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A B S T R A C T   

Heart rate variability (HRV) is modulated by sleep stages and apneic events. Previous studies in children 
compared classical HRV parameters during sleep stages between obstructive sleep apnea (OSA) and controls. 
However, HRV-based characterization incorporating both sleep stages and apneic events has not been conducted. 
Furthermore, recently proposed novel HRV OSA-specific parameters have not been evaluated. Therefore, the aim 
of this study was to characterize and compare classic and pediatric OSA-specific HRV parameters while including 
both sleep stages and apneic events. A total of 1610 electrocardiograms from the Childhood Adenotonsillectomy 
Trial (CHAT) database were split into 10-min segments to extract HRV parameters. Segments were characterized 
and grouped by sleep stage (wake, W; non-rapid eye movement, NREMS; and REMS) and presence of apneic 
events (under 1 apneic event per segment, e/s; 1–5 e/s; 5–10 e/s; and over 10 e/s). NREMS showed significant 
changes in HRV parameters as apneic event frequency increased, which were less marked in REMS. In both 
NREMS and REMS, power in BW2, a pediatric OSA-specific frequency domain, allowed for the optimal differ
entiation among segments. Moreover, in the absence of apneic events, another defined band, BWRes, resulted in 
best differentiation between sleep stages. The clinical usefulness of segment-based HRV characterization was 
then confirmed by two ensemble-learning models aimed at estimating apnea-hypopnea index and classifying 
sleep stages, respectively. We surmise that basal sympathetic activity during REMS may mask apneic events- 
induced sympathetic excitation, thus highlighting the importance of incorporating sleep stages as well as 
apneic events when evaluating HRV in pediatric OSA.   

1. Introduction 

The spectral characteristics of cardiac function differ between 
wakefulness and sleep and are closely modulated by sleep stage. Typi
cally, there is a sympathetic inhibition along with parasympathetic 
predominance during non-rapid eye movement sleep (NREMS), leading 
to a decrease in heart rate (HR) and blood pressure (BP) [1,2]. 
Conversely, the trends during wakefulness (W) and rapid eye movement 
sleep (REMS) consist of sympathetic predominance with para
sympathetic inhibition, leading to increased heart rate and BP [2]. This 
modulation of both branches of the autonomic nervous system (ANS) 

can be non-invasively monitored by heart rate variability (HRV) ana
lyses [3]. Accordingly, previous studies have identified these ANS al
terations during sleep as diminished high frequency (HF) HRV activity 
and elevated low frequency (LF) and LF/HF ratios during W and REMS, 
and reciprocal changes during NREMS in both healthy adults and chil
dren [1,2,4–6]. 

Together with the changes in the cardiac dynamics that take place 
through sleep stages, children cardiac behaviors during sleep can also be 
altered by pediatric obstructive sleep apnea (OSA) [7,8]. In its original 
description in adults, OSA-related alterations in heart rhythm were 
defined as a pattern of continuing bradycardia during apneic episodes, 
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followed by an abrupt tachycardia when the apneic events end [9]. In 
children, these patterns have also been detected, but with a high degree 
of variability depending on the presence and duration of the apneic 
events [7,8,10–12]. Thus, these alterations in the healthy ANS perfor
mance threaten the cardiac health in children, with pediatric OSA 
having been linked to increased cardiovascular risks [13,14], thereby 
emphasizing the usefulness of HRV analysis in the pediatric OSA 
context. 

Previous studies have analyzed pediatric OSA-related alterations by 
comparing HRV patterns across sleep stages between children suffering 
from OSA and healthy children [15–20]. However, these studies 
addressed the differences emerging across the sleep stages but did not 
assess the specific effects of apneic events [15–17]. Furthermore, some 
of these reports excluded those segments in the recordings containing 
apneic episodes from their analyses [18,19,21]. Therefore, HRV as
sessments that include both sleep stages and apneic events or their 
absence has not yet been conducted. Furthermore, we have recently 
defined and characterized three pediatric OSA-specific HRV spectral 
bands [22]. Those bands have been proposed as an alternative to the 
classic very low frequency (VLF), LF, and HF ranges in pediatric OSA 
studies, establishing the changes in the activity of those bands and 
concomitant changes in OSA severity and resolution of OSA after 
treatment [23]. Accordingly, the analysis of the evolution of the HRV 
activity in these specific-spectral bands across sleep stages, and using 
segments with different number of apneic events, is a natural step for
ward required to gain insights into the behavior of these novel frequency 
bands. 

Therefore, we hypothesized that HRV analysis at segmented time 
intervals that segregate and include the information on sleep stages and 
apneic events and employ analyses of both classic and OSA-specific HRV 
parameters could reveal previously unknown information of ANS al
terations during night. A secondary goal was to evaluate the potential 
clinical application of the extracted features from these segments for the 
automatic diagnosis of pediatric OSA and for sleep stage classification. 

2. Subjects and signals 

This study involved 1610 polysomnographic (PSG) studies from 
children ages 5–9.9 years from the Childhood Adenotonsillectomy Trial 
(CHAT) database (Number of Clinical Trial NCT00560859). All the in
formation regarding rationale, design, and primary outcomes of the 
original CHAT study can be consulted in the published literature [24, 
25]. The CHAT data is publicly available under request at https: 
//sleepdata.org/datasets/chat. The children included in the CHAT 
study were referred to a sleep laboratory for a nocturnal PSG due clinical 
symptoms suggestive of the presence of OSA. The CHAT population 
involved in the current study was: i) 451 children with OSA included the 
baseline group, who underwent an initial nocturnal PSG, met the in
clusion criteria of the original study, and were randomized to different 
OSA treatments (see Ref. [25] for more details); ii) 755 children from the 
nonrandomized group, who did not meet the inclusion criteria of the 
original study but whose first nocturnal PSG was available; and iii) 404 
children from the follow-up group, who completed a second overnight 
PSG, 7-months after the initial PSG with approximately half having 
undergo adenotonsillectomy as standard treatment of OSA and the rest 
being allocated to the watchful waiting group. For the nonrandomized 
group, 75% of the subjects were assigned to the training set (567 re
cordings), 12.5% to the validation set (94 recordings), and the remain
ing 12.5% were assigned to the test set (94 recordings). For the baseline 
and follow-up groups, 50% of the 404 subjects with a follow-up study 
were assigned to the training set (202 recordings from each baseline and 
follow-up), 25% were assigned to the validation set (101 recordings 
from each baseline and follow-up), and 25% to the test set (101 re
cordings from each baseline and follow-up). Of note, for each child with 
both follow-up and baseline recordings, we ensured that both recordings 
were included in the same group to avoid biases. The remaining 47 

recordings from baseline without a follow-up study were assigned to the 
training set. Demographic and clinical data of the children included in 
the study are shown in Table 1. 

The sleep studies were scored and annotated following the scoring 
rules established by the American Academy of Sleep Medicine (AASM) 
[26]. Based on these annotations, the diagnosis of OSA was based on the 
apnea-hypopnea index (AHI), defined as the number of apneic and 
hypopneic events per hour of sleep (e/h) [26]. Thus, in this study we 
assigned each child to one out of four commonly used OSA severity 
groups, as follows: no OSA (AHI <1 e/h), mild OSA (1 ≤ AHI <5 e/h), 
moderate OSA (5 ≤ AHI <10 e/h), and severe OSA (AHI ≥10 e/h). 

