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We consider population games played by procedurally rational players who, when revising 
their current strategy, test each of their available strategies independently in a series of 
random matches –i.e., a battery of tests–, and then choose the strategy that performed 
best in this battery of tests. This revision protocol leads to the so-called payoff-sampling
dynamics (aka test-all Best Experienced Payoff dynamics).
In this paper we characterize the support of all the rest points of these dynamics in any 
game and analyze the asymptotic stability of the faces to which they belong. We do this 
by defining strategy sets closed under payoff sampling, and by proving that the identification 
of these sets can be made in terms of simple comparisons between some of the payoffs of 
the game.

© 2022 Published by Elsevier Inc.

1. Introduction

In the context of players with bounded rationality or limited information, Osborne and Rubinstein (1998) introduced a 
decision rule for procedurally rational players. In a population game setting where players use pure strategies only (Sandholm, 
2010), these procedurally rational players revise their pure strategy as follows. They first associate one payoff to each of their 
possible strategies by –literally or virtually– conducting a battery of tests. This battery of tests consists on testing each of 
their available strategies independently in κ matches or trials, with each trial involving a new set of randomly drawn co-
players from the population. Revising players then choose the strategy that obtained the best average experienced payoff in 
the battery of tests.

An equilibrium under this procedure is a population state x such that the proportion of players using each strategy ai

(i.e., xi ) equals the probability of strategy ai being selected as the best-experienced-payoff strategy in a κ-trial battery of 
tests conducted at state x. Using wκ

i (x) to denote this probability, a population state x is an equilibrium under procedural 
rationality if xi = wκ

i (x) for every strategy ai .
This equilibrium has been named payoff-sampling equilibrium in the literature (see e.g. Selten and Chmura (2008), Chmura 

and Güth (2011), Cárdenas et al. (2015), Sethi (2021) and Arigapudi et al. (2021, 2022)). When defining this equilibrium, 
most authors (e.g. Osborne and Rubinstein (1998); Selten and Chmura (2008); Cárdenas et al. (2015)) assume that ties are 
broken uniformly at random and use S(κ) to denote the resulting (uniform) payoff-sampling equilibrium.1

✩ Abbreviations. BEP: Best Experienced Payoff; CUPS: Closed Under Payoff Sampling; CURB: Closed Under Rational Behavior.
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1 Sandholm et al. (2019, 2020), Arigapudi et al. (2021), and Sethi (2021) also consider other tie-breaking rules.
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Procedurally rational agents and their associated payoff-sampling equilibria have been used in a variety of applications, 
including consumer choice procedures and product pricing strategies (Spiegler, 2006a), markets with asymmetric informa-
tion (Spiegler, 2006b), trust and delegation of control (Rowthorn and Sethi, 2008), the Traveler’s Dilemma (Berkemer, 2008), 
market entry (Chmura and Güth, 2011), ultimatum bargaining (Miȩkisz and Ramsza, 2013), use of common-pool resources 
(Cárdenas et al., 2015), contributions to public goods (Mantilla et al., 2020), the Centipede game (Sandholm et al., 2019; 
Izquierdo and Izquierdo, 2022b), the Prisoner’s Dilemma (Arigapudi et al., 2021), coordination problems (Izquierdo et al., 
2022), and finitely repeated games (Sethi, 2021).

Sethi (2000) introduced population dynamics based on the considered procedurally rational agents. These dynamics, 
which have been called sampling dynamics (see e.g. Miȩkisz and Ramsza (2013); Mantilla et al. (2020)) and payoff-sampling 
dynamics (see e.g. Sethi (2021); Arigapudi et al. (2021, 2022)), take the form

ẋi = wκ
i (x) − xi, (1)

corresponding to a setting where agents occasionally and independently revise their current strategy and, when revising, 
they adopt strategy ai with probability wκ

i (x). The process assumes a common rate of revision for every agent, so the 
“outflow” term for ai -strategists in (1) is proportional to their presence in the population, xi .

Sandholm et al. (2019) generalized payoff-sampling dynamics, allowing revising agents to consider subsets of their avail-
able strategies (rather than all available strategies) and to use different tie-breaking rules. This generalization led to the 
so-called family of Best Experienced Payoff (BEP) protocols and their associated dynamics.

The procedurally rational players and S(κ) equilibria introduced by Osborne and Rubinstein (1998) correspond to 
BEPall(κ, βuni f ) protocols, where the subscript all indicates that all strategies are tested, κ is the number of trials that 
each strategy is tested, and βuni f indicates that ties are resolved uniformly at random. We refer to these BEPall(κ, βuni f )

protocols as uniform payoff-sampling protocols.
Sethi (2021) considers the family of regular tie-breaking rules βr , which are those that place positive probability on 

choosing each of the strategies that achieve the best-experienced-payoff in a battery of tests. We refer to the corresponding 
BEPall(κ, βr) protocols as regular payoff-sampling protocols.2

The protocols considered in this paper are BEPall(κ, β), i.e., we assume that revising agents test all their available 
strategies, and we allow for different number of trials κ and different tie-breaking rules β . Henceforth we refer to these 
BEPall(κ, β) protocols simply as payoff-sampling protocols. For brevity, we sometimes use BEPall for BEPall(κ, β).

The relationship between Nash equilibria and payoff-sampling equilibria is well understood in the literature. Payoff-
sampling equilibria are not necessarily Nash equilibria, and vice versa. Nonetheless, Osborne and Rubinstein (1998) showed 
that every two-player game has an S(κ) equilibrium, for any number of trials κ ∈ N , and that the limit of convergent 
sequences of S(κ) equilibria as κ → ∞ is a Nash equilibrium. Sandholm et al. (2020) extended these results to p-player 
games under any BEP protocol. We also know that, under payoff-sampling dynamics, asymptotically stable states are not 
necessarily Nash.3 This contrasts with most other evolutionary dynamics.4

The connection between strict Nash equilibria and payoff-sampling equilibria –and their stability– is also well understood 
in the literature. Osborne and Rubinstein (1998) showed that strict Nash profiles correspond to S(κ) equilibria, and that 
those are the only monomorphic S(κ) equilibria, i.e., the only S(κ) equilibria in which all players in each population use 
the same strategy. Sethi (2000) showed that strict Nash equilibria may be dynamically stable or unstable under payoff-
sampling dynamics with κ = 1; and Sandholm et al. (2020) proved that, for a sufficiently large number of trials κ , strict 
Nash equilibria are asymptotically stable under any BEP protocol. The stability of strict Nash equilibria under payoff-sampling 
dynamics is also analyzed by Arigapudi et al. (2021) and Izquierdo and Izquierdo (2022c).

To our knowledge, besides their relationship with Nash and strict Nash equilibria, there are no general results about the 
structure and stability of payoff-sampling equilibria in the literature. In this paper, we shed some light on this issue. In 
particular, we provide necessary and sufficient conditions to characterize the support of all payoff-sampling equilibria and 
the dynamic stability of the faces to which they belong, in any game.

To illustrate this characterization, consider the following two-player symmetric game, with strategy set {a, b, c} and 
payoff matrix (to the row player) E1:

E1 =
a b c

a 1 0 0
b 0 1 8
c 0 2 1

2 Note that βuni f is a regular tie-breaking rule, so all uniform payoff-sampling protocols are regular.
3 Sandholm et al. (2019) show that in the centipede game, for low number of trials κ , there is an interior asymptotically stable state at which most 

players cooperate up until the last five stages of the game.
4 In weakly payoff positive selection dynamics (i.e. dynamics where at least one of the pure strategies that obtains an expected payoff above average 

–assuming at least one such a strategy exists– has a positive growth rate), only Nash states can be Lyapunov stable (Weibull, 1995, p. 151). In the standard 
multi-population replicator dynamics, and in many other evolutionary dynamics, only strict Nash states can be asymptotically stable (Eshel and Akin, 1983; 
Ritzberger and Vogelsberger, 1990; Ritzberger and Weibull, 1995; Balkenborg and Schlag, 2007; Samuelson and Zhang, 1992).
127



S.S. Izquierdo and L.R. Izquierdo Games and Economic Behavior 138 (2023) 126–142
Fig. 1. Uniform payoff sampling dynamics BEPall(κ, βuni f ) for different values of κ , for the game with payoff matrix E1. In the figures, colors represent 
speed of motion: red is fastest, blue is slowest. Isolated rest points are represented with circles: red if the rest point is asymptotically stable, and white if 
it is unstable. Connected components of rest points are represented with lines: red if asymptotically stable, and white if unstable. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Strategy a is a strict Nash strategy (i.e., (a, a) is a strict Nash profile) and, consequently, for any κ , the population 
state5 (xa, xb, xc) = (1, 0, 0) is an S(κ) equilibrium. Given that it is strict Nash, this equilibrium is asymptotically stable for 
sufficiently large κ (Sandholm et al., 2020). Profiles (b, b) and (c, c) are not strict Nash, so the monomorphic population 
states (0, 1, 0) and (0, 0, 1) are not S(κ) equilibria. An analysis based on strict Nash equilibria would finish here.

