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A B S T R A C T   

Assessing carbon efficiency (CE) in the provision of drinking water services is essential to achieve a net-zero 
greenhouse gas (GHG) urban water cycle. Previous studies evaluating the CE of water companies are very 
scarce and employed parametric and non-parametric. Both methodological approaches present limitations such 
as overfitting issues or require assumptions about the production technology which could lead to less reliable 
efficiency scores. To overcome these limitations, in this study, and for the first time, we estimated CE of English 
and Welsh water companies using the Efficiency Analysis Trees (EAT) approach. This technique brings together 
machine learning and non-linear programming techniques to estimate production frontier and efficiency scores. 
It also allowed us to quantify the optimal level of GHG emissions in the provision of water services and estimate 
potential GHG savings. Bootstrap truncated regression methods were employed to quantify the impact of 
operating characteristics on CE of water companies. The optimal level of GHG emissions was estimated to be 
between 0.062 and 133.03 tons of CO2 equivalent (CO2eq) per year and per connected property. The average CE 
was at the level of 0.632. This means that GHG emissions could reduce by 36.8% to maintain the same level of 
water services. Equivalently, this corresponds to a reduction of 488,321 tons of CO2eq per year. Water only 
companies exhibited a better performance than water and sewerage companies with an average CE of 0.785 and 
0.540, respectively. The performance of the English and Welsh water companies decreased over time. In 2011 the 
average CE was 0.772 whereas it went down to 0.534 in 2020. It was also estimated that on average water 
companies could reduce 0.034 tons of CO2eq per cubic meter of drinking water supplied and 16.16 tons of CO2eq/ 
connected property per year. The regression results showed that topography and water treatment complexity had 
a significant impact on CE. The conclusions of this study are relevant for policy makers to define policies toward 
a low-carbon urban water cycle.   

1. Introduction 

Access to drinking water is recognized as a human right by United 
Nations (2011). However, the provision of drinking water involves en-
ergy intensive activities (Rodríguez-Merchan et al., 2021) which are 
relevant within the water-energy nexus (Li et al., 2019; Xu, 2020; Fon-
tenelle et al., 2022). The energy used to provide drinking water services 
involves the emission of greenhouse gas (GHG) (Rothausen and Conway, 
2011; Jin and Kim, 2019). Cutting down GHG emissions will bring huge 
benefits to environment and people’s health. In addition to this, 

controlling GHG emissions in the provision of water services could have 
a positive effect on customers by reducing water bills (Heims and Lodge, 
2018). The use of renewable energy during the water treatment process 
could lead to lower energy costs and GHG emissions. These cost savings 
should be passed to customers in terms of lower water tariffs (Strazza-
bosco et al., 2020). 

Over the years, policy makers have been making efforts to tackle 
economic and environmental sustainability of the urban water cycle. For 
instance, the United Nations (2015) pointed out the significance of 
renewable energy, sustainable use of energy (Goal 7) and of reducing 
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GHG emissions to deal with climate change (Goal 13). They also high-
lighted the need of all people to have access to clean and safe water 
services at an affordable cost (Goal 6). The water-energy-GHG nexus is 
at the forefront towards realising a sustainable and carbon-free water 
industry by researchers and policy makers. Consequently, this topic has 
generated growing interest in the published literature, providing inter-
esting guidelines for policy makers. 

Past research evaluating carbon efficiency (CE) of water companies 
have used parametric approaches (Molinos-Senante and Maziotis, 2022) 
such as Stochastic Frontier Analysis (SFA) and non-parametric methods 
(Data Envelopment Analysis, DEA) (Molinos-Senante et al., 2022b; 
2022b). As we discuss in the literature review section, both approaches 
present restrictions which limit the assessment of CE of water com-
panies. Alternative methods to DEA and SFA for estimating efficiency 
scores are those that apply Kernel-based approaches and local regression 
techniques. For example, Du et al. (2013) proposed a kernel smoothing 
method that can handle multiple shape constraints (e.g., monotonicity) 
for multivariate functions. Parmeter et al. (2014) evidenced how 
constraint weighted bootstrapping may be applied to impose smooth-
ness conditions on linear estimates. Alternatively, Kuosmanen and 
Johnson (2010) showed that DEA may be reinterpreted as 
non-parametric least-squares regression subject to shape constraints on 
the production frontier and sign constraints on residuals. However, none 
of the above methodologies for computing efficiency scores address the 
problem through machine learning techniques, despite their advantages 
(Esteve et al., 2021). 

Unlike previous methodological approaches discussed to estimate 
efficiency scores, i.e., DEA, SFA, Kernel-based approaches and local 
regression techniques, the Efficiency Analysis Trees (EAT) approach, 
brings together machine learning and frontier analysis to estimate effi-
ciency scores. EAT was developed by Esteve et al. (2020) and uses 
Classification and Regression Trees (CART) techniques, developed by 
Breiman et al. (1984), to measure the frontier level or the optimum level 
of the predicted variable (GHG emissions in this study). It further uses 
linear programming techniques to construct the production frontier and 
generate efficiency scores. Moreover, the EAT approach imposes the free 
disposability assumption and adjusts the regression trees to estimate 
production frontiers and measure efficiency (Esteve et al., 2022). The 
production frontier that is constructed using the EAT approach takes the 
form of a step function. Esteve et al. (2020, 2021) demonstrated that the 
EAT method outperforms non-parametric approaches both in terms of 
mean squared error and bias. The authors pointed out that the new 
approach enhances robustness of model results and accuracy of effi-
ciency because it does not suffer from overfitting. Moreover, EAT, unlike 
SFA and DEA, allows estimating the optimal level of GHG emissions. 
This issue is very relevant from a policy perspective towards a carbon 
neutral urban water cycle. For the above reasons, we selected the EAT 
approach to compute CE of water companies. 

