

In this Section, the objective is to compute the Nash equilibrium of an infinite
time horizon and non cooperative differential game with N players, where
each of the players aims to maximize a benefit functional.

There are two very well known techniques in the numerical solution of
Optimal Control Theory problems, which are commonly referred as Value
iteration and Policy iteration. These techniques, which are also employed in
Game Theory problems, are described in sections 4.1 and 4.2.

It is also described how a Chebyshev polynomial interpolation method
can be combined with Value and Policy iteration techniques in order to ob-
tain competitive algorithms which can provide numerical solutions of Game
Theory problems.

Let us suppose that there are N players and that X ⊂ RN is the set of all
possible states of the system. A particular state x is represented by a vector
x = (x1, x2, ..., xN) ∈ X.

Let Ui ⊂ R, i = 1, ...N be the set of admissible actions of player i and
let U = U1 × ... × UN . The control variables of the players are represented
by a vector u = (u1, u2, ..., uN) ∈ U.

The objective of player i = 1, ..., N is to maximize his payoff, that is,

41

player i aims to maximize the value of

Vi(ui, u−i,x0) =

∫ ∞

0

fi(x, ui, u−i) e
−ρtdt (4.1)

subject to
s.t.

.
x = g(x, ui, u−i)

x(0) = x0.
(4.2)

where ρ > 0 is a given discount rate.

The work is focused on autonomous problems and stationary Markov-
perfect Nash equilibria. Therefore, it is assumed that the state variable can
always be observed and that, at any moment in time and space, the optimal
player’s decision will depend only on the particular state of the system, i.e.
ui = ui(x).

For a detailed proof of the following results see [7].

Definition 4.1. Given us = (us
1, ..., u

s
N) ∈ U, a N-tuple of admissible

strategies, it is said that us is a Markovian Nash equilibrium if, for all x ∈ X

Vi(u
s
i , u

s
−i,x) ≥ Vi(ui, u

s
−i,x), i = 1, ..., N

and for all ui ∈ Ui.

The equations to solve the problem are given by [12, Theorem 4.1].

Theorem 4.2. Let (us
1, ..., u

s
N) ∈ U be a N-tuple of admissible stationary

strategies and assume that for i = 1, ..., N , there exist continuous differen-
tiable functions

Wi : X −→ R

such that the Hamilton-Jacobi-Bellman equations

ρWi(x) = max
ui∈Ui

{
fi(x, ui, u

s
−i) +∇Wi(x)

Tg(x, ui, u
s
−i)

}
, i = 1, ...N, (4.3)

are satisfied ∀x ∈ X.

42

Assume also that Wi is bounded or bounded below and that it holds the
transversality condition

lim sup
T→∞

e−ρTWi(x(T)) ≤ 0

where x(t) is the solution of 4.2 with ui = us
i (x(t)), i = 1, ..., N .

If for i = 1, ..., N , us
i (x) is an argument that maximizes the right hand of

(4.3) for all x ∈ X, then (us
1, ..., u

s
N) is a Markovian Nash Equilibrium.

It also holds that Vi = Wi, i = 1, ..., N .

To approximate the solution of the previous problem numerically, first a
discrete-time reformulation is considered.

In the discrete-time infinite horizon version of the game, let h > 0 be a
parameter and define tn = nh, n ∈ N. The discrete discount factor is given
by βh = 1− ρh.

Each player i = 1, ...N, tries to maximize

Vi,h(ui, u−i,x0) := h
∞∑
n=0

βn
hfi(xn, ui,n, u−i,n), (4.4)

s.t. xn+1 = xn + hg(xn, ui, u−i), (4.5)

and where the controls correspond to u∗,n = u∗(xn).

Assuming that (4.5) is well defined for any x0 ∈ X and all (u1, ..., un) ∈ U,
the concept of Markovian Nash Equilibrium can be extended to the time-
discrete version of the game.

Given a N -tupla us,h =
(
us,h
1 , ..., us,h

N

)
∈ U, it is a Markovian Nash

Equilibrium of problem (4.4) if

Vi,h(u
s,h
i , us,h

−i ,x) ≥ Vi,h(ui, u
s,h
−i ,x), i = 1, ..., N, (4.6)

for all (u1, ..., un) ∈ U and all x ∈ X.

The discrete Bellman equations (see [13] and [16]) can also be obtained.

43

Theorem 4.3. Let
(
us,h
1 , ..., us,h

N

)
∈ U be a N-tuple of admissible stationary

strategies and assume that for i = 1, ..., N , there exist continuous differen-
tiable functions

Wi,h : X −→ R,

such that the Bellman equations

Wi,h(x) = max
ui∈Ui

{
hfi(x, ui, u

s,h
−i) + βhWi

(
x+ hg(x, ui, u

s,h
−i)

)}
, i = 1, ...N,

(4.7)
are satisfied ∀x ∈ X.

Assume also that Wi,h is bounded or bounded below and that it holds the
transversality condition

lim sup
n→∞

βn
hWi,h(x(T)) ≤ 0,

where x(t) is the solution of (4.5) with ui = us,h
i (x(t)), i = 1, ..., N .

If us,h
i (x) is an argument that maximizes the right hand of (4.7) for i =

1, ..., N and ∀x ∈ X, then
(
us,h
1 , ..., us,h

N

)
is a Markovian Nash Equilibrium

and Vi,h = Wi,h, i = 1, ..., N .

Under certain regularity hypothesis (see [7]), it can be proved that the
numerical solution of the time-discrete game is an ϵ-Nash solution of the

continuous problem. If
(
us,h
1 , ..., us,h

N

)
is a Markov-Nash equilibrium of the

discrete problem (4.4)-(4.5), it exists a constant C > 0 and a value h0 > 0,
such that ∀h ≤ h0 it holds that

Vi

(
us,h
i , us,h

−i ,x
)
≥ Vi

(
ui, u

s,h
−i ,x

)
− Ch, i = 1, ..., N, (4.8)

for all (u1, ..., un) ∈ U and all x ∈ X.