Nonetheless, note that the subset of strategies H = {b, c} has an interesting property: if your co-player is using any 
strategy in H , you are better off choosing a strategy in H , rather than choosing any strategy not in H . Specifically, when 
testing each strategy (κ times) against co-players using strategies in H , strategy a will obtain a total payoff of 0, while 
strategies b and c will each obtain a total payoff of at least κ . Consequently, at any state whose support is contained in H , 
the strategy selected by a revising agent (i.e., the strategy that performs best in a battery of tests) will necessarily be in H . 
As a consequence, we will prove later that, for any κ ∈ N , there is an S(κ) equilibrium whose support is H (see Fig. 1). 
Furthermore, the face spanned by H , i.e. �H = {(0, xb, xc) ∈ R3+ : xb + xc = 1}, is asymptotically stable under any payoff-
sampling dynamic BEPall .6 As κ → ∞, any convergent series of equilibria in �H converges to the unique Nash equilibrium 
in �H , which is (0, 78 , 18 ).

With the same motivation as Ritzberger and Weibull (1995), or Balkenborg et al. (2013), but considering different dy-
namics, in this paper we focus on the asymptotic stability of faces of the space of population states: subsets of states where 
some strategies are not used. Faces are associated with subsets of pure strategies; one subset for each player position. At 
one extreme of this spectrum we have monomorphic states (where all players in each population use the same strategy); 
if a monomorphic state is a rest point under a regular payoff-sampling dynamic, it must correspond to a strict Nash equi-
librium. The opposite extreme is the whole set of population states, i.e. the maximal face, which includes all the strategies 
in the game. Informally, a face is asymptotically stable if it attracts all trajectories starting from (sufficiently close) nearby 
states. Ritzberger and Weibull (1995) consider regular7 selection dynamics –such as the replicator dynamics and other sign-
preserving selection dynamics–, and Balkenborg et al. (2013) analyze generalized best reply dynamics –which assume highly 
rational and highly informed players. Here we consider procedurally rational players and their associated payoff-sampling 
dynamics BEPall .

Our main result (Proposition 3.1) is a necessary and sufficient condition for a face to be invariant under every payoff-
sampling protocol, leading to the definition of sets of strategies Closed Under Payoff Sampling (CUPS). If the number of 
trials is above a certain value, our condition is also necessary and sufficient for a face to be asymptotically stable under 
every payoff-sampling dynamic. Importantly, the characterization of CUPS sets (Proposition 3.1) is made in terms of simple 
comparisons between some of the payoffs of the game.

We also prove that a) every CUPS face contains at least one payoff-sampling equilibrium, b) the support of every regular 
payoff-sampling equilibrium is a CUPS set, and c) every minimal CUPS set H contains at least one regular payoff-sampling 
equilibrium with support H , and no regular payoff-sampling equilibrium with support properly contained in H .

All these results combined can provide useful insights on the dynamics of payoff-sampling protocols in many games, 
using only a few comparisons between some of the payoffs of the game. This is illustrated for the Centipede game and for 
the Traveler’s Dilemma in section 5.

As for the relation of CUPS sets to other setwise solution concepts, we show that CUPS sets are Closed Under Rational 
Behavior –CURB (Basu and Weibull, 1991)– and, consequently, every CUPS face contains an essential component of Nash 
equilibria (Ritzberger and Weibull, 1995). However, not all CURB sets are CUPS: CUPS sets are a refinement of CURB sets. 

5 In the examples, for clarity, we will use xa to indicate the fraction of players in the population using strategy a (equivalently for the other strategies), 
instead of numbering them and using the notation x1, x2, ....

6 For κ > 1, this can be shown using the bound in the proof of Proposition 3.6.
7 The term “regular”, frequently used in evolutionary game theory to qualify certain dynamics (see e.g. Ritzberger and Weibull (1995)), has a different 

meaning in this sentence from the one used by Sethi (2021) to qualify certain tie-breakers. BEPall dynamics are not regular dynamics in the first sense, 
since a strategy that is absent from the population can be introduced, if it performs well in a battery of tests.
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Finally, there is no direct connection between CUPS sets and asymptotic stability under the (multi-population) replicator 
dynamics: CUPS faces may not be closed under the better-reply correspondence (Ritzberger and Weibull, 1995) –so they 
may not be asymptotically stable under the replicator dynamics– and vice versa.

The rest of the paper is structured as follows. Section 2 contains the notation and main definitions for symmetric p-
player population games played in one population, and for payoff-sampling dynamics BEPall , as well as some background 
on dynamical systems. Section 3 defines strategy sets Closed Under Payoff Sampling (CUPS), provides a simple way to 
characterize them from the game payoffs, and presents several results relating CUPS sets to equilibria and to asymptotic 
stability under payoff-sampling dynamics. In section 4 we show that CUPS sets are a refinement of CURB sets, and we also 
show that CUPS sets may or may not be closed under weakly better replies. In section 5 we include some applications, and 
section 6 presents several conclusions. The proofs, and the extension of our results to (symmetric or asymmetric) p-player 
games played in p populations, are presented in an appendix.

All figures in this paper can be easily replicated with open-source freely available software which also performs exact 
computations of rest points and exact linearization analyses (BEP-3s-sp (Izquierdo and Izquierdo, 2022a) for Figs. 2 and 3, 
and EvoDyn-3s (Izquierdo et al., 2018) for the other figures).

2. Payoff-sampling protocols and dynamics

2.1. Population games

For notational simplicity, we focus first on p-player symmetric games played in one population. The extension to multi-
population (symmetric or asymmetric) games is presented in appendix A. Following Sandholm et al. (2020), we consider 
a unit-mass population of agents who are matched to play a symmetric p-player normal form game G = {A, U }. This 
game is defined by a strategy set A = {ai}n

i=1 containing n pure strategies, and a payoff function U : A p → R, where 
U (ai; a j1 , . . . , a jp−1) represents the payoff obtained by a strategy ai player whose opponents play strategies a j1 , . . . , a jp−1 . 
Our symmetry assumption implies that the value of U does not depend on the ordering of the last p − 1 arguments. For a 
tuple of (p − 1) strategies ā ≡ (a j1 , . . . , a jp−1), we write Uai ,ā ≡ U (ai; a j1 , . . . , a jp−1).

Aggregate behavior in the population is described by a population state x = (xi) ∈ �A ≡ {x ∈ Rn+ : ∑n
i=1 xi = 1}, with 

component xi representing the fraction of agents in the population using strategy ai ∈ A. The standard basis vector ei ∈ �A

represents the pure (monomorphic) state at which all agents play strategy ai .
The (expected) payoff function to strategy ai at state x is the usual extension of the payoff function U to the simplex 

�A , i.e., Ui(x) = ∑
ā∈A(p−1)

(∏n
j=1(x j)

I j(ā)
)

Uai ,ā , where ā is a (p − 1)-tuple of strategies (one for each co-player), and the 
exponent I j(ā) is the number of occurrences of strategy a j in ā.

2.2. Payoff-sampling dynamics BEPall

Under a payoff-sampling protocol BEPall(κ, β), agents occasionally revise their current strategy by conducting a battery of 
tests involving all their strategies. The first parameter in a payoff-sampling protocol BEPall(κ, β), called the number of trials
κ ∈ N , specifies the number of times that each strategy will be played in the battery of tests. Thus, each strategy will be 
played by the revising agent over κ matches, with each match requiring a new independent sampling of (p − 1) co-players. 
The second parameter, namely the tie-breaking rule β , indicates the rule used to decide which strategy is selected when the 
best result (i.e. the greatest total –or, equivalently, average– experienced payoff) is obtained by more than one strategy.8

Under a payoff-sampling protocol BEPall(κ, β), let wκ,β

i (x) be the probability with which strategy ai is selected by a 
revising agent at state x, i.e., the probability that strategy ai obtains the best total payoff in κ trials, and, if there are ties, it 
is selected by the tie-breaking rule β . This probability is a continuous function of the population state x.

