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Abstract
The asymptotic Samuel function generalizes to arbitrary rings the usual order function
of a regular local ring. In this paper, we use this function to introduce the notion of
the Samuel slope of a Noetherian local ring, and we study some of its properties. In
particular, we focus on the case of a local ring at singular point of a variety, and,
among other results, we prove that the Samuel slope of these rings is related to some
invariants used in algorithmic resolution of singularities.

Keywords Singularities · Rees algebras · Integral closure · Asymptotic Samuel
function
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1 Introduction

Let X be an equidimensional algebraic variety of dimension d defined over a perfect
field k. If X is not regular, then the set of points of maximummultiplicity, MaxmultX ,
is a closed proper set in X . We will denote by maxmultX the maximum value of the
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multiplicity at points of X . A simplification of the multiplicity of X is a finite sequence
of blow ups,

X = X0 X1
π1

. . .
π2

XL−1
πL−1

XL
πL (1.1)

with

maxmultX0 = maxmultX1 = · · · = maxmultXL−1 > maxmultXL ,

where πi : Xi → Xi−1 is the blow up at a regular center contained in MaxmultXi−1 .
Simplifications of the multiplicity exist if the characteristic of k is zero (see [37]),

and resolution of singularities follows from there. Recall that Hironaka’s line of
approach to resolution makes use of the Hilbert–Samuel function instead of the mul-
tiplicity [20, 21]. The centers in the sequence (1.1) are determined by resolution
functions. These are upper semi-continuous functions

fXi : Xi → (�,≥)

ζ �→ fXi (ζ )
, i = 0, . . . , L − 1

and their maximum value, max fXi , achieved in a closed regular subset Max fXi ⊆
MaxmultXi , selects the center to blow up. Hence, a simplification of the multiplicity
of X , X ← XL , is defined as a sequence of blow ups at regular centers.

X = X0 ← X1 ← · · · ← XL . (1.2)

so that

max fX0 > max fX1 > · · · > max fXL ,

where max fXi denotes the maximum value of fXi for i = 0, 1, . . . , L .
Usually, fX is defined at each point as a sequence of rational numbers. The first

coordinate of fX is the multiplicity, and the second is what we refer to as Hironaka’s
order function in dimension d, ord(d)

X , where d is the dimension of X . The function

ord(d)
X is a positive rational number. At a given singular point ζ ∈ X , fX (ζ ) would

look as follows:

fX (ζ ) = (multmζ (OX ,ζ ), ord
(d)
X (ζ ), . . .) ∈ N × Q

r , (1.3)

where multmζ (OX ,ζ ) denotes the multiplicity of the local ring OX ,ζ at the maximal

ideal mζ . The remaining coordinates of fX (ζ ) can be shown to depend on ord(d)
X (ζ )

(see [16, Theorem 7.6 and §7.11]), thus, we usually say that this is the main invariant
in constructive resolution. Therefore, the last set of coordinates can be though as a
refinement of the function ord(d)

X . As we will see, the function ord(d)
X can always be

defined if k a perfect field.
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Example 1.1 Let k be a perfect field, let S be a smooth k-algebra of dimension d and
define R = S[x] as the polynomial ring in one variable with coefficients in S. Suppose
X is a hypersurface in Spec(R) of maximum multiplicity m > 1 given by an equation
of the form

f (x) = xm + a1x
m−1 + · · · + am ∈ S[x].

Set β : Spec(R) → Spec(S) and let ζ ∈ X be a point of multiplicity m. Then one can
define a Rees algebra,R, on S, which we refer to as elimination algebra, that collects
information on the coefficients ai ∈ S, i = 1, . . . ,m. Hironaka’s order function at the
point ζ , ord(d)

X (ζ ), is defined usingR (see Section 6). If the characteristic of the field
k does not divide m, then, after a translation on the variable x , we can assume that the
equation is on Tschirnhausen form:

(x ′)m + a′
2(x

′)m−2 + · · · + a′
m ∈ S[x].

And, in such case, it can be shown that:

ord(d)
X (ζ ) := ordζ (R) = min

i=2,...,m

{
νβ(ζ )(a′

i )

i

}
, (1.4)

where νβ(ζ ) denotes the usual order at the regular local ring Smβ(ζ )
. As it turns out,

with the information provided by the elimination algebra R, which is generated by
weighted functions on the coefficients of f (x), one has all the information needed to
find a simplification of the multiplicity, at least in the characteristic zero case.

However, if the characteristic of the field is p, and if p dividesm, then, in general, the
equality (1.4) does not hold (even if, by chance, the polynomial were in Tschirnhausen
form). Philosophically speaking, the elimination algebraR collects information about
the coefficients of f (x), but somehow falls short in collecting the sufficient amount
of information when the characteristic is positive. This problem motivated in part
the papers [5, 6]. There, the function H-ord(d)

X was introduced by the first author in
collaboration with O. Villamayor. In [4], this function played a role in the proof of
desingularization of two dimensional varieties.

To give some insight on how H-ord(d)
X is defined, suppose, for simplicity, that

m = p� for some � ∈ Z≥1, f (x) = x p� + a1x p�−1 + · · · + ap� ∈ S[x], and let ζ be a
point of multiplicity p�. Then it can be proved that

ord(d)
X (ζ ) ≤ νβ(ζ )(ai )

i
, i = 1, . . . , p� − 1.

But there are examples where

νβ(ζ )(ap� )

p�
< ord(d)

X (ζ ),
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and the inequality remains even after considering translations of the form x ′ = x + s,
s ∈ Sq, where q = mβ(ζ ). This pathology is part of the reasonswhy the resolution strat-
egy (that works in characteristic zero) cannot be extended to the positive characteristic
case.

The previous discussion motivates the definition of the slope of f (x) at ζ as:

Sl( f (x))(ζ ) = min

{
νβ(ζ )(ap� )

p�
, ord(d)

X (ζ )

}
.

Changes of variables of the form x = x ′ + s with s ∈ Sq produce changes on the
coefficients of the equation:

f (x ′) = (x ′)p� + a′
1(x

′)p�−1 + · · · + a′
p� (1.5)

which may lead to a different value of the slope. However, it is possible to construct
an invariant from these numbers by setting:

H-ord(d)
X (ζ ) := sup

s∈Sq
{Sl( f (x + s))(ζ )}.

Moreover this supremum is a maximum since there is a change of variables as in (1.5)
for which

H-ord(d)
X (ζ ) = min

{
νβ(ζ )(a′

p� )

p�
, ord(d)

X (ζ )

}
.

H-ord(d)
X can be defined for any hypersurface with maximum multiplicity m, even

when m is not a p-th power (see Sect. 7). Observe that the previous discussion takes
care of the case in which X is locally a hypersurface at a singular point ζ , since,
after considering a suitable étale neighborhood of X at ζ , it can be assumed that the
equation defining X can be written as a polynomial in one variable with coefficients
in some regular ring S.

When X is an arbitrary algebraic d-dimensional variety defined over a perfect
field, H-ord(d)

X can also be defined (in étale topology) using [5, 6] and Villamayor’s
presentations of the multiplicity in [37]. In the latter paper it is proven that, locally,
in an étale neighborhood of a closed point ξ of maximum multiplicity m > 0, one
can find a smooth k-algebra S of dimension d and polynomials in different variables
xi with coefficients in S, fi (xi ) ∈ S[xi ], of degrees m1, . . . ,me, with the following
property: If we consider

f1(x1), . . . , fe(xe) ∈ R = S[x1, . . . , xe], (1.6)

then each fi (xi ) defines a hypersurface of maximum multiplicity mi , Hi = { fi = 0},
so that, X ⊂ Spec(R) and

Max multX = ∩iMax multHi
. (1.7)
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In fact, the link between X and the hypersurfaces Hi is stronger as we will see in
Sect. 4.

As in the hypersurface case, Hironaka’s order function, ord(d)
X , is defined by con-

structing an elimination algebra, R on S, again using certain weighted functions on
the coefficients of the polynomials fi (xi ) (see Sect. 6). And, in the same way, we have
that

H-ord(d)
X (ζ ) = min

i
H-ord(d)

Hi
(ζ ).

This approach will allow us to work in a situation very similar to the hypersurface
case. Details and definitions will be given in Sects. 7 and 8. The precise statement of
Villamayor’s result is given in Theorem 8.1, because it will be used in the proof of our
results.

Results
From our previous discussion, the value H-ord(d)

X (ζ ) codifies information from the
coefficients of the polynomials in (1.6) that only depends on the inclusion S ⊂ R.
Observe that the definition of the function H-ord(d)

X requires the use of local (étale)
embeddings, the selection of a sufficiently general finite projection to some smooth
scheme, and the construction of a local presentation of the multiplicity as in (1.7).
Neither of these choices is unique. As a consequence, some work has to be done to
show that the values of the function do not depend on any of these different choices.

In this paper we show that the value H-ord(d)
X (ζ ) can be read from the arc space of X

combined with the use of information provided by the asymptotic Samuel function at
the maximal ideal of the local ring at ζ . In particular, no étale extensions and no local
embeddings into smooth schemes are needed: the information is already present in the
cotangent space at ζ , mζ /m

2
ζ , and the space of arcs in X with center at ζ , L(X , ζ ).

More precisely, on the one hand, the value ord(d)
X (ζ ) can be read studying the Nash

multiplicity sequences of arcs in X with center ζ (this was studied in [9] by the last
two authors in collaboration with B. Pascual-Escudero).

On the other hand, studying the properties of the asymptotic Samuel function, we
came up with the notion of the Samuel slope of a local ring OX ,ζ , S-Sl(OX ,ζ ) (see
Definition 3.3). For a singular point, S-Sl(OX ,ζ ) ≥ 1, and we will make a distinc-
tion depending on whether S-Sl(OX ,ζ ) = 1 (non-extremal case) or S-Sl(OX ,ζ ) > 1
(extremal case). Actually, the previous distinction can be made after analyzing prop-
erties of the cotangent space mζ /m

2
ζ . A combination of these pieces of information

gives us enough input to compute H-ord(d)
X . Our results say that

H-ord(d)
X (ζ ) = min{S-Sl(OX ,ζ ), ord

(d)
X (ζ )},

but more precisely, we can say more:

Theorem 8.12. Let X be an equidimensional variety of dimension d defined over a
perfect field k. Let ζ ∈ X be a point of multiplicity m > 1. Then:
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• If S-Sl(OX ,ζ ) = 1, then

1 = S-Sl(OX ,ζ ) = H-ord(d)
X (ζ ) ≤ ord(d)

X (ζ ).

In addition, if ζ is a closed point then also ord(d)
X (ζ ) = 1.

• If S-Sl(OX ,ζ ) > 1, then

H-ord(d)
X (ζ ) = min{S-Sl(OX ,ζ ), ord

(d)
X (ζ )}.

We give an idea of the meaning of this result in the following lines. When the
characteristic is zero, the description of the maximum multiplicity locus of X in (1.7)
goes far beyond that equality. In fact, it can be proven that to lower the maximum
multiplicity of X it suffices toworkwith the elimination algebraR (which is defined on
a smooth scheme of dimension d). In other words, a simplification of the multiplicity
of the d-dimension variety X becomes a problem about finding a resolution of a
Rees algebra defined on a smooth d-dimensional scheme (see Sects. 4 and 6). If
ord(d)

X (ζ ) = 1, then this indicates that, either the multiplicity of X can be lowered
with a single blow up at a regular center, or else, a simplification of the multiplicity
of X is a problem that can be solved using certain Rees algebra defined in a (d − 1)-
dimensional smooth scheme (see Sect. 5.1 for details). Thus, our original problem is,
in principle, simpler to solve. And the theorem says that the condition ord(d)

X (ζ ) = 1
is already encrypted in mζ /m

2
ζ .

The second part of the theorem says that the relevant information from the coef-
ficients of the polynomials in (1.6), which, in general, only exists in a suitable étale
neighborhood of the point, can already be read through the Samuel slope of the orig-
inal local ring at the singular point and the sequences of Nash multiplicities of arcs
with center the given point.

Organization of the paper
Facts on the asymptotic Samuel function are given in Sect. 2, and in addition, we
study the behavior of this function when consider certain finite extension of rings
(Proposition 2.10). In Sect. 3 we define the notion of the Samuel slope of a local ring,
and we study his behavior under étale extensions (Propositions 3.10 and 3.11). Rees
algebras and their use in resolution of singularities are studied in Sects. 4, 5, and 6.
The function H-ord(d)

X is treated in Sect. 7. The proof of the main result is addressed
in Sect. 8, here our results from Sect. 3 are needed.

2 The asymptotic Samuel function

The asymptotic Samuel function was first introduced by Samuel in [30] and studied
afterwards by D. Rees in a series of papers [26–29]. Thorough expositions on this
topic can be found in [24, 32], see also [8] for a generalization to arbitrary filtrations.
We will use A to denote a commutative ring with 1.
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Definition 2.1 A function w : A → R ∪ {∞} is an order function if

(i) w( f + g) ≥ min{w( f ), w(g)}, for all f , g ∈ A,
(ii) w( f · g) ≥ w( f ) + w(g), for all f , g ∈ A,
(iii) w(0) = ∞ and w(1) = 0.

Remark 2.2 [24, Remark 0.3] If w is an order function then w(x) = w(−x) and if
w(x) �= w(y) then w(x + y) = min{w(x), w(y)}.
Example 2.3 Let I ⊂ A be a proper ideal. Then the function νI : A → R ∪ {∞}
defined by

νI ( f ) := sup{m ∈ N | f ∈ Im}

is an order function. If (A,m) is a local regular ring, then νm is just the usual order
function.