3. Methods 

The methods employed herein can be partitioned into three stages. 
First, we performed a signal processing stage to partition all of the re
cordings into timed segments with artifact removal and extract the ECG 
channel for subsequent processing. Secondly, we conducted a feature 
extraction stage to achieve ANS characterization of the segments 
included in the study. Finally, we assessed the clinical relevance of the 
features by evaluating its ability to conduct pediatric OSA diagnosis and 
to automatically classify sleep stages. Fig. 1 shows a global overview of 
the protocol followed across the study, from the ECG acquisition to the 
evaluation of the clinical applicability of the HRV segments character
ization based on the two approaches considered. Details of the whole 
protocol are included in the next subsections. 

3.1. Signal processing and segmentation 

For HRV analysis, the electrocardiogram (ECG) channel from each 
PSG was extracted and pre-processed. The ECG signals were originally 
recorded at sampling frequencies of 200, 256 or 512 Hz. Signals were 
split into 10-min segments. The duration of these segments was selected 
since it constitutes a trade-off between a complete description of the VLF 
fluctuations in the HRV spectral domain and limiting the number of 
segments with two or more sleep stages. Then, for each segment, a R 
peak detection algorithm was applied, as proposed by Benitez et al. [27]. 

Table 1 
Demographic and clinical data of the children included in the CHAT database. 
Data are presented as median [interquartile range] or n (percentage); BMI: body 
mass index; AHI: apnea–hypopnea index; e/s: apneic events per segment; W: 
Wake; NREMS: non rapid eye-movement; REMS: rapid eye movement.   

Training set Validation set Test set 

Subjects (n) 1018 296 296 
Age (years) 7.0 [2.1] 6.9 [2.0] 7.0 [2.0] 
Males (n) 500 (49.12%) 129 (43.58%) 145 (48.99%) 
BMI (kg/m2) 17.28 [5.81] 17.68 [6.22] 17.09 [6.61] 
AHI (e/h) 2.23 [4.15] 3.8 [7.76] 1.46 [2.07] 
AHI ≥ 1 (e/h) 771 (75.74%) 246 (83.11%) 249 (84.12%) 
AHI ≥ 5 (e/h) 264 (25.93%) 96 (32.43%) 108 (36.49%) 
AHI ≥ 10 (e/h) 124 (12.18%) 46 (15.54%) 45 (15.20%) 
#Segments < 1 e/s 40105 (79.71%) 11391 (77.69%) 11326 (77.16%) 
#Segments 1 to 5 e/s 8419 (16.73%) 2677 (18.26%) 2748 (18.72%) 
#Segments 5 to 10 e/s 1023 (2.03%) 371 (2.53%) 394 (2.68%) 
#Segments ≥ 10 e/s 770 (1.53%) 223 (1.52%) 211 (1.44%) 

#Segments W 8733 (17.36%) 2590 (17.66%) 2604 (17.74%) 

#Segments NREMS 34961 (69.48%) 10151 (69.23%) 10177 (69.33%) 
< 1 e/s 27766 (79.42%) 7833 (77.17%) 7792 (76.57%) 
1 to 5 e/s 6164 (17.63%) 1988 (19.58%) 2036 (20.00%) 
5 to 10 e/s 602 (1.72%) 210 (2.07%) 243 (2.39%) 
≥ 10 e/s 429 (1.23%) 120 (1.18%) 106 (1.04%) 

#Segments REMS 6623 (13.16%) 1921 (13.10%) 1898 (12.93%) 
< 1 e/s 3606 (54.45%) 968 (50.39%) 930 (49.00%) 
1 to 5 e/s 2255 (34.05%) 689 (35.87%) 712 (37.51%) 
5 to 10 e/s 421 (6.35%) 161 (8.38%) 151 (7.96%) 
≥ 10 e/s 341 (5.15%) 103 (5.36%) 105 (5.53%)  
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Fig. 1. Flowchart of the protocol followed across the study from the ECG acquisition to the evaluation of the clinical applicability of the characterization of HRV 
segments following two approaches: OSA diagnostic ability (left branch) and sleep stage classification (right branch). Green boxes means that the corresponding stage 
of the protocol was applied per subject. Blue boxes means that it was a segment-level stage. 
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This algorithm has been previously implemented to extract the signals 
required for HRV characterization in pediatric OSA [22,23,28]. After the 
R peak detection, we computed the R-R intervals, and conducted an 
artifact rejection procedure to include only physiologically coherent 
intervals (N–N intervals). To this effect, R-R intervals that did not fit the 
following rules were discarded [29]: (i) 0.33 s < R-R interval <1.5 s and 
(ii) maximum difference between a R-R interval and the previous one of 
0.66 s. Following artifact rejection, those segments containing less than 
500 normal R peaks were removed. This threshold was selected by 
establishing 50 beats per minute (bpm) as the minimum heart rate for 
children between 5 and 10 years old [30]. 

The analysis of signals in the frequency domain requires a uniform 
sampling rate. Therefore, after the erroneous intervals removal, each 
segment was resampled to a constant rate of 3.41 Hz, based on HRV 
signal interpolation. Also, through this interpolation the erroneous beats 
that were removed are replaced, fulfilling with the recommendation of 
the guidelines for the analysis of HRV signal [3]. The sampling rate of 
3.41 Hz was selected in order to use a power of two window-length to 
estimate the power spectral density (PSD) using the Fast Fourier 
Transform (FFT) [22,23,29]. Then, the normalized PSD (PSDn) to the 
whole spectrum power of each segment was estimated using a Hamming 
window of 211 samples (2048 samples), making PSD estimation 
computationally efficient. 

Later, a continuous score was assigned to each segment. Hence, if a 
10-min segment contained one apneic event, the assigned score was one. 
If it contains two and a half apneic events, the score assigned was 2.5, 
and so on. Then, to conduct the exploration of the pediatric OSA effects 
in each segment, we assigned them into four severity groups. For this 
purpose, we adopted the classification commonly established to cate
gorize OSA severity in pediatric subjects [22,31–33]: no apneic seg
ments (<1 apneic event per segment, e/s), 1 e/s ≤ apneic events <5 e/s, 
5 e/s ≤ apneic events <10 e/s, and ≥10 e/s. 

Finally, we also assigned one of three sleep stages to each 10-min 
segment (W, NREMS or REMS). To this effect, the original CHAT sleep 
stage scoring was available. This initial sleep stage annotation was 
performed by medical experts based on the AASM rules for scoring [26], 
and following an epoch-by-epoch approach. In the original study, PSG 
recordings were divided into consecutive 30s epochs, assigning a spe
cific sleep stage to each one of them. Therefore, based on this 30s an
notations, we considered that a 10-min segment belongs to a particular 
sleep stage if 75% of the time was labeled with that stage (7.5 min, i.e., 
at least 15 of the original 30s epochs). This was a trade-off between 
reducing the overall number of segments containing sleep stage transi
tions and also not to increase the complexity introduced by 3 different 
NREMS sub-stages. Based on these rules a total of 11.4% of the segments 
could not be assigned to any sleep stage and were discarded from the 
study. Of note, this percentage is relatively low compared to the large 
number of segments available in this study. 

3.2. ANS characterization of the different type of segments 

3.2.1. Time domain features 
We used three common time-domain metrics to evaluate differences 

between HRV activity in each type of segment under study:  

• Mean heart rate (mHR), measured in bpm.  
• Standard deviation of normal-to-normal interval time series (SDNN). 

