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A B S T R A C T

A discrete model is proposed for the temporal evolution of a population of cells sorted according to their
telomeric length. This model assumes that, during cell division, the distribution of the genetic material to
daughter cells is asymmetric, i.e. chromosomes of one daughter cell have the same telomere length as the
mother, while in the other daughter cell telomeres are shorter. Telomerase activity and cell death are also taken
into account. The continuous model is derived from the discrete model by introducing the generational age as
a continuous variable in [0, ℎ], being ℎ the Hayflick limit, i.e. the number of times that a cell can divide before
reaching the senescent state. A partial differential equation with boundary conditions is obtained. The solution
to this equation depends on the initial telomere length distribution. The initial and boundary value problem
is solved exactly when the initial distribution is of exponential type. For other types of initial distributions,
a numerical solution is proposed. The model is applied to the human follicular growth from preantral to
preovulatory follicle as a case study and the aging rate is studied as a function of telomerase activity, the initial
distribution and the Hayflick limit. Young, middle and old cell-aged initial normal distributions are considered.
In all cases, when telomerase activity decreases, the population ages and the smaller the ℎ value, the higher
the aging rate becomes. However, the influence of these two parameters is different depending on the initial
distribution. In conclusion, the worst-case scenario corresponds to an aged initial telomere distribution.
1. Introduction

Telomeres are nucleoprotein structures located at distal ends of
linear chromosomes. In vertebrates they consist of repetitions of the
5́ − 𝑇𝑇𝐴𝐺𝐺𝐺 − 3́, repeated up to approximately 10–15 kbp in humans
1–4]. Telomeric DNA is coated by a protein complex called Shelterin,
hich protect telomeres from fusions, degradation and from being

ecognized as DNA-damage sites [5]. Telomeres shorten during cell
ivision because the replication machinery cannot copy the very ends
f chromosomes (called the end-replication problem) [6] ultimately
mpairing cell cycle division and leading to cell senescence or apoptosis
3,7]. In humans, telomere loss is approximately of 70 bp per year [8].
elomerase is an enzyme that can add de novo repeats onto telomeres
9,10] thus, maintaining proper telomere structure. However, telom-
rase is inactive in most cells of the organism and remains active only
n embryonic and adult stem cells, in cancer cells and the germline [3].

Indeed, granulosa cells (GCs), cumulus cells have active telom-
rase, despite of being somatic cells, and the oocyte also has active
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telomerase, which is important to preserve genome integrity during
meiosis and avoid aneuploidies in the embryo development [4,11,12].
One or several layers of Granulosa cells surround the oocyte to form
structures called follicles [13]. At menarche ovaries will have about
300,000 to 400,000 primordial follicles (oocyte arrested in meiosis
and one layer of GCs), ready for activation and maturation [14].
Upon activation, oocytes resume meiosis and GCs enter cell division
[15], and undergo intense mitotic activity to form antral follicles ready
to ovulation. The telomerase activity present in GCs, will possibly
facilitate cell division [4], by maintaining telomere length [16] and
avoiding chromosome errors that may lead to aneuploidies [4].

There are several mathematical models dealing with telomere short-
ening: deterministic models with constant telomere loss [17,18] or
telomere loss dependent on telomere length [19], as well as stochastic
models [20]. In particular, Wattis and colleagues conducted a very in-
teresting study [21] which uses partial differential equations to describe
how the distribution of telomere lengths evolves. However, neither
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telomerase activity nor cell death are considered in these continuum
models.

In an earlier article [22], a dynamical mathematical model was pro-
posed, in which cells were sorted according to their telomeric length.
The model was based on the work presented in [23], by using a simple
chemical master equation formalism. Telomerase activity and cell death
were included in the mathematical modeling and a symmetrical distri-
bution of chromosomes during cell division was assumed, i.e. when a
cell divides, it produces two daughter cells with shorter telomeres, due
to the end-replication problem and mild oxidation. In [24] we modified
the previous model to include higher level of oxidation to accelerate
telomere shortening [25]. In this work, first we consider a discrete
model taking on asymmetrical distribution of the genomic material into
the daughter cells, i.e. one daughter cell has the same telomere length
as the mother cell, while the other one has shorter telomeres. Then,
we derived the continuum counterpart model where the generational
age associated to the telomere length is a continuous variable which
varies between zero and the Hayflick limit, where cells cannot divide
any longer because they are senescent.