In general, for n ∈ N>1, the inequality νI ( f n) ≥ nνI ( f ) can be strict. This can
be seen for instance by considering the following example. Let k be a field, and let
A = k[x, y]/〈x2 − y3〉. Set m = 〈x, y〉. Then νm(x) = 1, but νm(x2) = 3. The
asymptotic Samuel function is a normalized version of the previous order that gets
around this problem:

Definition 2.4 Let I ⊂ A be a proper ideal. The asymptotic Samuel function at I ,
ν̄I : A → R ∪ {∞}, is defined as:

ν̄I ( f ) = lim
n→∞

νI ( f n)

n
, f ∈ A. (2.1)

It can be shown that the limit (2.1) exists in R≥0 ∪ {∞} for any ideal I ⊂ A (see
[24, Lemma 0.11]). Again, if (A,m) is a local regular ring, then νm is just the usual
order function. As indicated before, this is an order function with nice properties:

Proposition 2.5 [24, Corollary 0.16, Proposition 0.19] The function ν̄I is an order
function. Furthermore, it satisfies the following properties for each f ∈ A and each
r ∈ N:

(i) ν̄I ( f r ) = r ν̄I ( f );

(ii) ν̄I r ( f ) = 1

r
ν̄I ( f ).

The asymptotic Samuel function on Noetherian rings
When A is Noetherian, the number ν I ( f ) measures how deep the element f lies in
the integral closure of powers of I . In fact, the following results hold:

Proposition 2.6 [32, Corollary 6.9.1] Suppose A is Noetherian. Then for a proper
ideal I ⊂ A and every a ∈ N,

I a = { f ∈ R | ν̄I ( f ) ≥ a}.

123



A. Benito et al.

Corollary 2.7 Let A be a Noetherian ring and I ⊂ A a proper ideal. If f ∈ A then

ν̄I ( f ) ≥ a

b
⇐⇒ f b ∈ I a .

The previous characterization of ν I leads to the following result that give a valuative
version of the function.

Theorem 2.8 Let A beaNoetherian ring, and let I ⊂ Abeaproper ideal not contained
in a minimal prime of A. Let v1, . . . , vs be a set of Rees valuations of the ideal I . If
f ∈ A then

ν̄I ( f ) = min

{
vi ( f )

vi (I )
| i = 1, . . . , s

}
.

Proof See [32, Lemma 10.1.5, Theorem 10.2.2] and [31, Proposition 2.2]. ��
Remark 2.9 Let A be a Noetherian reduced ring, and let I ⊂ A be a proper ideal not
contained in any minimal prime of A. Set X = Spec(A) and let X be the normalized
blow up of X at the ideal I . Then, the sheaf of ideals IOX is invertible and, since X is
normal, there is a finite number of reduced and irreducible hypersurfaces H1, . . . , H�

in X , and there exists an open set U ⊂ X , such that X\U has codimension at least 2
such that:

IOU = I (H1)
c1 · · · I (H�)

c� |U

for some integers c1, . . . , c� ∈ Z≥1. Denote by vi the valuation associated to OX ,hi
,

where hi is the generic point of Hi . Then note that a subset of {v1, . . . , v�} has to be
a Rees valuation set of I . Therefore, if f ∈ A then

ν̄I ( f ) = min

{
vi ( f )

vi (I )
| i = 1, . . . , �

}
.

See [32, Theorem 10.2.2] and [31, Theorem 2.1, Proposition 2.2].

As an application of Remark 2.9 we can prove the following result about the
behavior of the ν function on products of elements. This will be used in the proof
of Theorem 8.12.

Proposition 2.10 Let A → C be ring homomorphism of Noetherian rings, where A
is regular and C is reduced. Let q ∈ Spec(C) and n = q ∩ A. Assume that nC is a
reduction of q ⊂ C, and that A/n is regular. If a ∈ A and f ∈ C then:

ν̄q(a) = ν̄n(a), and ν̄q(a f ) = ν̄q(a) + ν̄q( f ).
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Proof Set X = Spec(C) and Z = Spec(A). Let X be the normalized blow up of X at
the ideal q and let Z be the blow up of Z at n. Then there is a commutative diagram

X X

Z Z ,

(see [3, Lemma 4.2]). The exceptional divisor E of the blow up Z → Z defines only a
valuation v0 in A. The exceptional divisor of X → X defines valuations v1, . . . , v� as
in Remark 2.9. Note that every valuation vi is an extension of v0 to C . Then if a ∈ A:

ν̄n(a) = v0(a)

v0(n)
= vi (a)

vi (n)
= ν̄q(a) for all i = 1, . . . , �.

On the other hand, for each i ∈ {1, . . . , �},

vi (a f )

vi (q)
= vi (a)

vi (q)
+ vi ( f )

vi (q)
= ν̄q(a) + vi ( f )

vi (q)
.

And, again, by Remark 2.9 be have the required equality. ��

2.11 Notation

Along this paper we will interested in computing the function order ν at points ζ in a
variety X over a field k. We will be distinguishing between νζ and νpζ where pζ is the
prime defining ζ in an affine open set of X . In the first case, for an element f ∈ OX ,ζ ,
νζ ( f ) is computed using the function ν for the local ring OX ,ζ at the maximal ideal
mζ = pζOX ,ζ . In the second case, for an element f ∈ B, where Spec(B) ⊂ X is an
affine open containing ζ , νpζ is computed using the function ν for the ring B at the
prime ideal pζ . Note that νζ ( f ) ≥ νpζ ( f ). If the local ring OX ,ζ is regular then we
will use the standard notation νζ for the usual order function, and then νζ = νζ .

3 The Samuel slope of a local ring

Let (A,m) be a localNoetherian ring.Wewill focus on some elements in the associated
graded ring Grm(A)which are nilpotent. They will be used to define the Samuel slope
of the local ring.

3.1 Degree one nilpotents in Grm(A) [24, §0.7, §0.21 and §0.22]

For a local ring (A,m), consider

m(≥1) := {g ∈ A | ν̄m(g) ≥ 1}, and m(>1) := {g ∈ A | ν̄m(g) > 1}.
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Note thatm(≥1) andm(>1) are ideals in A. There is a natural morphism of k(m)-vector
spaces,

λm : m/m2 −→ m(≥1)/m(>1)

f + m2 �→ λm( f + m2) := f + m(>1),

whose kernel is the subspace generated by the degree one nilpotents of Grm(A).

Remark 3.2 If A is a local regular ring, then νm = νm is the usual order function
and λm is an isomorphism. If A is not regular, then we have that dimk(m) m/m2 =
d + t , with t > 0 being the excess of the embedding dimension of (A,m). Note that
d = dim(A) = dim(Grm(A)) = dim(Grm(A))red. Therefore, if x1, . . . , xd+t ∈ m
is a minimal set of generators, then there are at least d elements xi1 , . . . , xid , such
that their classes in Grm(A) are not nilpotent. This means that νm(xi j ) = 1, for
j = 1, . . . , d.

Assume that νm(x1) = · · · = νm(xd) = 1. The minimum of νm(xd+1), . . . ,

νm(xd+t ) defines a slope with respect to the chosen generators. The Samuel slope is
the supremum of all these possible coordinate dependent slopes.

Definition 3.3 Let (A,m) is a Noetherian local ring of dimension d and embedding
dimension d + t , with t > 0. Let x = {x1, . . . , xd+t } ⊂ m be a minimal set of
generators of m. We define the slope with respect to x as

Slx(A) := min{νm(xd+1), . . . , νm(xd+t )}.

The Samuel slope of the local ring A is

S-Sl(A) := sup
x

Slx(A) = sup
x

{min {ν̄m(xd+1), . . . , ν̄m(xd+t )}} ,

where the supremum is taken over all possible minimal set of generators x of m.

Example 3.4 Let R = k[x1, x2, x3]〈x1,x2,x3〉, set A = R/〈x22 + x51 , x
2
3 + x71 〉, and let

m ⊂ A be the maximal ideal. Then νm(x1) = 1, νm(x2) = 5/2 and νm(x3) = 7/2. It
can be checked that S-Sl(A) = 5/2.

Remark 3.5 Let � be the set of all possible minimal ordered sets of generators x ofm.
For x = {x1, . . . , xd+t } ∈ � let α(x) := #{i | νm(xi ) > 1}. Note that

rm := dimk(m) ker(λm) = max {α(x) | x ∈ �} .

Since, by Remark 3.2, in any set of minimal generators there are at least d elements
with νm(xi ) = 1, we have that

0 ≤ dimk(m) ker(λm) ≤ t .
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Definition 3.6 Let (A,m) be a Noetherian local ring. Suppose that the embedding
dimension of (A,m) is d + t with t > 0. We say that (A,m) is in the extremal
case if dim ker(λm) = t . Otherwise we say that (A,m) is in the non-extremal case.
If dim ker(λm) = t , then we say that a sequence of elements γ1, . . . , γt ∈ m is
a λm-sequence if their classes γ̄i ∈ m/m2 form a basis of ker(λm). In other words,
γ1, . . . , γt ∈ m is aλm-sequence if their classes inGrm(A) are nilpotent and γ1, . . . , γt
are part of a minimal set of generators of m.

Remark 3.7 Let (A,m) be aNoetherian local ring. Suppose that the embedding dimen-
sion of (A,m) is d + t with t > 0. We can express the Samuel slope in terms of
λm-sequences as follows:

• If dim ker(λm) < t (non-extremal case), then S-Sl(A) = 1;
• If dim ker(λm) = t (extremal case), then

S-Sl(A) = sup
λm-sequence

{min {ν̄m(γ1), . . . , ν̄m(γt )}} ,

where the supremum is taken over all the λm-sequences in the local ring (A,m).

Remark 3.8 Suppose that X is an equidimensional variety of dimension d defined over
a perfect field k, and ζ ∈ X a (non-necessarily closed) point of multiplicity m > 1.
Set dζ = dim(OX ,ζ ) and dζ + tζ = dimk(ζ )(mζ /m

2
ζ ) be the embedding dimension at

ζ , where k(ζ ) denotes the residue field of OX ,ζ . The Samuel slope of X at ζ is the
Samuel slope of the local ring OX ,ζ , and a λζ -sequence will be a λmζ -sequence.

The Samuel slope and étale extensions
To prove Theorem 8.12 we will have to work in an étale neighborhood of a given
point. To be able to use étale extensions in our arguments, we will first prove that the
dimension of ker(λζ ) is an invariant under such extensions. From here, it follows that
if X ′ → X is an étale morphism mapping ζ ′ ∈ X ′ to ζ ∈ X then S-Sl(OX ,ξ ) ≤
S-Sl(OX ′,ξ ′). We do not know if the equality holds in general. However we can prove
it for some special cases, which will be enough for our purposes.

Lemma 3.9 Let ϕ : (A,m) → (A′,m′) be an étale homomorphism of Noetherian
local rings. Then

rm = dimk(m) ker(λm) = rm′ = dimk(m′) ker(λm′).

Proof Let N (resp. N ′) be the nilradical of Grm(A) (resp. of Grm′(A′)). Note that
Grm′(A′) = k(m′)⊗Grm(A) is an étale extension of Grm(A). Therefore we have that
N ′ = N Grm′(A′). The lemma follows since ker(λm) = (N + m2)/m2. ��
Proposition 3.10 Letϕ : (A,m) → (A′,m′)bean étale homomorphismofNoetherian
local rings. If k(m) = k(m′), then

S-Sl(A) = S-Sl(A′).
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Proof Let d be the Krull dimension of A. Suppose that dimk(m) m/m2 = d + t , with
t > 0. By Lemma 3.9, the result is immediate if dim ker(λm) < t , and in fact, in this
case, the hypothesis k(m) = k(m′) is not needed.

Suppose now that dim ker(λm) = t . Since k(m) = k(m′), it follows that Grm(A) =
Grm′(A′). Observe that if θ ′ ∈ m′ then, for each n ∈ N, there exists some ρn ∈ m such
that θ ′−ρn ∈ (m′)n . This means that there is some n � 0 such that ν̄m(ρn) = ν̄m′(θ ′).
From here we can conclude that given a λm′-sequence θ ′

1, . . . , θ
′
t ∈ m′ we can always

find θ1, . . . , θt ∈ m such that :

• θ1, . . . , θt is a λm-sequence of (A,m) and
• ν̄m(θi ) = ν̄m′(θ ′

i ) for i = 1, . . . , t .

The result now follows by the definition of the Samuel slope and Remark 3.7. ��
The following result will allow us to compare the Samuel slope of a local ring, at a

non closed point of a variety, before and after an étale extension (at least under some
special assumptions). This will be used in the proof of Theorem 8.12.

Proposition 3.11 Let (A,m) be a formally d-equidimensional local Noetherian ring.
Let p ⊂ A be a prime ideal such that the quotient ring A/p is a (d − r)-dimensional
regular ring, with r > 0, and multm(A) = multpAp(Ap) = m > 1. Suppose that:

• The excess of embedding dimension of (A,m) is t and coincides with the excess
of embedding dimension of (Ap, pAp);

• Both (A,m) and (Ap, pAp) are in the extremal case.

Let ϕ : (A,m) → (A′,m′) be an étale homomorphism of local rings, and p′ ⊂ A′ be
a prime ideal such that p′ ∩ A = p. Assume that:

• k(m) = k(m′);
• There is λm′-sequence at A′, γ ′

1, . . . , γ
′
t , that is also a λp′A′

p′ -sequence.

Then there is a λpAp-sequence at A, γ1, . . . , γt , such that:

min
i

{νp(γi )} ≥ min
i

{νp′(γ ′
i )}, and min

i
{νpAp(γi )} ≥ min

i
{νp′A′

p′ (γ
′
i )}.