Within this context the objectives of this study are fourfold. The first 
objective is to evaluate the CE of drinking water services in terms of 
reducing GHG emissions using the EAT methodological approach. The 
second objective is to estimate the optimal level of GHG emissions in the 
provision of water services according to the number of connected 
properties and volume of drinking water delivered by water companies. 
The third objective is to quantify potential GHG savings of water utili-
ties. The fourth objective is to get a better insight on what drives CE in 
water services, i.e., assess the influence of operational characteristics of 
water companies on their CE. 

The contribution of this study to existing literature is as follows. For 
the first time, a method that combines machine learning and production 
economics is employed to measure the CE of drinking water services. 
This is a pioneering approach because to the best of our knowledge there 
have not been any studies in the literature that measured CE in the water 
industry using the EAT approach overcoming the limitations of DEA and 
SFA approaches. Moreover, this methodological approach allows 
quantifying the optimal level of GHG emissions which is relevant to 

define GHG reduction targets by water regulators. Furthermore, the use 
of bootstrap regression techniques allows us to get a better insight on 
how operating characteristics impact CE when providing water services. 
CE has been estimated for a sample of water companies in England and 
Wales over the 2011–2020 period. 

2. Literature review about carbon efficiency assessment 

Water-energy-carbon nexus within the urban water cycle has been 
investigated using different approaches: i) Most of the past research on 
this topic focused on quantifying GHG emissions associated with the 
provision of drinking water and wastewater services (e.g., Chen et al., 
2018; Wakeel et al., 2018; Liao et al., 2020). By using life cycle analysis 
tools, input-output models or mixed models, previous studies quantified 
the energy used and GHG emitted in the provision of water and treat-
ment of wastewater (Venkatesh et al., 2014; Santos et al., 2015; Sama-
naseh et al., 2017; Lam and Van Der Hoek, 2020); ii) Other studies 
evaluated the economics of reducing GHG emissions within the urban 
water cycle (e.g., Zhang et al., 2017; Fane et al., 2020; Ortiz et al., 2021; 
Alix et al., 2022). 

Focusing on the performance assessment of water utilities in the 
provision of drinking water, past research integrating carbon emissions 
is much more limited. On the one hand, some studies focused on eval-
uating the impact of considering GHG emissions in the operational 
performance of water companies (Ananda and Hampf, 2015; Ananda, 
2018, 2019; Molinos-Senante and Maziotis, 2021). These studies eval-
uated the efficiency of water companies in the provision of water and 
sanitation services under two scenarios: i) ignoring GHG emissions from 
the operation of facilities and ii) including GHG emissions as a sub-
product. The comparison of efficiency scores under both approaches 
allows estimating the impact of integrating GHG emissions in the per-
formance assessment of water utilities. On the other hand, other studies 
assessed the eco-efficiency of water companies integrating GHG emis-
sions as undesirable outputs (Sala-Garrido et al., 2021a, 2021b; 
Mocholi-Arce et al., 2022; Amaral et al., 2022; Molinos-Senante et al., 
2022a). These studies computed a synthetic index (eco-efficiency index) 
that integrates the operational costs, volume of drinking water supply 
(and its quality) and carbon emissions of water companies. Hence, the 
eco-efficiency index provides relevant information about the perfor-
mance of water companies from a holistic perspective since 
eco-efficiency estimation integrates operational, economic, and envi-
ronmental variables. However, it does not allow evaluating the carbon 
performance of water companies. In other words, these previous studies 
did not estimate an individual synthetic index for assessing the perfor-
mance of water companies in terms of GHG emissions. 

To the best of our knowledge, a small number of recent studies 
(Molinos-Senante et al., 2022b; Molinos-Senante and Maziotis, 2022) 
assessed the CE of water companies in the provision of water services. 
Unlike past research evaluating eco-efficiency of water companies, these 
studies computed a performance index focused only on GHG emissions. 
In a second stage of analysis, the authors identified main external var-
iables influencing the carbon performance of water utilities. In spite of 
their remarkable novelty and contribution to the water-energy nexus 
strand of literature, past research on this topic presents some method-
ological limitations. On the one hand, Molinos-Senante et al. (2022b) 
employed DEA to estimate CE scores. It is a non-parametric approach 
based on linear programming models. DEA is a deterministic method 
and therefore, does not take into account noise. Consequently, any de-
viations from the efficient frontier are simply attributed to inefficiency 
(Ferreira and Marques, 2017). Esteve et al. (2020, 2021, 2022) showed 
that the DEA approach suffers from overfitting issues which could lead 
to less reliable efficiency scores. On the other hand, Molinos-Senante 
and Maziotis (2022) estimated CE scores using the SFA approach which 
requires an assumption about the underlying production technology (e. 
g., translog) of water companies. Moreover, inefficiency is subject to 
different assumptions regarding its distribution such as half-normal, 
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exponential, gamma (Letti et al., 2022). Thus, efficiency scores are 
sensitive to these assumptions which could lead to different estimates 
and policy conclusions. Both methodological approaches (DEA and SFA) 
have therefore limitations making the efficiency scores less robust. 
Hence, past research evaluating CE of water companies present some 
methodological restrictions that limits their use for better understanding 
carbon performance of water companies. 