2. Mathematical models

2.1. Discrete mathematical modeling: telomere shortening due to the end
replication problem

The generational age of a cell was associated with its telomere
length, no matter when it was formed, as in [23]. Telomere length was
assessed on the cell level by considering the average telomere length of
the cell. We assumed the average telomere length of a cell shortens by
a constant factor during each division. The Hayflick limit is the point
at which telomeric length is minimal and does not allow replication.
Let ℎ denote the proliferation potential, then we considered a finite
number of ℎ + 1 telomere states of cells, where each state 𝑖 contains
cells of equal average telomere length and the generational age of a cell
subpopulation was indicated by subscript 𝑖, for 𝑖 = 0, 1,… , ℎ−1, ℎ. Then,
cells with maximum telomeric length were considered as generational
age of zero and were denoted by 𝐶0, cells whose telomeric length was
strictly between the maximum and the minimum value 𝐶1,… , 𝐶ℎ−1,
which can replicate, and senescent cells 𝐶ℎ, which have reached the
Hayflick limit.

Let 𝑁𝑖(𝑡), for 𝑖 = 0, 1,… , ℎ − 1, ℎ, denote the population of cells of
each generational age at a given time 𝑡. Let 𝑚 be the rate of mitotic
replication per cell per unit of time. When 𝑖 ≠ ℎ, a cell can undergo
mitosis to produce two cells, one of them of the same generational age
as the mother and another one a generation older, unlike the former
model [22], where symmetrical replication was considered and both
daughter cells were assumed to have shorter telomeres. Let 𝑑 be the rate
of mortality events per cell per unit of time. Cells of any generation are
susceptible to death. Let 𝑟 be the rate of telomerase activity per cell per
unit of time which acts rejuvenating the cell by lengthening telomeres
and moving back to the previous generational age. Only 𝑖 ≠ 0 cells are
susceptible of rejuvenation by telomerase.

If all rates are taken constant, the average subpopulations 𝑁0, 𝑁1,
… , 𝑁ℎ satisfy the following coupled linear ordinary differential equa-
tions

𝑁 ′
0(𝑡) = −𝑑𝑁0(𝑡) + 𝑟𝑁1(𝑡), (1)

𝑁 ′
𝑖 (𝑡) = 𝑚𝑁𝑖−1 − (𝑑 + 𝑟)𝑁𝑖(𝑡) + 𝑟𝑁𝑖+1(𝑡), 𝑖 = 1,… , ℎ − 1, (2)

𝑁 ′
ℎ(𝑡) = 𝑚𝑁ℎ−1 − (𝑑 + 𝑟)𝑁ℎ(𝑡). (3)

Denoting by 𝐍(𝑡) = [𝑁0, 𝑁1,… , 𝑁ℎ]𝑇 the system of Eqs. (1)–(3) can be
rewritten as

𝐍′(𝑡) = 𝐴𝐍(𝑡), (4)
 i

2

where

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝑑 𝑟 0 ⋯ 0
𝑚 −(𝑑 + 𝑟) 𝑟 0 0
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 𝑚 −(𝑑 + 𝑟) 𝑟
0 ⋯ 0 𝑚 −(𝑑 + 𝑟)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5)

is a tridiagonal matrix of dimension (ℎ + 1) × (ℎ + 1).
The solution of the system with matrix (5) preserves positivity, i.e. a

nonnegative initial condition leads to a nonnegative solution over time.
The proof is similar to the one in [24].

2.2. Continuum counterpart model to classify a population according to the
generational age

In this subsection, a partial differential equation and boundary
conditions from the discrete model is derived. Let 𝑥 be the continuous
variable representing the generational age 𝑥 ∈ [0, ℎ] and 𝑁(𝑥, 𝑡) the
population density at generational age 𝑥 and time 𝑡. The following ini-
tial and boundary value problem (IBVP) is considered as the continuum
counterpart model

𝑁𝑡(𝑥, 𝑡) =
1
2
(𝑚 + 𝑟)𝑁𝑥𝑥(𝑥, 𝑡) − (𝑚 − 𝑟)𝑁𝑥(𝑥, 𝑡)

+(𝑚 − 𝑑)𝑁(𝑥, 𝑡), 0 < 𝑥 < ℎ, 𝑡 > 0, (6)
1
2
(𝑚 + 𝑟)𝑁𝑥(0, 𝑡) − (𝑚 − 𝑟)𝑁(0, 𝑡) = 0, 𝑡 > 0, (7)

1
2
(𝑚 + 𝑟)𝑁𝑥(ℎ, 𝑡) − (𝑚 − 𝑟)𝑁(ℎ, 𝑡) = 0, 𝑡 > 0, (8)

(𝑥, 0) = 𝑓 (𝑥), 0 < 𝑥 < ℎ. (9)

he Eq. (6) is a diffusion–advection equation which presents a descrip-
ion of the growth of the population. The term 1

2 (𝑚 + 𝑟)𝑁𝑥𝑥 represents
the random diffusion of the population with a diffusive coefficient
1
2 (𝑚 + 𝑟). The term −(𝑚 − 𝑟)𝑁𝑥 renders the advective flow with an
advective coefficient 𝑚− 𝑟. The growth rate of the population is 𝑚− 𝑑.
The Eqs. (7) and (8) give the boundary conditions and the last equation
represents the initial distribution of the population which must be
regular enough and compatible with the boundary conditions.