The calculation of the term wκ,β

i (x) for payoff-sampling processes BEPall(κ, β) is presented next, adapted from Sandholm 
et al. (2020). Let a battery of tests conducted by a revising agent be the process of testing κ times each of her n strategies, 
for which a total of n κ (p − 1) co-players need to be sampled. To represent the strategies used by the sampled co-players 
in a battery of tests, consider the indexes i ∈ {1, ..., n}, k ∈ {1, ..., κ} and o ∈ {1, ..., p − 1}; let abat

i,k,o ∈ A be the strategy of the 
o-th co-player sampled when conducting the k-th trial of strategy ai ; and let abat ≡ (abat

i,k,o) be the correspondingly indexed 
sequence of n κ (p − 1) strategies. Let �A,κ,p be the set of all such indexed sequences of n κ (p − 1) strategies taken from 
A. For a battery of tests with sampled strategies abat , let πU (abat) be the n-tuple of total experienced payoffs (πU

i (abat))

obtained by each strategy ai ∈ A, i.e.,

πU
i (abat) =

κ∑
k=1

U (ai; ābat
i,k )

8 We could allow each strategy to be tested a possibly different number of trials, and the selection be based on the greatest average payoff. Our results 
are qualitatively robust to this variation, considering that each strategy is tested at least κ times.
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where ābat
i,k ≡ (abat

i,k,1, a
bat
i,k,2, ..., a

bat
i,k,p−1) is the (p − 1)-tuple of strategies used by the sampled co-players of a revising agent 

when she conducts her k-th trial of strategy ai .
Note that the probability of obtaining the sequence of strategies abat , in a battery of tests conducted at state x, is ∏n

l=1 xIl(a
bat )

l , where the exponent Il(abat) is the number of occurrences of strategy al in the sequence abat . Considering this, 
under a BEPall(κ, β) protocol, the probability that a revising agent chooses strategy ai at population state x is given by

wκ,β

i (x) =
n∑

j=1

x j

∑

abat∈�A,κ,p

β ji

(
πU (abat)

) n∏
l=1

xIl(a
bat )

l (2)

where the functions β ji : Rn → [0, 1] define the tie-breaking rule. Considering an n-tuple of total payoffs π ≡ (πi), the 
functions β ji(π) are such that:

• β ji(π) = 1 if πi > πl for all l �= i. I.e., β ji(π) = 1 if strategy ai is the only one to obtain the maximum total payoff.
• β ji(π) = 0 if πi < maxl∈{1,...,n} πl . I.e., β ji(π) = 0 if strategy ai does not obtain the maximum total payoff.
• Otherwise, i.e., if strategy ai obtains the maximum total payoff but it is not the only one to do so, the rule β ji(π)

establishes the probability with which strategy ai is chosen, depending on the total payoffs obtained by each strategy 
and on which strategy (a j ) is being currently used by the revising agent. We assume that one of the strategies with the 
highest payoff is chosen, so we have 

∑
i:πi=maxl(πl)

β ji(π) = 1.

Regular tie-breaking rules βr are such that βr
ji(π) > 0 whenever strategy ai obtains the maximum total payoff, i.e., 

whenever πi = maxl πl .
Well-known results of Benaïm and Weibull (2003) show that the behavior of a large but finite population following the 

procedure presented above is closely approximated by the solution of the associated mean dynamic, a differential equation 
which describes the expected motion of the population from each state. This mean dynamic for BEPall(κ, β) processes is:

ẋi = wκ,β

i (x) − xi (3)

An equilibrium S(κ, β) under a payoff-sampling protocol is a population state x satisfying

wκ,β(x) = x

where wκ,β(x) is the vector whose components are wκ,β

i (x).
The S(κ) equilibria of Osborne and Rubinstein (1998) are the S(κ, βuni f ) equilibria, which correspond to the uniform 

payoff-sampling protocol BEPall(κ, βuni f ).

2.3. Background on dynamical systems: invariant and asymptotically stable faces

Consider a C1 differential equation ẋ = V (x) defined on �A whose forward solutions do not leave �A . A set Y ⊆ �A is 
called forward invariant if any solution path starting in Y remains in Y for the entire future: x(t, x0) ∈ Y for all x0 ∈ Y and 
t ∈R+ . It is called invariant if, moreover, any solution path that at some time is in Y has also been in Y for the entire past. 
A point x∗ ∈ �A is called a stationary point or a rest point if {x∗} is an invariant set, satisfying V (x∗) = 0.

For any nonempty subset of strategies H ⊆ A, let �H be the face (or subsimplex) of �A spanned by the strategies in 
H , i.e., �H = {x ∈ �A : xi = 0 if ai /∈ H}. BEP dynamics are C1 and satisfy ẋi ≥ −xi , which implies that if some strategy is 
initially present in the population, it will remain present forever (it can only vanish asymptotically). Consequently, if x(t, x0)

is in some face �H at some time t , the path x(t, x0) has been in that face �H for the entire past, and if �H is forward 
invariant, then it is invariant.

A closed invariant set Y ⊆ �A is (Lyapunov) stable if for every neighborhood O of Y there exists a neighborhood O ′ of 
Y such that x(t, x0) ∈ O for all x0 ∈ O ′ ∩ �A and all t ≥ 0. If a set Y is not Lyapunov stable it is unstable, and it is repelling 
if there is a neighborhood O of Y such that solutions from all initial conditions in (O  \ Y ) ∩ �A leave O .

A closed invariant set Y ⊆ �A is asymptotically stable if it is stable and there is some neighborhood O of Y such that 
x(t, x0) → Y as t → ∞ for all x0 ∈ O  ∩ �A .

3. Sets closed under payoff sampling: characterization and properties

As a preparation for the definition of CUPS sets, we first define sets closed under a specific payoff-sampling protocol 
BEPall(κ, β). Informally, a set of strategies H is closed under a payoff-sampling protocol if any revising agent using that 
protocol will necessarily choose some strategy in H when players use strategies in H . Note that the set of strategies that 
a revising agent using a BEPall(κ, β) protocol may select with positive probability at state x is the set of strategies ai such 
that wκ,β

(x) > 0.
i
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Definition 1. Closed under a payoff-sampling protocol. A nonempty subset of strategies H ⊆ A is closed under a BEPall(κ, β) 
protocol if for all x ∈ �H , wκ,β(x) ∈ �H .

If H is closed under a BEPall(κ, β) protocol, any player using such a revision protocol at any state x ∈ �H will choose 
some strategy in H . This makes the face �H invariant under the corresponding payoff-sampling dynamics. It can be easily 
seen that being closed under a protocol is also a necessary condition for �H to be invariant under the protocol, so it is a 
sufficient and necessary condition for invariance of �H .

Definition 2. Closed under payoff sampling. A nonempty subset of strategies H ⊆ A is closed under payoff sampling (CUPS) 
if H is closed under every payoff-sampling protocol BEPall(κ, β). If H is a CUPS set, we say that �H is a CUPS face.

A CUPS face is invariant under BEPall(κ, β) dynamics for every κ ∈N and for every tie-breaking rule β . The fact that H
is a CUPS set implies that, under payoff sampling, if a revising agent using some strategy in H meets co-players who use 
strategies in H , then the selected strategy is necessarily in H , regardless of the number of trials κ and of the tie-breaking 
rule. However, we will show later that a sufficient (and necessary) condition to be a CUPS set is to be closed under (any) 
one regular payoff-sampling protocol BEPall(κ, βr ), i.e., being closed for some κ and some βr implies being closed for every 
κ and every β .

Clearly, the whole strategy set A is CUPS. Our next proposition shows that the other CUPS sets can be easily characterized 
from the game payoffs.

Proposition 3.1. A nonempty subset of strategies H ⊂ A is closed under payoff sampling (CUPS) if and only if:

max
ai∈(A\H), ā∈H(p−1)

Uai ,ā < max
a j∈H

min
ā∈H(p−1)

Ua j ,ā (4)

The term (maxa j∈H minā∈H(p−1) Ua j ,ā) in Proposition 3.1 is the maxmin payoff in H : the maximum payoff that can be 
guaranteed to be obtained or exceeded by some strategy in H when meeting co-players using strategies in H . For a strategy 
ai that is not in H , the term (maxā∈H(p−1) Uai ,ā) is the maximum payoff that an ai -player may obtain when meeting co-
players using strategies in H . It can be easily seen that the CUPS sets of size 1, when they exist, are precisely the strict 
Nash strategies of the game (i.e., strategies a j such that the strategy profile (a j, a j, ..., a j) is a strict Nash equilibrium of 
the game). To see this, note that the condition for a set with a single strategy {a j} to be a CUPS set is U (ai; a j, a j, ..., a j) <
U (a j; a j, a j, ..., a j) for all ai �= a j , which is the definition of a strict Nash strategy. From this point of view, a CUPS set is a 
setwise generalization of the strict Nash property.

Proposition 3.2, which can be seen as a consequence of Proposition 3.1, shows that if a set is closed under some regular 
BEPall(κ, βr) protocol, then it is CUPS.

Proposition 3.2. A subset of strategies is closed under a regular payoff-sampling protocol BEPall(κ, βr ) if and only if it is CUPS.

Propositions 3.1 and 3.2 together show that being CUPS (i.e. satisfying (4)) is a necessary and sufficient condition for a 
face to be invariant under any given regular BEPall(κ, βr) dynamics, and a sufficient condition for invariance of a face under 
any given BEPall(κ, β) dynamics.

Considering that wκ,β is a continuous function that maps CUPS faces onto themselves, we could expect the following 
existence result for S(κ, β) equilibria in every CUPS face.

Proposition 3.3. Every CUPS face contains at least one S(κ, β) equilibrium, for every number of trials κ and any tie-breaking rule β .

In turn, for regular tie-breaking rules, the support of an S(κ, βr) equilibrium must be a CUPS set. This is equivalent to 
stating that regular payoff-sampling equilibria must belong to the relative interior of some CUPS face.

Proposition 3.4. The support of every regular S(κ, βr) equilibrium is a CUPS set.