3. Material and methods 

3.1. Carbon efficiency estimation 

This section outlines the EAT method which has been employed to 
measure the CE of water companies in the provision of drinking water. 
We use this technique because unlike parametric techniques, it does not 
require a priori assumption about the production frontier. Unlike other 
non-parametric techniques, EAT does not suffer from overfitting uses. 
Thus, it improves robustness of model results and improves decision 
making process. Unlike parametric and non-parametric methods, it uses 
regressions trees to generate the optimum level of GHG emissions based 
on thresholds of the predictor variables. 

The EAT approach is based on decision trees where the entire sample 
(water companies) is broken up into several nodes (non-overlapping 
regions) based on a set of thresholds of the predictor variables (volume 
of drinking water and water connected properties) (Rebai et al., 2020; 
Esteve et al., 2022) (see Fig. 1). The decision tree ends at terminal nodes 
which displays the estimated value of the predicted variable (GHG 
emissions in this case study) (Esteve et al., 2022). Because, the EAT 
approach imposes the free disposability assumption, the estimated value 
is not the average but the frontier, i.e., optimal value. Thanks to this 
property, EAT allows estimating the optimal level of GHG emissions of 
water companies. Nevertheless, the EAT approach further extends the 
CART method by employing the concept of free disposability and the use 
of efficiency analysis methods to estimate production frontiers (Valer-
o-Carreras et al., 2021). 

We assume that a dataset consists of a vector of predictor variables 
defined as x1,…, xm where xi ∈ Rm that is employed to predict a set of 
response variables denoted as y,…, yn where yi ∈ Rn. The EAT approach 
picks a predictor variable j and a threshold sj ∈ Sj where Sj is the set of 
possible thresholds for the variable j to break up the data into two nodes, 

tR and tL (Esteve et al., 2021). The best combination of predictor vari-
ables and thresholds is selected by minimizing the sum of the mean 
square error (MSE) of the two generated child nodes. It is as follows: 

R(tL)+R(tR)=
1
n

∑

(xi ,yi)∈tL

(yi − y(tL))
2
+

1
n

∑

(xi ,yi)∈tR

(yi − y(tR))
2 (1)  

where n denotes the size of the sample, R(t) is the MSE of each node t, tL 
and tR are the left and right nodes of the tree, respectively, y(tL) and y(tR)
are the estimated values of the predicted variable (e.g., GHG emissions) 
for the left and right node of the tree, respectively (Esteve et al., 2020). 
The generic form of a regression tree is depicted below: 

We note that the estimated predicted values of the response variable 
for the left and right node of the tree, y(tL) and y(tR) respectively are 
derived as follows: 

y(tL)=max
{

max{yi : (xi, yi) ∈ tL}, y
(
IT(k|t∗→tL ,tR)(tL)

)}
(2)  

y(tR)= y(t) (3)  

where T is the sub-tree that is generated using the EAT method, k de-
notes the number of splits, y(IT(k|t∗→tL ,tR)(tL)) and y(IT(k|t∗→tL ,tR)(tR)) is the 
set of leaf nodes of the tree produced after executing the k-th split that 
Pareto dominates node tL and tR. Hence, y(tL) and y(tR) are frontier 
(optimal) values (Esteve et al., 2022). In brief, the Pareto dominance 
concept can be illustrated in Fig. 2. Let’s assume that there are two in-
puts, x1 and x2. Node t’ Pareto-dominates node t because at′ = (2,2) <

b = (9,9) where a and b represent points of nodes t’ and t, respectively. 
Node t’ “is preferable to” node t because node t’ uses less inputs than 
node t (Esteve et al., 2020). 

Cross-validation techniques are used to select the best regression tree 
avoiding overfitting issues and therefore, the EAT approach estimates 
the following production technology (Esteve et al., 2020): 

P̂TTk =
{
(x, y) ∈Rm+1

+ : y≤ dTk (x)
}

(4)  

where dTk (x) is the predictor estimator with regards to the sub-tree Tk.