A justification of how we have arrived at this initial and boundary
value problem is given below. From the discrete model (1)–(3) in which
the generational age takes integer values, now it is considered the
generational age as a continuous variable 𝑥 and 𝑁(𝑥, 𝑡) the population
density at generational age 𝑥 and time 𝑡

𝑁𝑡(𝑥, 𝑡) =𝑚𝑁(𝑥 − 1, 𝑡) − (𝑑 + 𝑟)𝑁(𝑥, 𝑡) + 𝑟𝑁(𝑥 + 1, 𝑡), 0 < 𝑥 < ℎ, 𝑡 > 0.
(10)

pproximating 𝑁(𝑥 − 1, 𝑡) and 𝑁(𝑥 + 1, 𝑡) by their 2nd-degree Taylor
olynomial in the variable 𝑥 we achieve the following equation

𝑡(𝑥, 𝑡) = (𝑚 − 𝑑)𝑁(𝑥, 𝑡) + (𝑟 − 𝑚)𝑁𝑥(𝑥, 𝑡)

+ 𝑚 + 𝑟
2

𝑁𝑥𝑥(𝑥, 𝑡), 0 < 𝑥 < ℎ, 𝑡 > 0. (11)

We assign Robin type boundary conditions that make sense from a
iological point of view. The Robin type boundary conditions have to
uarantee that no cell population density 𝑁(𝑥, 𝑡) either leaves or enters
he interval 𝑥 ∈ [0, ℎ], that is, they have to ensure zero-flux requirement
t 𝑥 = 0 and at 𝑥 = ℎ. Conditions (7) and (8) have been derived from
6) so that there is no zero-flux at the boundary.

For any nonnegative initial conditions, by the maximum principle
26] and the standard theory for parabolic equations [27], the IBVP
6)–(9) admits a unique positive smooth solution which exists globally
n time.
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2.2.1. Qualitative study

Theorem 1. Assuming that 0 < 𝑟 < 𝑚 in the IBVP (6)–(9) and the initial
density is compatible with the boundary conditions and 𝐶2 continuous, then
the population density at generational age 𝑥 and time 𝑡 can be expressed in
erms of the parameters of the model as

(𝑥, 𝑡) = exp(𝜆𝑡) exp(𝜇𝑥)
∞
∑

𝑛=0
𝑎𝑛𝜑𝑛(𝑥) exp

(

−
(𝑚 + 𝑟)𝜆𝑛

2
𝑡
)

, (12)

here

= 𝑚 − 𝑑 −
(𝑚 − 𝑟)2

2(𝑚 + 𝑟)
, 𝜇 = 𝑚 − 𝑟

𝑚 + 𝑟
, (13)

he eigenvalues and related eigenfunctions

0 = −𝜇2, 𝜑0 = exp(𝜇𝑥), (14)

𝑛 =
( 𝑛𝜋

ℎ

)2
, 𝜑𝑛 = cos

( 𝑛𝜋𝑥
ℎ

)

+
𝜇ℎ
𝑛𝜋

sin
( 𝑛𝜋𝑥

ℎ

)

, 𝑛 = 1, 2,… , (15)

and

𝑎𝑛 =
∫

ℎ

0
𝑓 (𝜉) exp(−𝜇𝜉)𝜑𝑛(𝜉)𝑑𝜉

∫

ℎ

0
𝜑2
𝑛(𝜉)𝑑𝜉

, 𝑛 = 0, 1, 2,… . (16)

roof. Let us define the quantities

= 𝑚 + 𝑟
2

, 𝑣 = 𝑚 − 𝑟, 𝜌 = 𝑚 − 𝑑. (17)

ince the diffusion–advection partial differential equation (6) is lin-
ar, homogeneous, and has constant coefficients, then, by using the
ollowing transformation,

(𝑥, 𝑡) = 𝑆(𝑥, 𝑡) exp
[(

𝜌 − 𝑣2

4𝐷

)

𝑡 + 𝑣𝑥
2𝐷

]

, (18)

he partial differential equation (6) reduces to a standard diffusion
quation. The IBVP for the auxiliary function 𝑆(𝑥, 𝑡) reads as

