
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-05017-x

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent
extraction for fluid dynamic applications

Rocío Carratalá‑Sáez1 · Yuri Torres1 · José Sierra‑Pallares2 ·
Sergio López‑Huguet3 · Diego R. Llanos1

Accepted: 16 December 2022
© The Author(s) 2023

Abstract
The determination of Lagrangian Coherent Structures (LCS) is becoming very
important in several disciplines, including cardiovascular engineering, aerodynam-
ics, and geophysical fluid dynamics. From the computational point of view, the
extraction of LCS consists of two main steps: The flowmap computation and the
resolution of Finite Time Lyapunov Exponents (FTLE). In this work, we focus on
the design, implementation, and parallelization of the FTLE resolution. We offer
an in-depth analysis of this procedure, as well as an open source C implementation
(UVaFTLE) parallelized using OpenMP directives to attain a fair parallel efficiency
in shared-memory environments. We have also implemented CUDA kernels that
allow UVaFTLE to leverage as many NVIDIA GPU devices as desired in order to
reach the best parallel efficiency. For the sake of reproducibility and in order to con-
tribute to open science, our code is publicly available through GitHub. Moreover, we
also provide Docker containers to ease its usage.

Keywords  Finite time Lyapunov exponent · Lagrangian coherent structures ·
OpenMP · GPU · Multithreading · Multi-GPU

1  Introduction

Transport in dynamic systems is often studied in terms of particle trajectories in
phase space. When applied to fluids, this approach is often referred to as Lagran-
gian. In the absence of molecular diffusion, passive tracers follow fluid particle tra-
jectories that are solutions of

Rocío Carratalá-Sáez and Yuri Torres have contributed equally to this work.

 *	 Rocío Carratalá‑Sáez
	 rocio@infor.uva.es

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-05017-x&domain=pdf

	 R. Carratalá‑Sáez et al.

1 3

where the right-hand side is the velocity field of the fluid.
The practical interest in the solution of the above system of equations lies in the

calculation of the so called Lagrangian Coherent Structures (LCS): The most repel-
ling, attracting, and shearing material surfaces that form the skeletons of Lagrangian
particle dynamics [15].

Lagrangian Coherent Structures (LCS) are distinguished surfaces of trajecto-
ries in a dynamic system that exert a major influence on nearby trajectories over
a time interval of interest. Physical phenomena governed by LCS include floating
debris, oil spills, surface drifters and chlorophyll patterns in the ocean; or clouds of
volcanic ash and spores in the atmosphere and coherent crowd patterns formed by
humans and animals [15].

The determination of LCS is becoming very important in several disciplines,
including cardiovascular engineering [21], aerodynamics [6] and geophysical fluid
dynamics [29]. In all these disciplines, LCS helps the understanding of the local
flow phenomena, since they can be broadly interpreted as transport barriers in the
flow. A paradigmatic example could be the prediction of the drift of an oil spill in
the ocean [30], since LCS predict zones with intense changes beforehand, which
allows for early emergency and mitigation planning.

From the computational point of view, the extraction of LCS consists of two main
steps: The flowmap computation and the resolution of Finite Time Lyapunov Expo-
nents (FTLE). We have already explored the flowmap computation in a previous
work [7], so in this work we focus on the computation of the FTLE.

As explained in detail in later sections, the FTLE computation consists of a series
of linear algebra operations applied to each particle of the flow independently of the
other particles. Thus, the FTLE computation is one of those computing-intensive
problems that are divided into many independent tasks which can be executed in
parallel without requiring any communication among them. They are called embar-
rassingly-parallel problems [22]. Many real problems are included in this category,
such as index processing in web searches [2], bag-of-tasks applications [33], traffic
simulations [4] or Bitcoin mining [3].

The parallelization of embarrassingly parallel problems might not require a very
complex parallel design to take advantage of parallel computing environments; how-
ever, the high amount of computational work requires high performance computing
(HPC) approaches.

High performance coprocessors, such as Graphics Processing Units (GPUs), have
been widely adopted in modern supercomputing systems as hardware accelerators.
Designed to exploit the inherent parallelism of an application, these throughput-ori-
ented processors have been significantly adopted for General Purpose Computing, as
reflected in the configuration of many supercomputers ranked in the higher positions
of the TOP500 ranking [31].

The exploitation of such systems offers a higher peak performance and a bet-
ter efficiency compared to the classical homogeneous cluster systems [5, 34]. Due
to these advantages, and since the cost of building heterogeneous systems is low,

̇⃗x = v⃗
(

x⃗, t
)

,

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

they are being incorporated into many different computational environments, from
academic research clusters to supercomputing centers. Particularly for the case of
embarrassingly parallel algorithms, this type of coprocessors are ideal to improve
performance, because of the high number of cores they provide.

For this work, we have implemented the FTLE computation and provided it
with the ability to be executed in multithreaded environments (taking advantage
of OpenMP), and also in systems equipped with NVIDIA GPU devices (using the
CUDA parallel programming model).

In this work, we offer the following contributions:

•	 We provide an in-depth description of the FTLE computation process, detailing
the different operations on which it relies.

•	 We leverage the use of OpenMP and CUDA programming models to accelerate
the FTLE computation, thus improving the performance of the LCS extraction
procedure.

•	 We conduct a comprehensive performance evaluation that aims to evaluate the
scalability of our solution when executed on multicore architectures, as well as
when taking advantage of manycore GPU devices. Our evaluation includes the
use of different combinations of architectures and different GPU devices, as well
as OpenMP scheduling policies, in order to analyze their relative performance in
the FTLE computation, for both 2D and 3D flows. Moreover, we also evaluate
the performance when using up to four GPUs.

•	 We have released all the code developed in this work, both as source code1 and
as a set of Docker containers2, allowing a quick, painless way to enable repro-
ducibility and contributing to open science.

•	 For the sake of reproducibility and the contribution to open science, we have also
published a Python code3 that can be used to generate the mesh (either in 2D or
3D) and associated flowmap values that are the input of our FTLE computation
code. Note that this code can also take advantage of multithreaded environments,
thanks to the Python modules multiprocess and joblib.

The rest of the paper is structured as follows. In Sect. 2 we describe the mathe-
matical background of the FTLE computation; in Sect. 3 we summarize the most
important contributions to the FTLE computation that already exist; in Sect. 4 we
illustrate how we have implemented the FTLE computation, as well as the input
data and the applied parallelism strategies; in Sect. 5 we showcase the performance
attained (using different platforms, OpenMP scheduling policies, and GPU devices);
in Sect. 6 we set out the main conclusions of this work; lastly, in Sect. 7 we give
some insights regarding our future work.

1  Available at: https://​github.​com/​uva-​trasgo/​UVaFT​LE.
2  Available at: https://​hub.​docker.​com/r/​rocio​carra​talas​aez/​uvaft​le (multiple tags for different source
images: devel (contains source code) and runtime (only contains the compiled binaries) images of nvidia/
cuda)
3  Available at: https://​hub.​docker.​com/r/​rocio​carra​talas​aez/​uvaft​le-​mesh-​gener​ation.

https://github.com/uva-trasgo/UVaFTLE
https://hub.docker.com/r/rociocarratalasaez/uvaftle
https://hub.docker.com/r/rociocarratalasaez/uvaftle-mesh-generation

	 R. Carratalá‑Sáez et al.

1 3

2 � Finite time Lyapunov exponent

The Finite Time Lyapunov Exponent (FTLE) is defined as

where �n is the maximum eigenvalue of the Cauchy–Green strain tensor C, defined
as follows

and F is the flowmap [6].
The FTLE is a scalar field that works as an objective diagnostic for LCS: A first-

order approach to assess the stability of material surfaces in the flow under study,
by detecting material surfaces along which infinitesimal deformation is larger or
smaller than off these surfaces [15].

Although more reliable mathematical methods have been developed for the
explicit identification of LCSs, the FTLE remains the most used metric in the field
for LCS identification.

3 � Related work

In this section, we reference some existing works that offer optimizations in the
context of the FTLE computation. Some develop and incorporate optimization tech-
niques to efficiently exploit multicore systems; others take advantage of the compu-
tational capacity of GPU devices through CUDA or OpenGL programming models.