Proposition 3.4 shows that the support of any regular S(κ, βr) equilibrium is a CUPS set, and Proposition 3.3 shows that, 
for any κ and β , a CUPS set contains the support of at least one S(κ, β) equilibrium. In other words, H being a CUPS set is 
a necessary condition to have a regular S(κ, βr) equilibrium whose support is H ; and it is a sufficient condition to have an 
S(κ, β) equilibrium whose support is contained in H .

Definition 3. Minimal CUPS set. A minimal CUPS set is a CUPS set that does not contain any proper CUPS subset.

Given that the whole strategy set A is a CUPS set, the existence of at least one minimal CUPS set is guaranteed. If H is 
a minimal CUPS set, we say that �H is a minimal CUPS face.
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Proposition 3.5. Consider any number of trials κ ∈N and any regular tie-breaking rule βr . A set H is a minimal CUPS set if and only 
if there is a regular S(κ, βr) equilibrium with support H and there is no regular S(κ, βr) equilibrium with support properly contained 
in H.

Proposition 3.5 implies that, if H is a minimal CUPS set, then, for any κ ∈N and any regular tie-breaking rule βr , there 
is some regular S(κ, βr) equilibrium in the (relative) interior of �H , and there are no S(κ, βr) equilibria in the boundary 
of �H . Besides, minimal CUPS faces are the smallest faces that can be asymptotically stable under regular BEPall dynamics 
(recall that being CUPS is a necessary and sufficient condition for a face to be invariant under regular BEPall dynamics.)

Our last results in this section are about stability of CUPS faces. First, Proposition 3.6 shows that, for a sufficiently large 
number of trials, CUPS faces are asymptotically stable under BEPall dynamics.

Proposition 3.6. If H is CUPS, then there is a finite k0 such that, for κ > k0 , face �H is asymptotically stable under every BEPall(κ, β) 
dynamics.

So, under any regular BEPall dynamics, being CUPS is a necessary condition for asymptotic stability of a face (since it is 
a necessary condition for invariance). And, for a sufficiently large number of trials, being CUPS is also a sufficient condition 
for the face to be asymptotically stable, in this case under every payoff-sampling dynamics BEPall (regular or not). The proof 
of Proposition 3.6 provides a finite value κ0 (not necessarily the smallest one) that guarantees asymptotic stability for any 
κ > κ0, regardless of the tie-breaking rule.

Last, considering BEPall(1, β) dynamics, we extend (to CUPS faces) a sufficient condition by Sethi (2000) for a strict 
Nash equilibrium to be a repellor, as well as more general conditions (by Sandholm et al. (2020)) for such equilibria to be 
unstable.

Considering a CUPS set H and its complement Hc ≡ A \ H , we say that strategy a j ∈ Hc supports invasion (of H) by 
strategy ak ∈ Hc if

min
ā∈H(p−2)

U (ak;a j, ā) > max
ai∈H, ā∈H(p−1)

Uai ,ā

Or, for the two-player case, if

Uak,a j > max
ai ,al∈H

Uai ,al

I.e., a j supports invasion (of H) by ak if the presence of one ak-strategist and one a j -strategist in a strategy profile where 
the other players use strategies in H ensures that strategy ak obtains a greater payoff than the best payoff that the strategies 
in H can obtain when playing among themselves. In the dynamics (3), the presence of strategy a j in proportion x j at states 
close to �H guarantees a minimum inflow for ẋk that is proportional to x j and to (p − 1). Note that strategy a j ∈ Hc may 
support invasion by a j itself.

Definition 4. (Partially) inferior CUPS set. A CUPS set H is partially inferior if there is a non-empty subset of strategies 
Hc

0 ⊆ (A \ H) such that every strategy a j ∈ Hc
0 supports invasion by at least one strategy ak ∈ Hc

0. If every strategy a j ∈ Hc
0

supports invasion by at least two strategies ak �= ak′ ∈ Hc
0, we say that H is partially twice inferior. If the condition holds for 

Hc
0 = (A \ H), we call the set inferior (or twice inferior, respectively).

Proposition 3.7. In symmetric games with more than two players:

• If a CUPS set H is inferior, then face �H is repelling under BEPall(1, β) dynamics.
• If a CUPS set H is partially inferior, then face �H is unstable under BEPall(1, β) dynamics.

In symmetric two-player games, the previous result applies to twice inferior (respectively, partially twice inferior) CUPS sets.

To illustrate the usefulness of the propositions derived in this section, consider the following p-player symmetric game, 
with strategy set A = {a, b, c} and payoff matrix (where the payoffs depend on the number of co-players using strategy c):

E2 =

number of other players
using strategy c

0 1 ≥ 2
a 1 1 0
b 1 1 1
c 0 2 2
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Fig. 2. Different payoff-sampling dynamics for the game with payoff matrix E2 and p = 3 players. The tie-breaker βmin in (i) chooses in alphabetical order 
in case of tie. The tie-breaker βstick−uni f in (ii) selects the strategy that the revising agent is currently using if it is among the best in the test; otherwise, a 
uniformly random choice is conducted among the best strategies in the test. Finally, the tie-breaker βuni f in (iii) makes a uniformly random choice among 
the best strategies in the test. The red line in (ii) denotes an asymptotically stable connected component of rest points.

Fig. 3. Different payoff-sampling dynamics for the game with payoff matrix E2 and p = 3 players. For the definition of the different tie-breakers, see 
figure 2. The white line in (ii) denotes an unstable connected component of rest points.

In this example, the sets of strategies H1 = {a, b} and H2 = {c} are both CUPS, since

max
ai∈(A\H1), ā∈H(p−1)

1

Uai ,ā = 0 < 1 = max
a j∈H1

min
ā∈H(p−1)

1

Ua j ,ā

and (c, ..., c) is a strict Nash profile.
Thus, Proposition 3.1 tells us that face �{a,b} is invariant under any BEPall(κ, β) protocol and that ec is an S(κ, β)

equilibrium for any κ ∈ N and any tie-breaking rule β . Proposition 3.3 implies that, besides ec , there is at least another 
S(κ, β) equilibrium in the face �{a,b} . See Figs. 2 and 3.

It is easy to see that CUPS sets H1 = {a, b} and H2 = {c} are both minimal, and that there is no other minimal CUPS 
set. Naturally, the whole strategy set A is CUPS. Thus, applying Propositions 3.4 and 3.5, we can assert that for any κ ∈ N
and any regular tie-breaking rule βr , every regular S(κ, βr) equilibrium besides ec either lies in the relative interior of face 
�{a,b} (and there is at least one such equilibrium, since H1 = {a, b} is minimal –see Proposition 3.5) or has full support (and 
such an equilibrium may or may not exist, since CUPS set A is not minimal). See Figs. 2(iii) and 3(iii).

In terms of asymptotic stability, Proposition 3.6 implies that face �{a,b} and strict Nash state ec are both asymptotically 
stable under every BEPall(κ, β) dynamics for a sufficiently large number of trials κ (see Fig. 2).

Finally, as for instability, note that CUPS set H1 = {a, b} is inferior, since strategy c ∈ Hc
1 supports invasion (of H1) by 

itself9:

min
ā∈H(p−2)

1

U (c; c, ā) = 2 > 1 = max
ai∈H1, ā∈H(p−1)

1

Uai ,ā.

Thus, Proposition 3.7 implies that in game E2 with more than 2 players, face �{a,b} is repelling under all BEPall(1, β) 
dynamics (see Fig. 3).

9 In the two-player case, consider U (c, c) instead of min (p−2) U (c; c, ̄a).

ā∈H1
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Fig. 4. Uniform payoff sampling dynamics BEPall(κ, βuni f ) for different values of κ , for the game with payoff matrix E3. H1 = {a, b} is minimal CURB but it 
is not CUPS. Face �H1 contains no S(κ) equilibrium. Profile (c, c) is strict Nash, so H2 = {c} is minimal CURB and CUPS.

4. CUPS and CURB sets: payoff sampling versus rational behavior

Following Basu and Weibull (1991), we call a nonempty set of strategies H ⊆ A Closed Under Rational Behavior (CURB) 
if it contains all its best replies, i.e., if BR(x) ⊆ H for every x ∈ �H , where BR is the pure best-reply correspondence which 
maps population states to their pure best-reply strategies (Ritzberger and Weibull, 1995).

Proposition 4.1. CUPS sets are closed under rational behavior.

The reason why CUPS sets are CURB is that strategies that do not belong to a CUPS set cannot be best reply to any 
strategy profile (for co-players) made up by strategies in the CUPS set (or to any state in the CUPS face), as they obtain a 
lower payoff than the maxmin payoff in the CUPS set (recall Proposition 3.1).

