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A B S T R A C T   

The prediction of the modulus of elasticity (MOE) of five species of different spectrum density woods, namely, 
Populus × euramericana I-214 (Poplar), Fagus sylvatica L. (Beech), Quercus pyrenaica L. (Oak), Paulownia elongata 
S.Y.Hu (Paulownia) and Pinus sylvestris L. (Scots pine) were examined through the natural frequency of vibration 
on cantilevered beams (transverse direction) and ultrasound (longitudinal direction). Cantilever beams are 
commonly used for other materials but limited information is available for wood materials tested in this manner. 
A total of 60 specimens with nominal dimensions of 40 × 60 × 1200 mm3 were tested, which were visually 
graded according to UNE 56544:2022 and UNE 56546:2022 as first class, and finally the global bending stiffness 
was obtained from a four-point bending test. Utilising this data, a regression model was presented to predict the 
MOE. 

Also, Picea sitchensis Trautv. & G.Mey (Sitka spruce) has been chosen as a blind species in order to validate the 
regression model of prediction of the MOE as a function of the dynamic MOE by ultrasound. Bending strength, 
modulus of elasticity and density were obtained according to the EN 408. In the prediction model using the 
dynamic MOE with vibrations, an r2 of 95.9% was achieved for the induced vibration technique which was found 
to be slightly higher than the model for the ultrasound prediction which had an r2 of 93.7%.   

1. Introduction 

In general, non-destructive testing techniques (NDT) applied to 
wood or wood-derived components are tools that can estimate the 
physical–mechanical properties and determine and ensure their struc-
tural integrity during construction. Furthermore, such techniques can 
identify damaged or deteriorated components without compromising 
the functionality of the structural element. To this end, a great number 
of studies have been performed in the last few decades using different 
methods such as stress wave techniques, transverse vibration, ultra-
sounds, X-ray or thermography, among other techniques [1–28]. 

One NDT that has gained importance in the last few years is the 
induced vibration technique which measures acoustic properties to 
predict and evaluate the physical–mechanical properties of wood and 
establish classification ranges based on these properties [7,14,29]. In 
this regard, studies have focused on estimating the behaviour of wood or 

wood-based components based on vibration frequencies (longitudinal 
and transverse), estimating their dynamic elastic modulus, and ana-
lysing the relationships between the dynamic parameters and the static 
variables of elasticity and resistance, namely the static modulus of 
elasticity and bending strength [30–32]. Similarly, several research 
projects have focused on studying the relationship between dynamic 
parameters and physical variables and between dynamic parameters and 
quality parameters, such as the presence of defects in the wood. In most 
of these studies, vibration analyses have been performed on simply 
supported beams and beams with both ends free [33,34]. Their con-
clusions are all similar: dynamic properties correlate sufficiently well 
with static variables, namely the modulus of elasticity and to a lesser 
degree with the bending strength, which can suitably predict the phys-
ical characteristics and quality structural parameters of wood 
[7,16,41,20,29,35–40]. 

On the other hand, ultrasonic techniques are one of the most widely 
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used non-destructive testing methods for timber, due to their sufficient 
accuracy and relative simplicity of testing. Thus, many studies have been 
carried out for timber grading and for non-destructive evaluation of in- 
use timber structures [42–47]. 

Although in order to grade determining timber properties by 
different methods that use this research approach (induced vibrational) 
[48], there is essentially no study or grading machine development 
based on the application of cantilever beams to evaluate the behaviour 
of wooden beams. However, there are a large number of projects that 
have utilised this approach but they are focused on different isotropic 
materials [16,49–58]. By definition, a cantilever has a rigid support on 
one end, which prevents any type of displacement or rotation, and the 
other end is free to vibrate [58]. Therefore, the behaviour of wood, 
which is an anisotropic and heterogeneous material when fixed in a 
cantilever may be an appropriate alternative to determine its vibrational 
behaviour and estimate its elastic behaviour. Furthermore, this type of 
support is easily reproducible in the laboratory. 

The aim of this study was to determine the elastic behaviour of 
different timber species (with low, medium and high density) by 
determining the dynamic modulus of elasticity based on transversal 
vibration frequencies in cantilever beams, and compare them with ul-
trasonic and static bending tests. 