𝑡(𝑥, 𝑡) = 𝐷𝑆𝑥𝑥(𝑥, 𝑡), 0 < 𝑥 < ℎ, 𝑡 > 0, (19)

𝑥(0, 𝑡) −
𝑣
2𝐷

𝑆(0, 𝑡) = 0, 𝑡 > 0, (20)

𝑥(ℎ, 𝑡) −
𝑣
2𝐷

𝑆(ℎ, 𝑡) = 0, 𝑡 > 0, (21)

𝑆(𝑥, 0) = 𝑓 (𝑥) exp(− 𝑣𝑥
2𝐷

), 0 < 𝑥 < ℎ. (22)

otice that

− 𝑣2

4𝐷
= 𝜆, 𝑣

2𝐷
= 𝜇. (23)

To solve the IBVP (19)–(22), we only require to consider the separated
solution 𝑆(𝑥, 𝑡) = 𝜑(𝑥)𝑇 (𝑡). This leads to a regular Sturm–Liouville
problem, which is solved in [28], with the eigenvalues and related
eigenfunctions

𝜆0 = −𝜇2, 𝜑0 = exp(𝜇𝑥),

𝜆𝑛 =
( 𝑛𝜋

ℎ

)2
, 𝜑𝑛 = cos

( 𝑛𝜋𝑥
ℎ

)

+
𝜇ℎ
𝑛𝜋

sin
( 𝑛𝜋𝑥

ℎ

)

, 𝑛 = 1, 2,… ,

Then the expression (12) is obtained.

The qualitative study is important because it gives an idea of
the influence of the model parameters on the solution. Although the
expression is valid for many initial conditions, the difficulty lies in the
calculation of the coefficients 𝑎𝑛. For example, for an initial density
unction of Gaussian type, the primitives of the integrals cannot be
btained as a finite sum of elementary functions and in practice the
roblem has to be solved numerically.

.2.2. Aging rate
The average number of cells of generational age less than or equal

o 𝑥 at a given time 𝑡 is denoted by

(𝑥, 𝑡) =
𝑥
𝑁(𝜔, 𝑡) 𝑑𝜔. (24)
∫0 i

3

ixed a number 𝑞, we considered the population of aged cells at a given
ime 𝑡, the average number of cells of generational age between ℎ − 𝑞
nd ℎ

(𝑡) = ∫

ℎ

ℎ−𝑞
𝑁(𝜔, 𝑡) 𝑑𝜔. (25)

e defined the aging rate 𝑎𝑟 as the number of aged cells divided by the
otal number of cells, that is

𝑟(𝑡) =
𝑎(𝑡)
𝑛(ℎ, 𝑡)

= 1 −
𝑛(ℎ − 𝑞, 𝑡)
𝑛(ℎ, 𝑡)

. (26)

he values of 𝑎𝑟 may vary between 0 and 1. Values of 𝑎𝑟 close to 0
orresponded to populations of young cells, while the closer to 1 the
alue was, the older the population was.

If the initial condition in (9) is

(𝑥) = exp(2𝜇𝑥), (27)

hen

(𝑥, 𝑡) = exp(𝜆𝑡) exp(2𝜇𝑥) exp
(

−
(𝑚 + 𝑟)𝜆0

2
𝑡
)

, (28)

𝑛(𝑥, 𝑡) = exp(𝜆𝑡) exp
(

−
(𝑚 + 𝑟)𝜆0

2
𝑡
)

exp(2𝜇𝑥) − 1
2𝜇

, (29)

nd the corresponding aging rate is

𝑟(𝑡) = 1 −
exp(2𝜇(ℎ − 𝑞)) − 1

exp(2𝜇ℎ) − 1
. (30)

emark 1. If the initial distribution is (27), as in Theorem 1, the
ging rate depends on ℎ and on 𝜇, which in turn depends on the
elation between the parameters 𝑚 and 𝑟. We introduce the parameter
, 0 < 𝑠 < 1, such that 𝑟 = 𝑠𝑚, in order to rewrite 𝜇 in terms of this
ingle parameter

= 1 − 𝑠
1 + 𝑠

(31)

nd thus study the influence of the amount of telomerase activity on
ging. Values of 𝑠 close to 0 represent low telomerase activity, while
alues of 𝑠 close to 1 indicate high telomerase activity.

Fig. 1 displays the influence of ℎ and 𝑠 on the aging rate, considering
.7 < 𝑠 < 1, for ℎ = 40, 50, 60. Taking ℎ = 50 as a reference, we assume
s aged cells those in the last third of the interval and therefore we
hoose 𝑞 = 51∕3 = 17. For a value of 𝑠 less than 0.8 the aging rate is
lose to 1 in all cases, regardless of ℎ. As 𝑠 approaches 1, that is, when
is near 𝑚, the aging rate decreases with a steeper slope the higher ℎ.

