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A B S T R A C T

Hybrid Diffusion Imaging (HYDI) was one of the first attempts to use multi-shell samplings of the q-space to
infer diffusion properties beyond Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging
(HARDI). HYDI was intended as a flexible protocol embedding both DTI (for lower 𝑏-values) and HARDI (for
higher 𝑏-values) processing, as well as Diffusion Spectrum Imaging (DSI) when the entire data set was exploited.
In the latter case, the spherical sampling of the q-space is re-gridded by interpolation to a Cartesian lattice
whose extent covers the range of acquired b-values, hence being acquisition-dependent. The Discrete Fourier
Transform (DFT) is afterwards used to compute the corresponding Cartesian sampling of the Ensemble Average
Propagator (EAP) in an entirely non-parametric way. From this lattice, diffusion markers such as the Return
To Origin Probability (RTOP) or the Mean Squared Displacement (MSD) can be numerically estimated.

We aim at re-formulating this scheme by means of a Fourier Transform encoding matrix that eliminates
the need for q-space re-gridding at the same time it preserves the non-parametric nature of HYDI-DSI. The
encoding matrix is adaptively designed at each voxel according to the underlying DTI approximation, so that an
optimal sampling of the EAP can be pursued without being conditioned by the particular acquisition protocol.
The estimation of the EAP is afterwards carried out as a regularized Quadratic Programming (QP) problem,
which allows to impose positivity constraints that cannot be trivially embedded within the conventional HYDI-
DSI. We demonstrate that the definition of the encoding matrix in the adaptive space allows to analytically (as
opposed to numerically) compute several popular descriptors of diffusion with the unique source of error being
the cropping of high frequency harmonics in the Fourier analysis of the attenuation signal. They include not
only RTOP and MSD, but also Return to Axis/Plane Probabilities (RTAP/RTPP), which are defined in terms of
specific spatial directions and are not available with the former HYDI-DSI. We report extensive experiments that
suggest the benefits of our proposal in terms of accuracy, robustness and computational efficiency, especially
when only standard, non-dedicated q-space samplings are available.
1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) allows probing the
random movement of water molecules inside human tissues, especially
the white matter of the brain, in vivo. The basic dMRI sequence com-
prises two pulsed gradients with duration 𝛿 taken apart an idle time
𝛥, with a re-focusing 180◦ RF pulse in between (Stejskal and Tanner,
1965). This way, water molecules moving along the applied gradient
will experiment a net de-phasing that translates in the attenuation of
the acquired T2 signal with respect to the unweighted one (the so-called
baseline). The strength of this effect, characterized by the so-called
b-value, increases linearly with 𝛥, and quadratically with 𝛿 and the
magnitude ‖𝐆‖ of the gradient applied.

∗ Corresponding author.
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This kind of contrast has been thoroughly used in clinical research to
characterize a number of pathologies such as Alzheimer’s disease (Da-
ianu et al., 2015; Fick et al., 2016a), Parkinson’s disease (Aja-Fernández
et al., 2020), Traumatic Brain Injury (TBI) (Wu et al., 2018; Muller
et al., 2021), stroke (Boscolo Galazzo et al., 2018; Brusini et al., 2016),
multiple sclerosis (Hosseinbor et al., 2012), migraine (Planchuelo-
Gómez et al., 2020, 2021), and many others. Though a minimum of
six gradient directions with a constant b-value suffices to probe the
meso-structural anisotropy of the white matter, the advent of more
sophisticated MRI machinery and acquisition protocols has led into
the routine acquisition of advanced data sets with several hundreds of
vailable online 9 December 2022
361-8415/© 2022 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.media.2022.102728
Received 26 January 2022; Received in revised form 20 October 2022; Accepted 7
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

December 2022

https://www.elsevier.com/locate/media
http://www.elsevier.com/locate/media
mailto:atriveg@lpi.tel.uva.es
https://doi.org/10.1016/j.media.2022.102728
https://doi.org/10.1016/j.media.2022.102728
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102728&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Medical Image Analysis 84 (2023) 102728A. Tristán-Vega et al.

T
p
o
2
B
E
f
m
p
𝑆

t

𝑃

w
e

r
t
1

𝑃

I
E
C
i

a
n
r
e
i
f
s

diffusion gradients with varying directions but also varying b-values.
Among them, multi-shell data sets, i.e. acquisitions where the acquired
gradients are arranged in a regular spherical lattice, have rapidly
become the standard. Indeed, several databases with both healthy and
diseased subjects have been publicly issued in the last few years (Jack
et al., 2008; Van Essen et al., 2013; Ziegler et al., 2014; Fan et al., 2016;
Froeling et al., 2017; Tax et al., 2019; Koller et al., 2021).

Two complementary approaches have focused the recent research
on advanced dMRI (Novikov et al., 2018): the first one aims at model-
ing the diffusion signal as a mixture of micro-structural compartments
whose responses can be individually modeled, so that their partial
volume fractions and individual features can be disentangled from
the diffusion measurements. This group includes, to name but a few,
the Composite Hindered and Restricted Model for Diffusion (Assaf
and Basser, 2005, CHARMED), the Neurite Orientation Dispersion and
Density Imaging (Zhang et al., 2012, NODDI), or the Multi-tissue
Constrained Spherical Deconvolution (Jeurissen et al., 2014, CSD).
These methods have the advantage of providing directly interpretable
micro-structural features, and also explaining both the low and the
high b-value regimen of the diffusion signal and, in particular, its
slow decaying tails. On the other hand, they give rise to ill-posed
optimization problems that are often simplified resorting to model-
ing assumptions such as minimum tortuosity (Zhang et al., 2012;
Kaden et al., 2016). These suppositions, however, have been em-
pirically evidenced to largely deviate from reality (Lampinen et al.,
2020).

The second group of techniques generalize the classical Diffusion
ensor Imaging (DTI) approach (Basser et al., 1994; Basser and Pier-
aoli, 1996) by drawing signal representations, as opposed to ge-
metrical models, such as mono-exponentials (Aja-Fernández et al.,
021, 2022), multi-exponentials (Pfeuffer et al., 1999; Benjamini and
asser, 2019), or DTI distributions (Topgaard, 2017). In particular,
nsemble Average Propagator (EAP) imaging is a very active research
ield within this second trend: the EAP, 𝑃 (𝐑), is a positive, unit-
ass, antipodal-symmetric probability density function related to the
ositive, antipodal-symmetric attenuation signal 𝐸(𝐪) = 𝑆(𝐪)∕𝑆0 (with
(𝐪) the signal acquired when a gradient wave-vector 𝐪, ‖𝐪‖ ∝ 𝛿 ‖𝐆‖, is

applied, and 𝑆0 the unweighted T2 baseline image), as a pair of Fourier
ransforms (Callaghan, 1991):

(𝐑) = ∫ ∫ ∫R3
𝐸(𝐪) exp

(

−𝑗2𝜋𝐪𝑇𝐑
)

𝑑𝐪

𝜏
⟷ 𝐸(𝐪) = ∫ ∫ ∫R3

𝑃 (𝐑) exp
(

𝑗2𝜋𝐪𝑇𝐑
)

𝑑𝐑, (1)

here 𝜏 = 𝛥 − 𝛿∕3 is the effective diffusion time. For the previous
quation to be fulfilled in terms of classical functions, 𝐸(𝐪) must rapidly

vanish as ‖𝐪‖ → ∞, so that it remains square-integrable and 𝑃 (𝐑)
does not comprise Dirac’s delta-like singularities (Oppenheim et al.,
1997). As pointed out by Novikov et al. (2018), this issue makes
EAP imaging inherently incompatible with actual models for intra-
axonal diffusion, as long as the signal produced by confined water
compartments is heavy-tailed. Within DTI, the EAP is represented as a
zero-mean Gaussian process with covariance matrix 𝐷, which is a 3 × 3
ank-2 tensor, symmetric, positive (semi)-definite, and independent on
he effective diffusion time 𝜏 (Basser et al., 1994; Basser and Pierpaoli,
996):

𝐺(𝐑) =
1

√

det(𝐷) (4𝜋𝜏)3
exp

(

−𝐑𝑇𝐷−1𝐑
4𝜏

)

⟷𝐸𝐺(𝐪) = exp
(

−4𝜋2𝜏𝐪𝑇𝐷𝐪
)

, (2)

where the b-value is defined as 𝑏 = 4𝜋2𝜏‖𝐪‖2. Diffusion Spectrum
maging (DSI) was aimed at avoiding the limitations of the model in
q. (2) by attaining a non-parametric sampling of 𝑃 (𝐑) at a regular
artesian lattice (Wedeen et al., 2005). The straightforward approach
2

s sampling 𝐸(𝐪) itself in a regular lattice and using the Discrete Fourier
Transform (DFT) to find estimates of 𝑃 (𝐑), which implies acquiring
huge amount of q-space samples to avoid aliasing artifacts. Alter-

atively, Compressed Sensing (CS) techniques can be used to vastly
educe this demand (Bilgic et al., 2012; Menzel et al., 2011; Young
t al., 2017) as long as a non-coherent sampling of the whole q-space
s available and the EAP can be sparsely represented in a certain
unction basis (Donoho, 2006). Since we are mostly interested in multi-
hell samplings with a relatively small maximum 𝑏-value, the former

requirement is hardly met.
Many EAP imaging techniques circumvent the lack of a detailed

q-space sampling by assuming the EAP and the attenuation signal
can be faithfully represented as a superposition of pre-designed basis
functions (dictionary atoms) whose 3-D Fourier transforms may be
easily characterized. This approach includes multiple q-shell Diffusion
Propagator Imaging (Descoteaux et al., 2011, mq-DPI), Bessel–Fourier
Orientation Reconstruction (Hosseinbor et al., 2013, BFOR), Spherical
Polar Fourier reconstruction (Assemlal et al., 2009; Merlet and Deriche,
2013, SPF), Simple Harmonic Oscillator based Reconstruction and Es-
timation (Özarslan et al., 2013a, SHORE), Mean Apparent Propagator
MRI (Özarslan et al., 2013b, MAP-MRI) and its Laplacian-regularized
version (Fick et al., 2016b, MAPL), or directional Radial Basis Func-
tions (Ning et al., 2015, RBF). Patch-based dictionary learning, as
opposed to dictionary design, has also been used to low-rank represent
the attenuation signal (Vemuri et al., 2019).

The general idea behind these techniques is that the attenuation
signal 𝐸(𝐪) can be written as the linear superposition of a relatively
small number of parametric continuous functions, whose shape and
size parameters can be either pre-defined (Assemlal et al., 2009; Merlet
and Deriche, 2013), learned (Vemuri et al., 2019), adaptively fitted
depending on the diffusion profile at each voxel (Özarslan et al.,
2013b; Fick et al., 2016b), or even dynamically computed at the same
time as the coefficients of the linear combination (Ning et al., 2015).
Afterwards, the linearity of the Fourier transform can be exploited to
apply the same linear combination to the Fourier transforms of the
basis functions and conversely represent the EAP as a linear mixture
of parametric continuous functions. Provided the reduced number of
q-space samples, together with the poor Signal-to-Noise Ratio (SNR)
commonly found in dMRI volumes, it is common to find regularization
penalties in the estimation of the linear coefficients that describe 𝐸(𝐪),
as well as constraints such as positivity or unit mass of the EAP (Dela
Haije et al., 2020). More recently, the Micro-Structure adaptive kernels
and dual Fourier Integral Transforms (Tristán-Vega and Aja-Fernández,
2021, MiSFIT) has allowed to dramatically reduce the complexity of
EAP imaging by representing it as the spherical convolution of a
fiber Orientation Distribution Function (fODF) with a Gaussian kernel.
Nonetheless, this technique applies only to multi-shell acquisitions, but
not to more general protocols.