In the following Sections, the main ideas of the Value and Policy tech-
niques are sketched. It is also detailed how to implement both methods with
a multidimensional Chebyshev interpolation.

44

4.1 Value iteration

In the Value iteration algorithm, the main idea is to employ, in each iteration
and for each player, the previous value function and the previous controls
to compute a better value function by means of the time-discrete Bellman
equation.

Let Ik denote a k-degree multidimensional interpolation over domain X
and let

{
xj =

(
xj
1, ..., x

j
N

)}
j=1,...,(k+1)N

⊂ X be the corresponding collocation

nodes. For simplicity in the notation, the same degree k has been taken for
each dimension.

Let h > 0 and βh = 1− ρh the discrete discount factor.

Let u
[0]
i and V

[0]
i , i = 1, ..., N be some initial candidates for the controls

and the value functions.

At each iteration [r + 1], for each player i = 1, ..., N , a new strategy is
computed for j = 1, ..., (k + 1)N

u
[r+1]
i (xj) = argmax

ui∈Ui

{
hfi(xj, ui, u

[r]
−i) + βhIkV

[r]
i

(
xj + hg(xj, ui, u

[r]
−i)

)}
.

The corresponding new value function for j = 1, ..., (k + 1)N is

V
[r+1]
i (xj) = hfi(xj, u

[r+1]
i , u

[r]
−i) + βhIkV

[r]
i

(
xj + hg(xj, u

[r+1]
i , u

[r]
−i)

)
.

The iterations continue until
∣∣V [r+1] − V [r]

∣∣ < TOL, where TOL is a
prescribed tolerance.

The main drawbacks of this method are that it may not converge or
that it can fall in cycles of suboptimal solutions. Furthermore, this method
presents a very slow error reduction and a large amount of iterations might
be needed before reaching the prescribed tolerance.

One of the main benefits is that the computation has to be performed for
each xj, j = 1, ..., (k+1)N . At a fixed iteration, note that these computations
are independent of each spatial node xj from the others. This feature makes
the method suitable for parallelization.

45

The algorithm presented below corresponds to the adaptation of the Value
iteration with a multidimensional Chebyshev interpolation.

Value iteration algorithm

Step 0:

Let N be the number of players. Define an appropriate domain for the
state and control spaces, where the problem will be numerically solved

[a1, b1]× ...× [aN , bN] ⊂ X,
[c1, d1]× ...× [cN , dN] ⊂ U.

Fix Nx, Nu ∈ N, a tolerance TOL > 0 and a small time step h > 0.

For each player i = 1, ..., N , compute
{
x̂i
j

}Nx

j=0
,
{
ûi
j

}Nu

j=0
, the Chebyshev

nodes in each interval

x̂i
j =

1

2

[
cos

(
πj

Nx

)
(bi − ai) + (bi − ai)

]
, j = 0, ..., Nx,

ûi
j =

1

2

[
cos

(
πj

Nu

)
(di − ci) + (di − ci)

]
, j = 0, ..., Nu.

Define the sets of collocation points

X̂ =
{
(x̂1

j1
, x̂2

j2
, ..., x̂N

jN
), ji = 0, ..., Nx, i = 1, ..., N

}
,

Û =
{
(û1

j1
, û2

j2
, ..., ûN

jN
), ji = 0, ..., Nu, i = 1, ..., N

}
,

For simplicity in the notation, we employ X̂ =
{
x̂j, j = 1, ..., (Nx + 1)N

}
.

Set r = 0. For each player i = 1, ..., N , initialize the iteration with some
given V

Nx,[0]
h,i (x̂j) and u

[0]
h,i (x̂j) , j = 1, ..., (Nx + 1)N .

Step 1:

For each player i = 1, ..., N , compute INxV
[r]
h,i (x), the Chebyshev multidi-

mensional interpolation polynomial such that

INxV
[r]
h,i (x̂j) = V

Nx,[r]
h,i (x̂j) , j = 1, ..., (Nx + 1)N

46

employing the algorithms described in Chapter 3.

Step 2:

For each player i = 1, ..., N , compute the Chebyshev polinomials

Gi
x̂j
(u) = gi(x̂j, u, u

[r]
h,−i), j = 1, ..., (Nx + 1)N ,

employing the algorithms described in Chapter 3.

Each polynomial j = 1, ..., (Nx + 1)N is given by its coefficients. They
can all be stored in a 2 dimensional array G of size (Nu + 1) × (Nx + 1)N ,
where G(:, j) contains the coefficients of polynomial Gi

x̂j
(u).

The FFT algorithms employed admit tensorial valuation, i.e. several
different interpolation polynomials of the same degree can be computed and
evaluated at the same time. It is straightforward to adapt the Chebyshev
interpolation algorithms of Chapter 3 so that all the polynomials Gi

x̂j
(u), j =

1, ..., (Nx +1)N are computed at the same time and stored in array G which
can be employed to evaluate simultaneously all of them.

As it will be shown in the numerical experiments, this gives an efficient
implementation of the method.

Step 3:

For each player i = 1, ..., N compute the Chebyshev polynomials

VNx,[r]
h,i,x̂j

(u) = hfi(x̂j , u, u
[r]
h,−i) + βhINxV

[r]
h,i

(
x̂j + hGi

x̂j
(u)

)
, j = 1, ..., (Nx + 1)N .

As in the previous step, all the polynomials VNx,[r]
h,i,x̂j

(u), j = 1, ..., (Nx+1)N

can be computed at the same time.

Step 4:

For each player i = 1, ..., N find the strategy which maximizes

u
[r+1]
h,i (x̂j) = argmax

u∈[ci,di]

{
VNx,[r]
h,i,x̂j

(u)
}
, j = 1, ..., (Nx + 1)N .

47

To find the maximum, the Newton Raphson algorithm has been employed.
If F (u) denotes the function that we want to maximize, given an initial iterant
u0
i , the recursive iteration

ul+1
i = ul

i −
F ′(ul

i)

F ′′(ul
i)
, l = 0, 1, 2, ...

is followed until a certain tolerance is achieved.