The CE of each water utility, based on the EAT method, is estimated 
by solving the following linear programming model: 

ρEAT
CE (xk, yk)=min ρ (5)  

subject to: 

Fig. 1. Example of a regression tree applied to estimate carbon effi-
ciency scores. Fig. 2. Example of Pareto-dominance nodes.  
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∑

t∈T̃∗

λtat
j ≤ ρxjk, j = 1,…,m  

∑

t∈T̃∗

λtdt
rT∗ (at)≥ yrk, r= 1,…, s  

∑

t∈T̃∗

λt = 1  

λt ∈{0, 1}, i = 1,…, n  

where ρEAT
CE is the CE score, (at , dT∗ (at)) are points in the input-output 

space for all t ∈ T∗, in which * denotes the final sub-tree, and λ are in-
tensity variables used to construct the efficient frontier. A unit, i.e., 
water company, is carbon efficient, if and only if, ρEAT

CE = 1. By contrast, 
the water company has room to reduce carbon emissions if ρEAT

CE < 1. 
Potential savings in GHG emissions are estimated as follows: 

GHGs =GHGc ∗
(
1 – ρEAT

CE

)
(6)  

where GHGs are potential GHG savings if the water company is carbon 
efficient and GHGc are current levels of GHG emissions of the water 
company evaluated. 

The final step of our analysis involves analyzing the factors that 
could influence the CE of water companies. In doing so, the CE scores 
obtained using the EAT method (ρEAT

CE ) are regressed against a set of 
operating characteristics of the water companies. In particular, and 
considering that CE scores take a value between zero and one, a boot-
strap truncated regression approach is applied (Simar and Wilson, 
2007). It should be noted that traditional Tobit regression may cause 
biased estimates due to the fact that efficiency scores, error term and 
operating characteristics may be serially correlated (Simar and Wilson, 
2007). 

The regression model is as follows: 

ρEAT
CE = β0 + βiξ

′

i + time + εi (7)  

where ρEAT
CE is the CE score derived from the EAT method (Eq. (5)), β0 is 

the intercept, ξ′

i is the vector of operating characteristics of any water 
company i, t denotes time and βi are estimated parameters. Finally, εi 
captures error and follows the standard normal distribution. 

3.2. Case study 

CE performance was estimated for a sample of 20 English and Welsh 
water companies embracing both Water only Companies (WoCs) and 
Water and Sewerage Companies (WaSCs) during the 2011–2020 period. 
Hence, our study involves 160 observations, i.e., company-year units. 
The empirical application focused on the provision of drinking water 
services, excluding sewerage activities because WoCs do not carry out 
this stage of the urban water cycle. As in many countries, the English and 
Welsh water companies are private natural monopolies and their eco-
nomic and environmental performance is monitored by the Water and 
Services Regulation Authority (Ofwat) (Walker et al., 2021). Ofwat en-
sures that customers’ bills are affordable and water companies are 
financially stable to provide services to customers, while environmental 
sustainability is maintained. Every five years Ofwat determines com-
panies’ future revenue allowances by approving their business plans 
(price review process). 

Variables to estimate the CE of water companies were selected based 
on past research (e.g., See, 2015; Cetrulo et al., 2019; Goh and See, 
2021) and data availability. Because, this study focused on CE estima-
tion, GHG emissions is a very relevant variable to be considered. GHG 
emissions are an undesirable output to be minimized. In this context, 
Halkos and Petrou (2019) identified four main approaches to deal with 
undesirable outputs in efficiency assessment: i) ignoring them from the 

production function, ii) treating them as regular inputs, iii). Treating 
them as normal outputs and iv) performing necessary transformations to 
take them into account. Each methodological approach has its benefits 
and drawbacks and therefore, the selection of the method will depend on 
the research conducted. In this case study, EAT method was employed to 
estimate CE scores and therefore, GHG emissions were treating as inputs 
since water companies should minimize their production to improve 
their carbon performance. Although this approach is very simple, it has 
some appealing features and has been widely used in various applica-
tions (Li et al., 2022). 

According to Ofwat (2010a, 2010b) and Molinos-Senante and 
Maziotis (2021a), GHG emissions were expressed in tons of CO2 equiv-
alent (CO2eq) per year. Their measurement is based on the United 
Kingdom Government Environmental Reporting Guidelines (HM Gov-
ernment, 2019). The outputs used in the study were defined as follows. 
The first output was the volume of drinking water delivered in mega-
litres per year. The second output was defined as the number of water 
connected properties measured in thousands. 

Regarding operational characteristics or environmental variables 
affecting CE of water companies, based on available data, the following 
variables were assessed: i) average pumping head which captures the 
energy intensity of the water abstraction, treatment and distribution 
process (Brea-Solis et al., 2017); ii) percentage of raw water taken from 
boreholes; iii) percentage of raw water taken from reservoirs (Villegas 
et al., 2019); iv) percentage of raw water that receives high levels of 
treatment before its distribution to final customers (Ofwat, 2019); v) 
number of treatment works undertaken when water comes from surface; 
vi) number of treatment works undertaken when water comes from 
groundwater resources (Walker et al., 2019) and; vii) population density 
defined as the annual number of water population divided by the area of 
water service (Sala-Garrido et al., 2021a). We finally used a time trend 
to capture the temporal nature of our study. 

Table 1 reports the descriptive statistics of the variables used in this 
case study to assess the CE of water companies. 

4. Results 

4.1. Optimum level of greenhouse gas emissions 

The frontier level of GHG emissions in the provision of drinking 
water services by English and Welsh water companies is shown in Fig. 3. 

Table 1 
Descriptive statistics of the English and Welsh water companies.  

Variables Unit of 
measurement 

Mean Std. 
Dev. 

Min. Max. 