2. Materials and methods 

2.1. Testing materials 

The testing was conducted using five different wood species, some of 
them commonly used in construction and structures such as Populus ×
euramericana I-214 (Poplar), Fagus sylvatica L. (Beech), Quercus pyrenaica 
L. (Oak), Paulownia elongate S.Y. Hu (Paulownia) and Pinus sylvestris L. 
(Scots pine). The test material consisted of 60 wooden joists (12 pieces 
per species) of 40 mm × 60 mm and 1200 mm (structural proportion 
dimensions, EN 408:2011 [59]) that were visual graded according to 
UNE 56544:2022 [60] and UNE 56546:2022 [61] and achieved a first 
class. The test material was conditioned in Wood Laboratory of Valla-
dolid University (Spain) at 65 ± 5 % HR and 20 ± 2 ◦C until reaching 
constant mass. All pieces were measured and weighed to calculate their 
density at 12 % moisture content (MC), according to standard EN 
384:2016 [62]. 

In order to validate and ensure that the statistical model worked 
properly, a blind control sample comprising 10 Picea sitchensis Trautv. & 
G.Mey (Sitka spruce), of Irish provenance, with dimensions of 40 mm ×
100 mm × 4500 mm in length and 12 % MC, was randomly selected 
(from a batch > 200 units) and was tested. This additional wood species 
was chosen because it has a wide range of elasticity values and is widely 
used in the European market. These tests were realised at the Timber 
Engineering Laboratory of the College of Science and Engineering at the 
University of Galway in Ireland. 

2.2. Non-destructive testing by transversal free vibration 

Each piece was placed in a cantilever configuration (one end fixed 
and the other end free) and clamped under a load of 10 kN to provide the 
optimum rigidity conditions. The test beams were attached to the main 

support using wood components and clamps to ensure uniform pressure. 
The initial free span length was 500 mm, which was later increased by a 
length, d, of 25 mm for each new position until a free span length of 
1000 mm was achieved (Fig. 1). 

The tests were carried out using 21 different free span lengths (500 
mm/25 mm each step) for five species (Paulownia, Poplar, Scotland 
Pine, Beech and Oak) and, for each one, four tests were conducted for 
the two orientations of the section: vertical, V, and horizontal, H, where 
a total of 1008 tests per species and orientation (21 span lengths/ 
orientation × 4 repetitions/span length × 12 beams/species) were 
completed. Seven free span lengths were tested for Spruce, where a total 
of 280 tests per orientation (7 span lengths/orientation × 4 repetitions/ 
span length × 10 beams) were completed. 

The vibration frequency in each cantilever beam was generated by 
applying a hammer blow perpendicularly onto the top part of the 
transverse face of the piece followed by measuring and recording the 
vibration using a signal receiver (microphone) and wave analyser (FFT 
analyser). 

The natural frequency of transversal vibrations of a cantilever beam, 
according to the Euler-Bernoulli theory [63], can be calculated by 
Equation (1): 

fn = Cn

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Edyn*I

)

ρ*S*L4

√

(1) 

where fn is the natural frequency (Hz), Cn is a constant that depends 
on the vibration mode (n), e.g. n1 = fundamental mode, n2 = first har-
monic, etc., taking the values: mode 1 = 0.5602, mode 2 = 5.5014, mode 
3 = 9.8198…; Edyn is the dynamic modulus of elasticity (Pa); I is the area 
moment of inertia of the beam cross-section (m4); ρ is the bulk density 
(kg/m3); S is the area of the cross-section (m2) and L is the free span 
length of the cantilever beam (m). 

Equation (1) can also be rewritten as per Equation (2): 

fn
2 = Cn

2*
(
Edyn*I

)

ρ*S
*

1
L4 (2) 

Equation (2) is similar to the general equation for a linear model, y =
mx + b, in the form slope (m) –intercept (b) if it is assumed y = fn2 and ×
= (1/L4), m = Cn

2*(Edyn*I)*(ρ*S)-1 and b = 0. In this way, for each free 
length (L), it will be possible to obtain a frequency value. Thus, plotting 
(x,y) points, the slope can be determined and the dynamic modulus of 
elasticity will be calculated as is indicated in Equation (3): 

Edyn = m*
ρ*S

Cn
2*I

(3) 

where m is the slope of the regression line (x = 1/L4, y = f 2). 

2.3. Non-destructive testing by ultrasonic technique 

In addition to the NDT by transversal free vibration, all pieces were 
tested by the Sylvatest DUO ultrasound equipment (CBS-CBT, Lausanne, 
Switzerland) with conical 22 kHz sensors. The transducers were placed 
at the ends of the samples (direct method). 