In particular S-Sl(Ap) ≥ mini {νp′A′
p′ (γ

′
i )}.

Proof We divide the proof in three steps:
Step 1 We claim that there are elements y1, . . . , yr , yr+1, . . . , yd ∈ A′ such that

m′ = 〈y1, . . . , yd , γ ′
1, . . . , γ

′
t 〉 and p′ = 〈y1, . . . , yr , γ ′

1, . . . , γ
′
t 〉.

To prove the claim observe first that A′ := A′/p′ is a regular local ring of dimen-
sion (d − r). Therefore, we have that m′ := m′/p′ = 〈yr+1, . . . , yd〉 for some
yr+1, . . . , yd ∈ A′. Thus

m′ = p′ + 〈yr+1, . . . , yd〉,
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where yr+1, . . . , yd ∈ A′ are liftings of yr+1, . . . , yd . Notice that νm′(yi ) = 1 for
i = r + 1, . . . , d (because this is so at A′). Since γ ′

i ∈ p′ and νm′(γ ′
i ) > 1, we should

be able to find r elements, y1, . . . , yr in p′, with νm′(yi ) = 1 and so that,

m′ = 〈y1, . . . , yd〉 + 〈γ ′
1, . . . , γ

′
t 〉.

Now we have that,

〈y1, . . . , yr 〉 + 〈γ ′
1, . . . , γ

′
t 〉 ⊂ p′.

To see that the last containment is an equality it suffices to prove that q :=
〈y1, . . . , yr 〉 + 〈γ ′

1, . . . , γ
′
t 〉 is prime and that it defines a (d − r)-dimensional closed

subscheme at Spec(B ′). But this is immediate since

d − r = dim(A′/p′) ≤ dim(A′/q) ≤ d − r ,

where that last inequality follows becausem′/q is generated by classes of yr+1, . . . , yd .
Step 2 Consider the surjective morphism of graded k(m′)-algebras:

D′ := ⊕
n≥0

p′n/p′nm′[Tr+1, . . . , Td ] ψ ′
C′ := ⊕

n≥0
m′n/m′n+1 0.

where the Ti are variables mapping to the class of yi in m′/m′2, for i = r + 1, . . . , d.
We claim that

Nil(D′) = 〈[γ ′
1]D′ , . . . , [γ ′

t ]D′ 〉, (3.1)

where [γ ′
i ]D′ denotes the class of γ ′

i in p
′/p′m′ for i = 1, . . . , t , and that

Nil(C′) = 〈[γ ′
1]C′ , . . . , [γ ′

t ]C′ 〉, (3.2)

where [γ ′
i ]C′ denotes the class of γ ′

i in m
′/m′2 for i = 1, . . . , t .

To prove the claim, consider the ring of polynomials in d variables over k(m′)
localized at the origin, T := k(m′)[x1, . . . , xd ]〈x1,...,xd 〉, and the morphism of k(m′)-
algebras,

T = k(m′)[x1, . . . , xd ]〈x1,...,xd 〉 A′

xi yi ,

(3.3)

(here we are using the notation from step 1). Setting n := 〈x1, . . . , xd〉 ⊂ T , the
previous morphism induces another morphism of k(m′)-algebras between the graded
rings, Grn(T ) and Grm′(A′),

T := Grn(T )
ρξ ′

Grm′(A′) = C′

[xi ]1 [yi ]1,
(3.4)

123



A. Benito et al.

where [xi ]1 (resp. [yi ]1) denotes the class of xi at n/n2 (resp.m′/m′2) for i = 1, . . . , d.
Via this morphism, Grm′(A′) is a finite extension of Grn(T ) (here we use the fact that
the γ ′

i define nilpotents at Grm′(A′)).
Now set b := 〈x1, . . . , xr 〉 ⊂ T . Then we have the following commutative diagram

of graded rings:

D′ = ⊕
n≥0

p′n/p′nm′[Tr+1, . . . , Td ] ψ ′
C′ = ⊕

n≥0
m′n/m′n+1 0

F := ⊕
n≥0

bn/bnn[Tr+1, . . . , Td ] φ

ρη′

T = ⊕
n≥0

nn/nn+1

ρξ ′

0.

By [25, §5, Theorem 5], ker(ψ ′) is nilpotent. Observe that φ is an isomorphism and
that D′ is a finite extension of F (here we use the fact that each [γ ′

i ]C′ is nilpotent at
C′ and that ker(ψ ′) is nilpotent: hence each [γ ′

i ]D′ is nilpotent at D′). Thus

〈[γ ′
1]D′ , . . . , [γ ′

t ]D′ 〉 ⊂ Nil(D′) and 〈[γ ′
1]C′ , . . . , [γ ′

t ]C′ 〉 ⊂ Nil(C′).

To check that the containments are equalities it suffices to observe that

D′/〈[γ ′
1]D′, . . . , [γ ′

t ]D′ 〉 � F and C′/〈[γ ′
1]D′, . . . , [γ ′

t ]D′ 〉 � T.

Step 3. Consider the commutative diagram,

D′ = ⊕
n≥0

p′n/p′nm′[T ′
r+1, . . . , T

′
d ]

ψ ′
C′ = ⊕

n≥0
m′n/m′n+1 0

D := ⊕
n≥0

pn/pnm[Tr+1, . . . , Td ] ψ
C := ⊕

n≥0
mn/mn+1 0,

paying attention to the sequence for the n-th degree part from D′ and D:

[D′]n = p′n/p′nm′ ε′
n

[ψ ′]n

m′n/p′nm′ π ′
n

m′n/m′n+1 0

[D]n = pn/pnm
εn

[ψ]n

mn/pnm

ιn

πn
mn/mn+1 0
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Now, for each i ∈ {1, . . . , t}, choose [κi,1]1 ∈ m/pm so that π1([κi,1]1) = [γ ′
i ]C′ ∈

m/m2 = m′/m′2. Then if [γ ′
i ]1 denotes the class of γ ′

i in m′/p′m′, we have that
[γ ′

i ]1 − ι1([κi,1]1) ∈ ker(π ′
1) = ε′

1(ker(ψ
′
1)). Notice that from Step 2 and [25, §5,

Theorem 5], it follows that ker(π ′) ⊂ 〈[γ ′
1]1, . . . , [γ ′

t ]1〉.
Thus, selecting κi,1 ∈ A as some lifting of [κi,1]1 we have that

γ ′
i − κi,1 ∈ 〈γ ′

1, . . . , γ
′
t 〉 + αi,2

for some αi,2 ∈ p′m′. Notice that it follows from here that κi,1 ∈ p.
Since αi,2 ∈ p′m′ ⊂ m′2 we now choose [κi,2]2 ∈ m2/p2m so that

π2([κi,2]2) = [αi,2]C ∈ m2/m3 = m′2/m′3.

Then

[αi,2]2 − ι2([κi,2]2) ∈ ker(π ′
2) = ε′

2(kerψ
′
2).

And, selecting some lifting κi,2 ∈ A of [κi,2]2, we have that

αi,2 − κi,2 ∈ 〈γ ′
1, . . . , γ

′
t 〉 + αi,3

with αi,3 ∈ p′2m′. From here it follows that κi,2 ∈ p. Iterating this procedure, we find
that

γ ′
i − (κi,1 + κi,2 + . . . + κi,n) ∈ 〈γ ′

1, . . . , γ
′
t 〉 + αi,n

with αi,n ∈ p′nm′, and κi, j ∈ p. Taking n � 0, and setting

γi := κi,1 + . . . + κi,n

we have that γi ∈ p for i = 1, . . . , t , that:

min
i=1,...,t

{
νp(γi )

} = min
i=1,...,t

{
νp′(γi )

} ≥ min
i=1,...,t

{
νp′(γ ′

i )
}

> 1,

min
i=1,...,t

{
νpAp(γi )

} = min
i=1,...,t

{
νp′A′

p′ (γi )
}

≥ min
i=1,...,t

{
νp′A′

p′ (γ
′
i )

}
> 1,

and that

min
i=1,...,t

{νm(γi )} = min
i=1,...,t

{νm′(γi )} ≥ min
i=1,...,t

{
νm′(γ ′

i )
}

> 1.

In particular, νpAp(γi ) > 1 and νm(γi ) > 1 for i = 1, . . . , t . By construction,

[γi ]C = [κi,1]C = [γ ′
i ]C′ ,
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fromwhere it follows that γ1, . . . , γt ∈ m form both aλm-sequence andλm′ -sequence.
We also have that

m′ = 〈y1, . . . , yd〉 + 〈γ1, . . . , γt 〉, and that 〈y1, . . . , yr 〉 + 〈γ1, . . . , γt 〉 ⊂ p′.

To show that the last inclusion is an equality we can argue as in Step 1, to check that

A′/ (〈y1, . . . , yr 〉 + 〈γ1, . . . , γt 〉)

is a (d − r)-dimensional regular local ring. Thus {y1, . . . , yr , γ1, . . . , γt } form a min-
imal set of generators for p′A′

p′ ⊂ A′
p′ , hence γ1, . . . , γt ∈ p form a λp′A′

p′ -sequence

and therefore a λpAp-sequence. ��

4 Rees algebras and their use in resolution

The stratum defined by themaximum value of themultiplicity function of a variety can
be described using equations and weights [37]; and the same occurs with the Hilbert-
Samuel function [22]. As we will see, Rees algebras happen to be a a suitable tool to
work in this setting, opening the possibility to using different algebraic techniques.
We refer to [17, 36] for further details.

Definition 4.1 Let A be a Noetherian ring. A Rees algebra G over A is a finitely
generated graded A-algebra, G = ⊕

l∈N IlWl ⊂ A[W ], for some ideals Il ∈ A,
l ∈ N such that I0 = A and Il I j ⊂ Il+ j , for all l, j ∈ N. Here, W is just a
variable to keep track of the degree of the ideals Il . Since G is finitely generated, there
exist some f1, . . . , fr ∈ A and positive integers (weights) n1, . . . , nr ∈ N such that
G = A[ f1Wn1 , . . . , frWnr ]. The previous definition extends to Noetherian schemes
in the obvious manner.

In the following lines, we assume that G = ⊕l≥0 IlWl is a Rees algebra defined on
a scheme V that is smooth over a perfect field k (whenever the conditions on V are
relaxed it will be explicitly indicated). If we assume V to be affine, then we will write
V = Spec(R).

The singular locus of G, Sing(G), is the closed set given by all the points ζ ∈ V
such that νζ (Il) ≥ l, ∀l ∈ N, where νζ (I ) denotes the order of the ideal I in the
regular local ring OV ,ζ . If, locally, G = R[ f1Wn1 , . . . , frWnr ], then Sing(G) ={
ζ ∈ Spec(R) | νζ ( fi ) ≥ ni , i = 1, . . . , r

} ⊂ V (see [17, Proposition 1.4]).

Example 4.2 Suppose that X ⊂ Spec(R) = V is a hypersurface with I (X) = ( f ).
Let m > 1 be the maximum multiplicity at the points of X . Then the singular locus of
G = R[ f Wm] is the set of points of X having maximummultiplicitym. This idea can
begeneralized as follows. Suppose X is ad-dimensional variety over a perfect field, and
let maxmultX be the maximum value of the multiplicity at points of X , MultX . Then
as, explained in the Introduction, using the polynomials in (1.6) we have that if G :=
OV [ f1Wm1 , . . . , feWme ], then Sing(G) = Max multX = ⋂r

j=1 Max mult{ f j=0}.
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The precise statement of this result will be given in Sect. 8, since it will play a central
role in the proof of Theorem 8.12.

In the previous example, the link between the closed set of points of worst singu-
larities of X and the singular loci of the corresponding Rees algebras is much stronger
than just an equality of closed sets Sing(G) = Max multX . In particular, by defining
a suitable law of transformations of Rees algebras after a blow up, we can establish
the same link between the closed set of points of worst singularities of the strict trans-
form of X , and the singular locus of the transform of the corresponding Rees algebra
(at least if the singularities of X have not improved). This motivates the following
definitions.

Definition 4.3 Let G be a Rees algebra on a smooth scheme V . A G-permissible blow
up, V

π←− V1, is the blow up of V at a smooth closed subset Y ⊂ V contained in
Sing(G) (a permissible center for G). We use G1 to denote the (weighted) transform
of G by π , which is defined as G1 := ⊕

l∈N Il,1Wl , where Il,1 = IlOV1 · I (E)−l , for

l ∈ N and E the exceptional divisor of the blow up V
π← V1.

Definition 4.4 Let G be a Rees algebra over a smooth scheme V . A resolution of G is
a finite sequence of blow ups

V = V0 V1
π1

. . .
π2

VL
πL

G = G0 G1 . . . GL

(4.1)

at permissible centers Yi ⊂ Sing(Gi ), i = 0, . . . , L − 1, such that Sing(GL) = ∅,
and such that the exceptional divisor of the composition V0 ←− VL is a union of
hypersurfaces with normal crossings.

Remark 4.5 The Rees algebras of Example 4.2 are defined so that a resolution of
the corresponding Rees algebra, G (4.1), induces a sequence of blow ups on X , that
ultimately leads to a simplification of the multiplicity of X as in (1.1). Notice that for
these sequences Sing(Gi ) = MaxmultXi , for i = 0, 1, . . . , L .

Resolution of Rees algebras is known to exists when V is a smooth scheme defined
over a field of characteristic zero [20–22]. In [7, 33] different algorithms of resolution
of Rees algebras are presented (see also [15, 16]). More details will be given in the
next section.