To employ the Newton-Raphson method, we need to evaluate and com-
pute the Chebyshev derivatives. Both the iteration of the Newton-Raphson
method and the algorithms described in Chapter 3 can be adapted to com-
pute the derivatives and maximums for all VNx,[r]

h,i,x̂j
(u), j = 1, ..., (Nx +1)N at

the same time.

Step 5:

For each player i = 1, ..., N , define

V
Nx,[r+1]
h,i (x̂j) = VNx,[r]

h,i,x̂j

(
u
[r+1]
h,i (x̂j)

)
, j = 1, ..., (Nx + 1)N .

If we are not below the prescribed tolerance∣∣∣V Nx,[r+1]
h,i (x̂j)− V

Nx,[r]
h,i (x̂j)

∣∣∣ < TOL, j = 1, ..., (Nx + 1)N ,

set r = r + 1 and return to Step 1. Otherwise stop.

The last iterate u
[r]
h,i (x̂j) , j = 1, ..., (Nx + 1)N is taken as the numerical

solution of the game.

It should be mentioned that function g and functions fi, i = 1, ..., N
could be interpolated in X × U just once in Step 0 and evaluated when ne-
cessary. This could probably improve the efficiency of the algorithm.

Parallelization of the Value Iteration Algorithm

Value iteration algorithm requires a significant number of iterations to
converge, and this quantity raises as the number of players is increased or

48

the spatial grid is refined. For this reason, a parallelization of the process
might be considered.

Steps 2-4 require the computation of polynomials for each state node
x̂j, j = 1, ..., (Nx + 1)N . As mentioned before, these computations can all
be performed at the same time, but note that they are independent for each
x̂j, j = 1, ..., (Nx + 1)N .

Therefore set X̂ =
{
(x̂1

j1
, x̂2

j2
, ..., x̂N

jN
), ji = 0, ..., Nx, i = 1, ..., N

}
can be

divided in different subsets X̂m, m = 1, ..., Nb of Nf elements each one, such
that Nb ·Nf = (Nx + 1)N .

The calculus involved in Steps 2-4 can be performed in several different
processors simultaneously and the information can be reassembled before
Step 5. For a large number of players or a large value of Nx, these technique
is more computational efficient.

49

4.2 Policy iteration

In the Policy iteration algorithm, the main idea is to employ, in each iteration
and for each player, the previous controls to compute a polynomial such that
it satisfies the time-discrete Bellman equation at all the collocation nodes
of the state space. Afterwards, with that polynomial, a better control is
obtained through the time-discrete Bellman equation.

Again, let Ik denote a k-degree multidimensional interpolation over do-
main X and let

{
xj =

(
xj
1, ..., x

j
N

)}
j=1,...,(k+1)N

⊂ X be the corresponding

collocation nodes.

Let h > 0 and βh = 1− ρh be the discrete discount factor. Let u
[0]
i , i =

1, ..., N, be some initial candidate for the controls.

At each iteration [r] and for each player i = 1, ..., N , it is computed a

polynomial IkV
[r]
i (x) such that, for all j = 1, ..., (k + 1)N , it holds

IkV
[r]
i (xj) = hfi(xj, u

[r]
i , u

[r]
−i) + βhIkV

[r]
i

(
xj + hg(xj, u

[r]
i , u

[r]
−i)

)
,

It is important to remark that the previous condition defines a linear
system, where the unknowns are the polynomial coefficients.

The update policy is given for j = 1, ..., (k + 1)N by

u
[r+1]
i (xj) = argmax

ui∈Ui

{
hfi(xj, ui, u

[r]
−i) + βhIkV

[r]
i

(
xj + hg(xj, ui, u

[r]
−i)

)}
.

The iterations continue until
∣∣V [r+1] − V [r]

∣∣ < TOL, where TOL is a
prescribed tolerance.

The main drawbacks of this method is that a good initial guess for u
[0]
i

might be necessary and that the computational cost of solving the linear
system grows with a large amount of players or collocation nodes.

The main benefits are that it is well known that this algorithm has a quad-
ratic rate of convergence towards the solution for N = 1 (control problems).
This behaviour seems to remain in Game Theory problems (N > 1).

50

The numerical experiments show that a much smaller number of iterations
is needed to reach the prescribed tolerance with Policy iteration than with
Value iteration.

The algorithm presented below corresponds to the adaptation of the
Policy iteration with a multidimensional Chebyshev interpolation.

Policy iteration algorithm:

Step 0:

Let N be the number of players. Define an appropriate domain for the
state and control spaces, where the problem will be numerically solved

[a1, b1]× ...× [aN , bN] ⊂ X,
[c1, d1]× ...× [cN , dN] ⊂ U.

Fix Nx, Nu ∈ N, a tolerance TOL > 0 and a small time step h > 0.

For each player i = 1, ..., N , compute
{
x̂i
j

}Nx

j=0
,
{
ûi
j

}Nu

j=0
, the Chebyshev

nodes in each interval

x̂i
j =

1

2

[
cos

(
πj

Nx

)
(bi − ai) + (bi − ai)

]
, j = 0, ..., Nx,

ûi
j =

1

2

[
cos

(
πj

Nu

)
(di − ci) + (di − ci)

]
, j = 0, ..., Nu.

Define the sets of collocation points

X̂ =
{
(x̂1

j1
, x̂2

j2
, ..., x̂N

jN
), ji = 0, ..., Nx, i = 1, ..., N

}
,

Û =
{
(û1

j1
, û2

j2
, ..., ûN

jN
), ji = 0, ..., Nu, i = 1, ..., N

}
,

For simplicity in the notation, we employ X̂ =
{
x̂j, j = 1, ..., (Nx + 1)N

}
.

For each player i = 1, ..., N , initialize the iteration with some given
u
[0]
h,i (x̂j) , j = 1, ..., (Nx + 1)N .

For each player i = 1, ..., N , compute the Chebyshev polinomials

Gi
x̂j
(u) = gi(x̂j, u, u

[0]
h,−i), j = 1, ..., (Nx + 1)N ,

51

employing the algorithms described in Chapter 3.