The dynamic modulus of elasticity (Edin ultra, MPa) was obtained 
according to Equation (4). 

Fig. 1. Configuration of the cantilever beam. a) initial length, b) final length.  
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Edin ultra = V2⋅ρ (4) 

Where V is the ultrasonic velocity (m/s) and ρ is the density (kg/m3) 
of each piece. 

2.4. Density and static bending testing 

Finally, every wood sample was tested in a universal testing machine 
following a four-point bending test configuration in accordance with 
standard EN 408: 2011 [59]. The test configuration is shown in Fig. 2. 

The global bending modulus of elasticity (MOEGTO) was obtained 
by recording the deformations measured during the test with a linear 
variable differential transformer (LVDT) located at the center of the 
span. The tests were performed with a constant displacement speed of 
10 mm/min. The section of the stress–strain curve for which the beam’s 
stiffness was calculated corresponded to between 10 % and 40 % of the 
estimated maximum load for all beams. When 40 % of the estimated 
maximum load was reached the test was finished and the sample was 
removed without any damage. The MOEGTO was determined according 
to Equation (5) (EN 408:2011 [59]). 

MOEGTO =
3al2 − 4a3

2bh3 (2 w2− w1
F2− F1 −

6a
5Gbh)

(5) 

Where a (mm) is the distance between a loading point and the 
nearest support in a bending test, l (mm) is the distance between sup-
ports, b (mm) is the width of the cross-section, h (mm) is the height of 
cross-section, w (mm) is the deformation, F (N) is the force, G (MPa) is 
the transverse modulus of elasticity. In this case, G was taken as infinite 
according to EN 408:2011 [59]. 

2.5. Statistical treatment of experimental data 

All statistical analyses were performed using R software (v. 
4.1.1:2021) [64]. The assumptions of independence, normality, and 
homoscedasticity were checked for the variables under study (Edin vibra, 
Edin ultra, MOEGTO, and density). The normality of the data was tested 
for all populations using the Shapiro–Wilk normality test and Q–Q 
normal probability plots. The homoscedasticity requirement was con-
trasted by Bartlett’s test. Since it was not met on numerous occasions, 
the usual comparative analysis by ANOVA could not be used. Robust 
comparison methods Welch’s heteroscedastic F-test with trimmed 
means and Winsorized variances were used instead. This robust pro-
cedure tests for equality of means by replacing the usual means and 
variances with trimmed means and Winsorized variances [65,66], 
together with bootstrapping and comparison using robust homogeneous 
groups. 

For the validation of the models, a 10-fold cross-validation method 
was used. 10-fold cross validation is a method used to evaluate the ac-
curacy and performance of a machine learning model. The objective is to 
determine the reliability of a model’s predictions when it is trained and 
tested on different data sets. In this method, the data set is divided into 
10 equal parts or folds. 9 of the folds are used to train the model while 
the remaining fold is used to test it. This process is repeated 10 times, 
with each fold serving as the test set once. The 10-fold cross validation 
helps to reduce the risk of overfitting, which is when a model is too 
closely tailored to the training data and does not perform well on new 
data. By testing the model on different sets of data, the 10-fold cross 
validation provides a better estimate of its performance on new data. 
The results from the 10 tests are then averaged to obtain a final score, 
which provides a more accurate representation of the model’s perfor-
mance. The objective of 10-fold cross validation is to create a more 

Fig. 2. Static bending testing according to EN 408:2011 [59] (dimensions in mm).  

Table 1 
Descriptive analyses: density.  

Specie Density (kg/m3) Normality test Homoscedasticity test Robust homog. Groups 

Shapiro-Wilk Bartlett test 

Mean ± IC** CV (%) range W p-value p-value 

Paulownia elongata 243.35 ± 14.23  9.2  68.0  0.913  0.234 0.026 * e 
Populus × euramericana 389.37 ± 28.56  11.5  151.5  0.974  0.954 d 
Picea sitchensis 409.97 ± 27.37  9.3  109.6  0.903  0.2339 d 
Pinus sylvestris 569.43 ± 19.10  5.3  94.2  0.945  0.574 c 
Fagus sylvatica 672.75 ± 36.24  8.5  133.0  0.793  0.008 * b 
Quercus pyrenaica 766.16 ± 37.90  7.8  194.0  0.864  0.055 a 

* p-value < 0.05 implies that the assumption of homoscedasticity is not met. 
** IC 95% Interval of Confidence. 
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reliable and robust model by validating its accuracy on multiple data 
sets [67]. In this case, each cross-validated (10 fold) was repeated 5 
times and the average statistical values were obtained. To obtain more 
robust estimators, the operation was repeated 200 times and the mean 

values were obtained. Finally, another model check was performed, 
involving inputting values from a spruce species with distinct geometric 
and anatomical characteristics from those used to create the model (as 
was described in 2.1. Testing materials) and verifying that they fall 

Fig. 3. Density box-plots of each species tested.  