4.6 On the representation of themultiplicity by Rees algebras

In addition to permissible blow ups, there are other morphisms that play a role in
resolution. These are involved in the arguments of Hironaka’s trick, and they are
used to justify that the resolution invariants are well defined [10, §21]. Some of these
invariants will be treated in the following sections. Apart from permissible blow ups,
these morphisms are multiplications by an affine line or restrictions to open subsets.
A concatenation of any of these three kinds of morphisms is what we call a local
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sequence. Therefore, for a given Rees algebra G defined on a smooth scheme V , a
G-local sequence over V is a sequence of transformations over V ,

(V = V0,G = G0) (V1,G1)π0 · · ·π1
(VL ,GL),

πL−1
(4.2)

where each πi is either a permissible blow up for Gi ⊂ OVi [W ] (and Gi+1 is the
transform of Gi in the sense of Definition 4.3), or a multiplication by a line or a
restriction to some open subset of Vi (and then Gi+1 is the pull-back of Gi in Vi+1). If
we assume that sequence (4.1) is a G-local sequence over V (instead of just a sequence
of permissible blow ups), with G as in Example 4.5, then the equality Max multXi

=
Sing(Gi ) still holds for each i = 1, . . . , L − 1. Because of this fact we say that the
pair (V ,G) represents the closed set Max multX , since there is such a strong link
between the two closed sets Sing(Gi ) and Max multXi

along the sequence. The same
can be said about the representation of the Hilbert-Samuel function in [22]. See [14]
for precise definitions and results on local presentations.

4.7 Uniqueness of the representations of themultiplicity

The Rees algebra of Example 4.2 is not the unique representing Max multX . To see
this, we consider two operations:

(i) Rees algebras and integral closure Two Rees algebras over a (not necessar-
ily regular) Noetherian ring R are integrally equivalent if their integral closure in
Quot(R)[W ] coincide. We use G for the integral closure of G, which can be shown to
also be a Rees algebra over R [11, §1.1]. It is worth noticing that for a given Rees alge-
bra G = ⊕l IlWl there is always some integer N such that G is finite over R[INW N ]
(see [17, Remark 1.3]).

(ii) Rees algebras and saturation by differential operators Let β : V → V ′ be
a smooth morphism of smooth schemes defined over a perfect field k with dim V >

dim V ′. Then, for any integer s, the sheaf of relative differential operators of order
at most s, DiffsV /V ′ , is locally free over V [18, (4) § 16.11]. We will say that a sheaf

of OV -Rees algebras G = ⊕l IlWl is a β-differential Rees algebra if there is an
affine covering {Ui } of V , such that for every homogeneous element f W N ∈ G and
every � ∈ DiffsV /V ′(Ui ) with s < N , we have that �( f )WN−s ∈ G (in particular,

Ii+1 ⊂ Ii since Diff0V /V ′ ⊂ Diff1V /V ′ ). Given an arbitrary Rees algebra G over V
there is a natural way to construct a β-relative differential algebra with the property
of being the smallest containing G, and we will denote it by DiffV /V ′(G) (see [35,
Theorem 2.7]). Relative differential Rees algebras will play a role in the definition of
the so called elimination algebras, see Sect. 6.

We say that G is differentially closed if it is closed by the action of the sheaf
of (absolute) differential operators DiffV /k . We use Diff(G) to denote the smallest
differential Rees algebra containing G (its differential closure). See [35, Theorem 3.4]
for the existence and construction.

It can be shown that Sing(G) = Sing(G) = Sing(Diff(G)), (see [36, Proposition
4.4 (1), (3)]). In addition, it can be checked that if G represents Max multX as in

123



The asymptotic Samuel function and invariants of…

Example 4.2, then the integral closure of Diff(G) is the largest algebra in V with
this property. The previous discussion motivates the following definition: two Rees
algebras on V , G and H, are said to be weakly equivalent if: (i) they share the same
singular locus; (ii) any G-local sequence is an H-local sequence, and vice versa, and
they share the same singular locus after any G-(respectively H-)local sequence. It
can be proven that two Rees algebras G and H are weakly equivalent if and only
if Diff(G) = Diff(H) (see [11, 23]), and, in particular, a resolution of one of them
induces a resolution of the other and vice versa.

5 Algorithmic resolution and resolution invariants

In characteristic zero, an algorithmic resolution of Rees algebras requires the definition
of resolution invariants. These are used to assign a string of numbers to each point ζ ∈
Max multX = Sing(G). In this way one can define an upper semi-continuous function
g : Sing(G) → (�,≥), where � is some well ordered set, and whose maximum value
determines the first center to blow up. This function is constructed so that its maximum
value drops after each blow up. As a consequence, a resolution of G is achieved after
a finite number of steps.

The most important resolution invariant is Hironaka’s order function at a point
ζ ∈ Sing(G) which we also refer as the order of the Rees algebra G at ζ , and it is
defined as ordζ (G) := inf l≥0

{
νζ (Il)/l

}
. If G = R[ f1Wm1 , . . . , frWmr ] and ζ ∈

Sing(G) then by [17, Proposition 6.4.1]), ordζ (G) = mini=1,...,r
{
νζ ( fi )/mi

}
. Any

other invariant involved in the algorithmic resolution of a Rees algebra G derives from
Hironaka’s order function. Finally, it can be proved that for any point ζ ∈ Sing(G)

we have ordζ (G) = ordζ (G) = ordζ (Diff(G)) (see [17, Remark 3.5, Proposition 6.4
(2)]).

It can be shown that two Rees algebras that are weakly equivalent share the same
resolution invariants and therefore a resolution of one induces a resolution of the other.
In particular, this is the case for G, G and Diff(G) [17, Proposition 3.4, Theorem 4.1,
Theorem 7.18], [38].

5.1 The role of Hironaka’s order in resolution and the use of induction in the
dimension

Suppose G is defined on a smooth scheme V of dimension n, and assume that
ordξ (G) = 1 for some closed point ξ ∈ Sing(G). Then, there are two possibilities:

(i) Either the point ξ is contained in some codimension-one component Y of Sing(G);
in such case it can be proven that Y is smooth, and the blow up at Y induces a
resolution of G, locally at ξ [12, Lemma 13.2];

(ii) Otherwise, it can be shown that, locally, in an étale neighborhood of ξ , there is a
smooth projection from V to some smooth (n−1)-dimensional scheme Z , together
with a new Rees algebra R on Z such that a resolution of R induces a resolution
of G and vice versa, at least if the characteristic is zero. This is what we call an
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elimination algebra of G and details on its construction will be given in the next
section.

Case (ii) indicates that resolution of Rees algebras can be addressed by induction
on the dimension when the characteristic is zero.

It is worthwhile mentioning that if the maximum order at the points of Sing(G)

is larger than one, then one can attach a new Rees algebra H to the closed points of
maximum order, Max ord(G), so that Sing(H) = Max ord(G), and so that the equality
is preserved by H-local sequences. Thus H is unique up to weak equivalence. This
new Rees algebra H is constructed so that its maximum order equal to one, and the
arguments in (i) and (ii) can be applied to it.

6 Elimination algebras

Along this and the following sections, V (n) denotes an n-dimensional smooth scheme
over a perfect field k, and G(n) = ⊕l IlWl a Rees algebra over V (n). Our purpose is to
search for smooth morphisms from V (n) to some (n−e)-dimensional smooth scheme,
for some e ≥ 1, so that Sing(G(n)) is homeomorphic to its image via β, and so that this
condition is preserved by permissible blow ups in some sense that will be specified
below. One way to find such smooth morphisms is by considering morphisms from
V (n) which are somehow transversal to G(n). Transversality is expressed in terms of
the tangent cone of G(n) at a given point of its singular locus (see Definition 6.4 below).

Let ξ ∈ Sing(G(n)) be a closed point, and let Grmξ (OV (n),ξ )
∼= k′[Y1, . . . , Yn]

be the graded ring of OV (n),ξ , where k′ is the residue field at ξ . Observe that
Spec(Grmξ (OV (n),ξ )) = TV (n),ξ , the tangent space of V

(n) at ξ .

Definition 6.1 Suppose ξ ∈ Sing(G(n)) is a closed point with ordξ (G(n)) = 1. The
initial ideal or tangent ideal of G(n) at ξ , InξG(n), is the homogeneous ideal of
Grmξ (OV (n),ξ ) generated by Inξ (Il) := (Il + ml+1

ξ )/ml+1
ξ , for all l ≥ 1. The tan-

gent cone of G(n) at ξ , CG(n),ξ , is the closed subset ofTV (n),ξ defined by the initial ideal
of G(n) at ξ .

Definition 6.2 [35, 4.2] The τ -invariant of G(n) at the closed point ξ is the minimum
number of variables in Grmξ (OV (n),ξ ) needed to generate Inξ (G(n)). This in turn is the
codimension of the largest linear subspace LG(n),ξ ⊂ CG(n),ξ such that u + v ∈ CG(n),ξ

for all u ∈ CG(n),ξ and v ∈ LG(n),ξ . The τ -invariant of G(n) at ξ is denoted by τG(n),ξ .

Definition 6.3 Let ξ ∈ Sing(G(n)) be a closed point with τG(n),ξ ≥ e ≥ 1. A local
smooth projection to a (n − e)-dimensional (smooth) scheme V (n−e), β : V (n) →
V (n−e), is G(n)-transversal at ξ if ker(dξ β) ∩ CG(n),ξ = {0} ⊂ TV (n),ξ , where dξ β

denotes the differential of β at the point ξ .

Definition 6.4 Let ξ ∈ Sing G(n) be a closed point with τG(n),ξ ≥ e ≥ 1. A local
smooth projection to an (n − e)-dimensional (smooth) scheme V (n−e), β : V (n) →
V (n−e), is G(n)-admissible locally at ξ if the following conditions hold:
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(1) The point ξ is not contained in any codimension-e-component of Sing G(n);
(2) The Rees algebra G(n) is a β-relative differential algebra (see Sect. 4.7 (ii));
(3) The morphism β is G(n)-transversal at ξ .

Regarding condition (1), if ξ is contained in a codimension-e-component of
Sing G(n) then this component is a permissible center, see Sect. 5.1. Under the previous
conditions, it is always possible to construct a G(n)-admissible morphism in an (étale)
neighborhood of ξ (see [35] and also [12, §8.3]).

Definition 6.5 [12, 35] Let β : V (n) → V (n−e) be a G(n)-admissible projection in an
(étale) neighborhood of the closed point ξ . Then the OV (n−e)-Rees algebra G(n−e) :=
G(n) ∩ OV (n−e) [W ], and any other with the same integral closure in OV (n−e) [W ], is an
elimination algebra of G(n) in V (n−e) (see [35, Theorem 4.11]).

Example 6.6 Let S be a smooth d-dimensional k-algebra of finite type, with d > 0.

Let V (d+1) = Spec(S[x]). Then the natural inclusion S
β∗

−→ S[x], induces a smooth

projection V (d+1) β−→ V (d) = Spec(S). Let f (x) ∈ S[x] be a polynomial of degree
m > 1, defining a hypersurface X in V (n). Set X = Spec(S[x])/〈 f (x)〉. Suppose that
ξ ∈ X is a point of multiplicity m. Then,

G(d+1) = Diff(S[x][ f Wm]) ⊂ S[x][W ]

represents the multiplicity function on X locally at ξ . If the characteristic is zero
and if we assume that f has the form of Tschirnhausen (there is always a change of
coordinates that leads us to this form):

f (x) = xm + a2x
m−2 + . . . + am−i x

i + . . . + am ∈ S[x], (6.1)

where ai ∈ S for i = 0, . . . ,m − 2, then it can be shown that, up to integral closure,

G(d) = Diff(S[x][a2W 2, . . . , am−iW
m−i , . . . , amW

m]),

is an elimination algebra of G(d+1). If the characteristic is positive, the elimination
algebra is also defined. In either case, it can be shown that it is generated by a finite set
of some symmetric (weighted homogeneous) functions evaluated on the coefficients of
f (x) (cf. [34], [35, §1, Definition 4.10]). It is worthwhile noticing that the elimination
algebra G(d) is invariant under changes of the form x ′ = x + α with α ∈ S [35, §1.5].
Finally, we will see that, to understand elimination algebras in a more general setting,
it suffices to treat the hypersurface case, at least for the purposes of this paper (see
Sect. 8.7, specially (8.6) and (8.7)).

6.7 Properties of elimination algebras

Let β : V (n) → V (n−e) be a G(n)-admissible projection in an (étale) neighborhood
of a closed ξ ∈ Sing(G(n)), and let G(n−e) ⊂ OV (n−e) [W ] be an elimination algebra.
Then Sing(G(n)) maps injectively into Sing(G(n−e)), in particular β(Sing(G(n))) ⊂
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Sing(G(n−e)) with equality if the characteristic is zero, or if G(n) is a differential
Rees algebra (see [12, §8.4]). Moreover, If G(n) is a differential Rees algebra, then
so is G(n−e) (see [35, Corollary 4.14]). And if G(n) ⊂ G′(n) is a finite extension, then
G(n−e) ⊂ G′(n−e) is a finite extension (see [35, Theorem 4.11]). Finally, for a point
ζ ∈ Sing(G(n)), the order of G(n−e) at β(ζ ) does not depend on the choice of the
projection β (see [35, Theorem 5.5] and [12, Theorem 10.1]).