As in the Value iteration algorithm, they can all be stored in a 2 dimen-
sional array G.

Compute the Chebyshev multidimensional polynomial INxV
[0]
h,i (x) such

that, ∀j = 1, ..., (Nx + 1)N , it holds

INxV
[0]
h,i (x̂j) = hfi(x̂j, u

[0]
h,i, u

[0]
h,−i) + βhINxV

[0]
h,i

(
x̂j + hGi

x̂j
(u

[0]
h,i)

)
.

If set {pi1,...,iN , ij = 0, ..., Nx, j = 1, ..., N} corresponds to the coeffi-

cients of polynomial INxV
[0]
h,i (x), the previous condition defines a linear sys-

tem where:

� The pi1,...,iN are the unknowns.

� The elements of the matrix of the system can be computed in terms of
products and sums of Chebyshev polynomials

� The independent term is given by hfi(x̂j, u
[0]
h,i, u

[0]
h,−i), j = 1, ..., (k+1)N .

Set r = 0.

Step 1:

For each player i = 1, ..., N compute the Chebyshev polynomials

VNx,[r]
h,i,x̂j

(u) = hfi(x̂j , u, u
[r]
h,−i) + βhINxV

[r]
h,i

(
x̂j + hGi

x̂j
(u)

)
, j = 1, ..., (Nx + 1)N .

As in the Value iteration, all this polynomials can be computed at the
same time.

Step 2:

For each player i = 1, ..., N find the strategy which maximizes

u
[r+1]
h,i (x̂j) = argmax

u∈[ci,di]

{
VNx,[r]
h,i,x̂j

(u)
}
, j = 1, ..., (Nx + 1)N .

Again, the Newton Raphson algorithm has been employed.

52

Step 3:

For each player i = 1, ..., N , compute the Chebyshev polinomials

Gi
x̂j
(u) = gi(x̂j, u, u

[r+1]
h,−i), j = 1, ..., (Nx + 1)N ,

employing the algorithms described in Chapter 3.

Compute the Chebyshev multidimensional polynomial INxV
[r+1]
h,i (x) such

that, ∀j = 1, ..., (Nx + 1)N , it holds

INxV
[r+1]
h,i (x̂j) = hfi(x̂j, u

[r+1]
h,i , u

[r+1]
h,−i) + βhINxV

[r+1]
h,i

(
x̂j + hGi

x̂j
(u

[r+1]
h,i)

)
.

If we are not below the prescribed tolerance∣∣∣INxV
[r+1]
h,i (x̂j)− INxV

[r]
h,i (x̂j)

∣∣∣ < TOL, j = 1, ..., (Nx + 1)N ,

set r = r + 1 and return to Step 1. Otherwise stop.

The last iterate u
[r]
h,i (x̂j) , j = 1, ..., (Nx + 1)N is taken as the numerical

solution of the game.

53

54

Chapter 5

A numerical example

In this chapter, the proposed numerical methods are applied to the multi-
regional transboundary pollution game presented in [9].

Consider a planar region which is divided in several subregions. Different
regions may share or not a common boundary. Each subregion determines
the value of a control variable, emissions, and a state variable, which is the
average of the pollution in the corresponding subregion.

The model studies the pollution flows through the different subregions.
As some subregions present common boundaries, the pollution does not re-
main only in the emitting region. Instead, pollution of one region may flow
to adjacent regions, raising their pollution levels. Some physical conditions
are included in the model. For example, when a region is placed next to the
coast, a part of the pollution diffuses through the coast boundary.

Each subregion increases its income increasing the emission rate. How-
ever, the environmental damage has also a cost for each subregion. There-
fore, the objective function for each subregion is to maximize a benefit which
depends both on the emissions and the environmental damage measured
through the pollution level.

Each subregion aims to maximize his own objective function. Hence the
model is a N -player non-cooperative differential game. The objective is to
find an stationary Markov-perfect Nash equilibria.

55

The model formulation is as follows. Let Ω be a planar region, divided in
N subregions Ωi, i = 1, ..., N , satisfying

Ω̄ =
⋃
i

Ω̄i, Ωi ∩ Ωj = ∅, i ̸= j.

Let us denote by ui the control variable of player i, which represents the
emission rate. Let also p = (p1, p2, ..., pN) be the state variable, representing
the pollution stock in each region. The control will depend on the pollution
stock, i.e., ui = ui(p).

A linear quadratic model is proposed. The state dynamics are linear,
whether the payoff functions are quadratic in the state and the controls. For
each player, i = 1, ..., N the benefit and damage functions are given by

Bi(ui) = ui

(
Ai −

ui

2

)
, Di(pi) =

φi

2
p2i ,

where Ai, φi, i = 1, ..., N are positive constants.

The problem for each player is to maximize, for an infinite time horizon,
the following functional

Ji(ui, u−i,p0) =

∫ ∞

0

e−ρt (Bi(ui)−Di(pi)) dt

=

∫ ∞

0

e−ρt
(
ui(Ai −

ui

2
)− φi

2
p2i

)
dt.

(5.1)

The dynamics of the stock of pollution are given by a parabolic partial
differential equation depending on the spatial continuous variables. After
some simplifying assumptions (see [9] for the details), the dynamics of the
state variables is given by

dpi
dt

=
N∑
j=1

kijpj − cipi + βiui, i = 1, ..., N,

with an initial condition

pi(0) = p0i , i = 1, ..., N.

The coefficients of the previous dynamics have the following physical in-
terpretation:

56

� cipi measures the natural decay of pollutant, where ci ≥ 0.

� βiui is the source term, where βi > 0.

� kij is a diffusion term. It represents how the pollution flows between
regions. Coefficients kij can be stored as a matrix K = (kij) where
kij = 0 if there is no common border between subregions Ωi and Ωj.
Term kii = −

∑
j ̸=i kij. Matrix K defines a graph with one node for

each subregion.

The rest of the Chapter is organized as follows.