Table 2 
Descriptive analyses: MOEGTO.  

Specie MOEGTO (MPa) Normality test Homoscedasticity test Robust homog. Groups 

Shapiro-Wilk Bartlett test 

Mean ± IC** CV (%) range W p-value p-value 

Paulownia elongata 4933.1 ± 186.9  6.0 849.1  0.925  0.335 2.87e-04 * d 
Populus × euramericana 9173.9 ± 1009.3  17.3 5081.3  0.959  0.767 c 
Picea sitchensis 6649.3 ± 1237.1  26.0 4620.3  0.904  0.242 c d 
Pinus sylvestris 13462.6 ± 365.4  4.3 2012  0.978  0.976 a 
Fagus sylvatica 12139.0 ± 542.2  7.0 2429  0.844  0.031 b 
Quercus pyrenaica 12437.3 ± 934.3  11.8 4908.7  0.945  0.568 a b 

* p-value < 0.05 implies that the assumption of homoscedasticity is not met. 
** IC 95% Interval of Confidence. 

Fig. 4. MOEGTO box plot of each species tested.  
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within the model’s prediction range. This allows for assessing the ac-
curacy of the model’s performance in the other five species. 

3. Results and discussion 

3.1. Density and static bending testing 

Descriptive analyses of the density values are shown in Table 1: 
Where it can be seen that the mean value of density per species 

ranged between 243 kg/m3 for Paulownia and 766 kg/m3 for Oak. The 
robust homogeneous group analysis establishes that there are statisti-
cally significant differences between all species except Poplar and 
Spruce (Fig. 3). 

The density values were similar to those published for these species 
by other authors in Populus × euramericana I-214 [8,12,68] in Pinus 
sylvestris, [30] in Pinus nigra, [33] in Quercus pyrenaica and Fagus syl-
vatica, [69] in Paulownia elongata, and [34] in Picea sitchensis. 

Descriptive analyses of MOEGTO values are shown in Table 2. 
It can be seen that the different species cover a wide range of mean 

values from approximately 4900 MPa for Paulownia to 13500 MPa for 
Scots pine. The high value of Scots pine, which forms a homogeneous 
group with oak, is noteworthy. It is also worth noting Spruce’s low value 
and high variability, mainly because the pieces present a greater number 

of singularities as they come from an unclassified batch (Fig. 4). 
The MOEGTO values in Populus × euramericana, Pinus sylvestris, 

Quercus pyrenaica and Fagus sylvatica were higher than those published 
for the same species by other authors [8,12] in poplar, [30,68], in pinus, 
and [33] in oak. This is due to the fact that the pieces tested were free of 
singularities or defects that affect the mechanical properties of the 
wood. However, in the case of Picea sitchensis, the values were lower 
than those published by other authors [34]. This could be because they 
were pieces with knots and juvenile wood in which the bending prop-
erties are lower [70]. 

3.2. Non-destructive testing by transversal free vibration 

First, Edin vibra slope (m) was calculated using the values obtained for 
each of the 4 trials per free span. Fig. 5 shows an example of the 
Paulownia relationship between free beam length to vibration and its 
first natural frequency of vibration, and its transformation to linearise 
this relationship. 

The results obtained for the Edin vibra slope (m) of all the species tested 
in the two directions are shown in Table 3. 

It can be seen that the R2 values in all cases are higher than 95 % (R2 

≥ 0.95). This makes it possible to determine the value of the slope with 
great accuracy. The values for spruce are not reflected as they are only 

Fig. 5. Paulownia’s example of the relationship between cantilever beam free span to vibration and its first natural frequency of vibration (left), and its trans-
formation to linearise this relationship (right). 

Table 3 
Regression lineal (x = 1/L4, y = f 2) Residual Standard Error (RSE) and multiple R-squared per specie.  