6.8 Hironaka’s order of an algebraic variety

Let X be an equidimensional variety of dimension d over a perfect field k and let
ζ ∈ X be a point of maximum multiplicity m > 1. We can assume that X = Spec(B)

is affine. Let ξ ∈ {ζ } be a closed of multiplicitym. Then, as indicated in Example 4.2,
there is an étale neighborhood of Spec(B), X ′ = Spec(B ′), an embedding in some
smooth (d + e)-dimensional scheme V (d+e), and a differential Rees algebra G(d+e)

representing the top multiplicity locus of X ′. In Sect. 8.7 we will see that under
these assumptions, τG,ξ ′ ≥ e, and there is a G(d+e)-admissible projection to some
d-dimensional smooth scheme where an elimination algebra G(d) can be defined. Let
ζ ′ ∈ X ′ be a point mapping to ζ . Then by Sect. 6.7,

ord(d)
X (ζ ) := ord(d)

G(d+e) (ζ
′).

does not depend on the selection of the étale neighborhood, nor on the choice of Rees
algebra representing the top multiplicity locus, nor on the admissible projection. We
refer to this rational number as Hironaka’s order function of X at ζ in dimension d.

7 The function H-ord

When facing an algorithmic resolution of the variety X in characteristic zero, the
number ord(d)

X (ζ ) is the most important invariant at the point ζ (after the multiplicity),
and there is a strong link between the resolutions of G(d+e) and G(d): in particular,
a resolution of the first induces a resolution of the second and vice versa. When the
characteristic is positive, this link between G(d+e) and G(d) is weaker, as illustrated in
the following example.

Example 7.1 Let X = Spec
(
F2[z, y]/〈z2 − y3〉). Set V (2) = Spec (F2[z, y]), define

the F2[z, y]-Rees algebra G(2) := Diff
(
F2[z, y][(z2 − y3)W 2]) = F2[z, y][y2W ,

(z2 − y3)W 2], and let ξ be the singular point of X . The inclusion F2[y] ⊂ F2[z, y]
induces a G(2)-transversal projection β : V (2) → V (1) = Spec(F2[y]). The elimina-
tion algebra is G(1) = F2[y][y2W ], and β(Sing(G(2)) = Sing(G(1)). However, after
the blow up at ξ , Sing(G(2)

1 = ∅ but Sing(G(1)
1 ) �= ∅.

Thus,when the characteristic is positive,whatwe consider thefirst relevant invariant
in characteristic zero, ord(d)

G(d+e) (ζ ) = ordβ(ζ ) G(d), needs to be refined. This leads us

to talk about the function H-ord(d)
X , introduced and studied in [5, 6]. We will start with
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the definition for hypersurfaces, and then we will see that the general case reduces to
that of hypersurfaces.

7.2 The hypersurface setting

Let V (d+1) be (d + 1)-dimensional smooth scheme over a perfect field k, let
X ⊂ V (d+1) be a hypersurface of dimension d, and let ξ ∈ X be a closed point
of maximum multiplicity m > 1. Choose a local generator f ∈ OV (d+1),ξ defining
X in an open affine neighborhood U ⊂ V (d+1) of ξ , which we denote by V (d+1)

for simplicity. Define the Rees algebra G(d+1) = Diff(OV (d+1)[ f Wm]), see Exam-
ple 4.2. After applying Weierstrass Preparation Theorem, we can assume that in an
étale neighborhood of ξ ∈ V (d+1), which we again denote by V (d+1), we have the fol-
lowing situation. There is an affine smooth scheme of dimension d, V (d) = Spec(S),
such that V (d+1) = Spec(S[z]), where is z is a variable, and X is defined by

f = zm + a1z
m−1 + · · · + am−1z + am, ai ∈ S, i = 1, 2, . . . ,m. (7.1)

It can be checked that the morphism β : V (d+1) → V (d) is G(d+1)-transversal at
ξ (Definition 6.3). We say that f is written in Weierstrass form with respect to the
projection β.

Remark 7.3 [6, §2.15] With the same notation as in §7.2, it can be proved that, in a
neighborhood of ξ , G(d+1) has the same integral closure as

S[z][ f Wm,�α
z ( f )W

m−α]1≤α≤m−1 � G(d), (7.2)

where G(d) is an elimination algebra of G(d+1), the �i
z are the Taylor differential

operators, and we use ”�” to denote the smallest Rees algebra containing the two
that are involved in the expression. Recall that {�0

z , . . . ,�
r
z} is a basis of the free

module of S-differential operators of S[z] of order r (see [5, Proposition 2.12]; see
also Example 6.6). We will say that (7.2) is a simplified presentation of G(d+1) at ξ .
The presentation depends on the choice of the smooth morphism β, the variable z
and the monic generator f Wm . We will use P(β, z, f Wm) to denote this simplified
presentation.

Definition 7.4 [6, §5.5] Let P(β, z, f Wm) be a simplified presentation of G(d+1)

as in Remark 7.3, and f as in (7.1). The slope of P(β, z, f Wm) at a point ζ ∈
Sing(G(d+1)) ⊂ V (d+1) is defined as:

Sl(P)(ζ ) := min

{
νβ(ζ )(a1), . . . ,

νβ(ζ )(a j )

j
, . . . ,

νβ(ζ )(am)

m
, ordβ(ζ )(G(d))

}
. (7.3)

Remark 7.5 The value Sl(P)(ζ ) depends on the chosen data, that is, on the morphism
β, the generator f Wm and the global section z. Translations of the form z + s, with
s ∈ OV (d) , give new simplified presentations P(β, z + s, f Wm) which may lead to
different values of the slope. The value

123



A. Benito et al.

sup
z′

{
Sl(P(β, z′, f Wm))(ζ )

}
(7.4)

does not depend on the choice of the transversal morphism β, nor on the choice of the
order-one-element f Wm ∈ G(d+1) ( f Wm can be replaced by any other order-one-
element gWm1 ∈ G(d+1) non necessarily defining the hypersurface X ). Moreover,
the supremum in (7.4) is a maximum for a suitable selection of z′. See [5, §5.2 and
Theorem 7.2].

Definition 7.6 [6, §5, Definition 5.12] Let ζ ∈ X be a point of a hypersurface X of
multiplicity m > 1, and consider an étale neighborhood X ′ → X of a closed point of
multiplicity m, ξ ∈ {ζ }, such that the setting of Sect. 7.2 holds, and let ζ ′ ∈ X ′ be a
point mapping to ζ . Then we define

H-ord(d)
X (ζ ) := H-ord(d)

X ′ (ζ ′) := max
z′

{
Sl(P(β, z′, gW N ))(ζ ′)

}
.

Remark 7.7 When the characteristic of the base field k is zero, then it can be shown
that for all ζ ∈ Sing(G(d+1)), H-ord(d)

X (ζ ) = ordβ(ζ )(G(d)) (see [6, §2.13] and Exam-
ple 6.6). Thus, this invariant provides new information only when the characteristic
of k is positive. For example, if X is as in Example 7.1, it can be checked that
H-ord(d)

X (ξ) = 3/2 < ordβ(ξ)(G(1)) = 2.

7.8 p-Presentations

Suppose char(k) = p > 0. Continuing with the notation introduced in Sect. 7.2, since
G(d+1) is a differential algebra, in order to compute the value β- ord(ξ), it is always
possible to find an order-one-element of the form hW p� ∈ G(d+1), where h is a monic
polynomial of degree p� for some � ∈ Z≥1, and in Weierstrass form with respect to
β. This can be done as follows. Assume that g(z)WN ∈ G(d+1) and that

g(z) = zN + b1z
N−1 + · · · + bN−1z + bN , bi ∈ S, i = 1, . . . , N .

Write N = N ′ p� with p not dividing N ′. Set r = (N ′−1)p� and h(z) = 1

N ′ �
r
z(g(z)).

Note that

h(z) = z p
� + b̃1z

p�−1 + · · · + b̃p� (7.5)

where, for j = 1, . . . , p�−1, b̃ j = c j
N ′ b j for some integer c j , and b̃p� = 1

N ′ bp� . Then

h(z)W p� ∈ G(d+1) and P(β, z, h(z)W p�
) is a special type of simplified presentation

of G(d+1). Presentations of the form P(β, z, hW p�
) will be called p-presentations [5,

Definition 2.14]. Compared to general simplified presentations, p-presentations have
the advantage that the computation of the slope (7.3) becomes simpler.
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Theorem 7.9 [5, Theorem 4.4] Let P(β, z, hW p�
) be a p-presentation of G(d+1),

where

h(z) = z p
� + b̃1z

p�−1 + · · · + b̃p�−1z + b̃p� ∈ OV (d)[z]. (7.6)

Let ζ ∈ Sing(G(d+1)). Then

Sl(P)(ζ ) = min

{
νβ(ζ )(b̃p� )

p�
, ordβ(ζ )(G(d))

}
.

Remark 7.10 Using the arguments as in the proof of [5, Theorem 4.4], it follows that

νβ(ζ )(b̃ j )

j
≥ ordβ(ζ )(G(d)), (7.7)

whenever 1 ≤ j ≤ p� − 1.

7.11 Cleaning process [5, §5.1, §5.2, and Proposition 5.3]

Here we sketch the main ideas to find a p-presentation that maximizes Sl(P)(ζ ),
since we will be using them in Sect. 8. For a given p-presentation, and a point ζ ∈
Sing(Gd+1), there are different possibilities:

(A) Sl(P)(ζ ) = ordβ(ζ )(G(d));

(B) Sl(P)(ζ ) = νβ(ζ )(b̃p� )

p� < ordβ(ζ )(G(d)), and then:

(B1)
νβ(ζ )(b̃p� )

p� /∈ Z>0;

(B2)
νβ(ζ )(b̃p� )

p� ∈ Z>0 and the initial part of b̃p� at ζ , Inζ (b̃p� ) ∈ Grβ(ζ )(OV (d),ζ ) is

not a pe-th power at Grβ(ζ )(OV (d),ζ );

(B3)
νβ(ζ )(b̃p� )

p� ∈ Z>0 and Inζ (b̃p� ) is a pe-th power at Grβ(ζ )(OV (d),ζ ).
It can be proven that changes of the form uz + s produce a new p-presentation

P ′ with Sl(P ′)(ζ ) > Sl(P)(ζ ) only in case (B3). In such case, only changes of the
section of the form: z′ := z + s with s ∈ OV (d),β(ζ ), and νβ(η)(s) ≥ νβ(ζ )(b̃p� )/pe

lead to new p-presentationsP ′ with Sl(P ′)(ζ ) ≥ Sl(P)(ζ ). Moreover, if ξ ∈ {ζ }, and
ζ defines a regular closed subscheme at ξ , then to maximize the slope it suffices to
consider changes of the form z′ := z+s with s ∈ OV (d),ξ , see [5, proof of Propositions
5.7 and 5.8].

Definition 7.12 [5, Definition 5.4] A p-presentationP(β, z, hW p�
)with h as in (7.6)

is in normal form1 at a point ζ ∈ Sing(G(d+1)), if condition (A), (B1) or (B2) holds
in Sect. 7.11.

1 This is called well-adapted presentation in [5].
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Hence to maximize the value Sl(P)(ζ ) for a given p-presentation P(β, z, hW p�
),

one can work with presentations in normal form. For simplicity we restrict the notion
of normal form to p-presentations, but a similar concept can be defined for any pre-
sentation, see [6, §5.7].

Remark 7.13 Given a hypersurface X and G(d+1) as in §7.2, for a point ζ ∈
Sing(G(d+1)), and a p-presentation P(β, z, hW p�

) in normal form at ζ , it can be
shown that

H-ord(d)
X (ζ ) = Sl(P(β, z, hW p�

))(ζ ). (7.8)

See [5, Theorem 7.2, Corollary 7.3 and §5].

The general case
Given an equidimensional variety X of dimension d over a perfect field k, and a
singular point ζ ∈ X , we would like to emulate the previous statements, which were
valid for a hypersurface. To this end, we will use the following result, which can be
understood as a generalization of Weierstrass preparation theorem.

Theorem 7.14 [6, Theorem 6.5] Let G(n) be a Rees algebra on a smooth scheme V (n)

over k and let ξ ∈ Sing(G(n)) be a closed point with τG(n),ξ ≥ e ≥ 1. Then, at a
suitable étale neighborhood of ξ , a G(n)-transversal morphism, β : V (n) → V (n−e),
can be defined so that the following conditions hold:

(i) There are global functions z1, . . . , ze in OV (n) such that {dz1, . . . , dze} forms a
basis of �1

β , the module of β-relative differentials;
(ii) There are positive integers m1, . . . ,me;
(iii) There are elements f1Wm1 , . . . , feWme ∈ G(n), such that:

f1(z1) = zm1
1 + a(1)

1 zm1−1
1 + . . . + a(1)

m1 ∈ OV (n−e)[z1],
...

fe(ze) = zme
e + a(e)

1 zme−1
1 + . . . + a(e)

me ∈ OV (n−e) [ze],
(7.9)

for some global functions a( j)
i ∈ OV (n−e);

(iv) The Rees algebra G(n) has the same integral closure as:

OV (n) [ fiWmi ,�
ji
zi ( fi )W

mi− ji ]1≤ ji≤mi−1
i=1,...,e

� β∗(G(n−e)), (7.10)

where G(n−e) is an elimination algebra of G(n) on V (n−e), and the set{
�

ji
zi

}
1≤ ji≤mi−1
i=1,...,e

consists of the relative differential operators described in by

the Taylor operators.

Remark 7.15 Observe that since β : V (n) → V (n−e) is a smooth morphism of relative
dimension e, locally,OV (n) is étale over the polynomial ringOV (n−e)[z1, . . . , ze]. The
differential operators �

ji
zi are defined to be the Taylor differential operators.
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Definition 7.16 [6, Definition 6.6] With the setting and the notation of Theorem 7.14,
the data,

P(β, z1, . . . , ze, f1W
m1 , . . . , feW

me ) (7.11)

that fulfills conditions (i)-(iv) in Theorem 7.14 is a simplified presentation of G(n).
Let Xi be the hypersurface defined by fi (zi ) ∈ OV (n−e)[zi ]. Then we can also

define

H-ord(n−e)
G(n) := min

i=1...,e
H-ord(n−e)

Xi
.