This parameter globally reflects the variability in the NN time series 
acting as an overall ANS activity measure [3].  

• Root Mean Square of successive differences of NN intervals (RMSSD), 
which is mainly influenced by parasympathetic activity [3]. 

3.2.2. Frequency domain features 
The remaining parameters included in the study were computed in 

the frequency domain. We have included classical frequency domain 
HRV measures, as well as relative power (RP) in the three recently 

defined pediatric OSA-specific spectral bands, all of them extracted from 
the PSDns:  

• RP inside VLF band (RPVLF, 0–0.04 Hz). The physiological meaning of 
the activity along this band is controversial, hypothesized to be 
related to slow regulatory mechanism, such as thermoregulation or 
renin-angiotensin system [34], but the frequency and amplitude of 
its oscillations could also be influenced by the sympathetic nervous 
system (SNS) [35]. This parameter has been shown to be highly 
correlated with SDNN [35].  

• RP inside LF band (RPLF, 0.04–0.15 Hz). This band may reflect both 
SNS and parasympathetic nervous system (PNS) activity, and also 
baroreceptors activity regulating BP [34,35]. LF activity has also 
been correlated with SDNN [35].  

• RP inside HF band (RPHF, 0.15–0.40 Hz). HF activity reflects HR 
changes due to respiratory cycles and has been related to PNS ac
tivity, being correlated with RMSSD [34,35].  

• Normalized power in LF (LFn), computed as the ratio between RP in 
LF and the sum of RP inside LF and HF. This parameter is commonly 
used as an index of sympathovagal balance, as the normalization 
emphasizes the balanced activation of the two branches of the ANS 
[3].  

• RP inside BW1 band (RPBW1, 0.001–0.005 Hz). This band was the 
first out of three pediatric OSA-specific frequency bands that we 
reported in a previous work, and has been linked to macro-sleep 
disruptions [22].  

• RP inside BW2 band (RPBW2, 0.028–0.074 Hz). This pediatric OSA- 
related frequency band has been linked to the duration and num
ber of apneic events [22], and has been proposed as a potential 
biomarker of pediatric OSA resolution [23].  

• RP inside BWRes band (RPBWRes, adaptive band of ±0.04 Hz around 
the frequency of the maximum amplitude inside the HF band). This 
individual adaptive band, designed to consider changes of the res
piratory peak inside HF due to age, has been correlated with oxygen 
desaturations [22]. 

3.3. Evaluation of potential clinical applicability 

In light of the HRV alterations attributable to the presence of OSA in 
children and the effects of sleep stages, we selected two ensemble- 
learning boosting algorithms to evaluate the clinical applicability of 
the HRV segment characterization performed in the previous steps 
described above: least-squares boosting (LSBoost) for pediatric OSA 
diagnosis, and adaptive boosting (AdaBoost) for sleep stage classifica
tion. Both of these methodologies have previously proven useful in the 
context of OSA [32,36–39]. 

3.3.1. LSBoost for pediatric OSA diagnosis 
We selected LSBoost as a regression algorithm to estimate the num

ber of apneic events in each time segment. Ensemble-learning methods 
combine multiple weak base-learners decisions, leading to a robust al
gorithm with high generalization ability [40]. When using boosting al
gorithms, the estimations of the base-learners are sequentially 
computed. Accordingly, the next learner is trained based on the esti
mations of the previous ones [41]. In the present study, the target var
iable yi was the number of apneic events of each HRV segment, the 
estimated output fm(x) was the estimated number of apneic events for 
each segment, and xi the feature vector for each HRV segment composed 
of the ten extracted features detailed in the previous section. We decided 
to use decision stumps (trees with three nodes, one parent and two 
children) as base-learners as this approach conduct a feature selection 
stage de facto when training the models [36]. The formal definition of 
LSBoost can be specified this way [41,42]: 

A. Martín-Montero et al.                                                                                                                                                                                                                      
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1. Being fm(x) the estimated output, set m to 0 and initialize the cor
responding estimated output f0(x).  

2. Increase m (the number of learners) by 1 and obtain the residuals as: 
Ui = yi − fm− 1(xi) for i = 1,2 …,N, where N refers to the number of 
segments in the training set.  

3. Fit the residual vector with least squares loss function, the weak 
learner h, and the predictors for each segment xi: (λm, am) =

argminλ,a
∑N

i=1[Um
i − λh(xi; a)]2, where λ is a regularization param

eter ranging from 0 to 1, and a the set of parameters of h.  
4. Update fm(x) = fm− 1(x)+ λmh(x; am).  
5. Repeat iteratively steps 2 to 4 until m = NLSB, being NLSB the number 

of learners included. 

Once the estimation for each HRV segment was obtained, the AHI for 
each subject can be computed as the rate between the estimated apneic 
events and the total recording time. However, using the total recording 
time leads to an underestimation of the actual AHI. Accordingly, we 
added a subsequent linear regression stage between the real and esti
mated AHI, which was modeled using the training set. Once that the 
model was fitted, it was applied to the AHI estimated in the validation 
and test sets, to correct for the underestimation trend imposed by the 
total recording time [31,43]. 

Two hyperparameters that needed to be optimized included: NLSB 
and λ. We varied λ from 0.1 to 1 in steps of 0.1, and NLSB was varied from 
1 to 10,000 increasing the step each multiple of 10 (from 1 to 9 in steps 
of 1, from 10 to 100 in steps of 10, and so on). All the trained models for 
each (NLSB, λ) pair with the training set were subsequently evaluated 
using the validation set, and the optimum (NLSB, λ) pair was selected as 
the one that maximized multiclass Cohen’s kappa (k). 

Furthermore, as an effort to explain the role of each feature in the 
automated AHI estimation, we computed the relative importance of the 
included features. When using decision stumps, every h(x; am) is func
tion of a unique feature, so a procedure of feature selection is performed 
by default at each iteration [41,42]. Based on the mean squared error 
(MSE) of the empirical improvement across the trees, the relative 
importance can be estimated as [36,44]: 

Î
2
j =

1
NLSB

∑NLSB

m=1
MSEm

(
xj
)
wm −

(
MSEp

m

(
xj
)
wp

m +MSEr
m

(
xj
)
wr

m

)
, (1)  

where MSEm is the mean squared error for the m regression tree linked to 
xj, wm the weight of the parent node probability, and p− r the parameters 

associated with the children nodes. Once that Î
2
j of each feature is ob

tained, the predictors importance can be scaled as a percentage of 
contribution, with higher values meaning higher influence in the 
LSBoost model [45]. 

3.3.2. AdaBoost for sleep stage classification 
The other approach to assess the clinical applicability of the HRV 

extracted features was to conduct per-segment sleep stage classification. 
To do this, we selected the boosting classification algorithm AdaBoost. 
Similar to LSBoost, AdaBoost combines several weak base classifier de
cisions sequentially, obtaining a more robust final classification deci
sion, that is, a more generalized decision [40]. In this case, we selected 
linear discriminant analysis (LDA) as weak classifiers that have proven 
their applicability along with AdaBoost in previous studies addressing 
OSA [32,37]. 