All the above methods share the same philosophy of represent-
ing the low-pass EAP parametrically, as a mixture of continuous do-
main functions. As opposed, DSI and Hybrid Diffusion Imaging-based
DSI (Wu et al., 2008; Wu and Alexander, 2007, HYDI-DSI) tackle the
problem in a different, straightforward way, as it is depicted in Fig. 1
(top): the (still low-pass) EAP is no longer represented by means of a
collection of parameters describing a continuous mixture, but instead a
discrete sampling of the EAP at a regular 3-D lattice (typically 9 × 9 × 9)
is pursued. To that end, a corresponding lattice is defined over the
attenuation signal domain (ii), whose support comes determined by
the maximum b-value, 𝑏max, acquired in the multi-shell sampling (i),
i.e. 𝐸(𝐪) is assumed to live inside 𝛺 = [−𝑞max, 𝑞max]3 ⊂ R3, where
𝑞max =

√

𝑏max∕4𝜋2𝜏. The values of 𝐸(𝐪) at these lattice points are
obtained by means of grid interpolation: the convex hull of the sampled
data is calculated (Barber et al., 1996), and Delaunay triangulation is
used to parcel it (Watson, 1994). The problem then reduces to the linear
interpolation of each lattice node depending on the parcel it lies within.
Finally, the DFT can be computed to retrieve a 9 × 9 × 9 lattice in the



Medical Image Analysis 84 (2023) 102728A. Tristán-Vega et al.
Fig. 1. The original HYDI-DSI vs. our proposal. Red arrows highlight those steps in
the original method resorting to numerical interpolation (those we aim to avoid).

EAP domain (iii) with spatial resolution (1∕2𝑞max)3 (Oppenheim et al.,
1997).

Despite its success in describing the anatomy of the white mat-
ter in many situations such as TBI (Wu et al., 2018; Muller et al.,
2021), Alzheimer’s disease (Daianu et al., 2015), or gender/age-related
changes (Wu et al., 2011), this scheme is not free of certain problems.
The first one is that the bandwidth of the EAP, defined by 𝛺, directly
depends on the acquisition protocol, and more specifically on the
maximum b-value acquired. Indeed, the original HYDI-DSI imposes a
specific acquisition protocol with evenly spaced shells up to 𝑏max ≃
10,000 s∕mm2, so that the lattice interpolation is rather uniform (mean-
ing that each measured q-space sample will be used equally often for
interpolation). Additionally, though the unit-mass constraint of the EAP
is guaranteed by the DFT operator by simply placing 𝐸(𝟎) = 0, positivity
constraints cannot be pursued. Such constraints have been proven
especially meaningful within dMRI (Dela Haije et al., 2020). Finally,
the analytical computations of the popular Return to Origin Probability
(RTOP) or Mean Squared Displacement (MSD) are straightforward with
HYDI-DSI, but the Return to Axis/Plane Probabilities (RTAP/RTPP)
need to be computed as line/plane integrals in the EAP domain, leading
to the need for interpolation of the computed lattice values (iv).

In the present paper, we explore an alternative approach to get rid
of q-space interpolation while maintaining the non-parametric nature
of HYDI-DSI, see Fig. 1 (bottom). Following the same idea by Özarslan
et al. (2013b), the DTI representation is used to describe the low
b-value regime of the attenuation signal (v): the eigenvectors and eigen-
values at each voxel are used to rotate and stretch the 3-D space so that
the EAP is estimated in an adaptive grid determined by the diffusion
properties of the voxel instead of the gradients table (vii). The aim is
palliating the dependency of the estimated EAP with the acquisition
protocol. To avoid the need for q-space interpolation, the sparsely
sampled q-space (i) is analytically related to the adaptive EAP lattice
(vii) by means of the so-called encoding matrix (vi). This way, the
nodal values of the EAP can be directly solved from the q-space samples
by solving a Quadratic Programming (QP) problem. The advantage
of doing so is two-fold: first, not only unit mass, but also positivity
constraints, can be imposed to the EAP. Additionally, by avoiding the
computation of the convex hull and Delaunay’s triangulation we attain
a vast improvement of the overall computational efficiency. Besides,
we derive a regularization term based on the energy of the Laplacian
of the EAP to deal with low SNR and/or poor sampling density of the
q-space. Finally, we demonstrate that the adaptive grid strategy allows
the analytical computation of all the RTxP and MSD indices without
any further interpolation (viii).

The remainder of the paper is organized as follows. Section 2
3

details steps v–vii in Fig. 1 (bottom), namely: the arrangement of the
adaptive 3-D lattice based on the DTI approximation (Section 2.1), the
definition of the encoding matrix (Sections 2.2 and 2.3), and the QP
problem statement (Section 2.4). Section 3 details step viii, i. e. the
computation of the RTxP and MSD. Section 4 describes the numerical
implementation of the proposed method and the parameters involved.
The qualitative and quantitative evaluation of the proposal is addressed
in Section 5. Finally, in Section 6 we provide some additional insights
into the potential and the limitations of our proposal, as well as its
differences and similarities with the related state of the art.

2. EAP reconstruction from scattered multi-shell data

2.1. Adapting the Cartesian grid to the voxel properties

The DTI model provides a good approximation of the diffusion
process for 𝑏-values under 2000 s∕mm2. We will assume our q-space
sampling includes at least one shell suitable for DTI, so that a diffusion
tensor 𝐷 can be estimated at each voxel to accurately describe the low
𝑏-values regime:

𝐷 = 𝛩𝛬𝛩𝑇 ; 𝛩 =
[

𝐮1,𝐮2,𝐮3
]

; 𝛬 =
⎡

⎢

⎢

⎣

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎤

⎥

⎥

⎦

, (3)

where 0 ≤ 𝜆1 ≤ 𝜆2 ≤ 𝜆3 are the three real, non-negative eigenvalues
of 𝐷 and 𝐮1, 𝐮2, and 𝐮3 are their respective 3 × 1, unit-norm, mutually
orthogonal eigenvectors. Besides, we will force 𝐮3 to have the proper
orientation so that 𝐮3 = 𝐮1 × 𝐮2 and 𝛩 is a rotation matrix (hence
det(𝛩) = 1). We can use this rotation afterwards to align the Cartesian
lattice where the EAP will be sampled with the principal directions of
𝐷: with the change of variable: 𝐑′ = 𝛩𝑇𝐑 ⇔ 𝐑 = 𝛩𝐑′, the maximum
diffusion direction will become aligned with the ‘𝑧’ axis, while the
secondary diffusion directions will align with ‘𝑥’ and ‘𝑦’:

𝑃𝛩(𝐑′) = 𝑃 (𝛩𝐑′) ⇔ 𝑃 (𝐑) = 𝑃𝛩(𝛩𝑇𝐑);

𝐸𝛩(𝐪′) = ∫ ∫ ∫R3
𝑃𝛩(𝐑′) exp

(

𝑗2𝜋𝐪′𝑇𝐑′
)

𝑑𝐑′

𝐑′=𝛩𝑇 𝐑
= ∫ ∫ ∫R3

𝑃 (𝐑) exp
(

𝑗2𝜋𝐪′𝑇𝛩𝑇𝐑
)

𝑑𝐑 = 𝐸(𝛩𝐪′). (4)

The meaning of the previous equation is that, without any loss of
generality, we can assume the Gaussian approximation of the EAP
is aligned with the Cartesian axes (‘𝑧’ being the maximum diffusion
direction). It suffices to apply a voxel-dependent rotation 𝛩𝑇 to the
‘gradients table’ of the multi-shell sampling, 𝐮′ = 𝛩𝑇 𝐮, so that:

𝑃𝐺,𝛩(𝐑′) = 1
√

det(𝛬) (4𝜋𝜏)3
exp

(

−𝐑′𝑇𝛬−1𝐑′

4𝜏

)

= 1
√

𝜆1𝜆2𝜆3 (4𝜋𝜏)
3
exp

(

−𝑥2
4𝜏𝜆1

)

exp
(

−𝑦2

4𝜏𝜆2

)

exp
(

−𝑧2
4𝜏𝜆3

)

;

𝐸𝐺,𝛩(𝐪′) = exp
(

−4𝜋2𝜏𝐪′𝑇𝛬𝐪′
)

= exp
(

−4𝜋2𝜏𝜆1𝑞
2
𝑥
)

exp
(

−4𝜋2𝜏𝜆2𝑞
2
𝑦

)

exp
(

−4𝜋2𝜏𝜆3𝑞
2
𝑧
)

, (5)

for 𝐑′ = [𝑥, 𝑦, 𝑧]𝑇 and 𝐪′ = [𝑞𝑥, 𝑞𝑦, 𝑞𝑧]𝑇 .

2.2. Relating the (rotated) q-space to the (rotated) EAP domain

We will assume the attenuation signal is compact supported, i. e.
the value of 𝐸𝛩(𝐪′) vanishes to zero outside the 3-D domain 𝛺 =
(−𝑄𝑥

2 , 𝑄𝑥
2 ) × (−𝑄𝑦

2 ,
𝑄𝑦
2 ) × (−𝑄𝑧

2 , 𝑄𝑧
2 ) ⊂ R3. This allows to arrange a 3-D

tiling with shifted versions of 𝐸𝛩(𝐪′) to build a periodic signal in the
three coordinates {𝑞𝑥, 𝑞𝑦, 𝑞𝑧}:

𝑞𝑢 = 𝑞𝑢 −𝑄𝑢

⌈

𝑞𝑢 −𝑄𝑢∕2
𝑄𝑢

⌉

for 𝑢 ∈ {𝑥, 𝑦, 𝑧}

⇒ 𝐸𝛩(𝐪′) = 𝐸𝛩(�̃�′), for �̃�′ = [𝑞𝑥, 𝑞𝑦, 𝑞𝑧]𝑇 . (6)
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Assuming 𝐸𝛩 has finite power, it can be written in terms of its 3-D
Fourier series expansion (Oppenheim et al., 1997):

𝐸𝛩(𝐪′) =
∞
∑

𝑘=−∞

∞
∑

𝑙=−∞

∞
∑

𝑚=−∞
𝑐𝑘,𝑙,𝑚 exp

(

𝑗2𝜋
(

𝑘
𝑄𝑥

𝑞𝑥 +
𝑙
𝑄𝑦

𝑞𝑦 +
𝑚
𝑄𝑧

𝑞𝑧

))

, (7)

here the coefficients 𝑐𝑘𝑙𝑚 are computed by projecting 𝐸𝛩 onto each
ormalized basis function:

𝑘,𝑙,𝑚 = 1
𝑄 ∫ ∫ ∫𝛺

𝐸𝛩(𝐪′) exp
(

−𝑗2𝜋
(

𝑘
𝑄𝑥

𝑞𝑥 +
𝑙
𝑄𝑦

𝑞𝑦 +
𝑚
𝑄𝑧

𝑞𝑧

))

𝑑𝐪′

= 1
𝑄 ∫ ∫ ∫R3

𝐸𝛩(𝐪′) exp
(

−𝑗2𝜋𝐪′𝑇𝐑′
𝑘,𝑙,𝑚

)

𝑑𝐪′ = 1
𝑄
𝑃𝛩(𝐑′

𝑘,𝑙,𝑚), (8)

where 𝑄 = 𝑄𝑥𝑄𝑦𝑄𝑧 and 𝐑′
𝑘,𝑙,𝑚 = [𝑘∕𝑄𝑥, 𝑙∕𝑄𝑦, 𝑚∕𝑄𝑧]𝑇 draws a regular

lattice in the space of the EAP. Eqs. (7) and (8) can now be combined to
establish the linear relation between the measurements in the q-space
and the values of the EAP to estimate. Since 𝐸𝛩 is real and antipodal
symmetric, a cosine series expansion may be used:

𝐸𝛩(𝐪′) =
1
𝑄

∞
∑

𝑘=−∞

∞
∑

𝑙=−∞

∞
∑

𝑚=−∞
𝑃𝛩(𝐑′

𝑘,𝑙,𝑚) cos
(

2𝜋𝐪′𝑇𝐑′
𝑘,𝑙,𝑚

)

. (9)

2.3. Building the encoding matrix

Eq. (9) will be used to estimate a Cartesian sampling of the EAP
from a spherical multi-shell q-space sampling, {𝐪′𝑖 ∈ 𝛺}𝑁𝑖

𝑖=1. Since the
available number of q-samples is limited, so it is the number of lattice
nodes we can actually estimate for the EAP, and in practice the Fourier
series expansion will be cropped to its first few coefficients assuming
𝐸𝛩 is smooth enough:

𝐸𝛩(𝐪′) ≃
1
𝑄

𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=−𝑁𝑦

𝑁𝑧
∑

𝑚=−𝑁𝑧

𝑃𝛩(𝐑′
𝑘,𝑙,𝑚) cos

(

2𝜋𝐪′𝑇𝐑′
𝑘,𝑙,𝑚

)

, (10)

so that 2𝑁𝑥 + 1 samples evenly spaced 1∕𝑄𝑥 should cover the entire
‘𝑥’ axis of the EAP domain; 2𝑁𝑦 + 1 samples, one each 1∕𝑄𝑦, should
cover the ‘𝑦’ axis; 2𝑁𝑧 +1 samples, one each 1∕𝑄𝑧, should cover the ‘𝑧’
axis. This means that the compact support of 𝐸𝛩 is constrained by the
number of lattice nodes along each dimension, which in turn is related
to the available number of q-space samples, 𝑁𝑖. In precise terms:

• If the EAP is roughly compact supported at (i. e. it has negligible
values outside of) the 3-D domain [−𝑋

2 ,
𝑋
2 ] × [− 𝑌

2 ,
𝑌
2 ] × [−𝑍

2 ,
𝑍
2 ],

sampling its entire support will demand:

𝑁𝑥
𝑄𝑥

= 𝑋
2

⇒ 𝑄𝑥 =
2𝑁𝑥
𝑋

;
𝑁𝑦

𝑄𝑦
= 𝑌

2
⇒ 𝑄𝑦 =

2𝑁𝑦

𝑌
;

𝑁𝑧
𝑄𝑧

= 𝑍
2

⇒ 𝑄𝑧 =
2𝑁𝑧
𝑍

,

(11)

so that any q-samples with either |𝑞𝑥| > 𝑄𝑥
2 , |𝑞𝑦| >

𝑄𝑦
2 , or

|𝑞𝑧| >
𝑄𝑧
2 will be discarded since they must be assumed to be 0.

Obviously, the larger 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧, the fewer q-samples will
need to be discarded. However:

• 𝑁𝑙 =
(

2𝑁𝑥 + 1
) (

2𝑁𝑦 + 1
) (

2𝑁𝑧 + 1
)

should be in the same order
as 𝑁𝑖 so that the number of parameters to estimate is not vastly
greater than the number of measurements (in the absence of
regularization, 𝑁𝑙 ≤ 𝑁𝑖 indeed).

Fortunately, the antipodal symmetry of the EAP (𝑃𝛩(𝐑′) = 𝑃𝛩(−𝐑′))
allows to nearly halve the number of Degrees of Freedom (DoF) to
estimate. From Eq. (10), a simple reordering of the addends yields:

𝐸𝛩(𝐪′) ≃ 1
𝑄

(

𝑃𝛩(𝟎) + 2
𝑁𝑥
∑

𝑘=1
𝑃𝛩(𝐑′

𝑘,0,0) cos
(

2𝜋𝐪′𝑇𝐑′
𝑘,0,0

)

+2
𝑁𝑥
∑

𝑁𝑦
∑

𝑃𝛩(𝐑′
𝑘,𝑙,0) cos

(

2𝜋𝐪′𝑇𝐑′
𝑘,𝑙,0

)

4

𝑘=−𝑁𝑥 𝑙=1
+ 2
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=−𝑁𝑦

𝑁𝑧
∑

𝑚=1
𝑃𝛩(𝐑′

𝑘,𝑙,𝑚) cos
(

2𝜋𝐪′𝑇𝐑′
𝑘,𝑙,𝑚

)
⎞

⎟

⎟

⎠

. (12)

ence, the actual number of DoF to estimate is 𝑛 = 1 + 𝑁𝑥 + (2𝑁𝑥 +
)𝑁𝑦 + (2𝑁𝑥 + 1)(2𝑁𝑦 + 1)𝑁𝑧 = (𝑁𝑙 + 1)∕2. Now, let us substitute the
riple indexing {𝑘, 𝑙, 𝑚} of the lattice with a unique index 𝑗 by simply
tacking its nodes in order:

𝐑′
𝑗

}𝑛

𝑗=1
=
{

𝐑′
1,𝐑

′
2,… ,𝐑′

𝑛
}

≡
{

𝐑′
0,0,0,… ,𝐑′

𝑁𝑥 ,0,0
,𝐑′

0,1,0,… ,𝐑′
𝑁𝑥 ,1,0

,… ,𝐑′
𝑁𝑥 ,𝑁𝑦 ,0

,

𝐑′
−𝑁𝑥 ,−𝑁𝑦 ,1

,… ,𝐑′
𝑁𝑥 ,−𝑁𝑦 ,1

,… ,𝐑′
𝑁𝑥 ,𝑁𝑦 ,1

,… ,𝐑′
𝑁𝑥 ,𝑁𝑦 ,𝑁𝑧

}

.

(13)

The 𝑁𝑖×𝑛 encoding matrix  relates the 𝑁𝑖×1 vector of measurements,
𝐄 = [𝐸𝛩(𝐪′1),… , 𝐸𝛩(𝐪′𝑁𝑖

)]𝑇 , with the 𝑛 × 1 vector of unknowns, 𝐏 =
[𝑃𝛩(𝐑′

1),… , 𝑃𝛩(𝐑′
𝑛)]

𝑇 . After Eq. (12):

𝐄 ≃  𝐏 ∶ [ ]𝑖,𝑗 =
𝜅𝑗
𝑄

cos
(

2𝜋𝐪′𝑖
𝑇𝐑′

𝑗

)

, (14)

where 𝜅𝑗 = 1 if 𝑗 = 0 or 𝜅𝑗 = 2 otherwise. Finally, it is worth
noticing the actual number of samples 𝑁𝑖 may be voxel-dependent in
case certain q-space samples lay outside the allowed bandwidth defined
by 𝑄𝑥, 𝑄𝑦, and 𝑄𝑧 at each voxel.

2.4. Estimating the EAP from the encoding matrix

Eq. (14) establishes a linear relation between the vector of mea-
surements 𝐄 and the vector of unknowns 𝐏 that allows solving for the
latter with linear Least Squares (LS) techniques. However, two addi-
tional requirements must be fulfilled for the solution to be physically
meaningful: positivity and unit mass. For the former, we will constrain
all the entries of 𝐏 to be non-negative. For the latter, we note that the
unit mass property of the EAP is equivalent to the attenuation signal
evaluating to 1 at the origin 𝐪′0 = 𝟎. Thus, the following QP problem
arises:

min
𝐏

1
2
‖𝐄 − 𝐏‖2 s. t. 𝐏 ≥ 0 and 𝑓𝑇

0 𝐏 = 1, (15)

where the 𝑁𝑙 × 1 vector 𝑓0 = 1
𝑄 [1, 2,… , 2]𝑇 stands for an additional

row of the encoding matrix at 𝐪′0 = 𝟎. Nonetheless, these reconstruction
problems often require some sort of regularization: first, the measure-
ments vector 𝐄 is highly contaminated with noise. This is addressed
by Wu et al. (2008), Wu and Alexander (2007) by just dropping down
to 0 those values of the diffusion weighted images below a certain
threshold (usually, twice the free-air average signal). In our case, we
cannot forget that the actual number of samples, 𝑁𝑖, is voxel-dependent
since out-of-bandwidth samples are removed, so that the QP in Eq. (15)
might even become ill-posed. For these reasons, the QP problem will be
reformulated as follows:

min
𝐏

1
2
‖𝐄 − 𝐏‖2 + 𝜆

2
‖𝐏‖2 s. t. 𝐏 ≥ 0 and 𝑓𝑇

0 𝐏 = 1, (16)

where 𝜆 > 0 is a small positive constant and  is some linear operator.
We will resort to a Laplacian penalty, described in the Appendix,
as a popular choice to promote the smoothness of the solution (De-
scoteaux et al., 2007; Caruyer and Deriche, 2012; Fick et al., 2016b).
Note Eq. (16) describes a convex problem, so that a unique optimum
exists (Luenberger and Ye, 2008).

3. Computation of diffusion markers from the Cartesian EAP

Once the EAP is fully sampled in its whole domain, any numerical
feature at will can be estimated from it. In this section we derive
expressions for several commonly used diffusion markers: the RTOP
and MSD, like Wu and Alexander (2007) do, but also the RTAP and
the RTPP.



Medical Image Analysis 84 (2023) 102728A. Tristán-Vega et al.

i

3

b
t
e

R

T

R

A
E

4

4

t
w
c
a
𝐸
−

3.1. RTOP

Since the RTOP (or Po) is defined as the value of the EAP at the
origin, it may be trivially computed as:

RTOP = 𝑃 (𝟎) = 𝑃𝛩(𝟎) = [𝐏]1, (17)

.e. as the first component of vector 𝐏.

.2. RTAP

The RTAP represents the probability of water molecules moving
ack to the axis following the maximum diffusion direction within a
ime 𝜏. In our model, such axis reduces to ‘𝑧’. The RTAP can be defined
ither on the EAP domain or the q-space:

TAP = ∫

∞

−∞
𝑃𝛩(𝐑′) 𝑑𝑧 = ∫

∞

−∞ ∫

∞

−∞
𝐸𝛩(𝐪′) 𝑑𝑞𝑥 𝑑𝑞𝑦

= ∫

𝑄𝑥∕2

−𝑄𝑥∕2
∫

𝑄𝑦∕2

−𝑄𝑦∕2
𝐸𝛩(𝐪′) 𝑑𝑞𝑥 𝑑𝑞𝑦. (18)

he latter expression can be used to derive the RTAP from Eq. (12):

TAP ≃ 1
𝑄

(

∫

𝑄𝑥
2

−𝑄𝑥
2

∫

𝑄𝑦
2

−𝑄𝑦
2

𝑃𝛩(𝟎) 𝑑𝑞𝑥 𝑑𝑞𝑦

+2
𝑁𝑥
∑

𝑘=1
𝑃𝛩(𝐑′

𝑘,0,0)∫

𝑄𝑥
2

−𝑄𝑥
2

∫

𝑄𝑦
2

−𝑄𝑦
2

cos
(

2𝜋𝐪′𝑖
𝑇𝐑′

𝑘,0,0

)

𝑑𝑞𝑥 𝑑𝑞𝑦.

+ 2
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=1
𝑃𝛩(𝐑′

𝑘,𝑙,0)∫

𝑄𝑥
2

−𝑄𝑥
2

∫

𝑄𝑦
2

−𝑄𝑦
2

cos
(

2𝜋𝐪′𝑖
𝑇𝐑′

𝑘,𝑙,0

)

𝑑𝑞𝑥 𝑑𝑞𝑦

+ 2
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=−𝑁𝑦

𝑁𝑧
∑

𝑚=1
𝑃𝛩(𝐑′

𝑘,𝑙,𝑚)∫

𝑄𝑥
2

−𝑄𝑥
2

∫

𝑄𝑦
2

−𝑄𝑦
2

cos
(

2𝜋𝐪′𝑖
𝑇𝐑′

𝑘,𝑙,𝑚

)

𝑑𝑞𝑥 𝑑𝑞𝑦
⎞

⎟

⎟

⎠

= 1
𝑄𝑧

(

𝑃𝛩(𝟎) + 2
𝑁𝑧
∑

𝑚=1
𝑃𝛩(𝐑′

0,0,𝑚)

)

. (19)

Remarkably, Eq. (19) equals the first order quadrature for the first
integral form in Eq. (18), but it is exact up to the necessary cropping
of the Fourier series coefficients.