Since CUPS sets are CURB, CUPS faces contain an essential connected component of Nash equilibria, which satisfies 
strong setwise refinement criteria (Ritzberger and Weibull, 1995).10 While all CUPS sets are CURB, not all CURB sets are 
CUPS, as the following example illustrates. Consider a two-player symmetric game with strategy set A = {a, b, c} and payoff 
matrix E3:

E3 =
a b c

a 1 5 0
b 5 1 0
c 2 2 2

In this example, the set of strategies H1 = {a, b} is not CUPS, given that the maxmin payoff in H1 is 1 < max(Uc,a, Uc,b) =
2. Sets {a} and {b} are not CUPS either –as the strategies are not strict Nash–, so there is no regular S(κ, βr) equilibrium in 
�H1 , for any κ (see Proposition 3.4). However, H1 is a minimal CURB set, �H1 contains the Nash equilibrium (xa, xb, xc) =
( 1

2 , 12 , 0), and a sequence of S(κ, βr) equilibria can converge to this Nash equilibrium state from the interior of the simplex 
(see Fig. 4). In contrast, H2 = {c} is a CUPS set (profile (c, c) is strict Nash), so ec = (0, 0, 1) is an S(κ, β) equilibrium for 
every κ and β .

Considering stability under the replicator dynamics, CUPS sets need not be closed under weakly better replies (Ritzberger 
and Weibull, 1995), which is a sufficient and necessary condition for the corresponding face to be asymptotically stable 
under the multi-population replicator dynamics, and, more generally, under any sign-preserving dynamics. Consider for 
instance a symmetric two-player game with strategy set A = {a,b, c} and payoff matrix E4:

E4 =
a b c

a 1 4 0
b 4 3 0
c 2 2 2

In this example, the set of strategies H = {a, b} is CUPS, because strategy c obtains a payoff of 2, less than the maxmin 
payoff in H , which is 3. But H is not closed under weakly better replies, because at state ea = (1, 0, 0) ∈ �H , strategy 
c /∈ H is a better reply to ea than ea itself. As can be seen in Fig. 5, face �H is not asymptotically stable in the Replicator 
Dynamics, given that from any neighborhood of ea there is a trajectory towards ec . By contrast, face �H is asymptotically 

10 Ritzberger and Weibull (1995) show that if a set of strategies is closed under some behavior correspondence –a family that includes the best-response 
correspondence–, then the associated face contains an essential connected component of Nash equilibria (van Damme, 1991), which is consequently hyper-
stable and strategically stable (Kohlberg and Mertens, 1986).
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Fig. 5. (i) Replicator, (ii) Uniform payoff sampling BEPall(κ = 1, βuni f ), and (iii) Uniform payoff sampling BEPall(κ = 3, βuni f ) dynamics for the game with 
payoff matrix E4. Strategy set H = {a, b} is CUPS, but it is not closed under weakly better replies. Face �H is not asymptotically stable in the Replicator 
Dynamics but, for every κ , it contains some S(κ) equilibria, and face �H is asymptotically stable under BEPall(κ, β) dynamics at least for every κ > 3.

Fig. 6. (i) Replicator, (ii) Uniform payoff sampling BEPall(κ = 1, βuni f ), and (iii) Uniform payoff sampling BEPall(κ = 2, βuni f ) dynamics for the game with 
payoff matrix E5. Strategy set H = {a, b} is closed under weakly better replies, but not CUPS. Face �H is asymptotically stable in the Replicator Dynamics, 
but it contains no S(κ) equilibria.

stable under any BEPall(κ, β) dynamics at least for every κ > 3 (this can be proved using the bound provided in the proof 
of Proposition 3.6).

Sets closed under weakly better replies need not be CUPS either, as our next example shows. Consider a symmetric 
two-player game with strategy set A = {a, b, c} and payoff matrix E5:

E5 =
a b c

a 1 3 0
b 1 2 0
c 0 1 2

In this example, the set of strategies H = {a, b} is closed under weakly better replies (and also CURB), and �H is asymptot-
ically stable in the Replicator Dynamics (see Fig. 6), but H is not CUPS, because the maxmin payoff in H is 1, which is also 
achieved by strategy c /∈ H when playing with b ∈ H . Consequently, �H is not invariant under regular payoff sampling, and, 
given that {a} and {b} are not CUPS (the strategies are not strict Nash), �H contains no S(κ) equilibria, although there can 
be S(κ) equilibria arbitrarily close to �H for large enough κ .

5. Applications

5.1. The centipede game

Centipede (Rosenthal, 1981) is a two-player extensive form game with d ≥ 2 decision nodes, and d + 1 final nodes. 
Consider, for instance, a Centipede game with 8 decision nodes, as shown in Fig. 7. Each decision node presents two 
strategies: stop and continue. The nodes are arranged linearly, with the first one assigned to player 1 and subsequent ones 
assigned in an alternating fashion. A player who decides to stop ends the game. A player who decides to continue suffers a 
cost of 1 but benefits his opponent with 3, and sends the game to the next decision node, if one exists. For player p ∈ {1, 2}, 
let strategy ip ∈ Ap be the plan to stop at his ith decision node and not before, with an additional strategy for the plan to 
continue at all his decision nodes. Of course, the portion of a player’s plan that is actually carried out depends on the plan 
of his opponent.
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Fig. 7. The Centipede game with d = 8 decision nodes. Each decision node is labeled with a single number (1 or 2) denoting the deciding player. Each of 
the d + 1 = 9 final nodes is labeled with a pair of payoffs (π1, π2), where πp denotes the payoff obtained by player p.

In a centipede game, the best reply to a player that stops at some node other than the first one, is to stop at the previous 
node, and all strategies for player 2 are a best reply to strategy 1 for player 1 (i.e. the stop-at-first-node strategy). Given that 
CUPS sets11 are CURB, it follows that any CUPS product set (H1 × H2) has to include the stop-at-first-node strategy for player 
1 in H1, and has to include all strategies for the second player in H2. Considering that the payoff to the stop-at-first-node 
strategy for the first player is 0 and that all his other strategies may provide a higher payoff (when meeting some strategy 
in H2 = A2), it follows that the only CUPS set is the product set of all strategies: (A1 × A2). Consequently, every regular 
S(κ, βr) equilibrium (and, in particular, every S(κ) equilibrium) in the Centipede game must have full support. Sandholm 
et al. (2019) show that, in any S(1) equilibrium, most players in a centipede game continue until their last three decision 
nodes.

5.2. The traveler’s dilemma

The Traveler’s Dilemma (Basu, 1994) is a normal form analogue of the Centipede game in which the unique rationalizable 
strategy earns the players far less than many other strategy profiles. The payoff matrix for the n-strategy Traveler’s Dilemma 
is E6.

E6 =

1 2 3 4 ... n
1 2 4 4 4 · · · 4
2 0 3 5 5 · · · 5
3 0 1 4 6 · · · 6

4 0 1 2 5
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

. . . n + 2
n 0 1 2 . . . n − 2 n + 1

Strategy 1 is the unique rationalizable strategy, and profile (1,1) is the unique Nash equilibrium.
Let us analyze this game when played in one population. Considering that the best reply to strategy i > 1 is strategy 

i − 1, and that CUPS sets are CURB, if a CUPS set contains strategy i, then it has to contain strategies i − 1, i − 2, ..., 1. It 
can also be seen from the payoff matrix and Proposition 3.1 that if H is CUPS and {1, 2, 3} ⊆ H then H = A. Consequently, 
the only CUPS sets are {1}, {1, 2} and A. The first strategy is strict Nash, so e1 is an S(κ, β) equilibrium, whose stability is 
analyzed in Sandholm et al. (2020). For κ = 1, it is easy to check that the only equilibrium in the face spanned by {1, 2}
is e1, because the dynamics on that face satisfy ẋ2 = −x2

2. Proposition 3.7 also tells us that this equilibrium e1 is unstable 
under any BEPall(1, β) for n > 4.12 As the only other CUPS set is A, any other regular S(κ, βr) equilibrium must have full 
support.

6. Conclusions

We have defined strategy sets Closed Under Payoff Sampling (CUPS) and shown that a necessary and sufficient condition 
to be CUPS is to be closed under some regular payoff-sampling dynamics BEPall(κ, βr). This means that the property of 
being closed under a regular payoff-sampling protocol BEPall(κ, βr) is independent of the number of trials κ and of the 
(regular) tie-breaking rule. We have also provided a simple rule to identify CUPS sets from the payoffs of the game.

The identification of CUPS sets in a game yields useful insights on its dynamics under payoff sampling. Being CUPS is 
a sufficient condition for a face to be invariant under every payoff-sampling dynamics, and it is a necessary and sufficient 
condition for a face to be invariant under any regular payoff-sampling dynamics (Proposition 3.1). Also, for a sufficiently 
large number of trials, CUPS faces are asymptotically stable under any payoff-sampling dynamics: even if some (sufficiently 
few) players adopt a strategy outside the support of the face, the population will tend to move back to the face. For 

11 See in appendix A the extension of the definition of CUPS sets to games played in several populations, which is quite straightforward.
12 Let H = {1}. If n > 4, every strategy in Hc

0 = {n − 1, n} ⊆ (A \ H) supports invasion by both strategies in Hc
0, so CUPS set H = {1} is partially twice 

inferior.
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payoff-sampling dynamics with κ = 1 trial, we have provided sufficient conditions for CUPS faces to be repelling and to be 
unstable.