First, an example will be analytically and numerically solved in a two-
region scenario. Other examples, with different spatial distributions and
number of players, will be also computed in order to show how different geo-
graphical characteristics lead to different solutions. Afterwards, employing
the analytical solution of the first example, an empirical error analysis of the
methods proposed in Chapter 4 will be carried out.

In [9], a linear-spline based Value iteration algorithm is proposed to find
the Markovian Nash equilibrium of the game. A performance comparison
of the methods proposed in this work between then and with respect to the
spline-based method employed in [9] will also be made.

Finally, we mention that other approaches could be considered. In [8], the
solution of the Bellman equations is approximated by a fixed point iteration
using a collocation method based on piecewise cubic Hermite interpolation.

57

5.1 Two regions scenario

5.1.1 Analytical solution

The problem for a two player scenario is given for i = 1, 2, by

Vi(p
0) = max

ui

Ji(ui, u−i,p0) = max
ui

∫ ∞

0

e−ρt
(
ui(Ai −

ui

2
)− φi

2
p2i

)
dt,

(5.2)
s.t.

.
pi = kijpj + kiipi +−cipi + βiui,

p1(0) = p01, p2(0) = p02.
(5.3)

Let us define

fi(ui,p) = ui

(
Ai −

ui

2

)
− φi

2
p2i , i = 1, 2

and
gi(ui,p) = kijpj + kiipi − cipi + βiui, i, j = 1, 2, i ̸= j.

Let the control ui that maximizes the objective function be U∗
i (pi, pj).

Applying Hamilton-Jacobi-Bellman and after some calculus (see [9] for
the details),

U∗
i (pi, pj) = Ai + βi

∂Vi

∂pi
, i = 1, 2, i ̸= j

and the partial differential equation to solve for i, j = 1, 2, j ̸= i, is given by

ρVi(p) = fi(U∗
i ,p) +

∂Vi

∂pi
gi(U∗

i ,p) +
∂Vi

∂pj
gj(U∗

j ,p). (5.4)

The linear quadratic model suggest a quadratic solution, taking the fol-
lowing form

Vi(pi, pj) =
1

2
aiip

2
i + biipi + di +

1

2
aijp

2
j + bijpj + eipipj, i, j = 1, 2, i ̸= j.

58

From (5.4) we get the following twelve Ricatti equations

a2iiβ
2
i + 2ei(kji+ β2

j ej)− aii(2ci − 2kii + ρ)− ϕi = 0, (i)

Aiaiiβi +Ajejβj + bjjeiβ
2
j + bij(kji + β2

j ej)− bii(ci − kii − β2
i aii + ρ) = 0, (ii)

(Ai + βibii)
2 + 2βjbij(Aj + βjbjj)− 2ρdi = 0, (iii)

ei(2kij + β2
i ei)− aij(2cj − 2kjj − 2β2

j ajj + ρ) = 0, (iv)

βiei(Ai + βibii) + βjaij(Aj + βjbjj) + biikij − bij(cj − kjj − β2
j ajj + ρ) = 0, (v)

ei(ci + cj − kii − kjj − aiiβ
2
i − ajjβ

2
j + ρ)− aiikij − aij(kji + β2

j ej) = 0. (vi)

i, j = 1, 2, i ̸= j.

Therefore, we obtain

U∗
i (pi, pj) = Ai + βi

∂Vi

∂pi
(pi, pj) = Ai + βi (aiipi + bii + eipj) , (5.6)

and substituting in (5.3)

.
pi = pi(kii−ci+β2

i aii)+pj(kij+β2
i ei)+βiAi+β2

i bii i, j = 1, 2, i ̸= j. (5.7)

The previous expression gives a system of linear differential equations and
the solution is

p1(t) = C1e
λ1t + C2e

λ2t + pSS1 ,

p2(t) = C3e
λ1t + C4e

λ2t + pSS2 ,
(5.8)

where λ1 and λ2 are the eigenvalues of the matrix associated to the system,
Ci ∈ R, i = 1, .., 4 and pSS1 , pSS2 are the steady state of the pollution stock
in each region. In order to guarantee the existence of a stationary state, the
eigenvalues λ1 and λ2 have to be negative.

Two examples for 2 players are proposed. In the first one, the transport
of pollution is symmetric in the two regions, and there is not a border acting
like a sink of pollution. In the second example, one of the borders is a sink
of pollution. This sink of pollution is physically interpreted as a boundary
with a coast or a big region with stock of pollution equal to zero. It can be
added to the model with a term ki0, i = 1, 2.

59

In order to focus on the spatial aspect of the two examples, equal para-
meters are assumed for both regions

A = 0.5, ϕ = 1, β = 1, c = 0.5, ρ = 0.01.

Example 1: Two regions isolated from outside

In this example, two isolated regions are considered.

The next scheme represents the geographical position of the regions Ω1

and Ω2. Also, this representation can be condensed in a graph. The pollution
flux with external regions is expressed by means of the coefficients ki0, i =
1, 2. In this case k10 = k20 = 0.

The matrix K containing the pollution flux between regions is

K =

[
−1 1
1 −1

]
.

The symmetry of matrix K allows to consider symmetric strategies and
value functions. Therefore, following the analytical solution detailed on the
previous section, ajj = aii, bjj = bii, dj = di, aji = aij, bji = bij, ei = ej.

The Ricatti equations system is reduced to six equations with unknowns
aii, bii, di, aij, bij, ei.

60

From (ii) to (vi) the following expressions are obtained

bii =
bij + Aβ(aii + ei) + β2bijei
1 + c− β2aii − β2ei + ρ

, (5.9a)

di =
(A+ βbii)(A+ βbii + 2βbij)

2ρ
, (5.9b)

aij =
(2 + β2ei)ei

2(1 + c)− 2β2aii + ρ
, (5.9c)

bij =
Aβ(aij + ei) + bii(1 + β2aij + β2ei)

1 + c− β2aii + ρ
, (5.9d)

ei =
aii + aij

2(1 + c)− 2β2aii − β2aij + ρ
. (5.9e)

After several calculus (see [9]), six solutions exist for the system, but only
one guarantees that the eigenvalues of the matrix associated to the system
of differential equations (5.7) are negative. This solution is

aii = −0.354746, ei = −0.108611, bii = −0.172108,

aij = −0.0552293, bij = −0.121105, di = 1.40474.