At each m iteration of the AdaBoost algorithm, it assigns a weight wm
i 

to each vector xi in the training group. Then, the classifier of that iter
ation is trained with the corresponding weighted features, and the 
performance is evaluated computing an error, εm. This εm is used to 
determine the weighted vote of the classifier trained in that iteration, αm 
[40], so that the smaller the εm, the higher the contribution of the 
classifier to the final decision. When the iteration ends, the weights of 
the misclassified xi are updated (wm+1

i ) [40]. At this point, the weights of 

all features are normalized, maintaining their original distribution [46]. 
Through this reweighting, the LDA classifiers in the next iterations give 
more importance to those xi misclassified in previous ones, thereby 
increasing the probability of being rightly classified [40,46]. 

As our aim was to classify each segment into one out of three sleep 
stages (W, NREMS and REMS), we used AdaBoost.M2, which is the 
AdaBoost algorithm version designed for multiclass classification [46]. 
When using AdaBoost.M2, εm is computed as follows [46]: 

εm =
1
2

∑N

k=1

∑

l∕=ltrue

wm
i,l(1 − cm(xi, ltrue)+ cm(xi, l)), (2)  

where l is a categorical variable representing the multiple classes, ltrue is 
the real class labeled for xi, and cm is the confidence of LDA prediction 
for a vector xi and a given class. To conduct the final classification task, 
the class with the highest sum of votes from all the LDA classifiers is 
returned, considering the weight of their predictions αm as [46]: 

αm = ln(βm) (3)  

with βm defined as (1− εm)
εm 

[46]. In order address the potential issue of 
overfitting, we also included a learning rate υ to redefine βm in each 
iteration (βm)

υ. As in the case of LSBoost, we needed to fit two hyper
parameters, the number of LDA classifiers (NAB) and υ. The combina
tions of (NAB, υ) values trained were the same than (NLSB, λ), and we 
selected the combination of NAB and υ that maximized the multiclass k in 
the validation set. 

Finally, we also conducted a feature importance analysis in the sleep 
stage classification task. In this case, as we use a linear weak learner, we 
decided to use local interpretable model-agnostic explanation (LIME) 
technique with the AdaBoost model [47]. LIME is an explanation tech
nique for machine-learning models that provides explanations of the 
predictions performed in an interpretable and faithful way [47]. The 
rationale behind LIME is to learn an interpretable model of the classifier 
locally around each prediction. Thus, for each instance of the test set, we 
computed LIME fitting a linear model locally, obtaining a weighted 
coefficient for each instance and feature, Wij. Then, the global impor
tance of each feature can be obtained as [47]: 

Ij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

⃒
⃒Wij

⃒
⃒

√

. (4) 

After the computation of Ij, the global importance can be scaled as a 
percentage of the contribution, obtaining the relative importance for the 
AdaBoost Model as well. 

3.4. Statistical analysis 

The features computed in each segment in the training set did not fit 
either normality or homoscedasticity assumptions. Consequently, the 
non-parametric Mann-Whitney U test was used to assess two-by-two 
statistical differences between segment severity groups in each sleep 
stage, as well as between sleep stages in each segment severity group. 
Statistically significant differences between segment features were 
defined as those p-values <0.05 after Bonferroni correction (eighteen 
comparisons). However, when large sample sizes are available, the p- 
value by itself would not be sufficient for a comprehensive interpreta
tion of the results [48]. Thus, we decided to complement the evaluation 
of differences between segment groups reporting the effect size of each 
comparison through the non-parametric Cohen’s d measure [49]. Based 
on the Cohen’s d, results can be interpreted as small (0.2 ≤ d < 0.5), 
medium (0.5 ≤ d < 0.8) or large (d ≥ 0.8) effect size [48,50]. We also 
visually represented the differences between segment groups with 
boxplots of the distribution for the different features considered. 

Regarding the AHI estimations obtained from LSBoost, we evaluated 
its OSA diagnostic ability by splitting the subjects into four severity 
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levels (No OSA: AHI <1 e/h; Mild OSA: 1 ≤ AHI <5 e/h; Moderate OSA: 
5 ≤ AHI <10 e/h; Severe OSA: AHI ≥10 e/h), and obtaining the 
confusion matrix, the four-class accuracy (Acc4) and k. Besides, the 
diagnostic performance using the three common AHI cutoffs (1 e/h, 5 e/ 
h and 10 e/h) was also evaluated using sensitivity (Se), specificity (Sp), 
accuracy (Acc), positive predictive value (PPV), negative predictive 
value (NPV), positive and negative likelihood ratios (LR+, LR-), the area 
under the receiver operating characteristics curve (AUC), and F1-score, 
which are widely used metrics to assess OSA diagnosis [12,31–33, 
36–39,43,51–53]. 

Regarding the AdaBoost model, the overall performance in the 
classification task into three sleep stages (W, NREMS and REMS) was 
reported by means of a confusion matrix, the three-class accuracy (Acc3) 
and k. Additionally, for specific sleep stages, individual performance 
was evaluated in terms of PPV (also known as precision), Se (also known 
as recall), and F1-score (harmonic mean of precision and recall), as those 
metrics are commonly assessed to perform this task [54–56]. 

4. Results 

4.1. Exploratory analysis in the training set 

4.1.1. Differences in the PSDns between segments 
Fig. 2 shows the averaged PSDns of the segments in the training set 

by considering three sleep stages and differentiating between no apneic/ 
hypopneic segments (<1 e/s) and apneic/hypopneic segments (>1 e/s). 
The three classical spectral bands and two of the pediatric OSA-specific 
frequency bands have been shaded in the background (as mentioned 
above, the third OSA-specific band, BWRes, adapts to each subject). It 
can be observed that PSDns within the REMS stage behave more similar 
between control and apneic segments than in the case of NREMS seg
ments. Segments among W, NREMS, and REMS were better differenti
ated in frequencies below the LF range (see Fig. 2B). Inside the BW2 
band, NREMS apneic event segments presented higher power spectral 
values than the rest of groups. Finally, inside the HF band, NREMS 
segments presented higher power spectral values, as expected due to 

parasympathetic predominance, with NREMS no apneic segments 
showing higher activity than NREMS segments containing apneic 
segments. 

4.1.2. Descriptive analysis of the features 
Figs. 3–5 show the boxplots for the HRV segments differentiated by 

sleep stage and segment severity groups in the temporal measures, 
classic frequency bands, and pediatric OSA-related frequency bands, 
respectively. As commented in the methods section, due to the high 
number of the HRV segments involved in the study, rather than only 
using p-values, a better way to quantify the differences found among the 
segments is considering the effect size. Thus, Table 2 shows the Cohen’s 
d measure to assess the effect size for the different comparisons con
ducted, with those effect sizes corresponding to statistically significant 
p-values highlighted in bold. The specific p-value for each comparison 
can be seen in the Supplementary Table 1. 