Some works, such as those presented in Sadlo et al. [27], Nouanesengsy et al.
[23], Kuhn et al. [18], Chen and Shen [8], and Wang et al. [32], speed up the cal-
culations of the FTLE problem by applying some optimization techniques such as
reducing I/O, optimizing the use of the memory hierarchy, or using multiple CPUs.
However, these works do not use hardware coprocessors such as GPUs, FPGAs or
the Intel Neuromorphic microchip. These many core systems contain thousands of
single cores that could be beneficial for these types of largely parallel problems.

Garth et al. [13], Dauch et al. [12] and Hlawatsch et al. [16] leverage GPU devices
to process particle advection using the FTLE computation. In these works, there is
no discussion regarding the details of their implementation, nor an in-depth descrip-
tion of the GPU optimization, since they do not focus on the computational view-
point. In the work from Lin et al. [19], there is a wider description of the algorithm,
including details regarding how to leverage the GPU computational power for the
FTLE computation, but the source code is not available. Moreover, all these works
rely on a single GPU device, and a multi-GPU scheme is not supported.

Conti et al. [10] propose the use of an Accelerated Processing Unit (APU) to
fasten the computation of FTLEs for bluff body flows. However, the extraction of

Λ
t1
t0

(

x⃗0
)

=
1

t1 − t0
log

√

𝜆n

(

x⃗0
)

,

C
(

x⃗0
)

=

[

∇F
t1
t0

(

x⃗0
)

]T

∇F
t1
t0

(

x⃗0
)

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

Lagrangian Coherent Structures is not their objective. In their proposal, the mixed
use of CPU and GPU, physically integrated in this kind of devices, avoids the com-
munications costs between CPUs and GPUs. The communication latency in this
kind of devices is reduced by the absence of a PCIe; nevertheless, the integrated
GPU usually has less computational power than the one offered by dedicated ones.
On top of that the authors use OpenCL 1.0, which was launched ten years ago and
is not capable of fully exploiting hardware accelerators such as current NVIDIA
GPUs.

Garth et al. [14] present the GPUFLIC tool, which uses the FTLE for interac-
tive and dense visualization of unsteady flows. GPUFLIC leverages the usage of
GPUs to accelerate the computations of the FTLE and depict the flow animation
through OpenGL model. However, this tool does not take advantage of recent paral-
lel programming models such as CUDA, since it uses OpenGL and the version of
the software used is deprecated; consequently, it is not possible to efficiently exploit
the underlying GPU hardware details, and it would not be possible to use nowadays
devices, such as NVIDIA, AMD or Intel GPUs.

Sagristà et al. [28] use the FTLE to understand advection in time-dependent flow.
It provides an interactive analysis of trajectories and introduces the concept of FTLE
aggregation fields. An old PyCuda [17] version (from ten years ago) is used to man-
age the CUDA kernels on NVIDIA devices. Although it could be updated, PyCuda
would present limitations in terms of performance compared to CUDA. Moreover,
the tool proposed in that work does not support more than one CPU plus a single
GPU device concurrently.

To the best of our knowledge, in the existing literature, there is a lack of in-depth
analysis of the FTLE computation from the point of view of the computational effort
and algorithms that we aim to cover in this work. Moreover, the existing software
is either based on old programming models or is not capable of exploiting modern
GPU devices for resolving FTLE computations. Additionally, the existing tools to
not take advantage of multi-GPU heterogeneous platforms for resolving the same
FTLE problem. In contrast, in our proposal we leverage modern CUDA software
to tackle NVIDIA devices, and we also offer support to take advantage of as many
GPU devices as desired.

4 � Our implementation

In this section we describe the data provided to our algorithm as input, the output
generated, the main procedures of our algorithm, and the CUDA kernels we have
defined to substitute part of those procedures when performing the computations in
the NVIDIA GPU devices.

4.1 � Data

The computation of the FTLE takes three data sets as input (stored in their corre-
sponding files): (1) the coordinates of the mesh points; (2) the mesh faces defined

	 R. Carratalá‑Sáez et al.

1 3

by the mesh points; and (3) the flowmap defining the mesh point trajectories for
a fixed time instant t. Moreover, that time instant t is also provided as input data,
together with the scenario dimension (either two-dimensional or three-dimen-
sional), and the number of vertices per simplex in the mesh (namely three verti-
ces in the 2D case, and four in the 3D case, forming triangles and tetrahedrons,
respectively).

From that input data, in our implementation, we generate the data structures
and variables (of the specified data type) detailed in Table 1.

The output provided by our implementation is an array composed of the FTLE,
formed by values of type double, and its dimension being nPoints.

As part of the preprocessing of the data, we implemented two procedures
called create_nFacesPerPoint_vector (see Algorithm 1) and cre-
ate_facesPerPoint_vector (see Algorithm 2) in order to, respectively,
generate the following additional arrays:

•	 nFpP[] (number of faces per point): array of dimension nPoints and ele-
ments of type int. It contains, for each point, the number of faces of which
that point is a vertex added to that same information for the previous vertices.
In other words, if nFpP[i]=n, that means that the i-th point of the mesh
belongs to n-nFpP[i-1] mesh faces if i>0, or to n mesh faces if i==0.

•	 FpP[] (indices of the faces per point): array of dimension nPoints *
nFpP[nPoints-1] and elements of type int. It contains, for each point,
the indices of the faces of which that point is a vertex. In other words, if the
i-th mesh point belongs to n faces (according to the nFpP array informa-
tion), then there will be n face indices stored in contiguous positions of the
array FpP starting at FpP[nFpP[i]-nFpP[nPoints-1]] if i>0, or
FpP[nFpP[i]]] if i==0.

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

Ta
bl

e 
1  

D
es

cr
ip

tio
n

of
 th

e
va

ria
bl

es
 a

nd
 d

at
a

str
uc

tu
re

s
ge

ne
ra

te
d

in
 o

ur
 im

pl
em

en
ta

tio
n

fro
m

 th
e

in
pu

t fi
le

s
an

d
pa

ra
m

et
er

s,
in

cl
ud

in
g

th
ei

r n
am

e,
 d

at
a

ty
pe

, l
en

gt
h,

 a
nd

de

sc
rip

tio
n

Ty
pe

Le
ng

th
D

es
cr

ip
tio

n

n
D
i
m

i
n
t

1
D

im
en

si
on

 o
f t

he
 sp

ac
e

(2
D

 o
r 3

D
)

n
P
o
i
n
t
s

i
n
t

1
N

um
be

r o
f p

oi
nt

s i
n

th
e

m
es

h
c
o
o
r
d
s
[
]

d
o
u
b
l
e

n
P
o
i
n
t
s

*

n
D
i
m

A
rr

ay
 c

on
ta

in
in

g
th

e
co

or
di

na
te

s o
f e

ac
h

of
 th

e
m

es
h

po
in

ts
n
V
p
F

i
n
t

1
N

um
be

r o
f p

oi
nt

s d
efi

ni
ng

 e
ac

h
of

 th
e

m
es

h
si

m
pl

ex
. I

n
ou

r c
as

e,
 th

e
2D

 m
es

he
s a

re
 p

ar
tit

io
ne

d
in

to

tri
an

gl
es

 a
nd

 th
us

 n
V
p
F

=
 3

; i
n

3D
, t

he
 m

es
h

is
 d

iv
id

ed
 in

to
 te

tra
he

dr
on

s,
so

 n
V
p
F

=
 4

n
F
a
c
e
s

i
n
t

1
N

um
be

r o
f s

im
pl

ex
 (t

ria
ng

le
s/

te
tra

he
dr

on
s)

 fo
rm

ed
 b

y
th

e
m

es
h

po
in

ts
f
a
c
e
s
[
]

i
n
t

n
F
a
c
e
s

*

n
V
p
F

A
rr

ay
 c

on
ta

in
in

g
th

e
in

di
ce

s o
f t

he
 m

es
h

po
in

ts
 th

at
 fo

rm
 e

ac
h

si
m

pl
ex

 v
er

tic
es

 (t
ho

se
 in

di
ce

s r
ef

er
 to

 th
e

po
si

tio
n

of
 th

os
e

ve
rti

ce
s i

n
th

e
c
o
o
r
d
s

 a
rr

ay
)