The optimal emission strategies are[
u1(p1, p2)
u2(p1, p2)

]
= L

[
p1
p2

]
+

[
0.32789
0.32789

]
where L =

[
−0.35475 −0.10861
−0.10861 −0.35475

]
.

Functions u1 and u2 are the feedback Nash equilibrium strategies. They
depend negatively on the state variable of the problem, the pollution stock.
Moreover, the effect of the own pollution is greater, in absolute terms, than
the effect of the pollution of the other region.

Due to the symmetric character of the problem and the identical para-
meter values, the optimal policy for both players is symmetric,

u1(p1, p2) = u2(p2, p1)

.

61

The solution of (5.7) gives the time paths of the pollution stock along the
equilibrium strategy. They are given by

p1(t) =
(
(p01 − pSS1)− (p02 − pSS2)

) eλ1t

2
+
(
(p01 − pSS1) + (p02 − pSS2)

) eλ2t

2
+ pSS1 ,

p2(t) =
(
(p02 − pSS2)− (p01 − pSS1)

) eλ1t

2
+
(
(p01 − pSS1) + (p02 − pSS2)

) eλ2t

2
+ pSS2 .

where λ1 = −2.7461 , λ2 = −0.96336 are the eigenvalues, the steady-state
pollution stock values are pSS1 = pSS2 = 0.340365 and p0i = pi(0), i = 1, 2 are
the initial values of the pollution stocks.

If p01 = p02, and given that pSS1 = pSS2 , both paths are identical over time

p1(t) = p2(t) = (p01 − pSS1)eλ2t + pSS1 .

In figure (5.2), the particular case p01 = p02 = 0.1 is presented.

Figure 5.2: Emissions and pollution stock along the equilibrium.

As expected, the symmetrical character of the example provides identical
trajectories for both players. The pollution levels increase from the initial
pollution stock to the steady state value pSS. Correspondingly, the emissions
decrease with time until the control steady state value is reached.

62

Analytical solutions will be employed below in the Error analysis. The
rest of the figures are from results obtained with the proposed numerical
methods.

Figure 5.3: Regions’ feedback strategies in [0, 0.5]× [0, 0.5]

Figure 5.4: Regions’ feedback strategies in [0, 2]× [0, 2].

In Figures 5.3 and 5.4, the computed feedback strategies for regions Ω1

63

and Ω2 are represented. The optimal emissions are obtained as a function
of the pollution stocks p1 and p2. It can be appreciated that the emissions
negatively depend on the pollution stock level of both regions.

The feedback strategies are presented for two different computational do-
mains. In Figure 5.3, the pollution stock lies in domain [0, 0.5] × [0, 0.5],
and feedback strategies are C∞. However, in Figure 5.4 domain [0, 2]× [0, 2]
has been employed and the solution is piecewise continuous. Emissions take
value zero for high pollution stock values. It is worth to mention now that
this different regularity in the computational domain leads to different spa-
tial error convergence as it will be seen in Section 5.3.

Example 2: Two regions with different geographical
neighbourhoods

In this example, one of the regions presents a border acting like a sink of
pollution. Then, the problem is not symmetric for both players.

The pollution diffusion is

K =

[
−1 1
1 −2

]
.

There exists a flux of pollution from region Ω2 to the sink but not from
Ω1 to the sink. In this case k10 = 0 and k20 = 1.

The analytical solution for this example can also be computed (see [9]).
The obtained optimal emission strategies are[
u1(p1, p2)
u2(p1, p2)

]
= L

[
p1
p2

]
+

[
0.352463
0.437588

]
where L =

[
−0.344173 −0.081391
−0.051392 −0.209672

]
.

64

The eigenvalues are λ1 = −1.24801 , λ2 = −3.30584 and the steady-state
pollution stock values are

pSS1 = 0.328921, pSS2 = 0.276641.

The different solutions between the two regions lies in their geographical
aspects.

As in the previous example, we assume p01 = p02 = 0.1.

Figure 5.6 represents the evolution of the pollution stock and the emis-
sions along the optimal time-path. Region Ω2 presents a border acting like a
sink of pollution. Consequently, the steady-state stock of pollution for region
Ω2 is lower than the steady-state value for region Ω1.

Moreover, as the figure presents, the optimal emissions in region Ω2 are
always higher than in Ω1, even Ω1 generates a lower pollution stock. This
means that an important flow of pollution is moving from region Ω2 through
the boundary to sink Ω0.

Figure 5.6: Emissions and pollution stock along the equilibrium.

Figure 5.7 shows the computed feedback strategies in function of the

65

pollution stock levels. It can be appreciated that emissions in region Ω2 are
higher than in Ω1.

Figure 5.7: Regions’ feedback strategies.

The different results obtained in Example 1 and Example 2 highlights the
importance of including the spatial aspect in the transboundary pollution
model. This idea will be reinforced with the following three-region scenario
examples.

66

5.2 Three regions scenario

Example 3: Three regions isolated from outside

Let us consider k10 = k20 = k30 = 0, that is, three regions isolated from
outside.

In this example, a flux of pollution appears from each region towards
his neighbours. Pollution is passing from the central region Ω2 to the sided
regions Ω1 and Ω3, and also from the sides to the center region. Region Ω1

and Ω3 present symmetrical conditions.

The diffusion matrix K is

K =

−1 1 0
1 −2 1
0 1 −1

 .

Figure 5.9 shows the trajectories for the emissions and the stock of pollu-
tion along the equilibrium strategy. The initial pollution stocks are set to 0.1.

As expected, regions Ω1 and Ω3 present the same trajectories for the
emissions and pollution stock. Region Ω2 benefits from its center position,
profiting of the lower emissions of Ω1 and Ω3. With higher emissions, region
Ω2 presents almost the same pollution stock as the other regions.