Remark 7.17 Now we go back to Example 4.2, where we consider a representation of
the multiplicity of a variety X ⊂ V at a closed point ξ ∈ X , given by a Rees Algebra
G = OV [ f1Wm1 , . . . , feWme ]. We will see in §8.7 that Diff(G) satisfies conditions
(i)–(iv) in Theorem 7.14. This leads us to define

H-ord(d)
X (ζ ) := H-ord(d)

Diff(G)
= min{H-ord(d)

Xi
(ζ )},

where Xi is the hypersurface defined by fi , i = 1, . . . , e, and ζ ∈ MaxmultX .

8 Main results

In this section we will address the proof of Theorem8.12. For a given point ζ ∈ X
of maximum multiplicity m > 0, we will want to compute the value H-ord(d)

X (ζ )

following the constructions given in Sect. 7. To this end, we will use Villamayor’s
presentations of the multiplicity in the étale topology, Theorem 8.1 below. Finally,
since we want to show that H-ord(d)

X (ζ ) can actually be computed at OX ,ζ , without
the need of étale topology, and using the Samuel slope of the local ring, we will be
using our results from Sect. 3.

Theorem 8.1 [37, Lemma 5.2, §6, Theorem 6.8] (Presentations for the Multiplic-
ity function) Let X = Spec(B) be an affine equidimensional algebraic variety of
dimension d defined over a perfect field k, and let ξ ∈ Max Mult X be a closed
point of multiplicity m > 1. Then, there is an étale neighborhood B′ of B, mapping
ξ ′ ∈ Spec(B ′) to ξ , so that there is a smooth k-algebra S together with a finite mor-
phism α : Spec(B ′) → Spec(S) of generic rank m, i.e., if K (S) is the quotient field
of S, then [K (S) ⊗S B : K (S)] = m. Write B ′ = S[θ1, . . . , θe]. Then:
(i) If fi (xi ) ∈ K (S)[xi ] denotes the minimum polynomial of θi over K (S) for

i = 1, . . . , e, then fi (xi ) ∈ S[xi ] and there is a commutative diagram:

R = S[x1, . . . , xe] S[x1, . . . , xe]/〈 f1(x1), . . . , fe(xe)〉 B ′

S
α∗β∗ (8.1)
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(ii) Let V (d+e) = Spec(R), and let I(X ′) be the defining ideal of X ′ at V (d+e). Then

〈 f1, . . . , fe〉 ⊂ I(X ′);

(iii) Denoting by mi the maximum order of the hypersurface Hi = { fi = 0} ⊂
V (d+e), the differential Rees algebra

G(d+e) = Diff(R[ f1(x1)Wm1 , . . . , fe(xe)W
me ]) (8.2)

represents the top multiplicity locus of X, Max Mult X , at ξ in V (d+e).

8.2 The setting and the notation for the proof of Theorem 8.12

Let ξ ∈ X be a closed point of multiplicity m > 1, and let (B,m, k(ξ)) the local
ring at the point. Applying Theorem 8.1 there is an étale extension (B,m, k(ξ)) →
(B ′,m′, k′) for which we can find a smooth k′-algebra S and a finite inclusion of
generic rank m,

S → B ′ = S[θ1, . . . , θe].

Thus, statements (i), (ii) and (iii) of Theorem 8.1 hold for S ⊂ B ′. In particular,
we have a commutative diagram like (8.1). With this notation, which we fix for the
rest of the section, we will be simultaneously using α(ζ ′) and β(ζ ′) to denote the
image in Spec(S) of a point ζ ′ ∈ Spec(B ′). We will choose the first notation if we
want to use the properties of the finite projection from Spec(B ′). The second notation
will be convenient to emphasize the fact that ζ ′ is also a point in the smooth scheme
Spec(R). Sometimeswewill use V (d+e) to refer to Spec(R). Thiswill help us recall the
dimension of the smooth ambient space where Spec(B ′) is embedded, and the space
where the Rees algebra G(d+e) is defined. And for similar reasons we occasionally will
write V (d) for Spec(S), specially if the elimination algebra G(d) of G(d+e) is involved
(see Sect. 6).

Theorem 8.1 provides three pieces of information that will be specially relevant in
our arguments:

(I) The existence of the étale neighborhood of B, B ′ together with the finite extension
S ⊂ B ′. To be able to compare the Samuel slope of B and B ′ (in the extremal
case) we will need to know that B ′ can be constructed having the same residue
field as B. This issue is addressed in Sect. 8.3.

(II) The Rees algebra G(d+e) representing the top multiplicity locus of X ′ =
Spec(B ′). We will see in Sect. 8.7 below how to use this Rees algebra to compute
the function H-ord(d)

X ′ using the results from Sect. 7.
(III) An algebraic presentation of B ′ as an algebra over S, S[θ1, . . . , θe]. We will see

in Sect. 8.8 below how to find suitable presentations that will help us computing
the Samuel slope in the extremal case.

After addressing (I), (II), (III), and after establishing some technical results, we will
give the proof of Theorem 8.12.
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8.3 (I) On the étale extension of Theorem 8.1

We start by stating a giving an idea of the proof of Proposition 8.4 below. This result
was sketched in [37, §6.11] and a complete proof can be found in [14, Appendix A].
Here we will focus on the three main steps of the argument that require considering
étale extensions. Remark 8.5 and Proposition 8.6 below will be relevant to treat the
proof of Theorem 8.12 in the extremal case.

Proposition 8.4 [37, §6.11], [14, Appendix A] Let X be an equidimensional variety
defined over a perfect field k and let ξ ∈ X be a closed point of multiplicity m > 1.
Let (B,m, k(ξ)) be the local ring at the point. Then there is a local étale extension
(B,m, k(ξ)) → (B ′,m′, k′) such that:

(i) There is a smooth k′-algebra S and a finite morphism S → B ′ of generic rank
equal to m;

(ii) If α : Spec(B ′) → Spec(S), then the morphism Grmα(ξ ′) (S) → Grmξ ′ (B ′) is
injective, and if, in addition, B is in the extremal case, then

mα(ξ ′)/m
2
α(ξ ′) ⊕ ker(λξ ′) = mξ ′/m2

ξ ′ .

Sketch of the proof. Step 1: If k(ξ) is the residue field at ξ , then, after considering the
extension B1 = OX ,ξ ⊗k k(ξ) it can be assumed that the point of interest is rational.
Let m1 be a maximal ideal of B1 dominating mξ . Then if k1 := B1/m1, we have that
k1 = k(ξ).

Step 2: After a finite extension of the base field k1, k2, considering the base change
B2 = B1 ⊗k1 k2, there is a maximal ideal m2 ⊂ B2, dominating m1, such that m2
contains a reduction generated by d elements, κ1, . . . , κd . To achieve this step, a graded
version of Noether’s Normalization Lemma is used at the graded ring Grm2(B2).
Letting k2 = B2/m2 we get a k2-morphism from a polynomial ring in d variables with
coefficients in k2 to some localization of B2:

S2 := k2[Y1, . . . ,Yd ] −→ (B2) f
Yi �→ κi for i = 1, . . . , d.

(8.3)

To ease the notation set B2 := (B2) f .
Step 3Finally, after considering an étale extension S3 of S2 (inside the henselization

of the local ring (S2)〈Y1,...,Yd 〉; the strict henselization is not needed in this step),

B2 B3 := B2 ⊗S2 S3

S2 S3

it can be assumed that the extension S3 → B3 is finite of generic rank equal to m.
Let n3 ⊂ S3 be the maximal ideal dominating 〈Y1, . . . ,Yd〉. Notice that the residue
field of S3 at n3 is again k2. There is a maximal ideal m3 ⊂ B3 dominating m2 and if
k3 = B3/m3 then k3 = k2. To conclude, set B ′ = (B3)m3 and S = S3.
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Regarding to (ii), it suffices to observe that that from the way the finite projection
S → B ′ is constructed (see step 2), the morphism Grmα(ξ ′) (S) → Grmξ ′ (B ′) is
injective. Note that the elements κ1, . . . , κd are analytically irreducible over k2. ��
Remark 8.5 In the proof of Proposition 8.4 we have a sequence of étale local exten-
sions:

(OX ,ξ ,m) → ((B1)m1 ,m1) → ((B2)m2 ,m2) → ((B3)m3 ,m3) = (B ′,m′),

leading to the (étale) extensions of graded rings:

Grmξ (OX ,ξ ) = Grm1(B1) −→ Grm1(B1) ⊗k1 k2 = Grm2(B2) = Grm′(B ′). (8.4)

Proposition 8.6 below guarantees that the field extension in Step 2 of the proof is not
needed if (B,m) is in the extremal case. Under this assumption all the graded rings in
(8.4) are isomorphic.

Proposition 8.6 Let X be an equidimensional algebraic variety of dimension d defined
over a perfect field k, and let ξ ∈ X be a closed point of multiplicity m > 1 with local
ring (OX ,ξ ,mξ , k(ξ)). Assume that the embedding dimension at ξ is (d + t) for some
t ≥ 1. If ξ is in the extremal case, then mξ has a reduction a ⊂ mξ generated by
d-elements.

Proof To prove the statement it is enough to show that there are d-elements
κ1, . . . , κd ∈ mξ\mξ

2 such that if κ1, . . . , κd denote their images in mξ /m
2
ξ , then

Grmξ (OX ,ξ )/〈κ1, . . . , κd〉 is a graded ring of dimension 0 (see [19, Theorem 10.14]).
Since dimk(ξ) mξ /m

2
ξ = d + t and by hypothesis dimk(ξ) ker(λξ ) = t , we can find

generators of mξ ,

κ1, . . . , κd , δ1, . . . , δt (8.5)

such that δ1, . . . , δt form a basis of ker(λξ ). Notice that the elements δ1, . . . , δe are
nilpotent in Grmξ (OX ,ξ )/〈κ1, . . . , κd〉 (see §3.1). Since the graded ring Grmξ (OX ,ξ )

is generated in degree one by {κ1, . . . , κd , δ1, . . . , δt } it follows that the quotient
Grmξ (OX ,ξ )/〈κ1, . . . , κe〉 is a graded ring of dimension zero and hence 〈κ1, . . . , κd〉
is a reduction of mξ . ��

Observe that the previous proposition holds for any local Noetherian ring in the
extremal case.

8.7 (II) p-presentations and the computation of H-ord(d)X′

Theorem 8.1 says that the OV (d+e) -Rees algebra G(d+e) in (8.2) represents the max-
imum multiplicity locus of Spec(B ′) in V (d+e) (see Sect. 4.6). We can assume that
the order mi of each fi (xi ) ∈ S[xi ] is greater than 1. Notice also that G(d+1)

i :=
Diff(S[xi ][ fi (xi )Wmi ]) represents the maximum multiplicity of the hypersurface
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defined by fi (xi ) in V (d+1)
i = Spec(S[xi ]), for i = 1, . . . , e. By identifying G(d+1)

i
with its pull-back in V (d+e), we have that:

G(d+e) = Diff(G(d+1)
1 ) � . . . � Diff(G(d+1)

e ). (8.6)

The natural inclusion S ⊂ R = S[x1, . . . , xe] induces smooth projections, β :
V (d+e) → V (d) = Spec(S), and βi : V (d+1)

i = Spec(S[xi ]) → V (d) = Spec(S)

for i = 1, . . . , e. Also, observe that τG(d+e),ξ ′ ≥ e. This follows from the fact that
the initial forms at ξ ′ of the polynomials fi (xi ) ∈ S[xi ] depend on different variables
(see [9, §4.2] and [2, Chap. 7] for further details). Hence, β is G(d+e)-admissible, and
each βi is G(d+1)

i -admissible. Thus G(d) = G(d+e) ∩ S[W ] is an elimination algebra
of G(d+e), and, moreover, up to integral closure,

G(d) = G(d)
1 � . . . � G(d)

e ⊂ S[W ], (8.7)

where G(d)
i is an elimination algebra of G(d+1)

i on V (d) (see [9, §3.8]).
As indicated in Remark 7.17, G(d+e) has the same integral closure as

R[ fi (xi )Wmi ,�
ji
xi ( fi (xi ))W

mi− ji ]1≤ ji≤mi−1 � β∗(G(d)), (8.8)

which in turns is a simplified presentation of G(d+e) (see Theorem 7.14). We will
write:

fi (xi ) = xmi
i + a(i)

1 xmi−1
i + . . . + a(i)

mi
, (8.9)

with a(i)
j ∈ S, for j = 1, . . . ,mi , and i = 1, . . . , e.

(A) The slope of a p-presentation at the closed point of Spec(B ′).
Suppose that ξ ′ ∈ X ′ = Spec(B ′) maps to ξ , and let mξ ′ ⊂ B ′ be the corresponding
maximal ideal. Since the generic rank of S → B ′ equals the multiplicity at ξ ′, by
Zariski’s multiplicity formula for finite projections ( [39, Chapter 8, §10, Theorem
24]) we have that:

(i) The point ξ ′ is the only one mapping to α(ξ ′) ∈ Spec(S);
(ii) The residue fields k(ξ ′) and k(α(ξ ′)) are equal;
(iii) The expansion of the maximal ideal of α(ξ ′), mα(ξ ′)B ′, is a reduction of mξ ′ .