Although most of the comparisons resulted in statistically significant 
differences (p-value <0.05), many of these comparisons showed negli
gible effect size (d < 0.2, see Table 2), which emphasizes the applica
bility of the evaluation of the differences through d values. Regarding 
intra-sleep stage comparisons, it can be observed in Table 2 that while 
NREMS showed a high number of comparisons with considerable effect 
size between segments with different number of apneic events (d = 0.5 
or higher), these effects were attenuated in REMS. Particularly, NREMS 
RPBW2 displayed the highest effect size in five out of six comparisons 
between apneic severity segments. These marked differences in NREMS 
can also be observed as an increment of RPBW2 as the presence of apneic 
events increased (see Fig. 5B). Furthermore, the increased tendency in 
NREMS was also apparent in mHR, SDNN, RPLF, and LFn, and to a lesser 
degree, i.e., lower d values. In contrast, RPHF and RPBWRes showed 
decreasing tendencies inside these frequency ranges as the frequency of 
apneic events increased, with RPBWRes showing medium or large effects 
for all the comparisons considered. RMSSD was the only measure that 
showed negligible effect size within the two sleep stages. Inside REMS, 
SDNN and RPVLF also showed negligible values in all the comparisons 
performed, and RPHF and RPBW1 obtained negligible or small effect sizes 

Fig. 2. A) Averaged PSDns in the 0–0.4 Hz range for five types of segments in the training set. Shaded areas represent those frequencies corresponding with the three 
classic spectral HRV bands (VLF: 0–0.04 Hz; LF: 0.04–0.15 Hz; HF: 0.15–0.4 Hz) and two of the pediatric OSA-specific frequency bands (BW1: 0.001–0.005 Hz; BW2: 
0.028–0.074 Hz). B) Zoomed area in the VLF range. 
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too. The reduction of the effect size inside REMS can also be observed in 
the boxplots (Figs. 3–5) where the parameters followed similar ten
dencies than in NREMS but are less pronounced. RPBW2 and mHR dis
played the largest differences between apneic severity segments, with 
mHR consisting of the only parameter that allowed to differentiate be
tween 1 ≤ apneic events <5 segments and 5 ≤ apneic events <10 seg
ments (p-value <0.05), albeit with an associated small effect size (d =
0.263). 

In the inter sleep stages comparisons, when assessing sleep stages in 
the absence of apneic events, RPBW2 was the only measure showing 
negligible effect size between sleep stages, thus corroborating the high 
dependence of this information on apneic events. RPBWRes showed the 
highest effect size (d > 0.8) for W vs. NREMS, and NREMS vs. REMS 
segments. For the W vs. REMS comparison, only mHR and RPBWRes 
showed at least a medium effect size, being higher in mHR. When 
including the presence of apneic events, RPBWRes and RPVLF allowed to 
differentiate (d > 0.5) between NREMS and REMS for 1 ≤ apneic events 

<5 segments, with higher effect size for RPBWRes. For the 5 ≤ apneic 
events <10 segments and ≥10 apneic events segments, RPBW2 was again 
the parameter that allowed for a better differentiation between NREMS 
and REMS, showing large effect size in both cases. 

4.1.3. LSBoost and AdaBoost models training and validation 
Following extraction of the ten features for each segment, we opti

mized both the LSBoost and AdaBoost models to evaluate the clinical 
applicability of the previous HRV characterization. As previously 
mentioned, this optimization was based on the pair of hyperparameters 
that maximized Cohen’s k in the validation set. The combinations of 
(NAB, υ) values trained were the same than (NLSB, λ), varying NAB and 
NLSB from 1 to 10,000, increasing the step each multiple of 10, and υ and 
λ from 0.1 to 1 in steps of 0.1. Supplemental Fig. 1A shows the evolution 
of the Cohen’s k in the validation set for each (NLSB, λ) pair. The optimum 
values selected for the LSBoost model were λ = 0.3 and NLSB = 300. The 
optimization process was similar for AdaBoost. The evolution of the 

Fig. 3. Boxplot distribution of the temporal features computed for each type of segment included in the study in the training set. A) mHR boxplots; B) SDNN boxplots; 
C) RMSSD boxplots. 

Fig. 4. Boxplot distribution of the frequency features in the classic HRV frequency bands computed for each type of segment included in the study in the training set. 
A) RPVLF boxplots; B) RPLF boxplots; C) RPHF boxplots; D) LFn. 
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Fig. 5. Boxplot distribution of the frequency features in the pediatric OSA-specific HRV frequency bands computed for each type of segment included in the study in 
the training set. A) RPBW1 boxplots; B) RPBW2 boxplots; C) RPBWRes boxplots. 

Table 2 
Cohen’s d measures obtained to assess the effect size associated to the comparisons performed between all the types of segments considered in the study in the training 
set.  

Intra-Stages NREMS Segments 

Feature <1 vs 1≤events<5 <1 vs 5≤events<10 <1 vs ≥ 10 events 1≤events<5 vs 5≤events<10 1≤events<5 vs ≥ 10 events 5≤events<10 vs ≥ 10 events 

mHR 0.147 0.539** 0.634** 0.412* 0.516** 0.100 
SDNN 0.318* 0.456* 0.745** 0.140 0.433* 0.312* 
RMSSD 0.076 0.065 0.123 0.011 0.050 0.068 
RPVLF 0.610* 0.754* 0.579* 0.137 0.035 0.201 
RPLF 0.325 1.007*** 2.038*** 0.628** 1.553*** 0.733** 
RPHF 0.633** 1.042*** 1.335*** 0.452* 0.773** 0.413* 
LFn 0.578** 1.233*** 1.912*** 0.584** 1.196*** 0.625** 
RPBW1 0.440* 0.483* 0.072 0.028 0.337 0.391 
RPBW2 0.546** 1.531*** 3.106*** 0.779** 2.017*** 0.963*** 
RPBWRes 0.608** 1.023*** 1.272*** 0.541** 0.859*** 0.565**  

Intra-Stages REMS Segments 

Feature <1 vs 1≤events<5 <1 vs 5≤events<10 <1 vs ≥ 10 events 1≤events<5 vs 5≤events<10 1≤events<5 vs ≥ 10 events 5≤events<10 vs ≥ 10 events 

mHR 0.242* 0.500** 0.904*** 0.263* 0.671** 0.398* 
SDNN 0.036 0.043 0.148 0.082 0.190 0.115 
RMSSD 0.070 0.000 0.028 0.071 0.101 0.031 
RPVLF 0.142 0.194 0.064 0.054 0.080 0.142 
RPLF 0.046 0.177 0.423* 0.134 0.473* 0.587** 
RPHF 0.156 0.202* 0.388* 0.049 0.243* 0.213* 
LFn 0.097 0.043 0.503** 0.054 0.392* 0.459* 
RPBW1 0.067 0.084 0.134 0.017 0.203* 0.224* 
RPBW2 0.105 0.220* 0.875*** 0.113 0.751** 0.573** 
RPBWRes 0.152 0.243 0.511** 0.103 0.401 0.379  

Inter-Stages <1 event Segments 1≤events<5 Segments 5≤events<10 Segments ≥10 events Segments 

Feature W vs NREMS W vs REMS NREMS vs REMS NREMS vs REMS NREMS vs REMS NREMS vs REMS 

mHR 0.958*** 0.755** 0.115 0.190 0.007 0.298 
SDNN 0.223* 0.204* 0.023 0.343* 0.452* 0.709** 
RMSSD 0.126 0.279* 0.144 0.299* 0.243* 0.300 
RPVLF 0.547** 0.441* 1.074*** 0.597** 0.569** 0.647** 
RPLF 0.417* 0.261* 0.158 0.210* 0.927*** 1.096*** 
RPHF 1.233*** 0.286 0.954*** 0.480* 0.060 0.176 
LFn 1.168*** 0.453* 0.728** 0.209* 0.465* 0.700** 
RPBW1 0.589** 0.008 0.739** 0.334* 0.313* 0.539** 
RPBW2 0.062 0.021 0.080 0.351* 1.005*** 1.420*** 
RPBWRes 1.460*** 0.514** 1.133*** 0.764** 0.361* 0.072 

NREMS: Non rapid eye movement sleep; REMS: Rapid Eye Movement Sleep; mHR: Mean Heart Rate; SDNN: Standard deviation of normal-to-normal interval time 
series; RMSSD: Root Mean Square of successive differences of NN intervals; RP: Relative Power; VLF: Very Low Frequency; LF: Low Frequency; HF: High Frequency; W: 
Wake. 
Statistically significant comparisons (p-value <0.05) have been highlighted in bold. 
*Small effect (0.2 ≤ d < 0.5); ** medium effect (0.5 ≤ d < 0.8); *** large effect (d ≥ 0.8). 
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Cohen’s k in the validation set for those values can be observed in 
Supplemental Fig. 1B. The optimum (NAB, υ) pair were υ = 0.1 and NAB 
= 3000. 