67

Figure 5.9: Emissions and pollution stock along the equilibrium.

Example 4: Three regions with different geographical
neighbourhoods

In this example, a coast region is considered. The region is divided in three
subregions that present different geographical conditions. Regions Ω1 and Ω2

present only one coast side, while Ω3 present two coasts.

The flux of pollution through the coast is set as k10 = k20 = 1 and k30 = 2.

68

The matrix K containing the flux of pollution is

K =

−2 1 0
1 −3 1
0 1 −3

 .

Figure 5.11 represents the emissions and pollution stock along the equi-
librium strategy. As expected, the three regions present different trajectories.

It should be noted that the coast side produces an important decreasing
of the pollution rate. Therefore, the optimal emission strategies are much
higher than in the Example 3. Region Ω3 presents two coasts, something
that allows this region to have higher emission levels.

Figure 5.11: Emissions and pollution stock along the equilibrium.

In the exposed three-player examples, the importance of taking into ac-
count geographical characteristics in the transboundary pollution model is
again enhanced.

69

5.3 Error analysis

Since the numerically computed solutions are those of a time-discrete game
with a space discretization, numerical errors might have appeared.

In this Section, the spatial and temporal discretization errors are ana-
lysed empirically for Example 1, thanks to the fact that we have analytical
solutions. For some theoretical results on the approximation error committed
with fully discrete problems, see [10].

The error will be analysed in a fixed approximation domain for different
computational domains, the domain where the solution is numerically com-
puted.

The approximation domain for the analysis will be [0, 0.5]× [0, 0.5].

We fix a grid of equidistant nodes in the approximation domain D

D = {(xi, xj), xi = 0.05i, xj = 0.05j, i, j = 0, ..., 10}.

Since in Example 1 the solutions were symmetric, the values that will be
compared will be the ones obtained computing

V1(p
0) =

∫ ∞

0

e−ρt
(
u1(A1 −

u1

2
)− φ1

2
p21

)
dt, (5.10)

subject to the dynamics of the system with the parameter values employed
in Example 1. The controls employed in computing the previous functional
will be the numerical/analytical controls obtained.

The numerical controls un are obtained through the interpolation of the
solution obtained in the computational domain. The error measured will be
the root of the mean square error between the analytical and the numerical
solution (ua).

RMSE =

√
1

|D|
∑
p∈D

(V1(p;un)− V1(p;ua))
2.

Two different computational domains are considered, [0, 0.5]× [0, 0.5] and
[0, 2]× [0, 2].

70

In [0, 0.5]× [0, 0.5], the value function is C∞. However, in [0, 2]× [0, 2] is
only piecewise regular. In Spectral methods, the order of the method depends
on the regularity of function to be interpolated (see [3, Ch 2]). Specifically,
it depends on how fast the expansion coefficients decay to zero.

5.3.1 Temporal error in [0, 0.5]× [0, 0.5]

In this section, the temporal error is studied for the Value iteration (Cheby-
shev and splines-based) and Policy iteration.

The idea to study the temporal error is to take a sufficiently refined spa-
tial discretization (Nx large), so that the spatial error does not interfere in
the temporal analysis. The error will be computed for different values of
h > 0, which is the parameter employed to define de discrete-time game of
the numerical approximation.

Let h = 1
Nt
. The numerical solutions will be computed doubling the

number Nt, i.e., h is halved in each of the successive computations.

(a) Value iteration (b) Policy iteration

Figure 5.12: Temporal error in logarithmic scale, domain [0, 0.5]× [0, 0.5].

Figure 5.12 shows the RMSE for each choice of Nt, where both axis are
represented in logarithmic scale. A linear tendency of the behaviour of the

71

error as we increase the value of Nt can be appreciated. The slope is close
to one.

The behaviour of the temporal error is almost identical for the Value
iteration and the Policy iteration algorithms. For the splines-based Value
iteration method the same result is also obtained.

The behaviour of the temporal error is similar in both computational do-
mains.

For the previous analysis, the number of iterations were stored. The
following tables show these values for each time discretization steps.

Value iteration
Nt 8 16 32 64 128
Number of iterations 9613 18079 33911 63344 117765

Table 5.1: Iterations for each time step, Value iteration.

Policy iteration
Nt 8 16 32 64 128
Number of iterations 140 140 140 140 140

Table 5.2: Iterations for each time step, Policy iteration.

The previous results show that many less iterations are needed in the
policy method. This is a well known fact in Control Problems and seems to
hold in Game Theory problems.

The results obtained for the splines-based Value method were very similar
to the Chebyshev based Value method.

5.3.2 Spatial error in [0, 0.5]× [0, 0.5]

The spatial error is analysed in the same way as the temporal error. Taking
a large value of Nt, and the number of spatial nodes Nx is successively mul-

72

tiplied by two.

The analytical solution of the problem restricted to domain [0, 0.5] ×
[0, 0.5] is a polynomial. Therefore, there should not be any numerical error
related with the spatial discretization in this domain. The error should de-
pend just on the size of h.

Figure 5.13 represents, for two different time steps, the error committed
in function of the spatial nodes. As expected, the result is that the spatial
error does not depend on the space discretization. Then, a constant error is
obtained, where the magnitude depends on the time step.

(a) Value iteration (b) Policy iteration

Figure 5.13: Spatial error in logarithmic scale, domain [0, 0.5]× [0, 0.5].

5.3.3 Spatial error in [0, 2]× [0, 2]

The previous situation, in which there was no spatial error, changes when
the solution is not a polynomial.

In the computation domain [0, 2] × [0, 2] the value function is piecewise
regular.

Therefore, an error related with the spatial discretization should be appre-

73

ciated. In Figure 5.14, the spatial error is represented for the Value iteration
and Policy iteration algorithms. The same tendency is obtained when ana-
lysing the spatial error in [0, 2]× [0, 2] for the spline-Value iteration method.

A linear tendency of the error on the spatial discretization is perceived.
The slope of this linear tendency is close to two.

(a) Value iteration (b) Policy iteration

Figure 5.14: Spatial error in logarithmic scale, domain [0, 2]× [0, 2].