3.3. RTPP

The RTPP represents the probability of water molecules moving
back to the plane perpendicular to the maximum diffusion direction
within a time 𝜏. Since we assimilate the maximum diffusion direction
to the ‘𝑧’ axis, such domain is trivially described as the ‘𝑥’–‘𝑦’ plane.
The RTPP can be defined either on the EAP domain or the q-space:

RTPP = ∫

∞

−∞ ∫

∞

−∞
𝑃𝛩(𝐑′) 𝑑𝑥 𝑑𝑦 = ∫

∞

−∞
𝐸𝛩(𝐪′) 𝑑𝑞𝑧 = ∫

𝑄𝑧∕2

−𝑄𝑧∕2
𝐸𝛩(𝐪′) 𝑑𝑞𝑧.

(20)

The latter expression can be used to derive the RTPP from Eq. (12):

RTPP ≃ 1
𝑄

(

∫

𝑄𝑧
2

−𝑄𝑧
2

𝑃𝛩(𝟎) 𝑑𝑞𝑧 + 2
𝑁𝑥
∑

𝑘=1
𝑃𝛩(𝐑′

𝑘,0,0)∫

𝑄𝑧
2

−𝑄𝑧
2

cos
(

2𝜋𝐪′𝑖
𝑇𝐑′

𝑘,0,0

)

𝑑𝑞𝑧

+ 2
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=1
𝑃𝛩(𝐑′

𝑘,𝑙,0)∫

𝑄𝑧
2

−𝑄𝑧
2

cos
(

2𝜋𝐪′𝑖
𝑇𝐑′

𝑘,𝑙,0

)

𝑑𝑞𝑧

+ 2
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=−𝑁𝑦

𝑁𝑧
∑

𝑚=1
𝑃𝛩(𝐑′

𝑘,𝑙,𝑚)∫

𝑄𝑧
2

−𝑄𝑧
2

cos
(

2𝜋𝐪′𝑖
𝑇𝐑′

𝑘,𝑙,𝑚

)

𝑑𝑞𝑧
⎞

⎟

⎟

⎠

= 1
𝑄𝑥𝑄𝑦

⎛

⎜

⎜

⎝

𝑃𝛩(𝟎) + 2
𝑁𝑥
∑

𝑘=1
𝑃𝛩(𝐑′

𝑘,0,0) + 2
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=1
𝑃𝛩(𝐑′

𝑘,𝑙,0)
⎞

⎟

⎟

⎠

, (21)

which again equals the first order quadrature approximation to the first
5

integral form in Eq. (20).
3.4. MSD

The MSD is the second order, non-central moment of the EAP. Since
it will remain invariant to rotations, it can be equally computed from
the rotated EAP 𝑃𝛩(𝐑′):

MSD = ∫ ∫ ∫R3
‖

‖

𝐑′
‖

‖

2 𝑃𝛩(𝐑′) 𝑑𝐑′

= ∫ ∫ ∫R3

(

𝑥2 + 𝑦2 + 𝑧2
)

𝑃𝛩(𝐑′) 𝑑𝑥 𝑑𝑦 𝑑𝑧. (22)

From the theory on Fourier analysis, this quantity may be equally
computed in the q-space by evaluating the (scaled) Laplacian of 𝐸𝛩(𝐪′)
at 𝐪′ = 𝟎 (Oppenheim et al., 1997), as it has been thoroughly exploited
in the literature (Tristán-Vega et al., 2009, 2010):

MSD = −1
4𝜋2

𝛥𝐪′𝐸𝛩(𝟎) =
−1
4𝜋2

𝛥𝐪′𝐸𝛩(𝟎). (23)

This expression allows a straightforward computation from Eq. (12):

MSD ≃ −1
4𝜋2𝑄

(

2
𝑁𝑥
∑

𝑘=1
𝑃𝛩(𝐑′

𝑘,0,0)𝛥𝐪′ cos
(

2𝜋𝐪′𝑇𝐑′
𝑘,0,0

)

+ 2
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=1
𝑃𝛩(𝐑′

𝑘,𝑙,0)𝛥𝐪′ cos
(

2𝜋𝐪′𝑇𝐑′
𝑘,𝑙,0

)

+ 2
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=−𝑁𝑦

𝑁𝑧
∑

𝑚=1
𝑃𝛩(𝐑′

𝑘,𝑙,𝑚)𝛥𝐪′ cos
(

2𝜋𝐪′𝑇𝐑′
𝑘,𝑙,𝑚

)
⎞

⎟

⎟

⎠

|

|

|

|

|

|

|𝐪′=𝟎

= 2
𝑄

⎛

⎜

⎜

⎝

𝑁𝑥
∑

𝑘=1
𝑃𝛩(𝐑′

𝑘,0,0)
‖

‖

‖

𝐑′
𝑘,0,0

‖

‖

‖

2
+

𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=1
𝑃𝛩(𝐑′

𝑘,𝑙,0)
‖

‖

‖

𝐑′
𝑘,𝑙,0

‖

‖

‖

2

+
𝑁𝑥
∑

𝑘=−𝑁𝑥

𝑁𝑦
∑

𝑙=−𝑁𝑦

𝑁𝑧
∑

𝑚=1
𝑃𝛩(𝐑′

𝑘,𝑙,𝑚)
‖

‖

‖

𝐑′
𝑘,𝑙,𝑚

‖

‖

‖

2⎞
⎟

⎟

⎠

. (24)

gain, the first-order quadrature approximation to the integral in
q. (22).

. Numerical methods and algorithm parameters

.1. Bandwidth selection

A key limitation of the original HYDI-DSI is the direct dependence of
he bandwidth of the EAP with the particular q-space sampling scheme,
hich we address here. The lattice where the EAP will be defined will

over a domain that directly depends on the number of lattice points
nd its bandwidth (i.e. the support 𝛺 ⊂ R3 of the attenuation signal
(𝐪)). For example, for the ‘𝑥’ axis, the EAP will be sampled from
𝑁𝑥∕𝑄𝑥 to 𝑁𝑥∕𝑄𝑥. The extent of the EAP domain actually covered can

be increased by decreasing 𝑄𝑥: this implies reducing the bandwidth
of the signal, i.e. smoothing the EAP itself. Accordingly, the value
of derived indices like RTOP will be artificially reduced due to the
convolution of the EAP with a low-pass kernel. Conversely, we can
keep a large bandwidth of the EAP by increasing 𝑄𝑥, but in this case
the maximum value sampled, 𝑁𝑥∕𝑄𝑥, is likely not to cover a proper
extent of the EAP. Fig. 2 illustrates these two issues. Of course, we can
think of increasing 𝑁𝑥 together with 𝑄𝑥 to get full EAP coverage while
preserving and adequate bandwidth. But the number of lattice nodes,
in the order of (𝑁𝑥 ⋅𝑁𝑦 ⋅𝑁𝑧), cannot be arbitrarily large, but instead
it should roughly match the number of available q-space samples even
if regularization constraints are imposed.

Since the lattice axes are aligned with the eigenvectors of the low
b-value regimen, DTI approximation, it makes sense to scale them
according to the respective eigenvalues. For the ‘𝑥’ axis, the farthest

sampled value can be chosen such that the Gaussian tail has decayed
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Fig. 2. The effect of wrongly choosing the bandwidth of the EAP for 𝑁𝑥 = 4: if 𝑄𝑥 is
oo small (red), the EAP support is fully covered but it becomes low-pass filtered; if
𝑥 is too large (green), the EAP is kept sharp but its support is not properly sampled.

o a pre-defined small value 𝜇 > 0:

𝑃𝛩 (0, 0, 0) =
exp

(

− 1
4𝜏𝜆1

(

0
𝑄𝑥

)2
)

√

det(𝛬) (4𝜋𝜏)3

𝑃𝛩

(

𝑁𝑥
𝑄𝑥

, 0, 0
)

=
exp

(

− 1
4𝜏𝜆1

(

𝑁𝑥
𝑄𝑥

)2
)

√

det(𝛬) (4𝜋𝜏)3
= 𝜇 𝑃𝛩(0, 0, 0)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⇒
𝑄𝑥
2

=
𝑁𝑥

4
√

−𝜏𝜆1 log(𝜇)
.

(25)

Note this expression can be otherwise written in terms of maximum
b-values to get rid of the diffusion time 𝜏, so that:

cut−off ,𝑥 = 4𝜋2𝜏
(

𝑄𝑥
2

)2
=

−𝜋2𝑁2
𝑥

4𝜆1 log(𝜇)
;

cut−off ,𝑦 =
−𝜋2𝑁2

𝑦

4𝜆2 log(𝜇)
; 𝑏cut−off ,𝑧 =

−𝜋2𝑁2
𝑧

4𝜆3 log(𝜇)
.

(26)

It becomes inherent to our approach that q-space samples measured
beyond these limits have to be dropped down to avoid aliasing. Con-
sequently, the parameter 𝜇 must be appropriately tuned. As a final
remark, there is no reason why this same bandwidth tuning can-
not be used with the original re-gridding/interpolation approach to
define the domain 𝛺: it suffices to input zeros to the interpolation
algorithm at boundary points {−𝑄𝑥∕2, 0, 𝑄𝑥∕2} × {−𝑄𝑦∕2, 0, 𝑄𝑦∕2} ×
{−𝑄𝑧∕2, 0, 𝑄𝑧∕2} − 𝟎, and then operate as described by Wu et al.
(2008), Wu and Alexander (2007) for an input lattice defined over
𝛺 = [−𝑄𝑥∕2, 𝑄𝑥∕2] × [−𝑄𝑦∕2, 𝑄𝑦∕2] × [−𝑄𝑧∕2, 𝑄𝑧∕2] computed after
Eq. (25). We will put this strategy to the test as described in Section 5.2.

4.2. Practical implementation

The computation of the Gaussian approximation in Eq. (5) is accom-
plished with linearized LS techniques from the q-space samples with
𝑏 ≤ 2000 s∕mm2 (Salvador et al., 2005). The bandwidth of the signal,
described by 𝑏cut−off ,𝑒𝑗 , will be determined according to Eq. (26) for an
empirically fixed 𝜇. The number of samples along each dimension is a
design parameter, but we will use the same sampling as in the original
HYDI-DSI approach, i. e. a 9 × 9 × 9 lattice (𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 4) with
𝑁𝑙 = 729, so that 𝑛 = (𝑁𝑙 + 1)∕2 = 365 DoF have to be estimated.

The form of matrix  in Eq. (16), describing the Laplacian energy
penalty, is described in the Appendix, and the parameter 𝜆 will be fixed
according to empirical considerations.

Finally, the QP in Eq. (16) is solved with an ad hoc replacement
of Matlab’s quadprog function, based on gradient projection (Luen-
berger and Ye, 2008). The iterations are initialized with the uncon-
strained solution of Eq. (16), which reduces to the computation of
(𝑇 + 𝜆𝑇)−1𝑇𝐄, where the matrix to invert is symmetric and
positive definite. Such solution is corrected for negative values and nor-
malized to fulfill the unit-mass constraint before feeding the iterations
6

F

until convergence. Note the QP is convex, so it is always guaranteed to
converge to the global optimum. Matlab code can be downloaded as a
part of the dMRI-Lab toolbox (http://www.lpi.tel.uva.es/dmrilab).