4.2. Evaluation of the clinical applicability in the test set 

4.2.1. Clinical applicability for pediatric OSA diagnosis 
Fig. 6 shows the confusion matrix along with the corresponding Acc4 

and k obtained after using the LSBoost-estimated AHI to determine the 
OSA severity degree of the subjects in the test set. The color code of the 
confusion matrix allows to observe how the model performs. The darker 
the colors of the main diagonal, the better the diagnosis performance. It 
becomes apparent an overestimation of the AHI for the No OSA subjects, 
which achieved the lowest proportion of subjects rightly classified 
among the four classes. Similarly, the highest proportion was obtained 
for the moderate OSA subjects. 

The diagnosis obtained to predict OSA presence using the three 
reference AHI cutoffs is shown in Table 3. The increase of the AUC with 
the increasing cutoffs reflects an increment in the overall diagnosis 
performance with OSA severity cutoffs. Fig. 7A shows the relative 
importance of the features included in the LSBoost model. It can be 
observed that, by far, RPBW2 was the feature that accounted the most for 
the relative importance (72.01%), followed by SDNN (7.09%), and RPLF 
(6.08%). The four first features (the previous ones plus RPBWRes) 
contributed over 90% to the final AHI estimation. 

4.2.2. Clinical applicability for sleep stage classification 
For the multiclass sleep stage classification task, the confusion ma

trix, Acc3 and k achieved by AdaBoost in the test set are shown in Fig. 8. 
In this setting, the greatest proportion of segments correctly classified 

was obtained for the REMS segments. However, when checking the in
dividual sleep stage classification results, which are shown in Table 4, 
despite the high recall obtained in the REMS stage (77.13%), this stage 
also achieved the lowest precision (39.17%). Thus, the highest overall 
classification performance was achieved in NREMS with the greatest 
precision (94.55%) and F1-score (0.818) among the three sleep stages 
included herein. 

Finally, Fig. 7B shows the relative predictor importance computed 
using LIME for the features included in the AdaBoost model in the 
classification task. In the case of sleep stages, RPBWRes was the feature 
with the highest importance among the ten included (20.04%), followed 
by RPHF (17.52%) and RPVLF (12.54%). In general, the relative impor
tance of the ten features is higher for sleep stage classification than for 
the apneic event estimation, which is clearly dominated by BW2. 

5. Discussion 

In this study, a segment-based characterization of HRV that accounts 
for both sleep stages and the presence of apneic events was performed 
for the first time in the context of pediatric OSA. The marked differences 
in the HRV parameters across NREMS according to severity of respira
tory disturbance were attenuated in REMS. In both cases, BW2, a pedi
atric OSA-specific frequency band, achieved the highest differentiation 
ability. However, in the absence of apneic events, another novel pedi
atric OSA-related frequency band, BWRes, achieved a better differenti
ation ability across sleep stages. The usefulness of BW2 and BWRes in 
HRV analysis was also confirmed when analyzing its clinical applica
bility to diagnose pediatric OSA and to classify sleep stages, respectively. 

5.1. Physiological interpretation of the characterization of the segments 

Our approach showed greater differences for NREMS compared to 
REMS between segments with variable numbers of apneic events. This 
was appreciable in the averaged PSDns of the segments (see Fig. 2), the 
feature boxplots (see Figs. 3–5) and in a general reduction of the effect 
size in the REMS features. As mentioned above, NREMS has been asso
ciated with downregulation of SNS activity along with enhanced PNS 
activity, whereas this trend is reversed during REMS and wakefulness 
[2]. Likewise, previous pediatric OSA studies have found overall 
increased sympathetic activity in OSA children [2,15], which has been 
reduced with treatment [57]. This increased sympathetic activity has 
been confirmed in our study and is significantly associated with an 
increased number of apneic events. In parallel, we identified that the 
parameters that measure SNS activity to some extent (RPBW2, mHR, 
SDNN, and RPLF) also show increased correlation within NREMS (see 
Figs. 3–5). However, these trends were reduced in REMS, with RPBW2 
and mHR emerging as the only parameters reaching considerable effect 
size (see Table 2) in three out of the six comparisons evaluated. 
Accordingly, despite the fact that apneic events occur more often during 
REMS in the context of pediatric OSA [2], it seems that REMS basal SNS 
activation may be masking the effect imposed by the respiratory per
turbations. In this regard, RPBW2 reached considerable effect sizes in all 
the comparisons conducted for NREMS and achieved the highest feature 
importance for the diagnosis of pediatric OSA. Therefore, we highlight 
this frequency band as a measure of specific SNS activation during 
apneic events, which is further accentuated when these events occur 
during NREMS. 

According to the effect size analyses, the utility of RPBW2 to char
acterize HRV alterations in the context of pediatric OSA seems to 
disappear in the absence of respiratory disturbances. However, another 
recently defined OSA-specific band (RPBWRes) was the only measure that 
performed well according to effect size in all the comparisons among 
sleep stages for no apneic segments (see Table 2). One possible expla
nation for property is that W, NREMS, and REMS can be readily differ
entiated by their effects on respiratory patterning [58–61]. During 
wakefulness, respiratory rate is regulated by both voluntary and 

Fig. 6. Confusion matrix for pediatric OSA diagnosis using the LSBoost model 
in the test set. The main diagonal represents the number and proportion of 
subjects rightly classified. The darkness of the cells represents the proportion of 
the actual class assigned to each group. 1: No OSA (AHI <1 e/h); 2: Mild OSA 
(1 ≤ AHI <5 e/h); 3: Moderate OSA (5 ≤ AHI <10 e/h); 4: Severe OSA (AHI 
≥10 e/h). 
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automatic controllers, but the voluntary regulation disappears while 
asleep [62]. During NREMS, breathing is characterized by regular pat
terns with decreased variability. However, during REMS, irregular 
breathing and short respiratory pauses appear in healthy children, with 
increments in the respiratory rate [62]. The HF band reflects HR and 
blood pressure oscillations induced by such changes respiratory activity, 

and is a marker of PNS activity [62]. Nonetheless, the inter-individual 
variability of the respiratory frequencies due to other aspects such as 
age makes the adaptive RPBWRes better suited to assess respiratory in
fluence on HRV [22], as highlighted in the relative importance analysis 
conducted in the AdaBoost model. Taken together, the importance of 
respiration to discriminate sleep stages is robustly represented in our 
study as RPBWRes and RPHF achieved the highest relative importance in 
the classification of sleep stages, with LFn (also influenced by HF) 
achieving a high relative importance as well. 