3. Human follicular growth from preantral to preovulatory follicle
as a case study

We focused the study on the evolution of the population of GCs
which are the most important somatic cells for determining the size
of follicles [29]. Human preantral follicles take approximately 85 days
to reach preovulatory size, according to Gougeon classification [30],
going through eight classes, from class 1 for preantral follicle to class 8
for preovulatory follicle. Fig. 2 displays a scheme of the classification
of follicles in the human ovary according to Gougeon [30], where the
transition time of each stage and the total number of GCs in each stage
are shown.

We assumed the population of GCs in each of the eight stages
corresponding to the development of the follicle from preantral to
preovulatory class satisfied a initial–boundary value problem similar
to the one of Section 2.2, with partial differential equation

𝑁𝑡(𝑥, 𝑡) =
1
2
(𝑚𝑗 + 𝑟𝑗 )𝑁𝑥𝑥(𝑥, 𝑡) − (𝑚𝑗 − 𝑟𝑗 )𝑁𝑥(𝑥, 𝑡)

+ (𝑚𝑗 − 𝑑𝑗 )𝑁(𝑥, 𝑡), 0 < 𝑥 < ℎ, 𝑡 ∈ [𝑇𝑗 , 𝑇𝑗+1], (32)

n which the values 𝑚 , 𝑑 and 𝑟 correspond to the class 𝑗 from 1 to 7.
𝑗 𝑗 𝑗
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Fig. 1. Aging rate versus 𝑠, for ℎ = 40, 50, 60.
Fig. 2. Classification from preantral to preovulatory follicles in the human ovary based on data from [30].
In order to calculate the model parameters, the values of the times
𝑇𝑗 and the total number of GCs at 𝑇𝑗 , �̃�𝑗 , have been taken from [30]
data. Considering the discrete model in Section 2.1, the total number of
cells 𝑛𝑗 (𝑡) in the transit time from stage 𝑗 to 𝑗 + 1 approximately meets

𝑛′𝑗 (𝑡) = (𝑚𝑗 − 𝑑𝑗 )𝑛𝑗 (𝑡), 𝑡 ∈ [𝑇𝑗 , 𝑇𝑗+1], (33)

𝑛𝑗 (𝑇𝑗 ) = �̃�𝑗 , (34)

from which is obtained the expression

𝑛𝑗 (𝑇𝑗+1) = �̃�𝑗 exp((𝑚𝑗 − 𝑑𝑗 )(𝑇𝑗+1 − 𝑇𝑗 )) = �̃�𝑗+1, (35)

and then the difference between the mitosis rate and the mortality rate
for each follicle class was estimated as

𝑚 − 𝑑 = log(�̃� ∕�̃� )∕(𝑇 − 𝑇 ) = 𝛽 , for 𝑗 = 1,… , 7. (36)
𝑗 𝑗 𝑗+1 𝑗 𝑗+1 𝑗 𝑗

4

4. Numerical experiments

In former work [24], different percentiles of telomere length of GCs
according to chronological age were studied, as can be seen in Table 2,
where values of division capacity for GCs for different percentiles at
25 and 40 years old are shown. Thus, ℎ = 40 occurs in the average
of women in their forties and in younger women in lower percentiles,
whose biological age is older than their chronological age. Meanwhile
ℎ = 50 is a value near the average among women aged 25 years and
ℎ = 60 corresponds to higher percentiles, meaning the biological age is
younger than the chronological age. Taking this into account, in the
numerical experiments, we consider the values of ℎ = 40, 50, 60 to
cover several percentiles at the ages of 25 and 40.

Mortality rates were fixed at 0.01 day−1 in the numerical experi-
ments. The computed values 𝑚 = 𝛽 + 𝑑 and telomerase activity rates
𝑗 𝑗 𝑗
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Fig. 3. Maximum and minimum number of GCs that can exist from preantral to preovulatory follicle, according to Gougeon [30].
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Table 1
Mitosis and telomerase activity rates for each follicle class. The values 𝑚𝑗 were
computed as 𝛽𝑗 + 0.01, using the values of 𝛽𝑗 in (36) with Gougeon [30] data.