5. Experiments and results

5.1. Materials

The evaluation of the proposal will be based on publicly available
databases. Concretely:

• The Human Connectome Project (HCP), MGH database (Fan
et al., 2016): these are high quality data acquired on a Siemens
3T Connectome scanner with 4 different shells at 𝑏 = {1000, 3000,
5000, 10,000} s∕mm2, with {64, 64, 128, 256} gradient directions
each and 40 interleaved unweighted baselines. The in-plane res-
olution is 1.5 mm and the slice thickness is 1.5 mm. Other
acquisition parameters are: pulse separation time/diffusion gra-
dients length 𝛥∕𝛿 = 21.8/12.9 ms, repetition time TR = 8800 ms,
time echo TE = 57 ms. We have randomly chosen subject HCP
MGH-1007 for proofs of concept.

• The HCP WU-Minn database (Van Essen et al., 2013): these
data were acquired with a Siemens 3T Connectome Skyra scanner
with a maximum gradient strength at 100 mT/m, 3 shells at
𝑏 = {1000, 2000, 3000} s∕mm2 with 90 gradient directions each
and 18 interleaved unweighted baselines. The in-plane resolution
is 1.25 mm and the slice thickness is 1.25 mm. Other acquisition
parameters are: 𝛥∕𝛿 = 43/10.6 ms, TR/TE = 5520/89.5 ms. We
selected 10 subjects, enrolled for both test and re-test acquisition
sessions: 103818, 105923, 111312, 114823 115320, 122317,
125525, 130518, 139839, 143325.

.2. Methods compared

The original method as described by Wu et al. (2008), Wu and
lexander (2007) will be simply referred to as HYDI-DSI. We will use a
ustom implementation based on Matlab’s griddatan as the authors
uggest. Note, however, that the q-space grid will be rotated at each
oxel (but not stretched) before the interpolation, which allows us to
lign the maximum diffusion direction with the ‘𝑧’ axis to compute
TAP and RTPP. The proposed method described in this paper will be
ubbed HYDI-DSI-QP attending to its numerical implementation as a
P. Besides, we will probe a third method, HYDI-DSI-AB, for which q-

pace re-gridding and interpolation is used in a lattice defined over an
daptive bandwidth (AB) as described in Section 4.1. This way, HYDI-
SI-AB is an intermediate approach that inherits from both HYDI-DSI
nd HYDI-DSI-QP, and it can indeed be considered a novel method
roposed in the present paper. Finally, we will include comparisons
ith MAPL (Fick et al., 2016b), which is probably the most popular
pproach within the category of continuous domain, parametric rep-
esentations of the EAP. We will use Python’s dipy implementation
https://dipy.org/) with anisotropic scaling, positivity constraints, a
aximum radial order 4 for the basis functions, and a fixed value 0.2

or the Laplacian weighting. While order 6 is advised by the authors
n case isotropic scaling is used, order 4 provides an acceptable trade-
ff between representation capabilities and computational load in the
nisotropic case.

.3. Bandwidth selection

The bandwidth chosen for the signal at each voxel depends on
he parameter 𝜇 and the lattice size, but not on the particular q-
pace sampling scheme. Indeed, only those b-values below 2000 s∕mm2

re actually used to fit the DTI approximation. Accordingly, we have
hosen subject HCP MGH-1007 as a representative example to elaborate

ig. 3, where the cut-off b-values at each (rotated) axis ‘𝑥’, ‘𝑦’, and

http://www.lpi.tel.uva.es/dmrilab
https://dipy.org/
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Fig. 3. (Left) Cut-off b-values (×103 s∕mm2) for the three main diffusion directions (top to bottom, on ascending order of the eigenvalues) and for several values of parameter 𝜇, all
of them computed over volume HCP MGH-1007 for a fixed lattice size 9 × 9 × 9. Yellow lines correspond to iso-contours at 𝑏cut−off ,𝑒𝑗 = 10,000 s∕mm2, and red lines to iso-contours
at 𝑏cut−off ,𝑒𝑗 = 5000 s∕mm2. (Right) A detail of the bandwidth selection (𝜇 = 0.05) at four representative voxels located as shown in the left figure. The black bounding boxes
represent the original q-space domain given by the maximum b-value 10,000 s∕mm2; blue ones stand for the estimated bandwidths in the rotated space from the DTI approach.
The dots represent the acquired 𝑏-values and gradients (red: discarded; green: used), and the surfaces depict the actual attenuation signal at each shell.
‘𝑧’ are represented at a middle-brain axial slice. We have chosen a
typical 9 × 9 × 9 lattice with 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 4, corresponding to
𝑛 = 365 DoF of the EAP. Fig. 3 (left) allows to conclude that, unless a
extreme value is chosen for 𝜇, such as 0.01, the only samples rejected at
𝑏 = 5000 s∕mm2 and above correspond to the cerebrospinal fluid (CSF).
To corroborate this assertion, Fig. 3 (right) shows a typical voxel at the
CSF (4), for which the estimated bandwidth is smaller than the sampled
bandwidth and a large number of samples are dropped out.

On the contrary, even for 𝜇 = 0.05, many non-CSF samples at
𝑏 = 10,000 s∕mm2 will be discarded for axis ‘𝑧’. As it can be inferred
from Fig. 3 (right, voxel 3), this situation corresponds to prominent,
well packaged structures (with large Fractional Anisotropy, FA) within
the white matter (WM), like the corpus callosum (CC; voxel 3) and the
cortico-spinal tract (CST), for which the signal along the main diffu-
sion direction rapidly vanishes: even when the estimated bandwidth
is larger than the sampled one at the transverse diffusion plane, the
bandwidth for the main diffusion direction crops the sampled one, so
that the samples at the North and South poles of the rotated space are
discarded. Note this artifact is likely to appear also in the original HYDI-
DSI, since the signal at these points will fall below the threshold set as
twice the free air signal.

With the same value 𝜇 = 0.05, Fig. 3 (right, voxels 1 and 2),
shows that no samples will be discarded, in general, at the gray matter
(GM) or low-FA regions of the WM. For the latter, a low FA value
will reflect regions with important partial volume effects due to fiber
crossings and/or bending, for which any spatial direction will mix up
both restricted and free diffusion.

Finally, 𝜇 = 0.10 practically avoids out-of-bandwidth q-space prun-
ing, but this comes at the expense of a poor coverage of the tails of the
EAP. In the light of this experiment, we can conclude that applying a
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threshold 𝜇 = 0.05 to the tails of the EAP seems a good trade-off for
most of situations.

5.4. Regularization parameter selection

The optimal value of the regularization parameter 𝜆 in Eq. (16) is
likely to depend on several factors, such as the q-space sampling and the
SNR of the data set, the lattice size, or the bandwidth chosen through
parameter 𝜇. For this reason, we have explored the same previous val-
ues of 𝜇 and two data sets with very different characteristics, concretely
HCP MGH-1007 and HCP WuMinn-139839, to trace the L-curves in
the respective Fig. 4(a) and (b). Besides, in order to keep a reasonable
complexity, we have fixed the lattice size once again to the standard
9 × 9 × 9. The L-curves plot the trade-off between the fitting residual
‖𝐄 − 𝐏‖2 and the Laplacian energy penalty ‖𝐏‖2 as parameter 𝜆
varies: for large values of 𝜆, the Laplacian penalty becomes stronger
and smoother solutions are promoted at the expense of larger residuals.
Conversely, for small values of 𝜆 the solution will resemble closer the
acquired data, but it will likely become physically little plausible. We
have focused on the white matter, which has been roughly segmented
by thresholding the FA of the DTI approximation at 0.3. First thing
to note is that larger bandwidths (i.e. larger 𝜇) translate in smaller
residuals, even when less q-space samples are discarded in the QP of
Eq. (16) and hence vector 𝐄 has more components. This is an additional
reason to avoid an excessive cropping of the large b-value regimen.
Next, it seems the behavior of the L-curves is very little dependent on
the value of 𝜇, which allows to tune both parameters independently.
Finally, the optimal value of 𝜆 can be assured to be in the range [0.1, 2.5]
in all cases: the corner of the L-curves marks the point where a slight

improvement in the residual will come at the expense of an important
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Fig. 4. Fitting residual ‖𝐄 − 𝐏‖2 vs. Laplacian energy penalty ‖𝐏‖2 as a function of the regularization parameter 𝜆, for subjects HCP MGH-1007 (a) and HCP WuMinn-139839
(b) and for several values of 𝜇. The curves represented in dashed, blue lines correspond to a random sub-sample inside the white matter. The red curve in solid line represents
the average value inside the white matter.
Fig. 5. Percentage of energy corresponding to negative values of the EAP within each voxel for the unconstrained methods: the original HYDI-DSI (top row) and the adaptive
bandwidth method, HYDI-DSI-AB (bottom row).
worsening of the smoothness of the solution (and vice-versa), so the
optimal 𝜆 should be chosen close to this point. Accordingly, a fixed
value 𝜆 = 0.50 seems adequate for both data sets HCP MGH and HCP
WuMinn, and it is the fixed value used throughout the paper.

5.5. Negativity of unconstrained methods

One main advantage of the HYDI-DSI-QP is the possibility it grants
to enforce sampled EAP values to be positive, which is unparalleled
for the interpolated methods (HYDI-DSI and HYDI-DSI-AB). Fig. 5 is
aimed at checking the actual impact of such constraints depending on
the number of acquired shells. Once again, subject HCP MGH-1007
has been considered as a representative example: both HYDI-DSI and
HYDI-DSI-AB (with 𝜇 = 0.05, according to the previous experiment)
have been used to compute the EAP at each voxel inside 9 × 9 × 9
lattices, and the percentage of energy corresponding to negative values
of the EAP estimated by numerical quadrature. As it can be seen, the
presence of negative lobes within the EAP is not a negligible issue.
Indeed, it becomes more noticeable as the number of acquired shells
decreases (as expected), but also it is more relevant for those white
matter regions with highest anisotropy: in particular, nearly 10% (or
more) of the estimated values of the EAP can be negative inside the
CC and the CST for any number of acquired shells. Comparing HYDI-
DSI with HYDI-DSI-AB, the adaptive bandwidth selection for the latter
helps palliating this artifact to some degree. Finally, note the computed
percentage of negative energy with HYDI-DSI-QP will always be zero by
construction.
8

5.6. Accuracy of scalar maps

The quantitative evaluation of dMRI techniques is usually a chal-
lenging problem due to the lack of realistic ground-truth data. In this
paper we will reuse the original approach conceived by Tristán-Vega
and Aja-Fernández (2021), where an actual micro-structural model
is estimated using the NODDI technique by Zhang et al. (2012) at
representative regions of the white matter. The parameters obtained
are statistically characterized to draw random samples that are fed to
the forward NODDI model to generate synthetic samples simulating
1, 2, or 3 crossing fibers at will with known Peak Signal to Noise
Ratio (PSNR). As long as the generative model can be sampled for any
arbitrary gradient direction and b-value, ground-truth values are easily
obtained for any dMRI measure with arbitrary precision by numerical
integration. The reader is addressed to Tristán-Vega and Aja-Fernández
(2021) for further details on this methodology.