The order of error convergence is identical for the three different methods:
Value iteration, Policy iteration and splines-Value iteration. The difference
between the three methods lies in the computational cost.

74

5.4 Performance analysis

Computational performance of the numerical Value iteration and Policy it-
eration algorithms is analysed in this section.

The computational time and the error committed is stored for different
values of the space discretization, time step and algorithm toleration. Figure
5.15 shows the error in function of the computational time for Policy iter-
ation algorithm. The lower convex hull is also represented for the obtained
points.

Figure 5.15: Error and computational time for Policy iteration.

Taking also the convex hull for Value iteration and spline-Value iteration,
we obtain error-time curves that can be used to compare the three methods.

For a certain error value, this curve shows the least time needed to reach
that precision. The same way, for a given computational time the curve in-
dicates the best error rate that can be obtained.

In Figure 5.16, convex hulls for the three algorithms is presented.

75

Figure 5.16: Error-time curves of the three algorithms.

It can be appreciated that the best algorithm in computational terms is
Policy iteration. Both Chebyshev algorithms proposed in the present work
outperform the spline-Value iteration algorithm computation time.

76

Chapter 6

Conclusions

In the present work, Chebyshev polynomial interpolation is applied to the
Value iteration and Policy iteration algorithms. These algorithms are em-
ployed to approximate the Markovian Nash equilibria of multi-player differ-
ential games.

The general conclusion is that the Chebyshev interpolation scheme is a
precise and computationally fast method. It allows to solve efficiently the
maximization problem required by the previous algorithms.

A transboundary pollution model proposed in [9] has been studied as a
numerical example. For a two-region scenario, the analytical solution has
been compared to the numerical approximation obtained through different
methods.

Value iteration and Policy iteration numerical results have been com-
pared to the spline-based Value iteration scheme proposed in [9] and they
have proved competitive.

All the methods present similar error behaviour. The main difference
lies in the computational cost. The results extracted from the performance
analysis is that Chebyshev-based Value algorithm require much less compu-
tational time than the spline-Value iteration. Moreover, the Policy iteration
method requires very few iterations to converge to the solution.

Game theory is a broadly employed tool, and this methods can be adap-

77

ted to problems in other fields, like economics and management science [12],
industrial organization [4] or marketing [14], among others.

One of the possible extensions of this work could be the study of numerical
methods to solve differential games with multiple control variables, as in [6],
where emissions and investment in clean technologies are the two controls
considered in the problem. The adaptation and efficient implementation of
these methods to more general problems is a subject of interest. For example,
the main computational cost of the Policy iteration method is the numerical
computation of the polynomial coefficients. Maybe iterative methods for
computing them could be considered. Another field of interest would be a
theoretical analysis of the error behaviour of Chebyshev-based methods in
Game Theory.

78

Bibliography

[1] Başar, T., Haurie, A., and Zaccour, G. Nonzero-sum differential
games. Springer, Germany, Aug. 2018, pp. 61–110.

[2] Bauso, D. Game Theory with Engineering Applications. Society for
Industrial and Applied Mathematics, 2016.

[3] Canuto, C., Hussaini, Y., Quarteroni, O. M. A., and Zang,
T. Spectral Methods: Fundamentals in Single Domains, 2006. corr. 4th
printing 2010 ed. ed. Springer, 2006.

[4] Colombo, L., and Labrecciosa, P. Differential Games in Industrial
Organization. Springer International Publishing, Cham, 2017, pp. 1–46.

[5] de Frutos, J., and Gatón, V. Chebyshev reduced basis function
applied to option valuation. Computational Management Science 14, 4
(2017), 465–491.

[6] De Frutos, J., Gatón, V., López-Pérez, P., and Mart́ın-
Herrán, G. Investment in cleaner technologies in a transboundary
pollution dynamic game: A numerical investigation. Dynamic Games
and Applications (04 2022), 1–31.

[7] de Frutos, J., Gatón, V., and Novo, J. On discrete-time approx-
imations to infinite horizon differential games, 2021.

[8] de Frutos, J., and Mart́ın-Herrán, G. Does Flexibility Facilitate
Sustainability of Cooperation Over Time? A Case Study from Envir-
onmental Economics. Journal of Optimization Theory and Applications
165, 2 (2014), 657–677.

79

[9] de Frutos, J., and Mart́ın-Herrán, G. Spatial effects and
strategic behavior in a multiregional transboundary pollution dynamic
game. Journal of Environmental Economics and Management 97, C
(2019), 182–207.

[10] de Frutos, J., and Novo, J. Optimal bounds for numerical approx-
imations of infinite horizon problems based on dynamic programming
approach, 2021.

[11] de Leva, P. Multiprod algorithm., 07 2010.

[12] Dockner, E. J., Jorgensen, S., Long, N. V., and Sorger, G.
Differential Games in Economics and Management Science. Cambridge
University Press, 2000.

[13] Haurie A., Krawczyk J.B., Z. G. Games and dynamic games.
World Scientific, Singapore, 2011.

[14] Jørgensen, S. Marketing. Springer International Publishing, Cham,
2016, pp. 1–41.

[15] Kirk, D. Optimal Control Theory: An Introduction. Dover Publica-
tions, 2004.

[16] Krawczyk, J.B., P. V. Handbook of Dynamic Game Theory. Bacar
T., Zaccour G., eds., Springer Nature, 2018.

[17] Navarro, J. P., and Tena, E. C. Teoŕıa de juegos. Pearson Edu-
cación, 2003.

[18] Rivlin, T. Chebyshev Polynomials: From Approximation Theory to
Algebra and Number Theory. Pure and Applied Mathematics: A Wiley
Series of Texts, Monographs and Tracts. Wiley, 1990.

[19] Seierstad, A. Optimal control theory with economic applications /
atle seierstad, and knut sydsaeter, 1999.

[20] Yeung, D. W., and Petrosyan, L. A. Nontransferable Utility Co-
operative Dynamic Games. Springer International Publishing, Cham,
2017, pp. 1–38.

80

81