Follicle class 1 2 3 4 5 6 7

𝑚𝑗 0.0614 0.0839 0.1213 0.1764 0.2685 0.4020 0.1738

𝑟𝑗 = 0.95𝑚𝑗 0.0584 0.0797 0.1152 0.1676 0.2551 0.3819 0.1651
𝑟𝑗 = 0.75𝑚𝑗 0.0461 0.0629 0.0910 0.1323 0.2014 0.3015 0.1304
𝑟𝑗 = 0.55𝑚𝑗 0.0338 0.0461 0.0667 0.0970 0.1477 0.2211 0.0956

Table 2
Aging rates for a initial density function of exponential type with 𝑠 = 0.99.
ℎ 𝑎𝑟
40 0.43
50 0.35
60 0.30

for different values of the parameter 𝑠 for each follicle class are showed
in Table 1. In the numerical experiments we made sure that the total
population of GCs obtained was within the Gougeon limits [30], shown
in Fig. 3.

4.1. Initial density function of exponential type

To check that the numerical results correspond to the theoretical
results, we considered an initial density function such as the one in
(27)

𝑁(𝑥, 0) = 𝐶 exp(2𝜇𝑥), (37)

for

𝑠 = 0.99, 𝜇 = 1 − 𝑠
1 + 𝑠

, (38)

𝐶 =
4200𝜇

(𝑒2𝜇ℎ − 1)
. (39)

he aging rates obtained with the discrete model for the values of
= 40, 50 and 60, for the final time 85 are shown in Table 2. It can

e seen that they coincide with those shown in Fig. 1.

.2. Initial density function of Gaussian (normal) type

Next we studied another type of initial conditions, namely the
ormal density functions, for which the expression of the exact solution
5

f the continuous model cannot be found, but its numerical solution can
e obtained.

(𝑥, 0) = 2100
√

2𝜋𝜎2
𝑒−(𝑥−𝜈)

2∕2𝜎2 . (40)

he initial conditions are heterogeneous depending on the individual,
ut we have tried to reproduce several biologically plausible scenarios
o help us see the trend of the population’s evolution. In the following
xperiments 𝜎 was fixed to 4 and three values of 𝜈 were taken, which
ere ℎ∕4, with the initial density function centered on the first quarter
f the interval, ℎ∕2, with the initial density function centered at the
idpoint of the interval, and 3ℎ∕4, with the initial density function

entered on the third quarter of the interval. In all cases the total
opulation of GCs obtained was within the limits set by in [30]. Fig. 4
howed just one example, for ℎ = 50, 𝑠 = 0.5 and 𝜈 = ℎ∕2, the limits
stimated in [30] for the total population of GCs for the different stages
rom preantral to preovulatory follicle in red, and in blue the values
btained by the model.

.2.1. Q1 initial distribution: 𝜈 = ℎ∕4
Fig. 5 displays the evolution of the density function at day 0 (left

graphs) and after 85 days (right graphs) when the initial distribution
is a Gaussian distribution centered on the first quarter of the interval
[0, ℎ], over which telomere lengths vary, for ℎ equal to 40 (Fig. 5(a) and
(b)), 50 (Fig. 5(c) and (d)) and 60 (Fig. 5(e) and (f)). The distribution
at day 85 is shown for five values of the parameter 𝑠, which relates
telomerase activity to the mitosis ratio, i.e. 𝑟𝑗 = 𝑠𝑚𝑗 , for the seven
stages of follicular development considered. Regardless of the value of
ℎ, the shape of the distribution remains the same but as 𝑠 decreases
(i.e. telomerase activity decreases), the distribution shifts to the right
and the maximum increases, meaning that the mean increases and
the variance decreases. As a consequence, when telomerase activity
decreases, the population ages. The influence of the value of ℎ and the
parameter 𝑠 on the aging rate at day 85 is displayed in Fig. 5(g). The
aging rate decreases as the parameter 𝑠 increases, meaning that as the
telomerase activity increases, the telomere maintenance in cells would
prevent aging. The smaller the ℎ is the higher the aging rate becomes.
Although it must be said that for this initial condition the aging rate is
always small, especially for ℎ = 50, 60.



A.M. Portillo, E. Varela and J.A. García-Velasco Mathematical Biosciences 358 (2023) 108985
Fig. 4. Total population of GCs from preantral to preovulatory follicle: limits estimated in [30] in red and values obtained by the model in blue, for ℎ = 50, 𝑠 = 0.5 and Gaussian
initial density with 𝜈 = ℎ∕2.
4.2.2. Q2 initial distribution: 𝜈 = ℎ∕2
Fig. 6 displays the evolution of the density function at day 0 (left

graphs) and after 85 days (right graphs) when the initial distribution
is a Gaussian distribution centered on the first quarter of the interval
[0, ℎ], for ℎ equal to 40 (Fig. 6(a) and (b)), 50 (Fig. 6(c) and (d)) and
60 (Fig. 6(e) and (f)). As in the previous case, the final distribution is
6