Fig. 6 shows Bland & Altman agreement plots (Bland and Altman,
1986) between the indices (one of RTOP, RTAP, RTPP or MSD) as com-
puted with either of the methods compared (one of MAPL, HYDI-DSI,
HYDI-DSI-AB, or HYDI-DSI-QP) and the ground truth. Three different
PSNR values were probed, and the plots comprise all possible fiber-
crossing configurations in all cases. The q-space sampling scheme is
the one found in the HCP MGH database. Since each method will
potentially introduce a variable scale-shift for these indices depending
on the estimated bandwidth, we use logarithmic plots, i.e.: if the
agreement between 𝑀1 and 𝑀2 has to be assessed, we plot 𝑦 vs. 𝑥,
where 𝑥 and 𝑦 are respectively defined as 𝑥 = (log(𝑀 ) + log(𝑀 ))∕2
1 2
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Fig. 6. Bland & Altman agreement plots (logarithmic) between the scalar measures obtained with each of the methods compared (𝑀1) and the synthetic ground truth (𝑀2), as a
function of the PSNR and for mixed fiber configurations. The scalar measures tested are (a) RTOP, (b) RTAP, (c) RTPP and (d) MSD. The ‘𝑥’ axis represents (log(𝑀1)+log(𝑀2))∕2, and
the ‘𝑦’ axis log(𝑀2) − log(𝑀1). Dashed lines represent median values, whereas dotted lines represent the 10% and 90% percentiles; the correlation coefficient 𝜌 and the Normalized
Mutual Information (NMI) are shown for quantitative assessment.
and 𝑦 = log(𝑀2) − log(𝑀1). For quantitative assessment, we provide
also estimates of the correlation coefficient and the Normalized Mutual
Information (NMI) between 𝑥1 and 𝑥2 in all cases.

In general terms, all methods attain fairly good results for medium–
large PSNR, but their performance obviously worsens as the PSNR
decreases. Comparing the proposed HYDI-DSI-QP with the original
HYDI-DSI, the former is outperformed, both in terms of correlation
and NMI, by the latter for the RTOP and RTAP, but it does overall
better with the RTPP and MSD. HYDI-DSI-AB, in turn, does not seem
consistently beneficial for any index. Yet, the original HYDI-DSI proves
itself extraordinarily robust to noise for RTOP and RTAP, with the plots
experiencing very little spreading as the PSNR decreases.

If we compare now with MAPL, its behavior is in general similar to
that of HYDI-DSI-QP, though the former performs slightly better than
the latter in some scenarios (above all, for RTAP and RTPP) in terms of
correlations and NMI. Note, however, that the plots for HYDI-DSI-QP
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are closer to 0 for all indices and all PSNR values, meaning the scale-
shifts induced by our proposed technique are less important than those
with all the other methods (except, in some situations, for HYDI-DSI).
With regard to this issue, note that MAPL is indeed the worst performer,
since it yields to a larger bias than all other methods in all situations.

5.7. Sensitivity of scalar maps to the number of acquired shells

One of the aims of the present proposal is reducing the dependency
of quantitative dMRI parameters on the q-space sampling scheme by
designing a sampling-independent bandwidth. To check this property,
we compute the RTOP, RTAP, RTPP and MSD for subject HCP MGH-
1007. At first instance, we will use the four available shells up to
𝑏 = 10,000 s∕mm2, since the original HYDI-DSI was designed for this
range of maximum b-values. This estimate will be set as the bronze
standard for each method, and then the outermost shells will be sub-
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Fig. 7. RTOP values (in mm−3) for subject HCP MGH-1007 using either the four available shells (𝑏max = 10,000 s∕mm2), the three innermost shells (𝑏max = 5000 s∕mm2), the two
innermost shells (𝑏max = 3000 s∕mm2), or just the innermost shell (𝑏max = 1000 s∕mm2). Left: an illustrative central axial slice. Right: Bland & Altman agreement plots (logarithmic)
between the computation with all four shells (𝑥-axis) and the computation with the innermost shells (𝑦-axis) as indicated. The correlation coefficient 𝜌 and the NMI are also shown
for quantitative assessment.
Fig. 8. RTAP values (in mm−2) for subject HCP MGH-1007 using either the four available shells (𝑏max = 10,000 s∕mm2), the three innermost shells (𝑏max = 5000 s∕mm2), the two
innermost shells (𝑏max = 3000 s∕mm2), or just the innermost shell (𝑏max = 1000 s∕mm2). Left: an illustrative central axial slice. Right: Bland & Altman agreement plots (logarithmic)
between the computation with all four shells (𝑥-axis) and the computation with the innermost shells (𝑦-axis) as indicated. The correlation coefficient 𝜌 and the NMI are also shown
for quantitative assessment.
sequentially removed to estimate the same scalar measurements from
either three, two, or even one shell.

Fig. 7 shows the results for RTOP, both qualitatively (RTOP maps,
left) and quantitatively (Bland & Altman plots, right). As it can be seen,
the benefit of HYDI-DSI-QP over all other methods compared is now
clear: the plots are very well clustered around the median value in all
cases demonstrating an outstanding agreement even if only one shell
at 𝑏max = 1000 s∕mm2 is used, whereas all other methods (especially
MAPL) yield widespread cloud points. This conclusion is supported by
the fairly larger NMI value attained by HYDI-DSI-QP in all cases (the
correlation coefficient is not a conclusive performance index since it
becomes very close to 1 in all cases).

With regard to the scale shifts, HYDI-DSI is extremely sensitive to
the removal of the outermost shells (because the estimated bandwidth
10
directly depends on the maximum 𝑏-value itself), meanwhile HYDI-DSI-
AB and HYDI-DSI-QP are more robust. Though the estimated bandwidth
for these two methods is acquisition protocol-independent, they will be
affected by the lack of samples at large 𝑏-values as well: with HYDI-DSI-
QP, the Laplacian penalty promotes smooth solutions; in the absence of
high frequency q-samples to fit, the obvious way in which this condition
is fulfilled is producing low-pass responses, which translates in reduced
values of RTOP, see Fig. 2; with HYDI-DSI-AB, the missing samples
are just replaced with a zero padding, which leads also to an artificial
bandwidth drift. In this sense, the scales of the parameters estimated
with MAPL remain more faithful to those at 𝑏max = 10,000 s∕mm2

(though, after Fig. 6, these scales might be distorted).

Very similar comments arise for the RTAP from Fig. 8: HYDI-DSI-
QP is able to faithfully reproduce the original results with all four
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Fig. 9. RTPP values (in mm−1) for subject HCP MGH-1007 using either the four available shells (𝑏max = 10,000 s∕mm2), the three innermost shells (𝑏max = 5000 s∕mm2), the two
innermost shells (𝑏max = 3000 s∕mm2), or just the innermost shell (𝑏max = 1000 s∕mm2). Left: an illustrative central axial slice. Right: Bland & Altman agreement plots (logarithmic)
between the computation with all four shells (𝑥-axis) and the computation with the innermost shells (𝑦-axis) as indicated. The correlation coefficient 𝜌 and the NMI are also shown
for quantitative assessment.
shells even if the sampling scheme is reduced to just one shell, which
translates in well clustered plots and noticeably larger NMI values. Yet,
HYDI-DSI-QP is able to better preserve the scale of the RTAP across
all the experiments as compared to HYDI-DSI and even MAPL, being
slightly outperformed only by HYDI-DSI-AB.

For the RTPP, Fig. 9 demonstrates that HYDI-DSI-QP is still the best
performer, though its actual advantage over the other methods is not
equally clear in this case. Besides, and conversely to the RTAP, the
scale-shifts induced in the RTPP as the outermost shells are removed
is especially noticeable with HYDI-DSI-QP, and only the original HYDI-
DSI remains more sensitive. It is worth noticing that the Bland & Altman
map for HYDI-DSI-AB at 𝑏max = 5000 s∕mm2 presents an artifact in the
form of a spread cloud over-imposed to a clearly defined linear cluster.
The RTPP can be computed as the integral of 𝐸(𝐪) along the main
diffusion direction: for those voxels with a large FA, corresponding to
a unique, well packaged, fiber bundle (e.g. voxel 3 in Fig. 3, right), the
signal will very quickly decay for this main direction, so that it will very
likely have vanished at 𝑏 = 5000 s∕mm2 and above. Since HYDI-DSI-
AB works by zero-padding all the values above 𝑏max, the estimates for
𝑏max = 5000 s∕mm2 and 𝑏max = 10,000 s∕mm2 will be exactly the same,
which explains the straight line in the figure. For other voxels with
smaller FA, the estimates will largely differ due to the zero-padding,
which explains the spread cloud.

Finally, the MSD is tested in Fig. 10 with similar conclusions:
HYDI-DSI-QP provides very well clustered results, demonstrating an
outstanding agreement with the whole sampling even if just one shell
is used. The NMI values, once again, corroborate the visual inspection.
With regard to the scale shifts, in this case HYDI-DSI-AB seems partic-
ularly robust, whereas HYDI-DSI-QP and MAPL behave similarly and
HYDI-DSI, again, proves itself especially sensitive.

5.8. Repeatability and reliability analyses

The importance of computing quantitative indices in a reliable
manner within neurosciences has been stressed by Zuo et al. (2019).
According to the authors, such indices not only need to be repeat-
able for the same subject/anatomy being imaged (i.e. be specific),
but they should also reflect meaningful anatomical changes among
subjects (i.e. be sensitive). The quantitative assessment of repeatability
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through test–retest acquisitions has become a common topic in dMRI,
to the point that several ad hoc databases have been designed with this
aim (Koller et al., 2021; Van Essen et al., 2013). In particular, we will
use the test–retest subset of the HCP WuMinn database in this section.

We calculate the RTOP, RTAP, RTPP and MSD with MAPL, HYDI-
DSI, HYDI-DSI-AB and HYDI-DSI-QP. Each combination involves both
the test and the retest acquisitions within the data set. All three
available shells and all 90 gradient directions per each shell were
used. Besides, we estimate the diffusion tensors at 𝑏 = 1000 s∕mm2

using the FSL 6.0.4 dtifit tool (Smith et al., 2004, Analysis Group,
FMRIB, Oxford, UK.; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), retrieve the
FA parameter for all test/retest cases, and non-linearly register the
FA maps using a normalized correlation cost function to the common
template FMRIB58 (a high-resolution FA volume aggregated from 58
subjects) with a voxel resolution of 1 × 1 × 1 mm3 (Jenkinson et al.,
2002; Jenkinson and Smith, 2001). Eventually, all the above-mentioned
propagator-based measures are non-linearly warped to the common
space with trilinear interpolation. Once the measures are warped to the
standard space, we calculate their reliability as:

Reliability(𝐱) =
Separability(𝐱)
Repeatability(𝐱)

, (27)

with 𝐱-dependent Repeatability(𝐱) averaged from the repeatabilities of
each of the 𝑚 out of 𝑀 subjects:

Repeatability𝑚(𝐱) =
std. dev. across sessions𝑠(𝐱)
mean across sessions𝑠(𝐱)

for 𝑠 = {test, retest}.

(28)

Separability(𝐱) is conversely given by:

Separability(𝐱) =
std. dev. across subjects𝑚

(

mean across sessions𝑠(𝐱)
)

mean across subjects𝑚
(

mean across sessions𝑠(𝐱)
)

for 𝑚 = {1,… ,𝑀}. (29)

Table 1 presents the results of the repeatability and reliability
studies using ten subjects (𝑀 = 10) from the HCP WuMinn test–retest
subset. In both cases, the numbers were averaged from 20 representa-
tive slices in the standard space and the WM area extracted from the
John Hopkins University DTI-based atlas (Mori et al., 2005). Table 1(a)
displays the coefficients of variation of the measures expressed as a

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki


Medical Image Analysis 84 (2023) 102728A. Tristán-Vega et al.
Fig. 10. MSD values (in mm2) for subject HCP MGH-1007 using either the four available shells (𝑏max = 10,000 s∕mm2), the three innermost shells (𝑏max = 5000 s∕mm2), the two
innermost shells (𝑏max = 3000 s∕mm2), or just the innermost shell (𝑏max = 1000 s∕mm2). Left: an illustrative central axial slice. Right: Bland & Altman agreement plots (logarithmic)
between the computation with all four shells (𝑥-axis) and the computation with the innermost shells (𝑦-axis) as indicated. The correlation coefficient 𝜌 and the NMI are also shown
for quantitative assessment.
Table 1
Averaged repeatability (a) and reliability (b) inside the white matter from the test–retest
subset of the HCP WuMinn database. The smaller, the better reproducibility, while the
higher, the better reliability.