t
_
e
v
a
l

d
o
u
b
l
e

1
Ti

m
e

in
st

an
t i

n
w

hi
ch

 th
e

flo
w

m
ap

 h
as

 b
ee

n
ca

lc
ul

at
ed

 a
nd

 F
TL

E
w

ill
 b

e
co

m
pu

te
d

fl
o
w
[
]

d
o
u
b
l
e

n
P
o
i
n
t
s

*

n
D
i
m

A
rr

ay
 c

on
ta

in
in

g
th

e
flo

w
m

ap
 v

al
ue

s f
or

 th
e

m
es

h
po

in
ts

 in
 th

e
tim

e
in

st
an

t t
_
e
v
a
l

	 R. Carratalá‑Sáez et al.

1 3

Note that, in all cases, when referring to “point index”, that means the ordinal
associated to that point or face starting from 0 and until nPoints, which means
that the point coordinates will be stored starting in coords[i*nDim]. Equiva-
lently, the “face index” is the ordinal associated to that point or face starting from
0 and until nFaces, which means that the indices of the face vertices (as many
as nVpF) will be stored starting in faces[i*nVpF].

4.2 � Algorithm

The FTLE computation procedure, summarized in Algorithm 3, is formed by the
following main steps:

1.	 Compute the gradients of the flowmap (see Algorithm 4 for 2D and Algorithm 5
for 3D).

2.	 Generate the tensors from the gradients and perform the matrix–matrix product of
the previously generated tensors by their transposes (see Algorithm 6 for 2D and
Algorithm 7 for 3D). Calculating the gradients is done based on the Green–Gauss
theorem [20].

3.	 Compute the maximum eigenvector of each resulting matrix. Note that as we are
computing the eigenvalues of matrices of size 2x2 (2D) or 3x3 (3D), which in
practice means, respectively, solving a second and third degree equation, we have
directly implemented this computation (see Algorithm 8 for 2D and Algorithm 9
for 3D), instead of calling mathematical libraries that perform this computation
for generic matrices of any size.

4.	 Calculate the logarithm of the square matrix of the maximum eigenvalue and
divide the result by the time instant to evaluate.

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

	 R. Carratalá‑Sáez et al.

1 3

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

	 R. Carratalá‑Sáez et al.

1 3

4.3 � Multithreaded CPU

In our implementation, we have used the OpenMP directive #pragma omp
parallel for prior to the for-loop in the FTLE algorithm that iterates over
the number of points in the mesh. That is, in Algorithm 3, we have inserted
the mentioned directive after the sixth line (i.e., after the generation of the FpP
array).

As we shall see in Sect. 5, we have explored the performance when equipping
that directive with different scheduling policies:

•	 static: Equal number of iterations are assigned to each OpenMP thread.
•	 dynamic: The iterations are dynamically assigned to the threads as soon as

they are finished with their previous work.
•	 guided: Similar to the last one, but the chunk size (number of iterations

to assign) starts off large and decreases to better handle the load imbalance
between iterations.

4.4 � CUDA kernels and grid

The full algorithm presented in the previous section is GPU-enabled. In our
implementation for CUDA kernels, we create as many threads as points exist in
the mesh that is being evaluated. The threads of the kernel concurrently execute

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

the computation derived from each mesh point (see Sect. 4.2). Thus, the first for-
loop that iterates over the number of points in the mesh for the FTLE algorithm
(see Algorithm 3) is parallelized.

Inside each GPU kernel, before starting the execution of the algorithm, two
operations are performed. In the first operation, the global identifier of each
thread is calculated. Each identifier corresponds to a mesh point. For the code
simplicity, we use one-dimensional threadBlock and grid. Thus, the follow-
ing instruction is executed to calculate the thread global identifier:

In the second operation, it is checked that the number of threads that are launched is
not larger than points contained in the mesh. For that we insert the following condi-
tion wrapping the FTLE implementation:

Each thread of the GPU grid executes exactly the sequence of steps described in
Sect. 4.2. The instructions are the same as those in the multithread implementa-
tion. The global memory access pattern is not perfectly coalesced, since contiguous
mesh points are not stored in contiguous positions of the GPU global memory. This
implies that contiguous threads access mesh points that are stored in non-contiguous
memory addresses.

Tuning strategies to improve performance, such as coalescing, prefetching,
unrolling and occupancy maximization, are introduced in the classical CUDA ref-
erence manuals, such as NVIDIA [24]. Additionally, the nvprof CUDA profil-
ing tool [25] enables to better understand the hardware resources utilization and
the performance of the applications. An intuitive idea is that the best option when
choosing the threadBlock size is trying to maximize the multiprocessors
occupancy to disguise latencies when accessing the global device memory.

According to the NVIDIA Reference Manual [24], the threadBlock sizes
that maximize the GPU occupancy are 256, 512, and 1024. All these thread-
Block sizes have been evaluated, and the best results have been obtained for
a threadBlock size of 512 threads. Moreover, note that the default device
behavior is the same as if we indicated to prioritize the L1 cache memory with
“cudaFuncCachePreferL1” configuration, because we are not using shared mem-
ory. This cache configuration reduces the global memory transactions size and
thus, the data traffic is decreased for not-perfectly coalesced memory access pat-
terns, such as ours.

We maintain a one-dimensional threadBlock geometry, as it makes it eas-
ier to calculate the global index of each thread reducing the number of kernel
instructions. We now describe the threadBlock sizes employed:

•	 2D kernel: The recommended block sizes that maximize the GPU occupancy
have been evaluated and the best results have been obtained for threadBlock
of 512 threads and L1 cache memory with “cudaFuncCachePreferL1” configura-
tion. This cache configuration reduces the global memory transactions size and

int th_id = blockIdx.x ∗ blockDim.x + threadIdx.x;

if (th_id < numCoords) {...}

	 R. Carratalá‑Sáez et al.

1 3

thus, the data traffic is reduced for not-perfectly coalesced memory access pat-
terns. The nvprof tool indicates that our 2D has a 100 % of hardware utiliza-
tion (Stream-Multiprocessor (SM) occupancy), in spite of the large number of
registers required.

•	 3D kernel: This kernel requires much more registers than the 2D kernel. Based
on the nvprof tool information, when using any of the recommended thread
block sizes, the maximum occupancy we were able to reach was around 50%.
For that reason, in this case we opted for an alternative block size, particularly
of 668, that lets us maximize the number of active threads allocated in the SM.
With this block size, the maximum occupancy is around 65% for this kernel. As
we have already stated with respect to the 2D kernel, in this 3D kernel using the
L1 cache memory with “cudaFuncCachePreferL1” configuration also offers the
best results.

Loop unrolling has been shown to be a relatively inexpensive and beneficial optimi-
zation for GPU programs. Thus, we have unrolled the Algorithms 6 and 7 (2D and
3D, respectively).

Finally, we want to highlight that our software is currently capable of leverag-
ing all the GPU devices available in a single node. Thus, we are performing our
multi-GPU executions in a shared memory environment. We use the OpenMP pro-
gramming model instantiating as many threads as GPU devices to distribute the load
among them. Particularly, we have designed a static partitioning of the mesh points
based on the number of GPU devices that take part of the execution.

5 � Experiments

In this section, we first show a comparison of the execution time attained by our
software, compared to that offered bu the LCSTool. After that we describe the plat-
forms in which we have performed our software parallel performance experiments,
and then we present the different evaluations we have conducted in them, as well as
analyze the results obtained.

5.1 � Comparison with existing software

Currently, there are three main open source projects that offer the same function-
ality as ours: VisIt [9], flowtk Package [1], and LCSTool [26] (already mentioned
in Sect. 3). Unfortunately, VisIt and flowtk Package, although available, have no
step-by-step documentation and are difficult to use. Nevertheless, the LCSTool
software, which consists of a MATLAB code developed by the Haller group of
ETH Zurich, is intuitive and usable through several MATLAB scripts that are
already provided by their developers/maintainers. For this reason, in this section
we present a comparison between UVaFTLE sequential execution time and the
LCSTool one. Note that LCSTool has no parallel implementation, thus we cannot
conduct any parallel performance comparison.