From (ii) it follows that, after a translation of the form θi + si , for some si ∈ S,
we can also assume that θi ∈ mξ ′ for i = 1, . . . , e, and that in addition, mξ ′ =
mα(ξ ′)B ′ + 〈θ1, . . . , θe〉.

Since θi ∈ mξ ′ , we have that να(ξ ′)(a
(i)
j ) ≥ 1, for j = 1, . . . ,mi and i = 1, . . . , e in

(8.9). Moreover, since ξ ′ ∈ Sing(G(d+e)), necessarily να(ξ ′)(a
(i)
j ) = νβ(ξ ′)(a

(i)
j ) ≥ j .

By Sect. 7.8 and Remark 7.17, after applying suitable Taylor operators to the ele-
ments fi (xi ) ∈ R, we get that G(d+e) is weakly equivalent to:

R[hi (xi )W p�i
,�

ji
xi (hi (xi ))W

p�i − ji ]1≤ ji≤�i−1 � β∗(G(d)), (8.10)
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where for each i = 1, . . . , e, hi (xi ) ∈ S[xi ] ⊂ R is a monic polynomial of order p�i

for some �i ≥ 1,

hi (xi ) = x p�i

i + ã(i)
1 x p�i −1

i + . . . + ã(i)
p�i

, (8.11)

with ã(i)
j ∈ S, for j = 1, . . . , p�i . Observe that να(ξ ′)(ã

(i)
j ) ≥ j for j = 1, . . . , p�i

and i = 1, . . . , e. Expression (8.10) is a p-presentation P of G(d+e) at ξ (see Sect. 7.8
and Remark 7.17). Notice that the differential operators in (8.10) are elements in
DiffV (d+e)/V (d) .

With the previous notation, the slope of the p-presentation P at ξ ′ (8.10) is

Sl(P)(ξ ′) = min
i=1,...,e

⎧⎨
⎩

να(ξ ′)(ã
(i)
p�i

)

p�i
, ordα(ξ ′)(G(d))

⎫⎬
⎭ . (8.12)

From the exposition in Sect. 7.11, it follows that a p-presentationP ′ with Sl(P ′)(ξ ′) =
H-ord(d)

X ′ (ξ ′) can be found starting from the presentation P after considering transla-
tions of the form θ ′

i := θi + si with si ∈ S, and so that for each translation

νmα(ξ ′) (si ) ≥
νmα(ξ ′) (̃a

(i)
p�i

)

p�i
. (8.13)

Finally, the restriction of G(d+e) to B ′, GB′ , is finite over the expansion of G(d) in B ′,
G(d)B ′ (see [35, Theorem 4.11], [3, Corollary 7.7], and [1]). Write GB′ = ⊕n JnWn

and define

ordξ ′(GB′) := min

{
νξ ′(Jn)

n
: n ∈ N

}
.

Then, by Proposition 2.10, and using the fact that mα(ξ ′)B ′ is a reduction of m′, it can
be checked that

ordα(ξ ′)(G(d)) = ordξ ′(GB′), (8.14)

(here it suffices to use arguments similar to those in the proof of [24, Proposition
0.20]).

(B) The slope of a p-presentation at non-closed points of Spec(B ′).

With the same setting and notation as before, now let η ∈ X be a non-closed point of
multiplicity m with ξ ∈ {η}. Let η′ ∈ Spec(B ′) be a point mapping to η, let pη′ ⊂ B ′
be the corresponding prime and set pα(η′) := pη′ ∩ S. Again, by Zariski’s multiplicity
formula for finite projections we have that:

(i’) The point η′ is the only one mapping to α(η′) ∈ Spec(S);
(ii’) The residue fields k(η′) and k(α(η′)) are equal;
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(iii’) The expansion of the maximal ideal pα(η′)Spα(η′) , mα(η′)Bpη′ , is a reduction of
mη′ := pη′ B ′pη′ .

From (i’) it follows that B ′ ⊗S Spα(η′) is local (thus B ′
pη′ = Spα(η′)[θ1, . . . , θe]). By

(ii’), after translating θi by elements of Spα(η′) , we can assume that θi ∈ mη′ . The local-

ization at η′ of the p-presentation P at ξ ′ (8.10) can be used to compute H-ord(d)

X ′ (η′).
Interpreting η′ as a point in V (d+e), and using the fact that η′ ∈ Sing(G(d+e)), i.e., η′
is a point of multiplicity m in X ′, it follows that να(η′)(a

(i)
j ) ≥ j for i = 1, . . . , e, and

j = 1, . . . ,me (see [37, Propositions 5.4 and 5.7]).

(C) The slope of a p-presentation at non-closed points defining regular sub-
schemes of Spec(B ′).
Now suppose that η′ is the generic point of a regular closed subscheme at ξ ′. In such
case, it can be shown that pα(η′) also defines a regular closed subscheme at α(ξ ′) (cf.
[37, Proposition 6.3]). In addition, after translating the elements θi by elements in S,
it can be assumed that B ′ = S[θ1, . . . , θe] with θi ∈ pη′ , and that moreover, pα(η′)B
is a reduction of pη′ (without localizing at pη′ , see [3, Lemma 3.6]).

As we argued above, again, interpreting η′ as a point in V (d+e), and using the
fact that η′ ∈ Sing(G(d+e)), i.e., η′ is a point of multiplicity m in X ′, it follows that
να(η′)(a

(i)
j ) ≥ j for i = 1, . . . , e, and j = 1, . . . ,me in (8.9) (see [37, Propositions 5.4

and 5.7]). But now, because pα(η′) determines a closed regular subscheme at α(ξ ′), its
ordinary powers and symbolic powers coincide on S. Therefore also νpα(η′) (a

(i)
j ) ≥ j

for i = 1, . . . , e, and j = 1, . . . ,me. Hence it follows that for the coefficients in
(8.11),

νpα(η′) (ã
(i)
j ) ≥ j (8.15)

for j = 1, . . . , p�i and i = 1, . . . , e.
With the previous notation, the slope of the p-presentation P at η′ (8.10) equals

to:

Sl(P)(η′) = min
i=1,...,e

⎧⎨
⎩

να(η′)(̃a
(i)
p�i

)

p�i
, ordα(η′)(G(d))

⎫⎬
⎭

= min
i=1,...,e

⎧⎨
⎩

νpα(η′) (̃a
(i)
p�i

)

p�i
, ordpα(η′) (G(d))

⎫⎬
⎭ , (8.16)

see [6, Definition 6.7]. Going back to the discussion in Sect. 7.11, recall that a p-
presentations P ′ with Sl(P ′)(η′) = H-ord(d)

X ′ (η′) can be found after considering
translations of the form θ ′

i := θi + si with si ∈ S and so that for each translation,

νpα(η′) (si ) ≥
νpα(η′) (̃a

(i)
p�i

)

p�i
. (8.17)
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We emphasize here that there is no need to consider translations with si ∈ Spη′ .

To conclude, considering GB′ as before, recall that, ordη′(GB′)
=
inf

{
νη′ (Jn)

n : n ∈ N

}
. Then, on the one hand,

ordα(η′)(G(d)) = ordpα(η′) (G(d)).

On the other, since pα(η′)B ′ is a reduction of pη′ , and G(d)B ′ ⊂ GB′ is a finite extension
of Rees algebras, by Proposition 2.10, and following similar arguments as in [24,
Proposition 0.20],

ordpα(η′) (G(d)) = ordpη′ (G′
B).

For similar reasons,

ordα(η′)(G(d)) = ordη′(G′
B).

Thus it follows that,

ordη′(GB′) = ordα(η′)(G(d)) = ordpα(η′) (G(d))

= ordpη′ (GB′) = min

{
νpη′ (Jn)

n
: n ∈ N

}
. (8.18)

8.8 (III) Finding suitable algebraic presentations for B′ (for the extremal case)

Closed points

Lemma 8.9 Let B ′ = S[θ1, . . . , θe] be as in Sect. 8.2, suppose that the embedding
dimension of ξ ′ ∈ X ′ is d + t , and that ξ ′ is in the extremal case. Write mα(ξ ′) =
〈y1, . . . , yd〉. Then, after reordering the elements θi and after considering translations
of the form θ ′

i = θi + si with si ∈ S, it can be assumed that:

(i) B ′ = S[θ ′
1, . . . , θ

′
e], and

(ii) {y1, . . . , yd , θ ′
1, . . . , θ

′
t } is a minimal set of generators of mξ ′ with t ≤ e.

Furthermore,

(iii) For a given a λξ ′-sequence, {δ1, . . . , δt }, after translating again the elements
θ ′
i := θi + si for suitably chosen elements si ∈ S, we can assume that B ′ =
S[θ ′

1, . . . , θ
′
e], that

min{νξ ′(θ ′
i ) : i = 1, . . . , t, . . . , e} = min{νξ ′(θ ′

i ) : i = 1, . . . , t} ≥ min{νξ ′(δi ) :
i = 1, . . . , t},

and that {θ ′
1, . . . , θ

′
t } is a λξ ′-sequence.
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Proof Recall that by Sect. 8.7(A), maybe after translating the θi by elements in S, it
can be assumed that mξ ′ = 〈y1, . . . , yd , θ1, . . . , θe〉 (here we will identify yi with its
image at B ′). Note that νξ ′(θi ) ≥ 1 for i = 1, . . . , e. We can extract a minimal set of
generators formξ ′ from the previous set, andwe can always assume that such aminimal
set contains {y1, . . . , yd} (see Proposition 8.4 (ii) andRemark 3.2).After reordering the
elements θi , we can think that such aminimal set is of the form {y1, . . . , yd , θ1, . . . , θt }.
Thus conditions (i) and (ii) hold.

For condition (iii), given a λξ ′-sequence, δ1, . . . , δt , by Proposition 8.4 (ii), we have
that

mξ ′ = 〈y1, . . . , yd , δ1, . . . , δt 〉,

and since θi ∈ mξ ′ , for i = 1, . . . , t , we can write,

θi = pi,1y1 + . . . + pi,d yd + qi,1δ1 + . . . + qi,tδt ,

where pi, j , qi,k ∈ B ′ = S[θ1, . . . , θt , . . . , θe] for i = 1 . . . , t , j = 1, . . . , d, and
k = 1, . . . , t . For i = 1, . . . , t , and j = 1, . . . , d, we can write

pi, j = si, j,0 +
∑

i1,...,ie

si, j,i1,...,ieθ
i1
1 · · · θ iee ,

with si, j,0, si, j,i1,...,ie ∈ S and i1 + . . . + ie ≥ 1. For i = 1, . . . , t , set

θ ′
i := θi − si,1,0y1 − . . . − si,d,0yd .

Note that B ′ = S[θ ′
1, . . . , θ

′
t , θt+1, . . . , θe]. In addition, since

θ ′
i = (pi,1 − si,1,0)y1 + . . . + (pi,d − si,d,0)yd + qi,1δ1 + . . . + qi,tδt ,

νξ ′((pi, j − si, j,0)y j ) ≥ 2 for j = 1, . . . , d, and νξ ′(δ j ) > 1 for j = 1, . . . , t , we
have that νζ ′(θ ′

i ) > 1 and that θ̄ ′
i ∈ ker(λζ ′). Since

〈y1, . . . , yd , θ1, . . . , θt 〉 = 〈y1, . . . , yd , θ ′
1, . . . , θ

′
t 〉

it follows that θ̄ ′
1, . . . , θ̄

′
t ∈ mξ ′/m2

ξ ′ form a basis of ker(λξ ′). Moreover by construc-
tion,

νξ ′(θ ′
i ) ≥ min{1 + νξ ′(θ1), . . . , 1 + νξ ′(θe), νξ ′(δ1), . . . , νξ ′(δt )}.

Iterating this process we can assume that

min{νξ ′(θ ′
i ) : i = 1, . . . , t} ≥ min{νξ ′(δi ) : i = 1, . . . , t}.

Now suppose that there is some j > t such that νξ ′(θ j ) < νξ ′(θ ′
i ), for i = 1, . . . , t .

After reordering again, we can assume that j = t + 1.
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Repeating the previous argument,

θt+1 = p1y1 + . . . + pd yd + q1θ
′
1 + . . . + qtθ

′
t ,

where pi , q j ∈ B ′ = S[θ1, . . . , θt , . . . , θe] for i = 1 . . . , d, and j = 1, . . . , t . Now
for i = 1, . . . , d, write

pi = si,0 +
∑

i1,...,ie

si,i1,...,ieθ
i1
1 · · · θ iee ,

with si,0, si,i1,...,ie ∈ S and i1 + . . . + ie ≥ 1. Set

θ ′
t+1 := θt+1 − s1,0y1 − . . . − sd,0yd .

Then

νξ ′(θ ′
t+1) ≥ min

{
νξ ′

(
(p1 − s1,0)y1 + . . . + (pd − sd,0)yd

)
, νξ ′(q1θ ′

1 + . . . + qtθ
′
t )

}
.

Now, it can be checked that either

νξ ′(θ ′
t+1) ≥ min{νξ ′(θi ) + 1 : i = 1, . . . , e},

or

νξ ′(θ ′
t+1) ≥ min{νξ ′(θ ′

1), . . . , νξ ′(θ ′
t )}.

Since B ′ = S[θ ′
1, . . . , θ

′
t , θ

′
t+1, θt+2, . . . , θe], the claims in (iii) follow after a finite

number of translations of the elements θi (i = t + 1, . . . , e) by elements in S. ��

Non-closed points
To find suitable presentations of B ′ that help us computing the Samuel slope at non-
closed points, first we need a technical result, Lemma 8.10 below. Then, a similar
argument as the one exhibited in the proof of Lemma 8.9 will lead us to a similar
statement (see Remark 8.11).