Greenhouse gas 
emissions 

tons CO2eq/ 
year 

82,689 67,135 3123 275,900 

Water connected 
properties 

000s 1578 1115 279 4047 

Volumes of water 
delivered 

Ml/year 750 548 140 2169 

Average pumping 
head 

Nr 138 34 65 201 

Water taken from 
reservoirs 

% 33.4 25.0 0.0 83.3 

Water taken from 
boreholes 

% 41.8 30.1 0.5 92.1 

Number of surface 
water treatment 
works 

Nr 17 15 1 54 

Number of 
groundwater 
treatment works 

Nr 53 39 7 127 

Water receiving high 
levels of treatment 

% 57.0 22.0 22.0 99.0 

Population density 000s/km2 0.48 0.29 0.15 1.26 

Observations: 160. 
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According to Eq. (1), the regression tree shows the predictor that the 
split was based on and the frontier value of the response variable, which 
is the GHG emissions in our case study. The results indicate that both the 
volume of drinking water and water connected properties influenced the 
release of GHG emissions in the atmosphere. The optimum level of GHG 
emissions (i.e., frontier level) is 275,900 tons of CO2eq/year when the 
number of connected properties is higher than 2.074 million. It means 
that the maximum GHG emissions for each connected property are 
133,03 tons of CO2eq/year. Moreover, if the number of water connected 
properties is less than 2.074 million and the volume of drinking water 
delivered to these properties is more than 475 ML per annum (475,000 
m3/year), then the optimum level of GHG is 143,654 tons of CO2eq/year. 
Hence, in this case, the minimum GHG emissions per water connected 
property are 69.26 tons of CO2eq/year and the maximum level of GHG 
emissions per cubic meter of drinking water is 0.302 tons of CO2eq/year. 
An alternative node corresponds to supply less than 475,000 m3/year of 
drinking water to a lower number of connected properties, between 
2.074 million and 510,000. In this case, the optimum level of GHG 
emissions is 64,000 tons of CO2eq per year. It suggests that optimum 
GHG emissions are larger than 0.302 tons of CO2eq/year. Finally, the 
frontier level of GHG emissions for water companies providing drinking 
water to less than 510,000 connected properties is 31,229 tons of CO2eq 
per year which involves a maximum of 0.062 tons of CO2eq/year per 
connected property. 

4.2. Carbon efficiency assessment 

The next step of our analysis is to calculate the CE using Eq. (5) 
described in the methodology section. The results indicate that on 
average the English and Welsh water industry showed high levels of 
carbon performance during the years 2011–20 since the average CE was 
0.632 which means that the industry could cut down GHG emissions by 
36.8% to deliver the same level of water services (Table 2). Moreover, it 
is revealed that only 5 out of 160 observations (3.125%) were carbon 
efficient, i.e., their CE scores were 1.000. Therefore, they are the best 

performers in terms of GHG emissions. On average, as it is shown in 
Table 2, WoCs performed better than WaSCs. It is illustrated that 
average WoC’s CE was 0.785 which suggests that on average, GHG could 
go down by 11.5%. In contrast, WaSCs reported considerably lower 
levels of CE. In particular, average WaSCs should cut down GHG emis-
sions by almost 46% to maintain the same level of drinking water ser-
vice. Moreover, in the case of WaSCs, only 1 out of 100 observations 
(1.000%) was identified as carbon efficient whereas the percentage of 
WoCs whose CE score was 1.000 was 6.667%. Both, WaSCs and WoCs 
need to make substantial efforts to improve its environmental perfor-
mance which is evidenced according to the minimum CE scores esti-
mated, 0.104 and 0.314 for WaSCs and WoCs, respectively. This means 
that the WaSC and WoC whose environmental performance is the worst 
could reduce GHG emissions by 89.6% and 68.6%, respectively. 

The CE scores from this study cannot be compared directly with the 
results of past research due to the study periods being analyzed are 
different and the methodological approaches and variables employed 
are also divergent. However, it is worth considering the findings of 
previous studies to contextualize the performance of the water com-
panies evaluated in this study. Molinos-Senante et al. (2022b) using the 
DEA method estimated that the average CE of English and Welsh water 
companies from 2013 to 2018 was 0.497 with WaSCs being slightly 
more efficient than WoCs. By contrast, Molinos-Senante and Maziotis 
(2021a) reported larger CE scores for the English and Welsh water 
companies. The period considered by these authors was 2010–2019 and 
the average CE estimated was 0.925. These previous studies evidence 
the role of the methodology and variables used to estimate CE of water 
companies. 

Fig. 4 depicts the distribution of CE scores across companies over the 
period of study. It is shown that the majority of observations related to 
WoCs reported an average CE which was higher than 0.81. This means 
that there were several cases where WoCs showed high levels of envi-
ronmental performance. However, there were several observations 
where carbon performance was of concern. For instance, during the 
period of study 11 observations for WoCs reported a CE which ranged 
between 0.41 and 0.60. This means that on average WoCs could cut 
down GHG emissions between 40% and 59%. We note that there were 3 
observations whose average CE was considerably lower, i.e., between 
0.21 and 0.40. The potential savings in GHG could reach the level of 
80% to deliver the same level of water services. Hence, both the water 
regulator and water companies should carry out a more detailed study to 
identify the specific causes of this poor CE and adopt the corresponding 
measures to improve its environmental performance. As far as WaSCs 
are concerned, and unlike WoCs, the majority of the observations 

Fig. 3. Estimation of optimal levels of greenhouse gas emissions according to regression tree from efficiency analysis trees algorithm 
* where n is the number of observations and y is the optimal level of GHG emissions in tons of CO2eq/year and CP are connected properties. 