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

We have chosen the Double-Gyre flow for the comparison, which is a simpli-
fication of a 2D double-gyre pattern that occurs frequently in geophysical flows
[11]. As MATLAB is not available in any of the systems that we will use for
evaluating the parallel performance of our software, we have conducted the tests
to provide the comparison using a LENOVO laptop equipped with an Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz (composed of 4 cores and a total of 8
threads). The OS is Ubuntu 20.04.4 LTS. For the LCSTool execution we have
used MATLAB R2022b, and for the UVaFTLE execution we have used gcc
9.4.0.

Table 2 reflects the elapsed time (in seconds) associated to five different execu-
tions of the FTLE computation using the LCSTool and the UVaFTLE software, for a
2D mesh composed of 1,000K points. As it can be observed in the comparison, the
UVaFTLE software is approximately 81 times faster than the LCSTool when com-
puting the FTLE in this scenario.

5.2 � Platforms used for the performance evaluation

The experiments presented in this paper were conducted in two different systems.
The reason behind showcasing the performance in both of them is to illustrate the
behavior of our implementation in two of the most popular architectures existing
nowadays: AMD and Intel. The hardware features and operating systems (OS) of
these two systems are the following:

•	 Gorgon computing server from the Universidad de Valladolid. This system fea-
tures two AMD EPYC 7713 (Ryzen 3) CPU @ 2.0GHz, with 64 Core Proces-
sors and 128 threads each, and it is equipped with four NVIDIA GeForce GTX
TITAN Black @ 3.417GHz, each provided with 5.9GB. The OS is Centos 7.

•	 Finisterrae III supercomputer from the Centro de Supercomputación
de Galicia (CESGA). This system is composed of 354 nodes that feature two
Intel Xeon Ice Lake 8352Y CPU @ 2.2GHz, with 32 Core Processors and 64
threads each, and two NVIDIA A100 GPU each @ 1.186 GHz and provided with
39.6GB. The OS is Rocky Linux 8.4.

In our experiments in Gorgon, we compile our implementation using nvcc 11.3
with the flag -arch=sm_35, and including the flag -march=znver3 to generate

Table 2   Elapsed time (seconds) when computing five times the FTLE for a 2D case of 1,000K mesh
points both for the LCSTool and the UVaFTLE software

The important numbers to bold are those in the “mean” column (as it has been done) in order to highlight
them with respect to the others

Software #1 #2 #3 #4 #5 Mean

LCSTool 8.990 s 8.660 s 8.690 s 8.640 s 8.780 s 8.752 s
UvaFTLE 0.105 s 0.105 s 0.109 s 0.105 s 0.110 s 0.107 s

	 R. Carratalá‑Sáez et al.

1 3

instructions that run on the third Generation of EPYC/RYZEN in an optimized man-
ner. In our experiments in Finisterrae III, we compile our implementation
using nvcc 11.2. In both systems, we incorporated the optimization options flag
-O3, as well as the flag -fopenmp for the multithreaded and multi-GPU versions.

5.3 � Experiments

We conducted several experiments in the mentioned platforms to test the scalability
and efficiency of our implementation when taking advantage of CPU multithread-
ing, and also leveraging up to four GPU devices.

To test the parallel performance, we opted for two test cases (one in 2D and the
other in 3D) that arise from real-world scenarios. For the 2D case, we use the Dou-
ble-Gyre flow already employed in the previous section. For the 3D case, we use the
Arnold–Beltrami–Childress (ABC) flow or Gromeka–Arnold–Beltrami–Childress
(GABC) flow, a 3D incompressible velocity field resulting from an exact solution
of Euler’s equation [35]. Table 3 summarizes the test cases dimensions, the number
of mesh points and mesh simplex (either triangles or tetrahedrons), the interval of
interest at each axis, and the number of elements in the interval at each axis taken to
define the mesh points.

The speedup and efficiency shown in Tables 8 and 13 have been calculated
according to their classical definition, as follows:

Being tseq the sequential execution time, tpar the one associated to the parallel execu-
tion, and n either the number of CPU threads in the multithreaded parallel execution
or the number of GPU devices in the multi-GPU case.

In all the experiments, we tested the performance attainable with our OpenMP-
based implementation, covering three scheduling policies (static, guided, and
dynamic), each of them using the default chunk size, as well as a GPU-based one.
The experiments carried out in Gorgon used up to four GPU devices (NVIDIA
Titan Black), and up to 128 threads; those conducted in Finisterrae III used
up to two GPU devices (NVIDIA A100), and up to 64 threads.

Note that, in all cases, we have executed five times each experiment and we show
the mean values.

Speedup =
tseq

tpar
Efficiency =

Speedup

n

Table 3   Description of the test cases used in our experiments

 Dim nPoints nFaces Min-max(x, y, z) Length(x, y, z)

2D 1000K 1,996,002 (0−2, 0−1, 0−0) (1000, 1000, 0)
2D ≈10,000K (9,998,244) 19,983,842 (0−2, 0−1, 0−0) (3162, 3162, 0)
3D ≈ 500K (512,000) 2,958,234 (0−1, 0−1, 0−1) (80, 80, 80)
3D 1000K 5,821,794 (0−1, 0−1, 0−1) (100, 100, 100)

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

Ta
bl

e 
4  

E
xe

cu
tio

n
tim

e
re

su
lts

 (m
s)

 fo
r t

he
 2

D
 m

es
h

th
at

 c
on

ta
in

s
1,

00
0K

 p
oi

nt
s

w
he

n
us

in
g

up
 to

 1
28

 C
PU

 th
re

ad
s

in
 G
o
r
g
o
n

 a
nd

 d
iff

er
en

t O
pe

nM
P

sc
he

du
lin

g
po

li-
ci

es

10
00

K
1t

h
8t

h
16

th
24

th
32

th
40

th
48

th
56

th
64

th

St
at

ic
89

.9
6

25
.2

1
10

6.
98

6.
24

5.
07

5.
10

4.
75

4.
84

D
yn

am
ic

92
.9

2
11

3.
5

87
.3

8
79

.0
1

91
.3

9
12

4.
28

14
2

16
6.

73
19

2.
41

G
ui

de
d

90
.6

9
16

.0
8

8.
18

5.
87

4.
82

4.
26

4.
21

4.
71

4.
02

 1
00

0K
72

th
80

th
88

th
96

th
10

4t
h

11
2t

h
12

0t
h

12
8t

h

St
at

ic
4.

56
4.

71
5.

61
5.

5
5.

68
5.

97
7.

46
15

.9
7

D
yn

am
ic

21
8.

88
24

0.
76

26
4.

44
29

0.
45

31
3.

23
34

0.
67

38
1.

57
42

2.
36

G
ui

de
d

4.
4

4.
84

4.
9

5.
33

5.
48

7.
68

11
.1

13
.4

4

	 R. Carratalá‑Sáez et al.

1 3

Ta
bl

e 
5  

E
xe

cu
tio

n
tim

e
re

su
lts

 (m
s)

 fo
r t

he
 2

D
 m

es
h

th
at

 c
on

ta
in

s
10

,0
00

K
 p

oi
nt

s
w

he
n

us
in

g
up

 to
 1

28
 C

PU
 th

re
ad

s
in

 G
o
r
g
o
n

 a
nd

 d
iff

er
en

t O
pe

nM
P

sc
he

du
lin

g
po

li-
ci

es

10
,0

00
K

1t
h

8t
h

16
th

24
th

32
th

40
th

48
th

56
th

64
th

St
at

ic
90

4.
46

15
2.

21
86

.0
6

53
.8

6
51

.3
6

39
.6

5
40

.1
4

34
.6

6
37

.0
5

D
yn

am
ic

93
2.

91
11

89
.7

6
84

5.
36

90
8.

45
90

7.
8

11
41

.8
8

13
54

.1
8

16
81

.6
6

19
14

.1
7

G
ui

de
d

89
2.