(a)

Repeatability (in %) RTOP RTAP RTPP MSD

MAPL 6.31 5.15 1.90 4.38
HYDI-DSI 2.12 1.98 1.67 4.24
HYDI-DSI-AB 8.18 6.85 2.36 3.52
HYDI-DSI-QP 4.78 3.76 1.45 3.04

(b)

Reliability RTOP RTAP RTPP MSD

MAPL 2.79 3.12 3.10 2.45
HYDI-DSI 2.73 3.07 2.23 2.49
HYDI-DSI-AB 2.79 3.05 2.47 2.38
HYDI-DSI-QP 2.73 3.05 3.47 2.84

percentage (i.e. multiplied by 100). This means the smaller the re-
peatability score, the better the reproducibility achieved. Generally, all
measures are characterized by a high level of reproducibility, with the
RTPP being the most reproducible measure (the coefficient of variation
is at most 2.36%). The HYDI-DSI-QP technique achieves improved
results over HYDI-DSI-AB including all measures and is superior to
the standard HYDI-DSI technique for RTPP and MSD. However, in the
case of RTOP and RTAP, the HYDI-DSI provides better performance
over both HYDI-DSI-AB and HYDI-DSI-QP. Noticeably, both HYDI-DSI
and HYDI-DSI-QP consistently outperform MAPL for all indices with
regard to repeatability. The averaged reliability of the measures, as
defined in Eq. (27), is presented in Table 1(b). In this experiment, the
higher the value, the better the reliability. The results show comparable
(virtually identical) reliability for RTOP and RTAP among all four
methods, despite large discrepancies occur if we pay attention only to
the repeatability. For RTPP and MSD, HYDI-DSI-QP is notably superior
to all the other methods compared.

5.9. Execution times

Quantitative dMRI is often computationally very demanding, entail-
ing processing times that range from several minutes to many hours or
12
Table 2
Average per-voxel execution times (milliseconds) depending on the number of shells
considered.

4 shells 3 shells 2 shells 1 shell

MAPL 368.2 303.1 252.1 203.7
HYDI-DSI 17.6 4.8 10.3 2.8
HYDI-DSI-AB 14.3 9.4 4.9 4.7
HYDI-DSI-QP 3.0 1.8 1.1 0.9

even days per subject. Hence, the study of the computational complex-
ity is undoubtedly interesting in this context. Table 2 summarizes the
average computation times taken by each method compared in this pa-
per to process one single voxel. We have used subject HCP MGH-1007
for illustration purposes, and tested several sampling schemes with the
same fixed configurations described in Section 5.7: four shells up to
𝑏 = 10,000 s∕mm2, three shells up to 𝑏 = 5000 s∕mm2, two shells up to
𝑏 = 3000 s∕mm2, or one shell at 𝑏 = 1000 s∕mm2. Times are reported for
Matlab R2020a implementations (HYDI-DSI-like) or Python 3.6 (MAPL)
running on an Intel(R) Xeon(R) E5-2695 CPU with 54 cores at 2.30 GHz
and 110 GB RAM memory under Ubuntu Linux 20.04, all of them multi-
threaded. As it could be expected beforehand, MAPL and HYDI-DSI-QP
are always faster as the number of q-space samples decreases, since
the size of the QP is obviously smaller. This comment does not hold
for HYDI-DSI, for which the bottleneck is in the computation of the
convex hull and Delaunay’s triangulation (linear interpolation will take
a negligible time): the computation time is not always monotonically
increasing with the number of samples, which makes this method less
predictable with regard to its complexity. Though HYDI-DSI-AB takes
decreasing times with smaller samplings, it is still prone to the same
issue as HYDI-DSI. HYDI-DSI and HYDI-DSI-AB are comparable in all
cases, each one being faster for certain configurations and slower for
others. In any case, the proposed HYDI-DSI-QP is notably faster than the
re-gridding/interpolation methods, with an acceleration factor ranging
3× to 10×. Finally, MAPL is dramatically slower than all other methods,
nearly 100× to 200× compared to HYDI-DSI-QP: meanwhile a complete
volume from the HCP database can be processed with the latter in
roughly half an hour, the former will take well over two days.
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6. Discussion and conclusions

The proposed HYDI-DSI-QP is able to estimate fully non-parametric,
positive, unit-mass constrained EAPs at a regular Cartesian lattice from
arbitrary q-space samplings (though we have focused on multi-shells).
As opposed to the original HYDI-DSI, the quantitative indices derived
from these EAPs are relatively robust to the maximum b-value acquired,
since the bandwidth of the signal is estimated from a DTI approxima-
tion fitted to the low b-value regimen instead of from the sampling
protocol itself. Of course, smoothness constraints impose a reduction of
the bandwidth of the estimated EAP as the maximum acquired b-value
decreases. The keystone of HYDI-DSI-QP is replacing the re-gridding
and linear interpolation of the q-space with a constrained, Laplacian-
regularized optimization problem, which indeed makes the algorithm
more time-efficient.

In fact, the computational complexity in the original HYDI-DSI
approach becomes unnecessarily increased by its straightforward im-
plementation with a voxel-wise call to Matlab’s griddatan. Note
the slowest part of this method is the computation of the convex hull
and Delaunay’s triangulation: if the lattice layout is kept constant with
respect to the q-space samples (i.e. it is non-adaptive with regard to
the DTI approximation), these two computations could be done once
for the entire volume, and the only repeated operation would be the
(very fast) linear interpolation. Note, however, this would not apply
in case we want to accurately compute directional indices (e.g. RTAP
and RTPP) or design adaptive bandwidths like in HYDI-DSI-AB. In the
former case, the lattice will become rotated with respect to the q-space
samples to align its axes with the principal diffusion directions; in the
latter, the lattice will be both rotated and stretched. In both cases, the
proposed HYDI-DSI-QP will be a faster option.

An additional advantage of the proposed HYDI-DSI-QP is the pos-
sibility it grants to impose positivity constraints, which is not feasible
with interpolation-based methods. Fig. 5 highlights this is certainly a
non-negligible issue, as long as the greatest impact of negative-valued
EAP samples shows up within relevant white matter structures such as
the CC or the CST. Moreover, this problem worsens for more modest
(hence, closer to what may be found in clinical applications) q-space
samplings than the outstanding MGH HCP data set. Remarkably, it has
been shown that non-negativity constraints unleash their highest po-
tential when the underlying function representing the EAP is enforced
to be non-negative in its entire continuous domain (Dela Haije et al.,
2020). With HYDI-DSI-QP, on the contrary, only a discrete subset of
the EAP (the lattice nodes) is assured to be non-negative. Note this is
inherent to DSI-like, non-parametric approaches, for which the discrete
values to be estimated are not parameters to reconstruct a continuous
(non-negative) function, but sparse values of the function itself.

The problems of q-space re-gridding have been previously recog-
nized in the Generalized DSI (Tian et al., 2019, GDSI), where the
authors work around the problem with a direct discretization of Eq. (1)
in the form of a quadrature rule for Fourier’s integral. There, each q-
space sample is weighted accounting for the volume it occupies, in a
way that there is no need for further interpolation. It has the obvious
advantage of being computationally very efficient, since it reduces to a
(fixed) matrix product at each voxel. Besides, the same scheme easily
fits Cartesian or spherical lattices in both the q-space and the EAP
domain. However, it is by no means free of certain problems: first,
the bandwidth of the signal is directly limited by the maximum b-
value acquired, as it is with HYDI-DSI, which in practice means this
method will be well suited only for specific data sets like the HCP
MGH. Second, the raw discretization of Eq. (1), as opposed to the
DFT computed over a q-space signal forced to evaluate to 1 at 𝐪 =
𝟎, does not guarantee the EAP to have unit mass, which is indeed
the case for all the methods explored in this paper. Of course, the
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positivity of the EAP is neither assured per se. Finally, for more general
samplings than Cartesian or spherical, it is not clear how the volume-
dependent weights of GDSI would be computed. These samplings would
not represent any particular issue for HYDI-DSI-like approaches.

A different approach dealing with q-space interpolation was pro-
posed by Yeh and Verstynen (2016), where the authors drew HARDI
data from DSI-like or multi-shell samplings by interpolation. This is
based on the linear relation between the so-called Spin Distribution
Function (SDF) and the attenuation signal samples. At the very end,
the problem is solved as a Tikhonov-regularized, non-constrained least
squares problem. The authors claim that non-negativity constraints
become unnecessary resorting to empirical considerations, likely owing
to the fact that, being aimed at reducing DSI-like/multi-shell data to
HARDI schemes, the problem they address is vastly over-determined.
In any case, this approach focuses on HARDI analysis techniques, so
that it does not stand a direct comparison with our proposal.

The price to pay when getting rid of q-space interpolation is the
introduction of two additional algorithm parameters (besides the lattice
size) that were not present in the original HYDI-DSI: the bandwidth
selection 𝜇 and the Laplacian weighting 𝜆. Fortunately, Figs. 3 and 4
show they can be fixed in a one size fits all fashion, regardless of the
actual q-space sampling used. Indeed, their values remain constant in
Figs. 7–10 as the outermost acquired shells are progressively removed,
and even so HYDI-DSI-QP exhibits a stable behavior. Moreover, all the
results reported throughout the paper used 𝜇 = 0.05 and 𝜆 = 0.5 after
Figs. 3 and 4, without any further optimization.

Regarding the actual accuracy of HYDI-DSI-like approaches, Fig. 6
shows the three of them provide excellent approximations for the full
HCP MGH protocol (with b-values up to 10,000 s∕mm2), unless very
poor PSNR values are considered. Though the estimations obtained
with either of the three methods strongly correlate with ground-truth
values, it remains clear that the proposed HYDI-DSI-QP performs the
best at estimating the actual order of magnitude of the RTxP indices,
with logarithmic scale-shifts near 0. The actual advantage of our pro-
posal, however, is demonstrated in Figs. 7–10: HYDI-DSI-QP clearly
outperforms the original HYDI-DSI in the estimation of RTxP values
as fewer shells are available, hence proving itself more useful with
non-dedicated, more clinically-suitable diffusion data sets.

Remarkably, the progressive removal of the outermost shells results
in two artifacts: first, since fewer samples are available for the esti-
mation, the variance of the estimation (the width of the points clouds
in the joint histograms) increases, as expected. Second, the measures
are scale-shifted with respect to their values at 𝑏 = 10,000 s∕mm2. This
is evident with HYDI-DSI, since the calculated bandwidth is directly
provided by the maximum b-value acquired. With HYDI-DSI-QP, the
reason may be found in Eq. (16): since no high-frequency samples are
available, this part of the spectrum is governed by the penalty term,
which promotes lower-pass solutions, hence decreasing the values of
the RTxP. With HYDI-DSI-AB, on the contrary, the non-measured part
of the spectrum will be linearly interpolated, so that the bandwidth can
even result artificially increased. Note this is a major difference of our
approach when compared to CS-based proposals (Bilgic et al., 2012;
Menzel et al., 2011; Young et al., 2017): CS will provide faithful, full-
bandwidth approximations to the EAP even if the q-space is sampled
below Nyquist’s rate (but up to a sufficiently large b-value). This
is attained through the use of a sparsifying transform and 𝓁1-based
optimization procedures. Our HYDI-DSI-QP avoids the need for such
transform by directly computing samples of the function of interest
(the discrete EAP), which at the same time allows to directly impose
positivity constraints in a straightforward manner.