Table 2 
Summary statistics of carbon efficiency of English and Welsh water companies.   

Mean Std. 
Dev. 

Minimum Maximum Carbon efficient units 
(%) 

All 0.632 0.253 0.104 1.000 3.125 
WaSCs 0.540 0.235 0.104 1.000 1.000 
WoCs 0.785 0.205 0.314 1.000 6.667  
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reported an average CE which ranged between 0.41 and 0.60. Never-
theless, there were several cases where WaSCs’ environmental perfor-
mance was very poor since average CE score was lower than 0.20 
indicating that those WaSCs could save more than 80% of their current 
GHG emissions. By contrast, there are 20 observations associated with 
WaSCs reported high levels of CE, i.e., larger than 0.81. 

To get a better understanding on how CE changed over time, we 
looked into its trend over the years 2011–2020 (Fig. 5). Result should be 
interpreted with caution because only a production frontier was esti-
mated embracing data from 2011 to 2020 rather than a yearly frontier. 
The results are also split into two sub-periods, 2011-15 and 2016-20, so 
that they can be linked with the regulatory cycle in the English and 
Welsh water industry. It is found that on average the industry presented 
a downward trend in the CE suggesting that environmental performance 
deteriorated over time. On average, the CE dropped by 30%, from 0.772 
in 2011 to 0.534 in 2020. This means that industry needs to put 
considerable efforts to reduce GHG emissions to deliver the same level of 
water services. 

Both WoCs and WaSCs reported a deterioration in their carbon 
performance over time. During the first years of the study, WoCs were 
doing well in terms of environmental performance. In 2011, average 
WoC showed a CE score of 0.912 which means that GHG emissions could 
go down by 8.8%. In the following years, CE, although was at high 
levels, started to fall. We note that during the years 2011–15, the CE was 
going down at an annual rate of 3.4% on average. However, average 
WoC reported a CE of 0.843. This sub-period refers to the 2009 price 
review period. As part of the price review, the regulator introduced 
several incentive schemes to encourage companies to improve perfor-
mance. For instance, companies were allowed to keep any savings in 
operating expenditure regardless of the year they were made (Villegas 
et al., 2019). Companies might have difficulties to control operating 
costs which reflected to their environmental performance as well. A 
downward trend in carbon performance was evident for WaSCs as well. 
It is shown that average WaSC reduced its efficiency from 0.632 in 2011 
to 0.584 in 2015, an annual reduction of 1.9%. 

The environmental performance for both WoCs and WaSCs 
continued to deteriorate during the second sub-period of our study 
(2016-20) which refers to the 2014 price review. During that period, the 
water regulator introduced financial penalties and rewards when com-
panies achieved targets and delivered the outcomes they promised in 
their business plans. These outcomes were related to quality of service 

such as leakage and unplanned interruptions. However, GHG emissions 
were not part of financial incentives. It had only reputational impact on 
companies. In the 2024 price review, the regulator will link outcomes 
related to GHG with financial penalties and rewards. For this reason, our 
findings evidenced that carbon performance of water companies suf-
fered a notable retardation during 2016–2020. On average, CE for WoCs 
dropped from 0.788 in 2016 to 0.690 in 2020. Average WaSC continued 
to report low levels of environmental efficiency reaching the level of 
0.381 in 2020. Overall, the results indicate that both types of companies 
need to improve their managerial practices and adopt new technologies 
to control GHG emissions and improve environmental performance. 
Average WoC appeared to be the leaders in environmental efficiency 
however their performance reduced over time. At the same time less 
efficient WaSCs did not manage to catch-up with the frontier WoCs over 
time because GHG efficiency deteriorated as well. 

4.3. Quantification of potential greenhouse gas savings 

The estimation of the CE scores for each observation embracing the 
sample of this case study allowed us to quantify potential GHG savings 
by applying Eq. (6). Fig. 6 shows the annual estimated potential GHG 
savings for the English and Welsh water companies from 2011 to 2020. 
Total potential GHG savings for the 10 years evaluated were estimated 
to be 4,883,218 tons of CO2eq which involves an annual average of 
488,321 tons of CO2eq. Nevertheless, Fig. 6 evidences that potential GHG 
savings were not constant across years but ranged between 407,558 tons 
of CO2eq/year and 558,816 tons of CO2eq/year. Variability in potential 
GHG savings across years is due to variations in the CE of water com-
panies (Fig. 5), volume of drinking water supplied, and number of 
connected properties served. 