Non-apneic NREMS segments reflected an enhanced PNS activity 
compared to W and REMS (see RPHF and RPBWRes in Figs. 4–5). However, 
when such segments included apneic events, the PNS activity during 
NREMS measured by the HF band and BWRes decreased, reaching 
REMS-like levels in the 5 ≤ apneic events <10 e/s and ≥10 e/s seg
ments. This reduction resulted in effect sizes under the 0.5 threshold in 
NREMS vs. REMS comparisons for both RPHF and RPBWRes. Remarkably, 
as the presence of apneic events increased, RPBW2 also increased, 
achieving the highest differentiation (d > 0.8) between NREMS and 
REMS for the 5 ≤ apneic events <10 e/s and ≥10 e/s segments. These 
results highlight the importance of BW2 beyond detecting segments with 
respiratory disturbances and, specifically, to differentiate NREMS from 
REMS segments even when apneic events are present. Accordingly, we 
have shown that both BWRes and BW2 play important roles to differ
entiate sleep stages in the context of pediatric OSA. 

Table 3 
Diagnostic performance by the LSBoost Model in the test set for binary classification in the three apnea-hypopnea index cutoffs 1, 5 and 10 events/hour (e/h).  

LSBoost Model: λ = 0.3; NLSB = 300  

Cutoff Se Sp Acc PPV NPV LR+ LR- AUC F1-score 

Test Set 1 e/h 90.76 23.40 80.07 86.26 32.35 1.18 0.39 0.651 0.885 
5 e/h 66.67 61.17 63.18 49.66 76.16 1.72 0.54 0.677 0.569 
10 e/h 40.00 92.03 84.12 47.37 89.53 5.02 0.65 0.742 0.434  

Fig. 7. Feature importance for both the LSBoost and AdaBoost models. A) Relative importance of the ten features through the tree base classifiers in the LSBoost 
Model. B) Relative importance of the ten features included in the AdaBoost Model, computed using LIME. 

Fig. 8. Confusion matrix of the classification in sleep stages by the AdaBoost 
model in the test set. The main diagonal represents the number and proportion 
of subjects rightly classified. The darkness of the cells represents the proportion 
of the actual class assigned to each group. 

Table 4 
AdaBoost model classification performance in the test set for individual sleep 
stage classification in the three sleep stages considered: W, NREMS and REMS.  

AdaBoost Model: υ = 0.1; NAB = 3000  

Sleep Stage Precision (%) Recall (%) F1-score 

Test Set W 54.78 66.94 0.603 
NREMS 94.55 72.08 0.818 
REMS 39.17 77.13 0.516  
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5.2. Clinical applicability of the characterization of the nocturnal HRV 
segments 

In the present study, the clinical applicability of the information 
extracted through the characterization of HRV has been highlighted. In 
the case of the diagnosis of pediatric OSA, we observed an increment of 
performance with disease severity, achieving the highest diagnostic 
yield in the 10 e/h cutoff with an Acc = 84.12% and AUC = 0.742, but 
with an unbalanced Se/Sp pair (40.00/92.03%). This increase in the 
performance with the severity threshold may be due to the well-tuned 
characterization that RPBW2 showed in the presence of apneic events. 
However, considering the modest overall diagnostic performance, the 
most useful approach for an automatic strategy using our LSBoost model 
would be detecting OSA presence (90.76% Se and 86.26% PPV for an 
AHI cutoff of 1 e/h) and discarding severe OSA (92.03% Sp and 89.53% 
NPV for an AHI cutoff of 10 e/h). Relative to the sleep stage classifica
tion task, the performance metrics were remarkably higher than in the 
diagnostic approach, as higher values of both multiclass k (0.499 vs. 
0.166) and accuracy (Acc3 = 71.82% vs. Acc4 = 41.89%) were reached. 
NREMS was the sleep stage with the best overall classification perfor
mance (72.08% recall and 94.55% precision), which is coherent with the 
largest differences found after the characterization step. 

According to these findings, a real clinical implementation using a 
single-signal approach based on HRV in the context of pediatric OSA 
diagnosis could benefit from an initial step such as to detect NREMS 
HRV followed by a second step to estimate AHI from the recorded seg
ments, since these are the segments with the highest discriminant abil
ity. In summary, we have shown that the characterization of HRV 
segments, is a promising approach to classify sleep stages, as well as to 
detect the presence of OSA in children, and to discard severe OSA, rather 
than to automatically perform multiclass classification of pediatric OSA. 
Further studies in large prospective cohorts should further allow for 
confirmation of these assumptions. 

5.3. Comparison with previous work 

To the best of our knowledge, this is the first study in which a HRV 
segment-based evaluation considering both sleep stages and apneic 
events presence was conducted in a pediatric population. However, 
some similarities with previous studies evaluating changes among 
classical HRV parameters across sleep stages should be mentioned. 
Kontos et al. [6] reported segment-based HRV during sleep of healthy 
children and adolescents, and their results can be compared with our 
findings when excluding the presence of apneic events. These in
vestigators observed the same tendencies in HRV spectral power within 
LF and HF bands. Also, they measured mean NN, which is the inverse of 
our mHR, obtaining opposing tendencies, i.e., the same outcomes. 
Despite these similarities, dissimilar results were obtained from SDNN 
and RMSSD measures. These discrepancies could be due to the fact that 
they only considered the first W pre-sleep segment, as well as the 
different segment size they used in each sleep stage (3 min for W and 
REMS, and 6 min for NREMS). Also, they evaluated 7 segments for each 
child, with a total of 75 children included in the study. This means that 
the conclusions by Kontos and collaborators were based on 525 seg
ments, against the 40,105 segments without apneic events analyzed by 
us in the training set. 

When HRV segments were compared between healthy and OSA 
children, the studies excluded segments with apneic events. Two of these 
studies agreed that for all the severity groups (healthy, primary snorers, 
mild OSA, and moderate-severe OSA) there was a decrease in the HF 
band power from NREMS to REMS [18,21]. This decrease was also 
observed in our study in RPHF for the no apneic segments. There is also 
another study that excluded apneic episodes from its analysis and 
compared HRV parameters in different sleep stages across severity 
groups [19]. Following this approach, they reported an absence of dif
ferences in LF power between groups, and only reported differences 

between moderate-severe OSA and controls in the power of the HF band 
and in the LF/HF ratio across all sleep stages. Notwithstanding the dif
ferences found, the authors concluded that pediatric OSA did not man
ifest autonomic dysfunction [19]. However, in the present study we 
have shown that the presence of apneic events modulates HRV across 
several HRV measures. Thus, in the aforementioned study [19], exclu
sion of apneic events could have hidden the evidence pointing to auto
nomic dysfunction due to OSA, highlighting the importance of 
considering the presence of apneic events to detect HRV differences 
across the night. 