shown for five values of the parameter 𝑠, and can also be observed that
as 𝑠 decreases the distribution shifts to the right, i.e. to more aged zone,
indicating that when telomerase activity decreases, the population ages.
The influence of the value of ℎ and the parameter 𝑠 on the aging rate
at day 85 is displayed in Fig. 6(g). Similar comments can be made as
in the previous case. However, for this initial condition, the value of ℎ
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Fig. 5. Evolution of the density function for a young Q1 initial distribution of Gaussian type.
n

is more important than in the previous case. Let us look, for example,
at the values for 𝑠 = 0, for which the differences between the values
of ℎ are substantial: for ℎ = 40 the aging rate is above 0.9, for ℎ = 50
above 0.7 and for ℎ = 60 above 0.3. For lower values of ℎ the amount
of telomerase activity is substantial to decrease the aging rate.

4.2.3. Q3 initial distribution: 𝜈 = 3ℎ∕4
Fig. 7 displays the evolution of the density function at day 0 (left

graphs) and after 85 days (right graphs) when the initial distribution
7

is a Gaussian distribution centered on the first quarter of the interval
[0, ℎ], for ℎ equal to 40 (Fig. 7(a) and (b)), 50 (Fig. 7(c) and (d)) and 60
(Fig. 7(e) and (f)).

In the same way as for the previous two initial conditions, the final
distribution is shown for five values of the parameter 𝑠, and it is also
oted that as 𝑠 decreases the distribution shifts to the right, with a

concentration of the population in the older part of the range. Fig. 7(g)
exhibits the influence of 𝑠 and ℎ on the aging rate on day 85. The
smaller 𝑠 and ℎ the higher the aging rate. This time, nevertheless, the
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Fig. 6. Evolution of the density function for a median age Q2 initial distribution of Gaussian type.
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situation is far worse. When 𝑠 = 0, independent of ℎ, the aging rate is
ractically 1. If we now look at the best possible case which is 𝑠 = 1, the
ging rates for ℎ = 40, 50, 60 are above 0.85, 0.75 and 0.6 respectively,
hich are quite high values. In conclusion, the worst-case scenario is
n aged initial distribution, which leaves little room for the influence
f telomerase activity.

To better understand the effect of the initial distribution on the
ging rate, we have shown in Fig. 8 the aging rate at day 85, for
= 40, 50, 60, versus the mean of the initial distribution. The value
8

= 0, in red (the upper line), corresponds to no telomerase activity and
= 1, in blue (the lower line), to maximum telomerase activity. The

esults for intermediate telomerase activity values would be between
he red and blue curves. For ℎ = 40, if the mean initial density is less

than 12, the aging rate is less than 0.5 whereas if the initial density
is greater than 23, the aging rate is greater than 0.5, independently
of telomerase activity. For values of the mean initial density between
12 and 23 there is considerable variation of the aging rate depending
on the telomerase activity. For ℎ = 50, if the mean initial density
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Fig. 7. Evolution of the density function for an aged Q3 initial distribution of Gaussian type.
is less than 22, the aging rate is less than 0.5 whereas if the initial
density is greater than 33, the aging rate is greater than 0.5, regardless
of telomerase activity. For values of the mean initial density between
22 and 33 there is significant difference of the aging rate according to
the telomerase activity. For ℎ = 40, if the mean initial density is less
than 32, the aging rate is less than 0.5 whereas if the initial density
is greater than 43, the aging rate is greater than 0.5, irrespective of
telomerase activity. For values of the mean initial density between 32
9

and 43 there is substantial change of the aging rate in terms of the
telomerase activity.

5. Discussion

Here we have examined the degree of cell aging during follicular
development on the bases of the aging state of the initial population of
cells, according to the number of divisions that cells can undergo before
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Fig. 8. Aging rate at day 85, for ℎ = 40, 50, 60, versus the mean of the initial distribution. The value 𝑠 = 0, in red, corresponds to no telomerase activity and 𝑠 = 1, in blue, to
maximum telomerase activity. The outcomes for intermediate telomerase activity values would be between the red and blue curves.
reaching the point of reproductive senescence and the proportion of
telomerase activity. To this end, a discrete mathematical model which
assumes asymmetrical distribution of the genetic material has been
proposed. A continuum model has been derived from the discrete model
by introducing the generational age as a continuous variable. The
solution to the partial differential equation is found when the initial
distribution of ages is exponential, whereas, for other types of initial
distribution, a numerical solution is proposed.