54
12

0.
94

73
.7

1
66

.8
7

44
.6

8
34

.9
8

33
.6

3
29

.6
30

.0
2

 1
0,

00
0K

72
th

80
th

88
th

96
th

10
4t

h
11

2t
h

12
0t

h
12

8t
h

St
at

ic
37

.7
3

36
.9

33
.9

34
.0

2
34

.8
1

34
.3

7
38

.5
4

39
D

yn
am

ic
23

54
.6

6
24

82
.0

5
27

40
.3

4
29

51
.4

9
32

54
.9

2
35

80
.5

38
62

.9
6

43
23

.9
2

G
ui

de
d

31
.3

4
31

.2
7

30
.3

3
33

.1
6

31
.3

5
33

.0
3

39
.2

7
36

.1
8

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

5.4 � 2D experiments

In this section, we first present the execution time attained by the OpenMP-based
implementation for the two 2D meshes (of dimension 1000K and 10,000K points) in
Gorgon and Finisterrae III. This can be seen in Tables 4, 5, 6 and 7.

Now, in Figs. 1 and 2, we compare the performance attained by the GPU-based
implementation with that offered by the OpenMP one. Note that we have not repre-
sented the results associated to the dynamic policy for the sake of visibility (as it
offers the worse results), nor the results associated to 1 thread for the same reason.

The main conclusions that derive from these experiments are:

•	 Regarding the different OpenMP scheduling policies, the dynamic one is the
option that offers the worst results in all cases, while the static and guided
ones have a similar behavior in general. This is due to the fact that all the FTLE
computations performed have a very similar (and small) load for the different
mesh points, and there is an enormous overhead caused by the management of
the dynamic assignation of the iterations to the threads, compared to simply
assigning collections of them, as is done with the static and guided poli-
cies.

•	 With respect to the results observed in Gorgon, in the small test case, the
maximum speedup is reached with 72 threads for the OpenMP static scheduling
option (19.73x) and with 64 threads for the guided one (22.55x). After that num-
ber of threads, the efficiency decreases due to the fact that the load per thread
is not sufficiently large to be able to leverage the instantiated resources. In the
big test case, the highest speedup is observed with 56 threads both for the static
(26.10x) and the guided (30.16x) policies, but maintained longer at the same effi-
ciency level when increasing the number of threads.

Table 6   Execution time results (ms) for the 2D mesh that contains 1,000K points when using up to 64
CPU threads in Finisterrae III and different OpenMP scheduling policies

1000K 1th 8th 16th 24th 32th 40th 48th 56th 64th

Static 91.12 12.6 7.01 5.3 4.64 4.51 4.88 5.25 5.54
Dynamic 119.91 66.27 63.99 64.45 70.75 76.03 79.34 83.42 91.1
Guided 90.48 12.16 7.5 5.56 5.18 5.23 5.32 6.05 8.06

Table 7   Execution time results (ms) for the 2D mesh that contains 10,000K points when using up to 64
CPU threads in Finisterrae III and different OpenMP scheduling policies

10,000K 1th 8th 16th 24th 32th 40th 48th 56th 64th

Static 908.06 116.5 60.21 42.77 32.96 29.72 27.01 30.68 32.89
Dynamic 1189.94 773.14 687.05 673.01 726.41 627.98 633.9 691 683.99
Guided 903.44 115.17 60.33 41.81 33.29 28.63 29.07 28.12 27.97

	 R. Carratalá‑Sáez et al.

1 3

•	 Regarding the results observed in Finisterrae III, the best performance
with the small test case is attained with 40 threads (20.19x speedup) with the
static policy and 32 threads (17.47x speedup) with the guided one. With the
big test case and the static policy the best speedup is observed with 48 threads
(33.62x), and with 40 threads with the guided one (31.55x). Compared to what
we observe in Gorgon, in this platform the performance is better maintained
after reaching the best one because, in that case, we use fewer threads than in the
other system.

0
2
4
6
8

10
12
14
16
18
20
22
24
26

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Ex
ec

ut
io

n
tim

e
(m

s)

#CPU threads

Execution time for the test case of
1,000K mesh points in 2D in Gorgon

static guided 1 GPU 2 GPU 3 GPU 4 GPU

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Ex
ec

ut
io

n
tim

e
(m

s)

#CPU threads

Execution time for the test case of
10,000K mesh points in 2D in Gorgon

static guided 1 GPU 2 GPU 3 GPU 4 GPU

Fig. 1   Execution time for the 2D case with a mesh of 1000K points (top) and 10,000K points (bottom) in
Gorgon. The GPU results are shown in horizontal lines, while the bars are used to represent the differ-
ent execution time values associated to the CPU threads indicated in the X-axis

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

•	 Regarding the GPU-based performance, in Gorgon the comparison with the
results observed when using CPU threads is clearly dependant on the dimen-
sions of the mesh. When computing the FTLE for small meshes, we can see in

0
1
2
3
4
5
6
7
8
9

10
11
12
13

8 16 24 32 40 48 56 64

)s
m(

e
mit

noitucexE

#CPU threads

Execution time for the test case of
1,000K mesh points in 2D in Finisterrae III

static guided 1 GPU 2 GPU

0

10

20

30

40

50

60

70

80

90

100

110

120

8 16 24 32 40 48 56 64

Ex
ec

ut
io

n
tim

e
(m

s)

#CPU threads

Execution time for the test case of
10,000K mesh points in 2D in Finisterrae III

static guided 1 GPU 2 GPU

Fig. 2   Execution time for the 2D case with a mesh of 1000K points (top) and 10,000K points (bottom) in
Finisterrae III. The GPU results are shown in horizontal lines, while the bars are used to repre-
sent the different execution time values associated to the CPU threads indicated in the X-axis

	 R. Carratalá‑Sáez et al.

1 3

the graphic that, from 40 to 80 CPU threads, the performance is better than that
offered with only one GPU (and this also applies when using 32 or 88 threads
with the guided policy). When the mesh is big, one GPU is never outperformed
by any multithreaded CPU execution when using 40 or more threads with the
static policy, or 32 or more with the guided one (due to a higher computational
load). In any case, taking advantage of two or more GPU devices always outper-
forms the results observed with any multithreaded CPU execution. This is not
applicable to Finisterrae III, where the NVIDIA device is much more
powerful than the one in Gorgon, and thus even using a single GPU always out-
performs any result obtained with CPU threads.

•	 Regarding the GPU scalability, as reflected in Table 8, we observe that the load
in the small test case is not sufficient enough to fully take advantage of the
multi-GPU computational power executions; thus, the efficiency is between 68
and 91% in Gorgon, and around 84% in Finisterrae III. When increas-
ing the mesh dimension, we observe an improvement in the efficiency, it being
always equal to or higher than 85%.

5.5 � 3D experiments

In this section, we present the execution time attained by the OpenMP-based imple-
mentation for the two 3D meshes (of dimension 500K and 1000K points) in Gor-
gon (Tables 9 and 10), as well as in Finisterrae III (Tables 11 and 12).

As we have shown for the 2D case, we also show in Figs. 3 and 4 a comparison of
the performance attained by the GPU-based implementation and that offered by the
OpenMP one, now based on the 3D-based experiments. Note that we have not rep-
resented the results associated to the dynamic policy for the sake of visibility (as
it offers the worst results), nor the results associated to the lowest number of threads
for the same reason.

The main conclusions that derive from these experiments are:

•	 Regarding the different OpenMP scheduling policies, we obtain the same con-
clusion as in the 2D case: the dynamic one is the option that offers the worst

Table 8   GPU speedup and efficiency in Gorgon and Finisterrae III for the 2D small (left) and
big (right) test cases

Platform Small case-2D 1000K points Big case-2D 10,000K points

Gorgon Finisterrae III Gorgon Finisterrae III

 # GPU Speedup Efficiency Speedup Efficiency Speedup Efficiency Speedup Efficiency

2 1.8264 0.9132 1.6871 0.8435 1.9322 0.9661 1.8602 0.9301
3 2.2057 0.7352 – – 2.7347 0.9116 – –
4 2.7488 0.6872 – – 3.4129 0.8532 – –

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

Ta
bl

e 
9  

E
xe

cu
tio

n
tim

e
re

su
lts

 (m
s)

 fo
r t

he
 3

D
 m

es
h

th
at

 c
on

ta
in

s 5
00

K
 p

oi
nt

s w
he

n
us

in
g

up
 to

 1
28

 C
PU

 th
re

ad
s i

n
G
o
r
g
o
n

 a
nd

 d
iff

er
en

t O
pe

nM
P

sc
he

du
lin

g
po

lic
ie

s

50
0K

1t
h

8t
h

16
th

24
th

32
th

40
th

48
th

56
th

64
th

St
at

ic
16

9.
37

46
.3

4
21

.9
3

15
.2

7
12

.6
9

12
.2

4
13

.0
4

12
.3

2
12

.5
6

D
yn

am
ic

17
3.