Specie Vertical (V) Horizontal (H) 

RSE Multiple R-squared RSE Multiple R-squared 

Min Max Min Max Min Max Min Max 

Paulownia elongata 15,750 31,380  0.993  0.998 7519 12,090  0.994  0.997 
Populus × euramericana 44,230 65,960  0.963  0.984 22,940 37,210  0.951  0.976 
Pinus sylvestris 36,860 72,190  0.957  0.983 2981 11,490  0.995  0.999 
Fagus sylvatica 148,700 418,500  0.974  0.998 60,120 88,020  0.993  0.998 
Quercus pyrenaica 124,800 216,800  0.995  0.998 68,930 110,200  0.993  0.997  

Table 4 
Transversal vibration dynamic modulus of elasticity Edin vibra (H and V) per species.  

Specie Edin vibra V (MPa) Edin vibra H (MPa) Paired t-test 

Mean* (CV%) Min – Max* (p value SW test) Mean* (CV%) Min – Max* (p value SW test) EdinV vs EdinH p-value 

Paulownia elongata 5239.8 (12.0) 4251.1 – 6636.6 (0.791) 5143.5 (11.3) 4280.7 – 6497.6 (0.618)  0.0690 
Populus × euramericana 9271.2 (16.54) 6996.2 – 11860.5 (0.636) 9354.9 (16.9) 6733.0–11691.2 (0.356)  0.3211 
Pinus sylvestris 13105.4 (5.0) 11692.7 – 14047.1 (0.648) 13155.14 (4.3) 12140.0 – 13804.7 (0.262)  0.5603 
Fagus sylvatica 13855.4 (8.6) 12155.2 – 15412.4 (0.730) 13918.5 (7.4) 12205.3 – 15353.8 (0.562)  0.2881 
Quercus pyrenaica 14493.5 (8.6) 12178.6 – 16038.0 (0.131) 14566.8 (10.1) 11987.1 – 16863.4 (0.899)  0.9957  
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tested in one orientation as a model check. 
Table 4 shows the mean values, dispersion values, and normality 

tests for the transverse vibration dynamic modulus of elasticity (Edin 

vibra) for vertical (V) and horizontal (H) orientation. 
There were no statistically significant differences between the values 

obtained in the horizontal or vertical direction (p-value > 0.05) as 
shown by the pairwise comparisons for each species, which coincides 
with other authors [7,68,71] in different pine species. 

The mean Edin values were higher than those published by other 
authors in simply supported vibration tests because the pieces analysed 
in this study were free of defects compared to the lower values in 
structural wood of the same species [7,8,12,33,68]. 

The comparisons made between the values of horizontal Edin vibra, 

vertical Edin vibra, and MOEGTO by species were similar in all cases. 
Homogeneous groups identified alphabetically were established as 
shown in Fig. 6. 

3.3. Non-destructive testing by ultrasonic technique 

Table 5 shows the mean values, dispersion values, and normality 
tests for the ultrasound time of flight dynamic MOE (Edin ultra). A robust 
homogeneous groups test is also presented for each species. 

The mean Edin,ultra values in Populus × euramericana, Pinus sylvestris, 
Quercus pyrenaica and Fagus sylvatica were higher than those published 
for the same species by other authors [8,12] in poplar, [7,30,68] in 
pinus, [33] in oak. This is likely due to the fact that the pieces tested 

Fig. 6. Box plot of horizontal Edin vibra, vertical Edin vibra, and MOEGTO per species.  

Table 5 
Ultrasound dynamic modulus of elasticity.  

Specie Edin ultra (MPa) Normality test Homoscedasticity test Robust homog. Groups 

Shapiro-Wilk Barlett test 

Mean ± IC CV range W p-value p-value 

Paulownia elongata 7060.8 ± 1009.0  22.5  68.0  0.903  0.176 0.561 d 
Populus × euramericana 12570.5 ± 1304.9  16.3  6598.1  0.926  0.335 b 
Picea sitchensis 9405.0 ± 1539.0  22.9  14617.5  0.976  0.937 c 
Pinus sylvestris 16780.3 ± 652.3  6.1  3198.9  0.930  0.377 a 
Fagus sylvatica 15894.6 ± 937.4  9.3  4465.9  0.942  0.528 a 
Quercus pyrenaica 15917.1 ± 1133.9  11.2  194.0  0.964  0.841 a  

Table 6 
MOEGTO prediction based on dynamic modulus of elasticity.  