Potential GHG savings per cubic meter of drinking water supplied 
also varied across years (Fig. 7). The average value for the 2011-20 
period is 0.034 tons CO2eq/m3. This means that on average, the En-
glish and Welsh water companies could reduce 0.034 tons of CO2eq for 
each cubic meter of drinking water supplied. The maximum value was 
reported in 2015 and corresponded to 0.039 tons CO2eq/m3 whereas the 
minimum value was 0.031 tons CO2eq/m3 for 2020. In general terms, 
Fig. 7 evidences that between 2011 and 2015, potential GHG savings per 
cubic meter of drinking water delivered increased over time and after 
2015 a progressive reduction was achieved. A similar pattern is revealed 
when potential GHG savings were estimated per connected property 

Fig. 4. Histogram of distribution of average carbon efficiency scores for water and sewerage companies (WaSCs) and water only companies (WoCs) in England 
and Wales. 
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(Fig. 8). In this case, the average value for 2011-20 was 16.16 tons 
CO2eq/connected property per year. This means that each year, water 
companies could save 16.16 tons of CO2eq per connected property. The 
maximum value was observed in 2018 (18.38 tons CO2eq/connected 
property per year) and the minimum in 2020 (14.21 tons CO2eq/con-
nected property per year). The dynamics of potential GHG emissions 
shown in Figs. 6–8 revealed that the English and Welsh water industry 
have begun to make efforts to improve its carbon footprint. 

Because WaSCs provide drinking water services to a larger number of 
customers than WoCs (Ofwat), potential GHG savings of WaSCs are also 
larger than those for WoCs. On average, 85.3% of the total potential 
GHG savings of the English and Welsh water industry correspond to 
WaSCs (4,176,325 tons CO2eq for 2011-20). By contrast, potential GHG 
savings for WoCs for the same period were estimated to be 715,893 tons 
CO2eq. Focusing of potential GHG savings per cubic meter of drinking 
water supplied (Fig. 7) and per connected property (Fig. 8), it is revealed 
that WoCs performed better than WaSCs. On average, WoCs could save 
0.025 tons CO2eq/m3 whereas for WaCs, potential savings were 0.040 
tons CO2eq/m3. It suggests that potential GHG savings per cubic meter of 
drinking water delivered by WaSCs is 62.15% larger than for WoCs. 

Considering potential savings per connected property, WaSCs and WoCs 
could save, on average, 18.76 and 12.06 tons CO2eq/connected property 
per year, respectively. It means that potential GHG savings of WaSCs are 
55.55% larger than those for WoCs. 

4.4. Operational characteristics influencing carbon efficiency of water 
companies 

The final step in our analysis is to get a better understanding on the 
factors that impacted CE of water companies over time. In doing so, the 
regression analysis shown in Eq. (7) was applied. The results (see 
Table 3) indicate that all variables, but population density had a sig-
nificant impact on companies’ CE. It was found that average pumping 
head and the percentage of water taken from boreholes had a negative 
influence on CE. This means that higher pumping might be related to 
higher levels of energy use which could lead to higher levels of GHG 
emissions released to the atmosphere. This could result in lower levels of 
CE. Similarly, the more water is taken from boreholes, the higher the 
energy requirements could be which could have a negative impact on 
CE. In contrast, lower energy requirements might be needed to transport 

Fig. 5. Evolution across years of carbon efficiency scores for English and Welsh water companies.11  

Fig. 6. Total annual potential greenhouse gas emissions savings for the English and Welsh water companies evaluated.  
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water from reservoirs to treatment plants and thus, lower could be the 
impact on CE. In terms of raw water treatment, it was evidenced that the 
more complex the treatment of water, the higher the energy use could be 
which could result in higher levels of carbon inefficiency. Moreover, 
when water is taken from surface and groundwater resources and the 
more energy needs to be used to ensure that water is potable before it is 
distributed to end users. Consequently, the number of treatment works 
could be higher which might have a negative impact on CE. Finally, the 
time variable had a negative sign which means that on average CE 
reduced over time. 

5. Discussion 

The estimation of the optimal level of GHG emissions in the provision 
of drinking water (Fig. 3) evidenced that the size of the water 

companies, both in terms of water connected properties and volume of 
drinking water supplied, significantly influence the optimal level of 
GHG emissions. Hence, water regulators should not define fixed and 
equal GHG emissions’ targets for all water companies. By contrast, the 
water regulator should be set more bespoke targets to improve the 
environmental performance of water companies. In this context, water 
companies can explore different approaches to achieve GHG emission 
targets defined by the water regulator. On the one hand, water com-
panies can reduce energy consumption by adopting energy efficiency 
measures such as efficient pumps, leak detection sensors and other 
digitally-powered solutions. On the other hand, complementary mea-
sures involve the use of energy from renewable sources whose GHG 
emissions are lower. For example, it is possible to generate electricity 
from the hydraulic flow around the water distribution network. 

CE estimations at water company level (Fig. 4) illustrate that both 
WaSCs and WoCs, present large variability in their carbon performance. 
In other words, there are water companies whose environmental per-
formance in terms of GHG emissions is poor but there are also several 

Fig. 7. Evolution of the average potential greenhouse gas emissions savings for the water companies evaluated per cubic meter of drinking water supplied.21  

Fig. 8. Evolution of the average potential greenhouse gas emissions savings for the water companies evaluated per water connected property.31  

1 Standard deviation values are shown in supplemental material. 
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water companies which present large CE scores. This finding evidences 
that the current policies implemented by the water regulator have not 
been enough effective to achieve common standards for all water com-
panies. By contrast, the carbon performance of water companies seems 
to be the result of individual efforts carried out by water companies to 
reduce their carbon footprint. 