33
11

7.
01

11
7.

26
21

2.
19

27
9.

29
33

9.
57

40
3.

78
47

6.
28

42
2.

71
G

ui
de

d
17

0.
24

26
.2

6
19

.5
8

16
.4

6
15

.2
9

16
.5

2
16

.7
9

17
.5

7
18

.9
5

 5
00

K
72

th
80

th
88

th
96

th
10

4t
h

11
2t

h
12

0t
h

12
8t

h

St
at

ic
13

.0
9

12
.5

9
13

.1
13

.6
5

15
.1

8
14

.3
1

20
.3

5
21

.8
8

D
yn

am
ic

43
8.

2
47

0.
22

48
7.

64
50

4.
84

52
9.

17
55

5.
99

57
6.

93
59

3.
29

G
ui

de
d

20
.0

8
20

.0
3

24
.3

5
24

.7
6

26
.2

2
28

.2
3

32
.6

1
35

.1
5

	 R. Carratalá‑Sáez et al.

1 3

Ta
bl

e 
10

  
Ex

ec
ut

io
n

tim
e

re
su

lts
 (m

s)
 fo

r t
he

 3
D

 m
es

h
th

at
 c

on
ta

in
s

1.
00

0K
 p

oi
nt

s
w

he
n

us
in

g
up

 to
 1

28
 C

PU
 th

re
ad

s
in

 G
o
r
g
o
n

 a
nd

 d
iff

er
en

t O
pe

nM
P

sc
he

du
lin

g
po

li-
ci

es

10
00

K
1t

h
8t

h
16

th
24

th
32

th
40

th
48

th
56

th
64

th

St
at

ic
33

0.
75

72
.9

3
38

.9
8

27
.5

7
23

.1
1

20
.5

21
.5

6
20

.5
9

18
.5

7
D

yn
am

ic
33

7.
6

23
1.

29
24

5.
39

40
9.

52
52

7.
26

65
4.

66
78

6.
97

92
9.

42
81

1.
88

G
ui

de
d

33
2.

49
52

35
.6

3
29

.8
6

26
.5

5
24

.9
3

25
.0

4
26

.9
3

27
.0

6

 1
00

0K
72

th
80

th
88

th
96

th
10

4t
h

11
2t

h
12

0t
h

12
8t

h

St
at

ic
20

.9
8

21
.0

8
21

.2
8

22
.1

5
22

.2
1

22
.3

2
28

.4
7

32
.4

1
D

yn
am

ic
86

7.
39

91
4.

43
97

1.
14

11
39

.1
3

10
38

.8
4

10
67

.5
2

11
34

.7
7

11
28

.6
4

G
ui

de
d

28
.1

2
31

.5
5

33
.3

9
36

.5
3

39
.4

3
36

.2
8

44
.4

7
50

.4
4

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

results in all cases. However, in this case, the differences between the static
and guided policies are much more noticeable, due to the fact that now there is
more load and the latter one overhead starts to be prominent when compared to
directly dividing the iterations between the threads with a static distribution.

•	 With respect to the results observed in the small test case, the maximum speedup
is reached with 40 threads, with the OpenMP static scheduling option (13.83x)
and 32 threads with the guided one (11.13x). After that number of threads, the
efficiency slightly decreases due to the fact that the load per thread is not suf-
ficiently large as to be able to leverage the instantiated resources. In the big
test case, the highest speedup is observed with 64 threads with the static policy
(17.81x) and 40 threads with the guided one (13.34x).

•	 Regarding the GPU-based performance, the comparison with the results
observed when using CPU threads is clearly dependant on the mesh dimension,
as in the 2D case. When computing the FTLE for small meshes, we can see in
the graphic that, from 24 to 112 CPU threads, the performance with the static
policy and a multithreaded CPU execution is better than that offered with only
one GPU. When the mesh is big, one GPU is outperformed when using 24 or
more threads (due to a higher computational load). In any case, taking advantage
of two or more GPU devices always outperforms the results observed with CPU
threads (except for the case of using 64 threads and the static policy in the big
test case, that is slightly faster than using 2 GPUs).

•	 Regarding the GPU scalability, as reflected in Table 13, we observe that the effi-
ciency is between 71% and 83%.

Table 11   Execution time results (ms) for the 3D mesh that contains 500K points when using up to 64
CPU threads in Finisterrae III and different OpenMP scheduling policies

500K 1th 8th 16th 24th 32th 40th 48th 56th 64th

Static 282.99 49.02 27.29 19.07 16.2 16.27 14.49 15.6 12.82
Dynamic 313.09 101.22 149.73 255.07 338.33 414.68 494.69 567.66 446.01
Guided 289.97 42.18 24.71 18.38 16.15 17.86 19.54 20.33 24.1

Table 12   Execution time results (ms) for the 3D mesh that contains 1,000K points when using up to 64
CPU threads in Finisterrae III and different OpenMP scheduling policies

1000K 1th 8th 16th 24th 32th 40th 48th 56th 64th

Static 529.52 90.59 50.68 35.42 28.04 25.9 25.66 22.93 25.97
Dynamic 589.66 196.42 302.96 491.6 643.47 812.54 946.05 1113.96 867.01
Guided 539.27 79.67 45.82 33.2 28.16 28.9 28.89 31.36 34.42

	 R. Carratalá‑Sáez et al.

1 3

6 � Concluding remarks

In this paper, we have detailed and analyzed the procedures to perform the FTLE
computation. Moreover, we have provided an open source implementation of it,
equipped with OpenMP directives to take advantage of multithreaded environments,
as well as CUDA kernels to take advantage of any NVIDIA GPU devices.

In addition, we have offered an analysis of the performance attainable by our
implementation, both when executed in multithreaded systems and also when using

0

5

10

15

20

25

30

35

40

45

50

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Ex
ec

ut
io

n
tim

e
(m

s)

#CPU threads

Execution time for the test case of
500K mesh points in 3D in Gorgon

static guided 1 GPU 2 GPU 3 GPU 4 GPU

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Ex
ec

ut
io

n
tim

e
(m

s)

#CPU threads

Execution time for the test case of
1,000K mesh points in 3D in Gorgon

static guided 1 GPU 2 GPU 3 GPU 4 GPU

Fig. 3   Execution time for the 3D case with a mesh of 500K points (top) and 1000K points (bottom) in
Gorgon. The GPU results are shown in horizontal lines, while the bars are used to represent the differ-
ent execution time values associated to the CPU threads indicated in the X-axis

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

GPU devices (particularly, NVIDIA Titan Black and NVIDIA A100). On the one
hand, this analysis has explored the impact of different OpenMP scheduling policies
(static, dynamic, and guided); the conclusion being that the static policy

0

5

10

15

20

25

30

35

40

45

50

8 16 24 32 40 48 56 64

)s
m(

e
mit

noitucexE

#CPU threads

Execution time for the test case of
500K mesh points in 3D in Finisterrae III

static guided 1 GPU 2 GPU

0

10

20

30

40

50

60

70

80

90

100

8 16 24 32 40 48 56 64

)s
m(

e
mit

noitucexE

#CPU threads

Execution time for the test case of
1,000K mesh points in 3D in Finisterrae III

static guided 1 GPU 2 GPU

Fig. 4   Execution time for the 3D case with a mesh of 500K points (top) and 1000K points (bottom) in
Finisterrae III. The GPU results are shown in horizontal lines, while the bars are used to repre-
sent the different execution time values associated to the CPU threads indicated in the X-axis

	 R. Carratalá‑Sáez et al.

1 3

is the recommended option to ensure a good efficiency in any case. On the other
hand, we have also compared that performance with the one attained when using
up to four GPUs, concluding that multi-GPU executions outperform those based on
CPU threads. Our experiments have covered both 2D and 3D FTLE computations,
in two different architectures, reaching a notable efficiency in both scenarios, espe-
cially when taking advantage of the GPUs.