Species MOEGTO vs Edin ultra MOEGTO vs Edin vibra 

p-value RSE Adjusted R2 (p-value) RSE Adjusted R2 

Paulownia elongata 1.710 e-03 184.4  0.607 (4.0 e-04) 160.3  0.703 
Populus × euramericana 5.09 e-04 886  0.689 (2.24 e-04) 818  0.735 
Picea sitchensis* 8.1 e-04 919.5  0.714 (1.4 e-03) 903.8  0.719 
Pinus sylvestris 7.29 e-03 413.7  0.582 (2.08 e-05) 234.5  0.836 
Fagus sylvatica 9.41 e-04 505  0.649 (9.7 e-05) 404.9  0.775 
Quercus pyrenaica 2.22 e-04 756.5  0.735 (1.2 e-04) 712.7  0.765 
Global 2.2e-16 851.7  0.937 (2.2e-16) 685.3  0.959 

*not included in the global model calculation. 
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were free of singularities or defects that affect the mechanical properties 
of the wood. 

3.4. MOEGTO prediction based on dynamic modulus of elasticity. 

Table 6 shows the values of the main statistics of the regression 

models of the predictor variables (Edin vibra and Edin ultra) concerning 
MOEGTO. 

It can be seen that, for each species, the adjusted R2 values were 
higher for vibration than for the ultrasound technique. The Residual 
Standard Error (RSE) value shows that, in all cases, the errors of the 
vibration model were lower than in the case of the ultrasound model. 

The mean values of the dynamic modulus of elasticity obtained by 
ultrasound were higher than those obtained with the vibration method, 
as is shown in Fig. 7, an aspect that has already been reflected in pre-
vious works comparing both methods of non-destructive classification 
[7,12,33,68,72–74]. 

3.5. Models validation 

The results of the robust cross-validation tests are shown in Table 7. 
The smaller the root mean square error (RMSE) and mean absolute 

Fig. 7. Regression models Edin vibra vs Edin ultra.  

Table 7 
Robust cross-validation tests indicators mean: RMSE, R2, and MAE.   

Vibration SD Ultrasound SD 

Intercept (σInt)  − 1559.266  56.158  − 766.2172  171.732 
Slope (σSlope)  1.125  6.26⋅ 10-3  0.816  1.20⋅ 10-2 

RMSE (σRMSE)  664.528  297.519  853.939  182.247 
R2 (σR

2)  0.972  2.51⋅ 10-2  0.958  2.38⋅ 10-2 

MAE(σMAE)  525.8918  198.680  756.524  172.104  

Fig. 8. Plot of the statistics for each of the 200 iterations of the cross-validation tests.  
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error (MAE) value the better, and while the larger the R2, too better. 
Consequently, the MOEGTO estimation model using transversal vibra-
tions was the best one. Fig. 8 shows the values of the statistics for the 200 
iterations of the cross-validation test. The robustness of the model is 
shown by the uniformity of the values of the statistics. 

This is also observed in Fig. 9, where the dotted lines are further 
apart, i.e. to get the prediction right it needs more “width” concerning 
the regression line compared to vibrations, which in all statistics is 
better. These results coincide with other published articles in different 
pine species [7,68,71]. It can be seen that the prediction limits of the 
global regression contain all the points of the new species (Picea 
sitchensis). 

4. Conclusions 

The behaviour of the fundamental vibration frequency obtained for 
wood samples (Populus × euramericana I-214, Fagus sylvatica L., Quercus 
pyrenaica L., Paulownia elongata S.Y.Hu, Pinus sylvestris L., and Picea 
sitchensis Trautv. & G.Mey) in cantilever beams exhibited an inversely 
proportional relationship with the span length of the sample, which 
results in strong significant differences for the different species. 

Taking into account the material used, which is heterogeneous in 
terms of its organic composition and anisotropic behaviour, the results 
obtained can be considered highly valuable. The final R2 value obtained 
in the global modulus of elasticity of these different species for the 
prediction model as a function of density and vibration frequency 
was>95 % and higher than that obtained by ultrasound methods. 

This study demonstrates that transversal vibrations in cantilever 
beams is an extremely precise tool for predicting the static modulus of 
elasticity of wood and for performing quality control and inspection of 
wood for structural use. This could be further developed into a useful 
tool for timber grading. 
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[68] Á. Fernández-Serrano, A. Villasante, Modulus of rupture prediction in Pinus 
sylvestris with multivariate models constructed with resonance, ultrasound, and 
wood heterogeneity variables, BioResources 17 (2021) 1106–1119. https://doi. 
org/10.15376/biores.17.1.1106-1119. 
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