CUPS sets are also useful to characterize the support of payoff-sampling equilibria. For a start, every CUPS face contains 
at least one payoff-sampling equilibrium. We have also proved that the support of every regular payoff-sampling equilibrium 
is a CUPS set, and that every minimal CUPS set H contains at least one regular payoff-sampling equilibrium with support 
H , and no regular payoff-sampling equilibrium with support properly contained in H .

Regarding its relation with other setwise solution concepts, CUPS sets are a refinement of strategy sets Closed Under 
Rational Behavior (CURB). Given that as the number of trials κ goes to infinity, any payoff-sampling dynamics BEPall becomes 
a version of best response dynamics, one can consider payoff-sampling dynamics BEPall as noisy best response dynamics, 
with more noise (i.e. greater variance in the information obtained by sampling) for lower values of κ . While all CURB 
faces are asymptotically stable under best response dynamics (Balkenborg et al., 2013), only those that are also CUPS can be 
asymptotically stable under regular payoff sampling. For large enough number of trials, CUPS faces are indeed asymptotically 
stable under any payoff-sampling dynamics. In contrast, CURB faces that are not CUPS cannot contain any regular payoff-
sampling equilibrium (for any number of trials); moreover, as illustrated in Fig. 4(i), such faces may be far away from any 
payoff-sampling equilibrium for low number of trials.
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Appendix A. Games played in p populations. Asymmetric games

In this section we adapt the definitions and results for CUPS sets and faces to the context of p-player games (either 
symmetric or asymmetric) played in p populations. The propositions in this section are straightforward adaptations of the 
propositions for the single-population case, and so are their proofs, which we omit.

As argued by Ritzberger and Weibull (1995), many economic applications call for multi-population, rather than single-
population dynamics: the player roles may be different and the game may not be symmetric. This leads to the study of 
evolutionary dynamics (for p-player games) played in p populations, with each player role corresponding to a distinct 
population (Sandholm, 2010).

Let G = (P, A, U ) be a finite p-player population game, where P = {1, ..., p} is the set of populations or player positions, 
A = ×p∈P Ap is the set of pure strategy profiles, with Ap being the set of np pure strategies for population p, and U : A →
Rp is the payoff function, extended to the set of population states [�]A = ×p∈P�Ap in the usual way. A (global) population 
state x ≡ (x1, x2, ..., xp) is a point in the polyhedron [�]A , with xp ∈ �Ap corresponding to the state in population p. We 
represent by Up(api ; ̄a) the payoff to a player from population p using strategy api ∈ Ap when the other players use the 
strategies indicated in the (partial) strategy profile ā ∈ ×(o∈P,o �=p) Ao .

Let a battery of tests conducted by a revising agent from population p be the process of testing κ times each of her np

strategies, for which a total of np κ (p − 1) co-players need to be sampled. To represent the strategies used by the sampled 
co-players in a battery of tests, let a−p ≡ (a−p

i,k,o) be an indexed sequence of np κ (p −1) strategies, considering three indexes. 
The first index i ∈ {1, ..., np} corresponds to the strategy being tested; the second index k ∈ {1, ..., κ} corresponds to the trial 
number; the third index o ∈ P \ p corresponds to the population from which a co-player is sampled, so a−p

i,k,o ∈ Ao is the 
strategy of the co-player from population o �= p sampled when conducting the k-th trial of strategy api ∈ Ap . Let �−p

A,κ be 
the set of all such indexed sequences of np κ (p − 1) strategies.

For a−p ∈ �
−p

A,κ , let πp(a−p) be the np-tuple of total payoffs (πp

i (a−p)) obtained by each strategy api ∈ Ap , i.e.,

π
p

i (a−p) =
κ∑

k=1

Up(api ; ā−p

i,k )

where ā−p

i,k ≡ (a−p

i,k,o)o ∈P\p is the (p − 1)-tuple of strategies used by co-players of a revising agent from population p when 
conducting the k-th trial of strategy api ∈ Ap .

Under a BEPall protocol, the probability that a revising agent from population p chooses strategy api ∈ Ap at population 
state x is given by
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wp,κ,β

i (x) =
np∑
j=1

xpj
∑

a−p∈�
−p

A,κ

β
p

ji(π
p(a−p))

∏
o∈P \p

no∏
l=1

(xo
l )
Io

l (a−p) (A.1)

where the exponent Io
l (a−p) indicates the number of occurrences of strategy ao

l (whose prevalence is xo
l , in population o) 

in the tuple a−p , and where the functions βp

ji :Rnp → [0, 1] define the tie-breaking rule. And the payoff-sampling dynamics 
BEPall(κ, β) is given by

ẋpi = wp,κ,β

i (x) − xpi (A.2)

for each p ∈P and i ∈ {1, .., np}.
Let H be the set of all nonempty product sets H ⊆ A, i.e., H = ×p∈P Hp , where ∅ �= Hp ⊆ Ap , for all p ∈ P . For any 

H ∈ H, let [�]H = ×p∈P�Hp be the face of the polyhedron [�]A spanned by H . [�]H is itself a polyhedron of (global) 
population states associated with the reduced game in which the pure strategy set in population p is Hp (Ritzberger and 
Weibull, 1995).

In the next definition, x = (x1, x2, ..., xp) is a global population state, with xp being the state in population p, and wκ,β (x)
is a global “inflow” vector made up by the inflow vectors wp,κ,β (x) for each population.

Definition 5. A product set H ∈H is closed under a BEPall(κ, β) protocol if for all x ∈ [�]H , wκ,β(x) ∈ [�]H .

Definition 6. Closed under payoff sampling. A product set H ∈ H is closed under payoff sampling (CUPS) if H is closed 
under every BEPall(κ, β) protocol.

If H is a CUPS product set we say that [�]H is a CUPS face.
Given a product set H ∈H, and considering a particular population p ∈P , let H−p = ×(o∈P,o �=p)Ho be the product set of 

the subsets of strategies Ho in populations o other than p. H−p contains all the strategy profiles of co-players that a player 
from population p may face when revising at a state x ∈ [�]H .

Proposition A.1. A product set H ∈H is closed under payoff sampling if and only if for every population p ∈P :

max
ai∈(Ap\Hp), ā∈H−p

Up(ai; ā) < max
a j∈Hp

min
ā∈H−p

Up(a j; ā)

Propositions 3.2 and 3.3 can be adapted directly to the multi-population case, replacing “a nonempty subset of strategies” 
with “a nonempty product set H ∈ H”. For Proposition 3.4, adapted below, we need to consider, instead of the support of 
an equilibrium (single population case), the product set of the supports of the equilibrium in each population.

Proposition A.2. If x is a regular S(κ, βr) equilibrium, then the product set of the supports of x in each population p ∈P is a CUPS set.

For the adaptation of Proposition 3.5 to the multi-population setting, let the (relative) interior of [�]H , represented as 
int([�]H ), be the set of population states x ∈ [�]H such that xpi > 0 for every p ∈ P and for every i such that api ∈ Hp . 
And let the boundary of [�]H , represented as bd([�]H ), be the set of population states x ∈ [�]H such that xpi = 0 for some 
p ∈P and some i such that api ∈ Hp .

Proposition A.3. Consider any number of trials κ ∈ N and any regular tie-breaking rule βr . H is a minimal CUPS set if and only if 
there is a regular S(κ, βr) equilibrium in int([�]H ) and there is no regular S(κ, βr) equilibrium in bd([�]H ).

Our next two propositions can be adapted directly from the single-population case.

Proposition A.4. If [�]H is a CUPS face, then it is asymptotically stable under every payoff-sampling dynamic BEPall(κ, β) with κ > k0 , 
for some finite k0 .

Proposition A.5. If H ∈H is CUPS, then H is Closed Under Rational Behavior (CURB).

For this last proposition, and similarly to the single-population case, we call a product set H closed under rational 
behavior (CURB) if it contains all its best replies, i.e., if BR(x) ⊆ H for every x ∈ [�H ], where BR is the pure best-reply 
correspondence which maps populations states to their pure best-reply strategy combinations (Basu and Weibull, 1991; 
Ritzberger and Weibull, 1995).

Last, for the instability results, considering a CUPS product set H = ×p∈P Hp and defining H−p1,p2 = ×(o∈P,o �=p1,o �=p2)Ho , 
we say that strategy ap1 ∈ (Hp1)c supports invasion (of H) by strategy ap2 ∈ (Hp2 )c if
j k
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min
ā∈H−p1,p2

Up2(ap2
k ;ap1

j , ā) > max
ai∈Hp2

max
ā∈H−p2

Up2(ai; ā)

Or, for the two-population case, if

Up2(ap2
k ;ap1

j ) > max
ai∈Hp2

max
am∈Hp1

Up2(ai;am)

A CUPS product set H is partially twice inferior if there is a product subset of strategies Hc
0 ⊆ ×p(Hp)c , with elements 

for at least two populations, such that every strategy in every population with elements in Hc
0 supports invasion by at least 

two other strategies in Hc
0. If the condition holds for Hc

0 = ×p(Hp)c , we call the set twice inferior.