As stated before, our code is publicly available in GitHub, and Docker contain-
ers have been published in Docker Hub to ease the reproducibility and contribute to
open science. We encourage the community to use our code and contact us for any
inquiry.

7 � Future work

As part of future work we plan to explore the performance of combining multi-
CPU and multi-GPU parallelism. Moreover, we would also like to explore the use
of FPGAs to exploit heterogeneous systems equipped with both GPUs and FPGAs.

Acknowledgements  This work has been funded by the Consejería de Educación of Junta de Cas-
tilla y León, Ministerio de Economía, Industria y Competitividad of Spain, European Regional
Development Fund (ERDF) program: Project PCAS (TIN2017-88614-R) and Project PROPHET-2
(VA226P20). This work was supported in part by grant TED2021-130367B-I00 funded by MCIN/
AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”. Jose Sierra-Pallares
was supported by project VA182P20 from Junta de Castilla y León. The experiments carried out using
the CESGA resources were possible thanks to the Red Española de Supercomputación (RES) projects
IM-2022-2-0015 and IM-2022-3-0021.

Author contributions  RC-S, YT, SL-H, and JS-P implemented the code. RC-S, YT and SL-H carried out
the experimentation and generated the figures. All authors wrote and reviewed the main manuscript text.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Consejería de Educación of Junta de Castilla y León, Ministerio de Economía, Industria y Competitividad
of Spain, European Regional Development Fund (ERDF) programs: Project PCAS (TIN2017-88614-R),
Project VA182P2, Project PROPHET-2 VA226P20. MCIN/AEI/10.13039/501100011033 and “European
Union NextGenerationEU/PRTR” grant: TED2021-130367B-I00. Project IM-2022-2-0015 from the Red
Española de Supercomputación (RES). Project IM-2022-3-0021 from the Red Española de Supercom-
putación (RES).

Table 13   GPU speedup and efficiency in Gorgon and Finisterrae III for the 3D small (left) and
big (right) test cases

 Platform Small case-3D 500K points Big case-3D 1000K points

Gorgon Finisterrae III Gorgon Finisterrae III

 # GPU Speedup Efficiency Speedup Efficiency Speedup Efficiency Speedup Efficiency

2 1.6728 0.8364 1.4256 0.7128 1.6695 0.8347 1.5546 0.7773
3 2.4291 0.8097 – – 2.3649 0.7883 – –
4 3.047 0.7617 – – 3.1906 0.7977 – –

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

Data availability  The source code is available at https://​github.​com/​uva-​trasgo/​UVaFT​LE/. Besides, we
have created a Docker container that includes the FTLE source code (Docker Hub: https://​hub.​docker.​
com/r/​rocio​carra​talas​aez/​uvaft​le and Github Container Repository: https://​github.​com/​uva-​trasgo/​UVaFT​
LE/​pkgs/​conta​iner/​uvaft​le) and a Docker container that allows the mesh and flowmap to be generated for
use as input in the FTLE computation (Docker Hub: https://​hub.​docker.​com/r/​rocio​carra​talas​aez/​uvaft​le-​
mesh-​gener​ation and Github Container Repository: https://​github.​com/​uva-​trasgo/​UVaFT​LE/​pkgs/​conta​
iner/​uvaft​le-​mesh-​gener​ation).

Declarations 

Conflict of interest  The authors have no competing interests as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Abinit (2021) flowtk Package. https://​abinit.​github.​io/​abipy/​api/​flowtk_​api.​html, accessed: Dec
2022

	 2.	 Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an introduction to the design
of warehouse-scale machines, Second Edition. Morgan & Claypool Publishers, http://​dx.​doi.​org/​10.​
2200/​S0051​6ED2V​01Y20​1306C​AC024

	 3.	 Bedford Taylor M (2017) The evolution of bitcoin hardware. Computer 50(9):58–66. https://​doi.​org/​
10.​1109/​MC.​2017.​35710​56

	 4.	 Betz J, Zheng H, Liniger A et al (2022) Autonomous vehicles on the edge: a survey on autonomous
vehicle racing. IEEE Open J Intell Transp Syst 3:458–488. https://​doi.​org/​10.​1109/​OJITS.​2022.​
31815​10

	 5.	 Brodtkorb AR, Dyken C, Hagen TR et al (2010) State-of-the-art in heterogeneous computing. Sci
Program. https://​doi.​org/​10.​1155/​2010/​540159

	 6.	 Brunton S, Rowley C (2009) Modeling the unsteady aerodynamic forces on small-scale wings. In:
47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition,
p 1127, https://​doi.​org/​10.​2514/6.​2009-​1127

	 7.	 Carratalá-Sáez R, Sierra-Pallares J, Llanos DR et al (2022) UVaFlow: Lagrangian flowmap compu-
tation for fluid dynamic applications. Submitted to the Journal of Computational Science

	 8.	 Chen CM, Shen HW (2013) Graph-based seed scheduling for out-of-core ftle and pathline com-
putation. In: 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), pp
15–23, https://​doi.​org/​10.​1109/​LDAV.​2013.​66751​54

	 9.	 Childs H, Brugger E, Whitlock B et al (2012) Visit: an end-user tool for visualizing and analyzing
very large data. In: High performance visualization–enabling extreme-scale scientific insight. Taylor
& Francis, p 357–372, https://​doi.​org/​10.​1201/​b12985

	10.	 Conti C, Rossinelli D, Koumoutsakos P (2012) GPU and APU computations of finite time Lyapu-
nov exponent fields. J Comput Phys 231(5):2229–2244. https://​doi.​org/​10.​1016/j.​jcp.​2011.​10.​032

	11.	 Coulliette C, Wiggins S (2000) Intergyre transport in a wind-driven, quasigeostrophic double gyre:
an application of lobe dynamics. Nonlinear Process Geophys 7(1/2):59–85. https://​doi.​org/​10.​5194/​
npg-7-​59-​2000

	12.	 Dauch T, Rapp T, Chaussonnet G et al (2018) Highly efficient computation of finite-time Lyapunov
exponents (FTLE) on GPUs based on three-dimensional SPH datasets. Comput Fluids 175:129–141

https://github.com/uva-trasgo/UVaFTLE/
https://hub.docker.com/r/rociocarratalasaez/uvaftle
https://hub.docker.com/r/rociocarratalasaez/uvaftle
https://github.com/uva-trasgo/UVaFTLE/pkgs/container/uvaftle
https://github.com/uva-trasgo/UVaFTLE/pkgs/container/uvaftle
https://hub.docker.com/r/rociocarratalasaez/uvaftle-mesh-generation
https://hub.docker.com/r/rociocarratalasaez/uvaftle-mesh-generation
https://github.com/uva-trasgo/UVaFTLE/pkgs/container/uvaftle-mesh-generation
https://github.com/uva-trasgo/UVaFTLE/pkgs/container/uvaftle-mesh-generation
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://abinit.github.io/abipy/api/flowtk_api.html
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi.org/10.1109/MC.2017.3571056
https://doi.org/10.1109/MC.2017.3571056
https://doi.org/10.1109/OJITS.2022.3181510
https://doi.org/10.1109/OJITS.2022.3181510
https://doi.org/10.1155/2010/540159
https://doi.org/10.2514/6.2009-1127
https://doi.org/10.1109/LDAV.2013.6675154
https://doi.org/10.1201/b12985
https://doi.org/10.1016/j.jcp.2011.10.032
https://doi.org/10.5194/npg-7-59-2000
https://doi.org/10.5194/npg-7-59-2000

	 R. Carratalá‑Sáez et al.

1 3

	13.	 Garth C, Gerhardt F, Tricoche X et al (2007) Efficient computation and visualization of coherent
structures in fluid flow applications. IEEE Trans Visual Comput Graphics 13(6):1464–1471. https://​
doi.​org/​10.​1109/​TVCG.​2007.​70551