The United Kingdom (UK) has domestic targets for reducing GHG 
emissions under the Climate Chen et al., 2018 (CCA, 2018) . Moreover, 
the Nationally Determined Contribution (NDC) commits the UK to 
reducing economy-wide GHG emissions by at least 68% by 2030, 
compared to 1990 levels (NDC UK, 2022). Estimated potential GHG 
savings in this study (Fig. 6) represent a very small fraction of total GHG 
emissions to be reduced in UK. However, from a policy perspective is 
essential that all sectors and industries contribute to achieve the UK 
commitments in terms of GHG reductions. According to the Department 
of Business, Energy & Industrial Strategy (2022), the UK had GHG 
emissions of around 7 tons of CO2eq per person in 2019. Considering that 
potential GHG savings in the provision of drinking water services were 
around 407,558 tons of CO2eq per year, they represent the GHG annually 
emitted by 58,223 people which is equivalent to cities such as Chelsea or 
Canterbury (UK population data, 2022). 

The operational variables influencing the CE of water companies 
(Table 3) are mainly related to the source of raw water and its quality. 
Thus, measures at watershed scale should be implemented to improve 
water quality minimizing energy consumption to produce drinking 
water and therefore, reducing GHG emissions by water companies. It 
should be noted that several stakeholders and water users (public and 
private) are involved in the management of watersheds and therefore, 
cooperation and collaboration among them is fundamental for decision- 
making and effectively implement the defined actions. 

6. Conclusions 

Within the current climatic emergency framework, evaluating CE of 
water utilities is a useful tool to better understanding water-energy 
nexus. Whereas different methodological approaches can be applied to 
estimate CE, the only one that overcomes overfitting issues and allows 
estimating optimal levels of GHG emissions is the EAT approach. Thus, 

this method was used to evaluate CE scores, optimal levels of GHG 
emissions and potential GHG savings for a sample of English and Welsh 
water companies in the provision of drinking water. 

Results have revealed that the optimal level of carbon emissions of 
water companies depends on the volume of drinking water supplied and 
the number of connected properties. Thus, bespoke targets for each 
water company should be set by the water regulator to reduce GHG 
emissions. Carbon performance of the water companies evaluated was 
moderate as the average CE for the 160 observations analyzed was at the 
level of 0.632 which means that GHG emissions could go down by 36.8% 
to maintain the same level of water services. Moreover, CE followed a 
downward trend over time which means that water companies in En-
gland and Wales need to make substantial efforts to improve perfor-
mance. Average potential GHG savings were estimated to be 0.034 tons 
of CO2eq/m3 and 16.16 tons of CO2eq/connected property per year. 
Relevant differences were observed between WaSCs and WoCs because 
average potential GHG savings were 0.040 tons of CO2eq/m3 for WaSCs 
and 0.025 tons of CO2eq/m3 for WoCs. The bootstrap regression results 
revealed that topography and water treatment complexity had a sig-
nificant impact on CE of water companies. 

The estimation of CE scores and the quantification of the potential 
GHG savings allows regulated managers to better understand the water- 
energy nexus within the urban water cycle. The path toward a net zero 
carbon water industry requires a good understanding of how well is 
performing in terms of reducing GHG emissions and what drives carbon 
performance. Based on the low carbon performance of the English and 
Welsh water industry, the water regulator should adopt additional pol-
icies to promote the reduction of GHG emissions by water companies. 
For example, penalties and rewards could be established by the water 
regular in the process of setting water tariffs based on two main criteria: 
i) quantity of GHG emissions per cubic meter of drinking water supplied 
and; ii) percentage of reduction of GHG emissions in relation to previous 
regulatory periods. Reducing carbon footprint in the provision of 
drinking water requires retrofitting existing systems to more energy 
efficient ones. Those investments should be considered by the water 
regulator when setting water tariffs. Moreover, citizens can also play a 
relevant role by reducing drinking water demand. Other policy-makers 
such as city planners might also contribute to reduce the carbon foot-
print in the provision of drinking water by designing water-wise cities 
which consider the links between water companies, water users and 
watershed management. 

Although this study provides a useful method so that water utilities 
meet their environmental challenges, it is not exempt of limitations. The 
assessment conducted in this study focused on the drinking water ser-
vices, and therefore, further research including wastewater collection 
and treatment could be pursued in future. The outputs considered in this 
study did not take into account either raw water quality or drinking 
water quality. Therefore, CE divergences among water companies could 
be due to differences in the concentration of pollutants to be removed to 
produce drinking water. Moreover, only a single production frontier 
integrating data from 2011 to 2020 was estimated and therefore, the 
evolution of CE scores should be interpreted with caution. Thus, future 
research on this topic might evaluate the dynamics of CE, i.e., carbon 
productivity change of water companies by estimating shifts of the 
production frontier over time and also movements of the units in rela-
tion to yearly estimated production frontiers. It should be also inter-
esting to compare the CE of English and Water companies with utilities 
operating under different regulatory context to get a better under-
standing on the impact of regulation on the carbon performance of water 
companies. 
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