Proposition A.6. For p-player games played in p populations:

• If a CUPS set H is twice inferior, then face �H is repelling under BEPall(1, β) dynamics.
• If a CUPS set H is partially twice inferior, then face �H is unstable under BEPall(1, β) dynamics.

Appendix B. Proofs

Proof of Proposition 3.1. Let Hc ≡ (A \ H). The condition in Proposition 3.1 is equivalent to

max
ai∈Hc ,ā∈H(p−1)

Uai ,ā < max
a j∈H

min
ā∈H(p−1)

Ua j ,ā. (B.1)

Let M(Hc ,H) ≡ maxai∈Hc ,ā∈H(p−1) Uai ,ā and let MaxminH ≡ maxa j∈H minā∈H(p−1) Ua j ,ā . The best payoff that the strategies in 
Hc can obtain at a state x ∈ �H is lower or equal than κ M(Hc ,H) , and this upper bound for the maximum payoff of the 
strategies in Hc is obtained with positive probability at any x ∈ int(�H ) (i.e., the relative interior of �H ). The best payoff 
obtained by the strategies in H at a state x ∈ �H is greater or equal than κ MaxminH , and this lower bound for the best 
payoff of the strategies in H is obtained with positive probability at any x ∈ int(�H ). Consequently, if (B.1) holds, then 
wκ,β

i (x) = 0 for all x ∈ �H and all i such that ai ∈ Hc , and also for any κ and any tie-breaking rule β , proving that H is 
CUPS. Similarly, considering any x ∈ int(�H ), we find that (B.1) is a necessary condition for H to be CUPS: if (B.1) does not 
hold, there is some ai ∈ Hc such that wκ,βr

i (x) > 0 for any x ∈ int(�H ), any κ ∈N and any regular tie-breaking rule βr . �
Proof of Proposition 3.2. From the proof of Proposition 3.1 we know that (B.1) is a necessary condition for a set H to be 
closed under some (any) regular BEPall(κ, βr ) protocol, and (B.1) is also a sufficient condition to be closed under every 
BEPall(κ, β) protocol. �
Proof of Proposition 3.3. If H is CUPS, then wκ,β

i (x) = 0 for every i such that ai ∈ Hc , x ∈ �H , κ ∈ N and tie-breaking 
rule β , so wκ,β(x) is a continuous function that maps the compact �H onto itself. By Brouwer’s fixed point theorem, �H

contains at least one fixed point x such that wκ,β(x) = x, which is an S(κ, β) equilibrium. �
Proof of Proposition 3.4. The proof is conducted by contradiction. Let x be a regular S(κ, βr) equilibrium and let H be 
the support of x. Note that there is a positive probability that all strategies in H , when tested κ times at state x, obtain an 
average payoff no greater than the maxmin value MaxminH ≡ maxa j∈H minā∈H(p−1) Ua j ,ā . Additionally, if H is not CUPS, there 
is a positive probability that some strategy ai ∈ Hc with xi = 0 obtains an average payoff greater than or equal to MaxminH

and is selected (because the tie-breaking rule is regular), so wκ,βr

i (x) > 0, contradicting the fact that x is an equilibrium 
with support H . �
Proof of Proposition 3.5. Let H be a minimal CUPS set. By Proposition 3.3, for every κ and βr , H contains the support of 
at least one S(κ, βr) equilibrium. By Proposition 3.4, no proper subset of H can be the support of a regular payoff-sampling 
equilibrium S(κ, βr), so there is no regular S(κ, βr) equilibrium x with supp(x) ⊂ H . Now, fix κ and βr and let y be an 
S(κ, βr) equilibrium such that there is no S(κ, βr) equilibrium y′ with supp(y′) ⊂ supp(y) ≡ J . By Proposition 3.4, J is 
CUPS. If J is not a minimal CUPS set, then, by Proposition 3.3, there is some S(κ, βr) equilibrium y′ with supp(y′) ⊂ J (a 
contradiction), so J is a minimal CUPS set. �
Proof of Proposition 3.6. If H = A, the result is immediate. Otherwise, the proof considers that, in a neighborhood of �H , 
a revising agent conducting a battery of tests will meet mainly co-players using strategies in H , and, for states sufficiently 
close to �H , the probability that a revising agent meets more than one co-player using some strategy in Hc = A \ H (i.e., not 
in H) becomes negligible, compared with the probability of meeting either none or just one of such “deviating” co-players. 
Defining sκ,β

i (x) as the probability of selecting strategy ai under those most-likely events, and letting ε ≡ ∑
i:ai∈Hc xi , we 

will show that:
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i) wκ,β

i (x) = sκ,β

i (x) + O (ε2) as ε → 0.

ii) There is a finite bound k0 such that, for κ > k0 and every i such that ai ∈ Hc , sκ,β

i (x) = 0.

Consequently, for κ > k0 the dynamics (3) are such that 
∑

i:ai∈Hc ẋi = ε̇ = −ε + O (ε2), which guarantees asymptotic 
stability of �H .

Let sκ,β

i (x) be the probability of selecting strategy ai at state x in a battery of tests such that either none or exactly one of 
the n (p −1) κ sampled co-players (the “deviating co-player”) uses some strategy a j in Hc , while all the other co-players use 
strategies in H . Note in (2) that the probability of meeting more than one deviating co-player in a battery of tests at state x – 
corresponding to all sequences of strategies abat with at least two strategies belonging to Hc – involves a sum of monomials ∏n

l=1 xIl(a
bat )

l such that the sum of the exponents Il(abat) corresponding to strategies al ∈ Hc is at least two. Considering 
ε ≡ ∑

i:ai∈Hc xi , which implies xi ≤ ε for all i such that ai ∈ Hc , we consequently have that wκ,β

i (x) = sκ,β

i (x) + O (ε2) as 
ε → 0.

There are three possible cases that we need to consider to calculate sκ,β

i (x):

a) There is no deviating co-player met in a battery of tests. In this case, the best payoff achieved by the strategies in H
is bounded below by LBa

H ≡ κ MaxminH , where MaxminH ≡ maxa j∈H minā∈H(p−1) Ua j ,ā . And the best payoff achieved by 
the strategies in Hc is bounded above by U Ba

Hc ≡ κ maxai∈Hc ,ā∈H p−1 Uai ,ā . Consequently, considering that H is CUPS, 
the best payoff in this case is obtained exclusively by strategies in H .

b) The deviating co-player is met when testing some strategy ai ∈ H . In this case, the best payoff achieved by the strategies 
in H is bounded below by LBb

H ≡ (κ − 1) MaxminH + maxam∈M(H) minā∈H p−1,a j∈Hc Uam,ā j , where:
– M(H) is the set of maxmin strategies M(H) ≡ {ai ∈ H : minā∈H(p−1) Uai ,ā = MaxminH } and
– ā j is a modification of a (p − 1)-tuple of strategies ā ∈ H (p−1) , in which one of the strategies has been replaced by 

strategy a j ∈ Hc .
And the best payoff achieved by the strategies in Hc is bounded above by U Bb

Hc ≡ κ maxai∈Hc ,ā∈H p−1 Uai ,ā . Consequently, 
for

κ > b1 ≡ MaxminH − maxam∈M(H) minā∈H p−1,a j∈Hc Uam,ā j

MaxminH − maxai∈Hc ,ā∈H p−1 Uai ,ā
< ∞

the best payoff in this case is obtained exclusively by strategies in H .
c) The deviating co-player is met when testing some strategy ai ∈ Hc . In this case, the best payoff achieved by the strate-

gies in H is bounded below by LBc
H ≡ κ MaxminH , and the best payoff achieved by the strategies in Hc is bounded 

above by U Bc
Hc ≡ (κ − 1) maxai∈Hc ,ā∈H p−1 Uai ,ā + maxai∈Hc ,ā∈H p−1,a j∈Hc Uai ,ā j , with ā j defined as before. Consequently, 

for

κ > b2 ≡ maxai∈Hc ,ā∈H p−1,a j∈Hc Uai ,ā j − maxai∈Hc ,ā∈H p−1 Uai ,ā

MaxminH − maxai∈Hc,ā∈H p−1 Uai ,ā
< ∞

the best payoff in this case is obtained exclusively by strategies in H .