	14.	 Garth C, Li GS, Tricoche X et al (2009) Visualization of coherent structures in transient 2D flows,
Springer: Berlin, Heidelberg, pp 1–13. https://​doi.​org/​10.​1007/​978-3-​540-​88606-8_1

	15.	 Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech 47:137–162. https://​doi.​org/​
10.​1063/1.​36901​53

	16.	 Hlawatsch M, Sadlo F, Weiskopf D (2011) Hierarchical line integration. IEEE Trans Visual Comput
Gr 17(8):1148–1163. https://​doi.​org/​10.​1109/​TVCG.​2010.​227

	17.	 Klöckner A, Pinto N, Lee Y et al (2012) PyCUDA and PyOpenCL: a scripting-based approach to
GPU run-time code generation. Parallel Comput 38(3):157–174. https://​doi.​org/​10.​1016/j.​parco.​
2011.​09.​001

	18.	 Kuhn A, Rössl C, Weinkauf T et al (2012) A benchmark for evaluating ftle computations. In: 2012
IEEE Pacific visualization symposium, pp 121–128, https://​doi.​org/​10.​1109/​Pacif​icVis.​2012.​61835​
82

	19.	 Lin M, Xu M, Fu X (2017) GPU-accelerated computing for Lagrangian coherent structures of
multi-body gravitational regimes. Astrophys Space Sci 362:1572–946X. https://​doi.​org/​10.​1007/​
s10509-​017-​3050-y

	20.	 Mavriplis DJ (1997) Unstructured grid techniques. Annu Rev Fluid Mech 29(1):473–514
	21.	 Meschi SS, Farghadan A, Arzani A (2021) Flow topology and targeted drug delivery in cardiovas-

cular disease. J Biomech 119(110):307. https://​doi.​org/​10.​1016/j.​jbiom​ech.​2021.​110307
	22.	 Mikolajczak M (1997) Designing and building parallel programs: concepts and tools for parallel

software engineering [book review]. IEEE Concurr 5(2):88–90. https://​doi.​org/​10.​1109/​MCC.​1997.​
588301

	23.	 Nouanesengsy B, Lee TY, Lu K et al (2012) Parallel Particle Advection and FTLE Computation for
Time-Varying Flow Fields. In: SC ’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pp 1–11, https://​doi.​org/​10.​1109/​SC.​2012.​93

	24.	 NVIDIA (2022a) CUDA C++ Programming Guide. On https://​docs.​nvidia.​com/​cuda/​pdf/​
CUDA_C_​Progr​amming_​Guide.​pdf

	25.	 NVIDIA (2022b) CUDA Profiler Guide. On https://​docs.​nvidia.​com/​cuda/​pdf/​CUDA_​Profi​ler_​
Users_​Guide.​pdf

	26.	 Onu K, Huhn F, Haller G (2015) Lcs tool: a computational platform for Lagrangian coherent struc-
tures. J Comput Sci 7:26–36. https://​doi.​org/​10.​1016/j.​jocs.​2014.​12.​002

	27.	 Sadlo F, Rigazzi A, Peikert R (2011) Time-Dependent Visualization of Lagrangian Coherent Struc-
tures by Grid Advection, Springer: Berlin, Heidelberg, pp 151–165. https://​doi.​org/​10.​1007/​978-3-​
642-​15014-2_​13

	28.	 Sagristà A, Jordan S, Sadlo F (2020) Visual analysis of the finite-time Lyapunov exponent. Comput
Graph Forum 39(3):331–342. https://​doi.​org/​10.​1111/​cgf.​13984

	29.	 Serra M, Sathe P, Beron-Vera F et al (2017) Uncovering the edge of the polar vortex. J Atmos Sci
74(11):3871–3885. https://​doi.​org/​10.​1175/​JAS-D-​17-​0052.1

	30.	 Spaulding ML (2017) State of the art review and future directions in oil spill modeling. Mar Pollut
Bull 115(1–2):7–19. https://​doi.​org/​10.​1016/j.​marpo​lbul.​2017.​01.​001

	31.	 TOP500.org (2022) Top500 Supercomput. Sites. On http://​www.​top500.​org
	32.	 Wang F, Deng L, Zhao D et al (2016) An Efficient Preprocessing and Composition Based Finite-

Time Lyapunov Exponent Visualization Algorithm for Unsteady Flow Field. In: 2016 International
Conference on Virtual Reality and Visualization (ICVRV), pp 497–502, https://​doi.​org/​10.​1109/​
ICVRV.​2016.​89

	33.	 Xuan H, Wei S, Li Y et al (2019) Off-line time aware scheduling of bag-of-tasks on heterogeneous
distributed system. IEEE Access. https://​doi.​org/​10.​1109/​ACCESS.​2019.​28999​26

	34.	 Zahran M (2019) Heterogeneous computing: hardware and software perspectives, vol 23. Associa-
tion for computing machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​32816​49

	35.	 Zhao XH, Kwek KH, Li JB et al (1993) Chaotic and resonant streamlines in the ABC flow. SIAM J
Appl Math 53(1):71–77

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/TVCG.2007.70551
https://doi.org/10.1109/TVCG.2007.70551
https://doi.org/10.1007/978-3-540-88606-8_1
https://doi.org/10.1063/1.3690153
https://doi.org/10.1063/1.3690153
https://doi.org/10.1109/TVCG.2010.227
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1109/PacificVis.2012.6183582
https://doi.org/10.1109/PacificVis.2012.6183582
https://doi.org/10.1007/s10509-017-3050-y
https://doi.org/10.1007/s10509-017-3050-y
https://doi.org/10.1016/j.jbiomech.2021.110307
https://doi.org/10.1109/MCC.1997.588301
https://doi.org/10.1109/MCC.1997.588301
https://doi.org/10.1109/SC.2012.93
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://doi.org/10.1016/j.jocs.2014.12.002
https://doi.org/10.1007/978-3-642-15014-2_13
https://doi.org/10.1007/978-3-642-15014-2_13
https://doi.org/10.1111/cgf.13984
https://doi.org/10.1175/JAS-D-17-0052.1
https://doi.org/10.1016/j.marpolbul.2017.01.001
http://www.top500.org
https://doi.org/10.1109/ICVRV.2016.89
https://doi.org/10.1109/ICVRV.2016.89
https://doi.org/10.1109/ACCESS.2019.2899926
https://doi.org/10.1145/3281649

1 3

UVaFTLE: Lagrangian finite time Lyapunov exponent extraction…

Authors and Affiliations

Rocío Carratalá‑Sáez1 · Yuri Torres1 · José Sierra‑Pallares2 ·
Sergio López‑Huguet3 · Diego R. Llanos1

	 Yuri Torres
	 yuri.torres@infor.uva.es

	 José Sierra‑Pallares
	 jsierra@eii.uva.es

	 Sergio López‑Huguet
	 serlohu@upv.es

	 Diego R. Llanos
	 diego@infor.uva.es

1	 Depto. Informática, Universidad de Valladolid, Paseo de Belén, 15, Valladolid 47011,
Castilla y León, Spain

2	 Depto. Ingeniería Energética y Fluidomecánica, Universidad de Valladolid, Paseo del Cauce, 59,
Valladolid 47011, Castilla y León, Spain

3	 Instituto de Instrumentación para Imagen Molecular (I3M), Universitat Politècnica de València,
Camino de Vera S/N, València 46022, Comunidad Valenciana, Spain

	UVaFTLE: Lagrangian finite time Lyapunov exponent extraction for fluid dynamic applications
	Abstract
	1 Introduction
	2 Finite time Lyapunov exponent
	3 Related work
	4 Our implementation
	4.1 Data
	4.2 Algorithm
	4.3 Multithreaded CPU
	4.4 CUDA kernels and grid

	5 Experiments
	5.1 Comparison with existing software
	5.2 Platforms used for the performance evaluation
	5.3 Experiments
	5.4 2D experiments
	5.5 3D experiments

	6 Concluding remarks
	7 Future work
	Acknowledgements
	References