Other published studies included apneic events, but their analyses 
included segments with and without apneic events clumped together. 
Nonetheless, some affinity between these studies and the present study 
are worthy of mention. Baharav et al. [15] compared the overnight HRV 
in OSA and healthy children, and observed higher LF activity and LF/HF 
ratio in pediatric OSA in all the sleep stages considered. In the present 
study, we observed increasing tendencies in RPLF and LFn as the pres
ence of apneic events increased, particularly during NREMS. Similarly, 
Horne et al. [16] also compared HRV throughout the night but differ
entiating additional children groups: control non snorers, normal weight 
primary snorers, normal weight OSA, overweight primary snorers, and 
overweight OSA children. They showed that overweight OSA presented 
elevated overnight HR compared to healthy children, and lower HF 
activity than normal weight primary snorers in NREMS. Also, LF activity 
was higher for normal weight OSA than overweight primary snorers. 
Again, as the presence of apneic events is minimal in healthy children 
and primary snorers, the trends observed in the present work as the 
density of apneic events increased in those parameters are in accordance 
with the results reported by Horne and colleagues [16]. Recently, Wu 
et al. [17] also reported an evolution of HRV parameters across sleep 
stages comparing healthy children to mild and moderate-to-severe OSA. 
In their results, the mean RR (that is, the inverse of mHR) decreased with 
OSA severity in all sleep stages, while LF/HF ratio increased with OSA 
severity, thus agreeing with the results of the above-mentioned studies 
[15,16], and with the present study. 

Regarding clinical usefulness assessment, Shouldice et al. [12] re
ported per-subject classification results, obtaining Acc = 84%, Se =
85.7%, PPV = 85.7%, Sp = 81.8%, and NPV = 81.8% when using a 12.5 
e/h AHI cutoff. In addition, three studies from another research group 
[51–53] also conducted per-subject classification in pediatric OSA using 
HRV features derived from decreases in the fluctuation of the photo
plethysmography signal. They reported Acc in the range 73.3–80%, Se in 
the range 62.5–87.5%, PPV in the range 75.0–85.71%, Sp in the range 
71.45–85.7%, and NPV in the range 66.7–83.3% when classifying OSA 
(>18 e/h) vs. healthy subjects (<5 e/h). Although lower Se was identi
fied in the present study, Table 3 shows that our approach is more useful 
to discard children without severe OSA, as reflected by higher Sp and 
NPV with a stricter severity threshold (10 e/h). It would allow to reduce 
the subjects sent to a normal evaluation, reducing waiting lists. Of 
course, population differences among the studies, as well as the criteria 
used to establish OSA hinder any further comparisons. Therefore, our 
previous studies examining HRV in the context of pediatric OSA [22,28] 
will need to serve as best comparators. Although these studies were not 
segment-based, the diagnostic performance in the same AHI cutoffs used 
here were reported. Overall diagnostic performance in the 5 and 10 e/h 
cutoffs was lower here than in these previous studies. However, the 
highest diagnostic performance was achieved in the present study for a 
cut-off of 1 e/h in terms of Acc, AUC, Se and PPV. These findings high
light the potentially advantageous clinical applicability of the charac
terization of HRV segments to detect the presence of OSA even in its 
mildest forms. 

Sleep stage classification using only cardiac measures has been 
scarcely investigated in children. To the best of our knowledge, this is 
the first study in which HRV metrics were used to evaluate classification 
of sleep stages in the context of pediatric OSA. However, sleep stage 
classification in healthy infants has been previously investigated. 

A. Martín-Montero et al.                                                                                                                                                                                                                      



Computers in Biology and Medicine 154 (2023) 106549

12

Haddad et al. [63] conducted the assessment of sleep stages in 9 infants 
(1–4 months of age) using cardiorespiratory measures to distinguish 
REMS and quiet sleep. After a preliminary evaluation, they observed 
that the variation of the respiratory cycle time had the highest chances 
to differentiate sleep stages, reporting Se of 93% in quiet sleep, and 
~99% in REMS. However, the classification performance of cardiac 
measures alone was not reported [63]. Harper et al. [64] also conducted 
sleep stage classification through cardiorespiratory measures in 25 in
fants (up to 6 months of life). They differentiated 1-min segments of W, 
quiet sleep, and REMS, reporting and Acc3 = 84.8% when using 7 
cardiorespiratory measures. This overall accuracy was reduced to 82% 
using cardiac measures alone [64]. Finally, Lewicke et al. [65] con
ducted sleep vs. W classification in 30-s segments of 190 infants using 
several machine learning models with HRV measures. They reported 
accuracies of ~78%, which increased to 85–87% when rejecting 30% of 
segments difficult to classify [65]. Unfortunately, the nature and size of 
the sample of the previous studies, as well as the kind of sleep stages 
considered, make it virtually impossible to compare to our present 
findings. 

5.4. Limitations and future work 

Several limitations deserve mention. First, although the main aim of 
this study was to characterize HRV using sleep-specific segments, the 
results obtained from the LSBoost and AdaBoost models are not suffi
ciently robust for widespread implementation. Thus, future machine- 
learning focused efforts will be needed to determine their usefulness 
in the tasks of achieving reliable determination of a diagnosis of pedi
atric patients and in sleep stage classification. Furthermore, there is 
imbalance between the number of different type of segments considered. 
Although the number of segments included for each class is large (see 
Table 1), there were more NREMS and <1 apneic event segments. To test 
if balancing the dataset would change the performance, we performed a 
reanalysis of both LSBoost and AdaBoost models with a balanced subset 
of the segments, but these results did not lead to an improvement in any 
of the performances for both tasks. In the future, inclusion of more 
segments with apneic events, as well as more segments corresponding to 
W and REMS would be desirable to increase the generalizability of our 
results. Besides, the original annotations of sleep stages were performed 
on 30 s epochs, but some of the features included cannot be computed 
for this length of register, so we performed sleep stage annotations based 
on 10-min segments. Thus, the selection of metrics that cannot be 
computed for 30 s of HRV signal, despite being a common practice in the 
literature, constitutes another limitation of our study. In addition, we 
have only considered W, NREMS, or REMS sleep stages. Although this is 
an approach followed in many studies aimed at sleep stage classification 
and characterization [6,18,63,64], the AASM establishes that NREMS 
sleep stage can be divided into N1, N2 and N3 [66]. Therefore, further 
HRV segment-based analyses may benefit from inclusion of NREMS 
sub-stages. Of note, evaluating the clinical applicability of current 
findings in prediction of OSA-associated cardiovascular risks may pro
vide further value if applicable. 

6. Conclusions 

This is the first study in which a segment-based evaluation of HRV 
incorporating sleep stages and apneic events has been conducted in 
children. In addition, the evolution of HRV measures in pediatric OSA- 
specific frequency bands across sleep stages is introduced. Besides, the 
reliability of models trained with HRV OSA-specific frequency measures 
through ensemble-learning algorithms in the context of pediatric OSA 
has also been assessed for the first time. This approach allowed us to 
observe that two of these novel spectral bands, BW2 and BWRes, dis
played increased relevance when compared to conventional spectral 
bands when establishing pediatric OSA severity and to classify sleep 
stages, respectively. Although an increased effect of sympathetic 

activation would be expected during REMS in the presence of respira
tory disturbances, the characteristically increased basal sympathetic 
activity of REMS appears to mask the sympathetic excitation induced by 
apneic or hypopneic events. Such phenomenon is therefore easier to 
distinguish during NREMS. Accordingly, when evaluating HRV in pe
diatric OSA, both the sleep stage and the presence of apneic events need 
to be considered. Furthermore, the analysis of the pediatric-OSA specific 
spectral bands may prove particularly useful in both the automated 
diagnosis of OSA and in machine-based sleep stage classification in 
children. 
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