Note the computations of the RTOP (see Fig. 7), the RTAP (Fig. 8),
the RTPP (Fig. 9), and the MSD (Fig. 10) are quite robust to the
elimination of large b-valued shells with HYDI-DSI-QP. In other words,
HYDI-DSI-QP, as compared to the original HYDI-DSI, grants the op-
portunity to accurately estimate non-parametric, DSI-like information

from non-specific samplings. Yet, HYDI-DSI-QP provides pretty decent
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approximations of the bronze standard from even a unique shell at
𝑏 = 1000 s∕mm2, which could allow our proposal to compete with
recent model-based/parametric approaches devised for quantitative
dMRI analysis from clinically feasible setups (Aja-Fernández et al.,
2020, 2021, 2022).

More interestingly, the experiments presented throughout the paper
evidence that our HYDI-DSI-QP attains, at the very least, comparable
results to those obtained with MAPL in terms of accuracy, robustness,
and reliability. Indeed, we are able to clearly and consistently outper-
form MAPL in many scenarios (compare top and bottom rows of the
Bland and Altman graphs in Figs. 7 through 10). Though we cannot
claim that MAPL is the state of the art in EAP imaging (to our knowl-
edge, there are not systematic and exhaustive comparative studies
supporting the better performance of MAPL compared to other tech-
niques), it is undoubtedly the most popular approach for multi-shells,
despite being extremely time consuming and resource demanding. In
this sense, we have designed an EAP imaging technique that attains
a speedup at least 100× over MAPL with a comparable or even better
erformance.

Compared to its predecessor (HYDI-DSI by Wu et al. (2008)), HYDI-
SI-QP no longer requires ad hoc q-space sampling schemes, but it

properly works with those currently available in public databases.
Putting all together, HYDI-DSI-QP might constitute a milestone for
bringing up the potential of advanced EAP imaging to the analysis of
medium–large sized databases.

In this work, we have focused on quantitative dMRI, which is also
the main topic covered by Wu et al. (2008), i.e. we aim at accurately
computing certain indices derived from diffusion measurements that
can potentially reflect features and processes taking place in the white
matter at a micro-structure level. As such, we have not paid attention to
the computation of ODF fields or EAP-based tractography, which is in
turn an important matter of concern in the related literature (Assemlal
et al., 2009; Hosseinbor et al., 2013; Tian et al., 2019; Tristán-Vega
and Aja-Fernández, 2021). The computation of the EAP in a Cartesian
lattice, especially when it is oriented following the principal diffusion
directions, nicely fits the computation of the usual indices (RTOP,
RTAP, RTPP, MSD), but a spherical arrangement is better suited for
ODF or directionality description. Wu and Alexander (2007), devising
HYDI as a put-all-together method, were not concerned about this
pitfall because ODF/tractography were supposed to be computed in-
dependently with one of the available DTI/HARDI techniques. If this
complementary information has to be extracted from the Cartesian
EAP itself, some sort of re-gridding/interpolation in the EAP domain is
required. This might well be a linear interpolation of the EAP samples
themselves, or a more sophisticated approach could be thought of:
proceeding as in the Appendix, we could obtain a set of Fourier
coefficients of the periodically extended EAP, which is equivalent to
a re-gridding of the q-space. Then, the analogous developments as
in Section 2.3 would allow building a matrix relating the Cartesian
sampling of the q-space to the desired spherical grid in the EAP domain,
from which computing ODFs would now be trivial. Note that both MAP-
MRI and MAPL face similar issues, since they equally rely on functions
naturally defined in the Cartesian domain (Fick et al., 2016b; Özarslan
et al., 2013b).

Yet, the RTOP, the RTAP, the RTPP and the MSD are not the unique
EAP-derived quantities of interest within dMRI: the Non-Gaussianity
(NG) and the Propagator Anisotropy (PA), which are naturally de-
rived from the MAP-MRI representation (Özarslan et al., 2013b), have
proven themselves certainly valuable for the description of several
pathologies (Avram et al., 2016; Bernstein, 2019; Fick et al., 2016a).
For example, the PA is defined as the distance from the EAP to its
equivalent isotropic signal, defined as the spherical average of 𝑃 (𝐑) at
ach ‖𝐑‖. Once again, the Cartesian description of the EAP with HYDI-
SI approaches is a pitfall in the computation of this measurement
14

hat needs to be solved via numeric interpolation. Since HYDI-DSI-QP a
ursues the analytical computation of quantitative dMRI indices (see
ection 3), the need for numeric interpolation in all these cases is a
lear limitation.

The proposed method is aimed at the non-parametric description of
he EAP. The relevance of this particular feature arguably relies on the
xpectation that a non-parametric representation provides extra DoF
ver parametric ones, meaning that the derived indices will hopefully
xhibit a higher sensitivity to micro-structure changes inside the white
atter. Conversely, more DoF are likely to make the EAP representation
ore prone to random drifts induced by noise and imaging artifacts,

.e. reduced specificity. With regard to the latter issue, we have charac-
erized specificity by means of the inter-session coefficient of variation
hither defined as the reproducibility), which should remain relatively
ow for the derived dMRI measures to be clinically feasible. This
riterion has been met for all measures estimated under HYDI-DSI and
YDI-DSI-QP approaches as stated in Table 1(a), with coefficients of
ariation always below 5%.

However, the analysis in terms of raw reproducibility, despite being
elatively simple, can be misleading: Table 1(a) suggests that the origi-
al HYDI-DSI might be clearly preferable for the estimation of RTOP
nd RTAP, since it is twice as repeatable as HYDI-DSI-QP for these
ndices. However, the previous experiments highlight the fact that the
ndices estimated with either technique are not directly comparable
ue to the very different bandwidths estimated for the EAP in each
ase. In other words, the heavy scale-shifts HYDI-DSI introduces in
TxP values as a consequence of abruptly cropping the bandwidth of

he EAP can be related to sensitivity losses: Table 1(b) measures this
ffect by normalizing inter-session coefficients of variation with inter-
ubject differences. With this normalization, it remains clear that all the
ethods compared are equally reliable for the estimation of RTOP and
TPP, meanwhile HYDI-DSI-QP is clearly preferable for RTPP and MSD.

n any case, the reproducibility and reliability studies presented in
able 1 demonstrated promising potential of the measures to be further
ransferred to the clinical domain or to be used in a neurodevelopment
esearch scenario, e.g. brain aging or longitudinal studies.

Finally, the analysis of dMRI measures in terms of reliability (not
ust reproducibility) is a novel contribution of this paper, which can
ave the way for the selection of an appropriate sample size to preserve
trade-off between a long acquisition time or group size and a high

ignificance of statistical tests (Zuo et al., 2019). Such trade-off will
e pursued through the choice for an appropriate EAP reconstruc-
ion method, either parametric or non-parametric, and, as we have
llustrated here, an appropriate design of the bandwidth of the EAP.
esides, it seems likely that it will strongly depend on the particular
haracteristics of the database to be analyzed. In this sense, a wider
tudy generalizing the one carried out in Section 5.8 would allow the
ystematic comparison of parametric and non-parametric EAP imaging
echniques with regard to their reliability in different situations (i.e. for
ifferent imaging protocols). Including HYDI-DSI-like approaches in the
ool of compared methods is now possible after the present paper,
ince we have demonstrated that HYDI-DSI-QP relies notably less on
edicated q-space samplings than the original HYDI-DSI does, so that
t can be computed over existing test–retest databases (Koller et al.,
021; Van Essen et al., 2013) as-it-is.
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Appendix. Description of the Laplacian penalty

The Laplacian of the EAP, as required in Eq. (16), could be ap-
proximated with finite differences computed over 𝐏 itself. Instead, we
look for an exact representation based on the DFT. In order to avoid
discontinuities due to the inherent periodic boundary conditions, we
extend the original EAP lattice to a new one with size (2𝑁𝑥+2)×(2𝑁𝑦+
) × (2𝑁𝑧 + 2) by zero padding at 𝑁𝑒𝑗 + 1. By rearranging the antipodal
ymmetric 𝑃𝛩(𝑘∕𝑄𝑥, 𝑙∕𝑄𝑦, 𝑚∕𝑄𝑧) ({𝑘, 𝑙, 𝑚} = −𝑁𝑒𝑗 …𝑁𝑒𝑗 + 1), we get a
olumn vector 𝐏sym that relates to the signal in the q-space as:

sym = 𝑄𝑊sym 𝐄sym, (A.1)

where the column vector 𝐄sym is rearranged from the signal
𝐸𝛩

(

𝑄𝑥𝑢∕2(𝑁𝑥 + 1), 𝑄𝑦𝑣∕2(𝑁𝑦 + 1), 𝑄𝑧𝑤∕2(𝑁𝑧 + 1)
)

({𝑢, 𝑣,𝑤} = −𝑁𝑒𝑗 …
𝑁𝑒𝑗 + 1), and 𝑊sym is the DFT matrix whose entries have the form (Op-
penheim et al., 1997):

[𝑊sym]𝑟(𝑢,𝑣,𝑤),𝑐(𝑢,𝑣,𝑤)

= exp
(

−𝑖𝜋
(

𝑘 𝑢∕𝑁𝑥 + 1 +
𝑙 𝑣∕𝑁𝑦 + 1 +

𝑚𝑤∕𝑁𝑧 + 1

))

. (A.2)

Since 𝑊sym has Hermitian symmetry, its inversion becomes trivial.
Besides, since both the EAP and the attenuation signal are necessarily
real, we get:

𝐄sym = 1
𝑄

ℜ{𝑊 𝐻
sym}𝐏sym. (A.3)

The computation of the Laplacian can be done by relating this operator
to its dual in the q-space domain, as it has been thoroughly exploited
in the literature (Tristán-Vega et al., 2009, 2010). Hence:

𝐅sym = −4𝜋2diag(𝐬sym)𝐄sym

= −4𝜋2

𝑄
diag(𝐬sym)ℜ{𝑊 𝑇

sym}𝐏sym = 1
𝑄

ℜ{𝑊 𝑇
𝑓 }𝐋sym, (A.4)

where 𝐋sym stands for the Laplacian of the EAP, sampled at the same
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lattice points as the EAP itself, and rearranged as a column vector.
Vector 𝐬sym represents the (column-rearranged) squared modules of the
lattice nodes in the q-space, i. e.:

[𝐬sym]𝑟(𝑢,𝑣,𝑤) =
𝑄2

𝑥 𝑢
2

4(𝑁𝑥 + 1)2
+

𝑄2
𝑦 𝑣

2

4(𝑁𝑦 + 1)2
+

𝑄2
𝑧 𝑤

2

4(𝑁𝑧 + 1)2
. (A.5)

Therefore, 𝐅sym is the DFT of the signal corresponding to the Laplacian
of the sampled EAP. According to Parsevaal’s theorem, the energy of the
former equals the energy of the latter. By identifying terms in Eqs. (16)
and (A.4) we can derive:

sym = −4𝜋2

𝑄
diag(𝐬sym)ℜ{𝑊 𝑇

sym}. (A.6)

t only remains to drop off the rows and columns of 𝑊 𝑇
sym corresponding

o antipodal symmetries (like we did in Section 2.3), as well as those
olumns corresponding to the original zero-padding of the EAP at extra
attice points, to get 𝑊 𝑇 (and perform analogous operations with the
ows of 𝐬sym to get 𝐬). Finally:

= 𝑄-2∕3 −4𝜋2

𝑄
diag(𝐬)ℜ{𝑊 𝑇 } = −4𝜋2𝑄-5∕3 diag(𝐬)ℜ{𝑊 𝑇 }, (A.7)

where the additional normalization factor 𝑄-2∕3 obeys to the need for
dimensional homogeneity between  and  in Eq. (16).
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