Looking at the three previous cases, we have that, for κ > k0 ≡ max(b1, b2), the best payoff in the three cases above is 
obtained exclusively by strategies in H , which implies that, for i such that ai ∈ Hc , we have sκ,β

i (x) = 0 and wκ,β

i (x) = O (ε2), 
which, considering (3), leads to 

∑
i:ai∈Hc ẋi = ε̇ = −ε + O (ε2). Consequently, there is some positive ε0 > 0 and some positive 

constant λ > 0 such that, for every x with 
∑

i:ai∈Hc xi = ε < ε0, we have ε̇ ≤ −λ ε , proving asymptotic stability of the face 
�H . �
Proof of Proposition 3.7. Let us first prove the repelling result, based on Sethi (2000). As in the previous proof, let Hc =
(A \ H) and let ε = ∑

j:a j∈Hc x j . We will show that, if H is an inferior CUPS set, then BEPall(1, β) dynamics satisfy the 
equation ε̇ ≥ (p − 2)ε + O (ε2). This implies that, for p > 2, face �H is repelling: there is a neighborhood of �H in which, 
from any initial state x0 /∈ �H (so ε(t = 0) = ∑

j:a j∈Hc x0
j > 0) in the neighborhood, the value of ε(t) grows exponentially 

until the state leaves the neighborhood.
Suppose that strategy a j ∈ Hc supports invasion (of H) by strategy ak ∈ Hc . This implies that

ẋk ≥ (p − 1)x j + O (ε2) − xk (B.2)

which follows from considering the event (cases) in which, when a revising agent tests strategy ak , one of the (p − 1)

sampled co-players uses strategy a j , while all other co-players in the battery of tests use some strategy in H : if a j supports 
ak , this event leads to the revising agent choosing strategy ak , and it happens with probability (p − 1)x j(1 − ε)n(p−1)−1, a 
function which, considering that x j ≤ ε and the binomial expansion of (1 − ε)n(p−1)−1, is (p − 1)x j + O (ε2).
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Now, let B be the subset of strategies in Hc that support some strategy in Hc . If H is inferior, then B = Hc , and from 
(B.2), we have:

ε̇ =
∑

k:ak∈Hc

ẋk ≥ (p − 1)
∑

j:a j∈B

x j −
∑

k:ak∈Hc

xk + O (ε2) = (p − 2)ε + O (ε2)

proving that �H is repelling for p > 2.
If there are several strategies supporting ak , the term x j in (B.2) can be substituted by the sum of the proportions of 

those supporting strategies. It is then easy to adapt the last step, considering the subset of strategies in Hc that support at 
least two strategies in Hc , to show that, if H is twice inferior, then

ε̇ ≥ (2p − 3)ε + O (ε2)

proving that �H is repelling for p ≥ 2.
Let us now consider the instability result. Consider the partially inferior set H , its complement Hc ≡ (A \ H), a subset 

Hc
1 ⊂ Hc satisfying the condition required for H to be partially inferior, and the set Hc

2 ≡ (Hc \ Hc
1). Let ε1 ≡ ∑

j:a j∈Hc
1

x j

and ε2 ≡ ∑
j:a j∈Hc

2
x j . We will show that there are positive constants ε1,0 and ε2,0 such that ε1 grows exponentially in the 

neighborhood O 0 of �H defined by (ε1 < ε1,0 and ε2 < ε2,0), so any state trajectory with initial value x0 ∈ O 0 such that 
ε1 > 0 (i.e., such that ε1(t = 0) = ∑

j:a j∈Hc
1

x0
j > 0) leaves O 0, proving instability.

Considering the same event as before for a revising agent, if strategy a j ∈ Hc
1 supports invasion (of H) by strategy ak ∈ Hc

1
we have:

ẋk ≥ (p − 1)x j(1 − ε1 − ε2)
n(p−1)−1 − xk

So, for any positive constant value ε2,0, if ε2 < ε2,0, then

ẋk ≥ (p − 1)x j(1 − ε1 − ε2,0)
n(p−1)−1 − xk ≥ (p − 1)x j[(1 − ε2,0)

n(p−1)−1 − f (ε1)] − xk (B.3)

where f (ε1) is O (ε1): this can be checked easily from the binomial expansion of ((1 − ε2,0) − ε1)
n(p−1)−1, substituting 1

(if the coefficient in the expansion is negative) or 0 (if the coefficient is positive) for the (1 − ε2,0) terms of the expansion. 
Adding (B.3) for k : ak ∈ Hc

1, and considering that ε1 = ∑
k:ak∈Hc

1
xk , we obtain

ε̇1 ≥ [(p − 1)(1 − ε2,0)
n(p−1)−1 − 1]ε1 − O (ε2

1 ) (B.4)

By taking ε2,0 sufficiently small, we can make (1 − ε2,0)n(p−1)−1 as close to 1 as we want. This, combined with (B.4) implies 
that for any positive values λ1 < 1 and λ2 < 1 (take e.g. λ1 = λ2 = 0.9), we can find positive values ε2,0 and ε1,0 such that 
if ε2 < ε2,0 and ε1 < ε1,0 then

ε̇1 ≥ [(p − 1)λ2 − 1]λ1ε1

which (taking e.g. λ1 = λ2 = 0.9) leads to the exponential growth of ε1 in O 0 for p > 2. The adaptation of the proof to 
partially twice inferior sets is done as before, considering that, if there are several strategies supporting ak , the term x j in 
(B.3) can be substituted by the sum of the proportions of those supporting strategies. �
Proof of Proposition 4.1. The proof coincides with the first part of the proof of Proposition 3.1. �
References

Arigapudi, S., Heller, Y., Milchtaich, I., 2021. Instability of defection in the prisoner’s dilemma under best experienced payoff dynamics. J. Econ. Theory 197, 
105174.

Arigapudi, S., Heller, Y., Schreiber, A., 2022. Sampling dynamics and stable mixing in hawk-dove games. Working paper available at https://arxiv.org /abs /
2107.08423.

Balkenborg, D., Schlag, K.H., 2007. On the evolutionary selection of sets of Nash equilibria. J. Econ. Theory 133 (1), 295–315.
Balkenborg, D.G., Hofbauer, J., Kuzmics, C., 2013. Refined best-response correspondence and dynamics. Theor. Econ. 8 (1), 165–192.
Basu, K., 1994. The traveler’s dilemma: paradoxes of rationality in game theory. Am. Econ. Rev. Pap. Proc. 84, 391–395.
Basu, K., Weibull, J.W., 1991. Strategy subsets closed under rational behavior. Econ. Lett. 36 (2), 141–146.
Benaïm, M., Weibull, J.W., 2003. Deterministic approximation of stochastic evolution in games. Econometrica 71 (3), 873–903.
Berkemer, R., 2008. Disputable advantage of experience in the traveler’s dilemma. Unpublished manuscript. Technical University of Denmark. Abstract in 

International Conference on Economic Science with Heterogeneous Interacting Agents, Warsaw, 2008.
Cárdenas, J.C., Mantilla, C., Sethi, R., 2015. Stable sampling equilibrium in common pool resource games. Games 6, 299–317.
Chmura, T., Güth, W., 2011. The minority of three-game: an experimental and theoretical analysis. Games 2, 333–354.
Eshel, I., Akin, E., 1983. Coevolutionary instability of mixed Nash solutions. J. Math. Biol. 18 (2), 123–133.
Izquierdo, L.R., Izquierdo, S.S., 2022a. BEP-3s-sp. Software available at https://doi .org /10 .5281 /zenodo .7156265.
Izquierdo, L.R., Izquierdo, S.S., Rodriguez, J., 2022. Fast and scalable global convergence in single-optimum decentralized coordination problems. IEEE Trans. 

Control Netw. Syst. 9 (4), 1937–1948.
141

http://refhub.elsevier.com/S0899-8256(22)00176-2/bib5DD04F6CE82625F30EBB4A79DBC7A4FDs1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bib5DD04F6CE82625F30EBB4A79DBC7A4FDs1
https://arxiv.org/abs/2107.08423
https://arxiv.org/abs/2107.08423
http://refhub.elsevier.com/S0899-8256(22)00176-2/bibA2A5B61634819A6E1E1B891E74FDCC4Cs1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bib365592D506FBB6F4C7A8C6FF3926A6E8s1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bib4DE5032D603654C35FB87876ACD62F47s1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bib13BF41D78AE724A5F5A348F929749456s1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bib4F0C8768E35E2A21A86ED0FA2BF3CB56s1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bib795A3323EF512255E376AD7E1F86BD0Bs1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bibA3EB9FF0362BC6254B86E84A4F8030D0s1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bib782C6DB45CC16D923E53FD9926806CAAs1
https://doi.org/10.5281/zenodo.7156265
http://refhub.elsevier.com/S0899-8256(22)00176-2/bibAB54EF67CBA39705849AAACBA197692As1
http://refhub.elsevier.com/S0899-8256(22)00176-2/bibAB54EF67CBA39705849AAACBA197692As1


S.S. Izquierdo and L.R. Izquierdo Games and Economic Behavior 138 (2023) 126–142
Izquierdo, L.R., Izquierdo, S.S., Sandholm, W.H., 2018. EvoDyn-3s: a mathematica computable document to analyze evolutionary dynamics in 3-strategy 
games. SoftwareX 7, 226–233.

Izquierdo, S.S., Izquierdo, L.R., 2022b. “Test two, choose the better” leads to high cooperation in the centipede game. J. Dyn. Games 9 (4), 461–498.
Izquierdo, S.S., Izquierdo, L.R., 2022c. Stability of strict equilibria in best experienced payoff dynamics: simple formulas and applications. J. Econ. Theory 206, 

105553.
Kohlberg, E., Mertens, J.-F., 1986. On the strategic stability of equilibria. Econometrica 54 (5), 1003.
Mantilla, C., Sethi, R., Cárdenas, J.C., 2020. Efficiency and stability of sampling equilibrium in public goods games. J. Public Econ. Theory 22 (2), 355–370.
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