In biological studies there are several distributions that are com-
monly used. One of them is the exponential distribution, which takes
into account the age heterogeneity of the population. For this initial
distribution case, the solution of the equation was exact, however, a
limitation for the value of the 𝑠 parameter was found. For 𝑠 values lower
han 0.95 the number of cells did not properly fit the limits described
y Gougeon [30]. To solve this point, a normal distribution was used,
hich is also commonly applied to biological problems. The analysis
y Wattis et al. [21] indicated that constant telomere loss leads to a
aussian (normal) distribution of telomere lengths. In this case, the
umber of cells obtained were always within the limits described by
ougeon [30]. Thus, this type of distribution seemed more appropriate

or the analysis of cell aging during folliculogenesis.
To analyze the evolution of cell aging in young individuals (10 to 25

ears old), which still have an overage telomere length of around 8 to 12
kb [31], the initial distribution was located in the first quartile, where
the number of cell divisions was still high before reaching cellular
senescence, regardless of the ℎ value used. Under this condition, even
10
those cells with less division potential (ℎ = 40), and in the absence of
telomerase, were below the middle value of aging rate (0.5), meaning
that the whole population of cells at the end of the folliculogenesis
process was relatively young. The influence of telomerase activity was
more noticeable on cells with the lowest division potential (ℎ = 40)
compared to younger cells (ℎ = 50 or 60). In the presence of high
telomerase activity, all cells were juvenile at day 85 of development
with aging rates below 0.1. Thus, according to the model, young pop-
ulations of cells with good levels of telomerase activity would remain
juvenile after folliculogenesis. Juvenile cells would be found in healthy
younger women, where GCs would have the potential to better support
oocyte maturation [14].

With an initial distribution in the second quartile, which would
resemble relatively aged cells, with shorter telomere lengths, and there-
fore, lower division potential for follicular development, the cell pop-
ulation had a higher aging rate at the end of folliculogenesis. Partic-
ularly, the cells with less division potential (ℎ = 40) and with normal
division potential (ℎ = 50) were aged in the absence of telomerase,
with an aging rate close to 1, at the limit of reproductive senescence.
Only cells with high division potential would remain juvenile (aging
rate below 0.4). In the presence of high telomerase activity (𝑠 = 0.85),
the aging rate would still not be dramatic at the end of folliculogenesis
(values below 0.5). A similar behavior is observed for cells with a
better division potential (ℎ = 50). Lastly, cells with the highest division
potential (ℎ = 60) would remain juvenile after follicle development.
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These results could resemble middle-age women with premature ovar-
ian failure, which have shorter telomere length in their GCs and low or
null telomerase activity [32,33] compared to aged-matched controls,
which would have active telomerase.

Finally, to assess the aging rate in an older cell population, the
initial distribution was located in the third quartile, where cells have
very low division potential. Under this condition, in cells which do not
have telomerase activity, all cell populations were aged after follicular
development and even those cells with the highest division potential
(ℎ = 60) in the presence of higher levels of telomerase would reach the
end of follicular development aged. In the presence of increasing pro-
portions of telomerase activity, cells with higher division potential (ℎ =
60) were less aged, but still with values above 0.5 for aging rate. These
results could reflect what happens in aged women, whose cells bear
shorter telomeres due to the action of reactive oxygen species or other
lifestyle factors [4,11] Additionally, those aged cell with low or null
telomerase activity could reflect patients with telomeropathies, such
as dyskeratosis congenita. These patients have shorter mean telomere
length for their age [34] and have impaired fertility [35].

The analysis of the effect of the initial distribution on aging rate
showed that as the ℎ value increases (cells with more division po-
tential), the point at which the population has aged 0.5 for different
proportions of telomerase activity moves towards higher values of
mean initial distribution. These results suggest that when cells have
more potential to divide, there is a margin for the initial distribution to
have older cells without causing severe aging of the population of cells
(aging rate below 0.5). In addition, as the ℎ value increases, the red
line (the upper line in Fig. 8) was lower in the 𝑦 axis, leaning towards
a more juvenile population. Thus, cells with low telomerase activity
and initial distributions with mean exceeding half of the interval still
have acceptable aging rates.

According to the mathematical model proposed, younger popula-
tions of GCs would have larger division potential and would be more
sensitive to the action of telomerase, maintaining a better telomere
structure. Indeed, an association between telomere length and oocyte
and embryo aneuploidy has been found [36]. Thus, according to the
mathematical model, strategies to reactivate telomerase in women with
fertility problems should be more successful in young or middle-aged
women compared to older women.

An option for future research is to consider a net growth rate 𝑚− 𝑑
being generational age dependent or time dependent.
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