Lemma 8.10 Let B ′ = S[θ1, . . . , θe] be as in Sect. 8.2. Let ξ ′ be the closed point of
Spec(B ′) with multiplicity m, and assume that η′ is a point of multiplicity m defining
a regular subscheme in Spec(B ′). If

mξ ′ = mα(ξ ′)B
′ + 〈γ1, . . . , γs〉

with γi ∈ pη′ for i = 1, . . . , s, then

pη′ = pα(η′)B
′ + 〈γ1, . . . , γs〉.
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Proof By the assumptions, there is a regular system of parameters at S, y1, . . . , yd ,
such that pα(η′) = 〈y1, . . . , yr 〉 for some r < d and mα(ξ ′) = 〈y1, . . . , yd〉. Since
S → B ′ is an inclusion, we will identify yi with its image at B ′. We have that,

〈y1, . . . , yr , γ1, . . . , γs〉 ⊂ pη′ . (8.19)

Let B ′ = B ′/〈y1, . . . , yr , γ1, . . . , γs〉. Notice now that

d − r = dim(B ′/pη′) ≤ dim(B ′) ≤ d − r ,

where the last inequality follows because mξ ′/〈y1, . . . , yr , γ1, . . . , γs〉 can be gener-
ated by d − r elements. Therefore B ′ is a regular local ring of dimension d − r and
the inclusion (8.19) is an equality. ��
Remark 8.11 With the same assumptions as in Lemma 8.9, assume now that η′ ∈ X ′
is a point of multiplicity m defining a regular closed subscheme at ξ ′. Let pη′ ⊂ mξ ′
be the corresponding prime, and suppose that

pη′ = pα(η′) + 〈γ1, . . . , γs〉,

for some γ1, . . . , γs ∈ B ′. Then, using a similar argument as the one given in the proof
of Lemma 8.9 (iii), it can be proven that, after reordering the elements θi , and after
considering translations of the form θ ′

i = θi + si with si ∈ S, it can be assumed that
B ′ = S[θ ′

1, . . . , θ
′
e] and

min{νpη′ (θ
′
i ) : i = 1, . . . , e} ≥ min{νpη′ (γi ) : i = 1, . . . , s}. (8.20)

To see this it suffices to observe that since pη′ defines a regular prime at mξ ′ ,
after translating the elements θi if needed, we may assume that θi ∈ pη′ for
i = 1, . . . , e (see Sect. 8.2(C)). Then we can select a regular system of parameters at
S, y1, . . . , yr , yr+1, . . . , yd , so that

pα(η′) = 〈y1, . . . , yr 〉.

Now for i = 1, . . . , e,

θi = pi,1y1 + . . . + pi,r yr + qi,1γ1 + . . . + qi,sγs,

where pi, j , qi,k ∈ B ′ = S[θ1, . . . , θt , . . . , θe] for i = 1 . . . , e, j = 1, . . . , r , and
k = 1, . . . , s. For i = 1, . . . , e, and j = 1, . . . , r , we can write

pi, j = si, j,0 +
∑

i1,...,ie

si, j,i1,...,ieθ
i1
1 · · · θ iee ,

with si, j,0, si, j,i1,...,ie ∈ S and i1 + . . . + ie ≥ 1. Set

θ ′
i := θi − si,1,0y1 − . . . − si,d,0yr ∈ pη′ .
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Finally (8.20) follows using the same argument as in Lemma 8.9 (iii).

Now we are ready to address the proof of our main theorem:

Theorem 8.12 Let X be an equidimensional variety of dimension d defined over a
perfect field k. Let ζ ∈ X be a point of multiplicity m > 1. Then:

• If S-Sl(OX ,ζ ) = 1, then

1 = S-Sl(OX ,ζ ) = H-ord(d)
X (ζ ) ≤ ord(d)

X (ζ ).

In addition, if ζ is a closed point then also ord(d)
X (ζ ) = 1.

• If S-Sl(OX ,ζ ) > 1, then

H-ord(d)
X (ζ ) = min{S-Sl(OX ,ζ ), ord

(d)
X (ζ )}.

Proof Closed pointsAssume that ζ is a closed point and denote it by ξ ∈ X . Let t = tξ
be the excess of embedding dimension. After an étale extension (B ′,mξ ′ , k(ξ ′)) of
(OX ,ξ ,mξ , k(ξ)) we can assume the setting and the notation described in §8.2, where
B ′ = S[θ1, . . . , θe]. After translating the θi if needed, we have that

mξ ′ = mα(ξ ′) + 〈θ1, . . . .θe〉. (8.21)

Recall that Grα(ξ ′)(S) → Grξ ′(B ′) is a finite extension which induces an inclusion
in degree one (see Proposition 8.4 (ii)). Therefore, any regular system of parameters
generatingmα(ξ ′), y1, . . . , yd , can be considered as part of a minimal set of generators
of mξ ′ . Recall in addition that νξ ′(yi ) = 1, for i = 1, . . . , d.

Continuingwith the setting inSect. 8.2, theRees algebraG(d+e) isweakly equivalent
to the Rees algebra in (8.10), which in turn is a p-presentation of G(d+e) (see Sect. 8.7
(A)). Since hi (xi )W p�i ∈ G(d+e), we have that νξ ′(hi (xi )) ≥ p�i in V (d+e), and
hence ν̄ξ ′(hi (θi )) ≥ p�i in Spec(B ′) for i = 1, . . . , p�i (see (8.14)). Note here that if
hi (θi ) = 0 ∈ B ′, then ν̄ξ ′(hi (θi )) = ∞, but the arguments below go through even in
this case.

Closed points in the non-extremal case. If dimk(ξ) ker(λξ ) < t , thendimk(ξ ′) ker(λξ ′)
< t (see Lemma 3.9), and hence, necessarily, νξ ′(θi ) = 1 for some i ∈ {1, . . . , e}.
Without loss of generality we can assume that νξ ′(θ1) = 1, . . . , νξ ′(θc) = 1 and
νξ ′(θc+1) > 1, . . . , νξ ′(θe) > 1 for some c ∈ {1, . . . , e}.

Since the assumption is that νξ ′(θi ) = 1, for i = 1, . . . , c, we will pay special

attention to hi (θi )W p�i for i = 1, . . . , c. To start with, by Definition 2.1 and the
properties in Proposition 2.5, we have that

ν̄ξ ′(hi (θi ) − θ
p�i

i ) ≥ min
j=1,...,p�1

{
ν̄ξ ′(ã(i)

j θ
p�1− j
i )

}

≥ min
j=1,...,p�i

{
ν̄ξ ′(ã(i)

j ) + (p�i − j))
}

. (8.22)
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Next, we will distinguish different cases depending on the values νξ ′(ã(i)
j )/ j . Recall

that ν̄ξ ′(ã(i)
j ) = να(ξ ′)(ã

(i)
j ) ≥ j for j = 1, . . . , p�i and i = 1, . . . , e (see Proposi-

tion 2.10).
Case (a). There exists some i ∈ {1, . . . , c} such that ν̄ξ ′(ã(i)

j ) > j for all j =
1, . . . , p�1 . Then by Remark 2.2, and by (8.22), for that index i ,

ν̄ξ ′(hi (θi )) = min
{
ν̄ξ ′(θ p�i

i ), ν̄ξ ′(hi (θi ) − θ
p�i

i )
}

= p�i

from where it follows that ordξ ′(GB′) = ordα(ξ ′)(G(d)) = 1. Here we use that

hi (θi )W p�i ∈ GB′ and (8.14).
Case (b) For each i ∈ {1, . . . , c} there exist some j ∈ {1, . . . , p�1} such that

νξ ′(ã(i)
j ) = j . Here we distinguish two cases:

Case (b.1) If j ∈ {1, . . . , p�1 − 1}, then by Remark 7.10,

1 = min
j=1,...,p�i −1

{
να(ξ ′)(ã

(i)
j )

j

}
≥ ordα(ξ ′)(G(d)) ≥ 1,

hence ordα(ξ ′)(G(d)) = 1.

Case (b.2) Assume that for all i = 1, . . . , c we have νξ ′(ã(i)
j ) > j for j =

1, . . . , p�1 − 1 and νξ ′(ã(i)
p�i

) = p�i . After replacing θi by θi + si , for some si ∈ S,

we may assume that the initial part of ã(i)
p�i

is not a p�i -th power (here we consider

Inα(ξ ′)(ã
(i)
p�i

) = H(Y1, . . . ,Yd) ∈ Grα(ξ ′)(S) as a homogeneous polynomial of degree

p�i , see Sect. 7.11 andDefinition 7.12).Note that the elimination algebra is invariant by
the change θi → θi + si (see Example 6.6). Observe that that now νξ ′(θi + si ) ≥ 1 but
from our hypothesis there must be at least one θi +si such that νξ ′(θi +si ) = 1. Setting
θ ′
i = θi +si after relabeling if needed we can assume νξ ′(θ ′

1) = · · · = νξ ′(θ ′
c′) = 1, for

some c′ ≤ c. If some θ ′
i falls into cases (a) or (b.1) we are done, and ord(d)X (ξ) = 1.

Otherwise if all θ ′
i , i = 1, . . . , c′, with c′ ≥ 1 are in case (b.2), then it follows that

H-ord(d)
X (ξ ′) = 1. In such case, moreover, since ξ is a closed point and the initial part

of ã(1)
p�1

has some term which is not an p�1 -th power, there is a differential operator

D in S of order b < p�1 such that να(ξ ′)(D(ã(1)
p�1

)) = p�1 − b. Now, D is also a

differential operator in S[x1, . . . , xe], thus we have that D(h1(x1))W p�1−b ∈ G(d+e),
since G(d+e) is differentially saturated. Finally, observe that

D(h1(x1)) = D(ã(1)
p�1

) + ˜̃a1x p�1−1
1 + · · · + ˜̃ap�1−1x1.

Using the same argument as in the proof of Theorem 4.4 in [5] (p. 1286) it follows that
the normof D(h1(x1)) is an element of order one inG(d), and hence ordα(ξ ′)(G(d)) = 1.
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To conclude, for all the cases ordα(ξ ′)(G(d)) = 1, and by Theorem 7.9 and
Remark 7.17,

min
j=1,...,p�1

{
να(ξ ′)(ã

(1)
j )

j
, ordα(ξ ′)(G(d))

}
= min

⎧⎨
⎩

να(ξ ′)(ã
(1)
p�1

)

p�1
, ordα(ξ ′)(G(d))

⎫⎬
⎭ .

Hence H-ord(d)
X (ξ) = H-ord(d)

X ′ (ξ ′) = ordα(ξ ′)(G(d)) = 1.

Closed points in the extremal case. By Lemma 8.9, we can assume that mξ ′ =
mα(ξ ′) + 〈θ1, . . . , θt 〉 with t ≤ e, that

min{νξ ′(θi ) : i = 1, . . . , t} = min{νξ ′(θi ) : i = 1, . . . , t, . . . , e},

and that νξ ′(θi ) > 1 for i = 1, . . . , t . Thus {θ1, . . . , θt } is λξ -sequence.
Recall that by Remark 7.10, for every i ∈ 1, . . . , e, and each j = 1, . . . , p�i − 1,

ordα(ξ ′)(G(d)) ≤ να(ξ ′)(ã
(i)
j )

j
, (8.23)

Since hi (θi )W p�i ∈ GB′ , we have that

ordξ ′(hi (θi )W
p�i

) ≥ ordξ ′(GB′) = ordα(ξ ′) G(d), (8.24)

(see (8.14)). We will distinguish two cases:
Case (a’) Suppose that νξ ′(θi ) ≥ ordα(ξ) G(d) for all i ∈ {1, . . . , t}. Then

S-Sl(OX ′,ξ ′) ≥ ordα(ξ) G(d). (8.25)

In addition, for i = 1, . . . , t, . . . , ewe have also νξ ′(θi ) ≥ ordα(ξ) G(d), and by (8.23),

νξ ′
(
θ
p�i

i + ã(i)
1 θ

p�i −1
i + . . . + ã(i)

p�i −1
θi

)
p�i

≥ ordα(ξ ′) G(d),

for i = 1, . . . , e. As a consequence, by (8.24) and Remark 2.2,

νξ ′(ã(i)
p�i

)

p�i
=

να(ξ ′)(ã
(i)
p�i

)

p�i
≥ ordα(ξ ′) G(d).

Therefore,

Sl(P)(ξ ′) = min

⎧⎨
⎩

να(ξ ′)(ã
(i)
p�i

)

p�i
, ordα(ξ ′)(G(d))

⎫⎬
⎭ = ordα(ξ ′)(G(d)) = H-ord(d)

X ′ (ξ ′).
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Thus, by (8.25),

H-ord(d)

X ′ (ξ ′) = min{S-Sl(OX ′,ξ ′), ord(d)
X (ξ ′)}.

Case (b’) Suppose that νξ ′(θi ) < ordα(ξ ′) G(d) for some i ∈ {1, . . . , t}. We will
prove that in this case:

min
i=1,...,t

{
νξ ′(θi ), ordα(ξ ′)(G(d))

}

= Sl(P)(ξ ′) = min
i=1,...,e

⎧⎨
⎩

να(ξ ′)(ã
(i)
p�i

)

p�i
, ordα(ξ ′)(G(d))

⎫⎬
⎭ . (8.26)

By (8.24) and Remark 2.2, either νξ ′(θ p�i

i ) = νξ ′(ã(i)
j θ

p�i − j
i ) for some j ∈

{1, . . . , p�i − 1}, or else νξ ′(θ p�i

i ) = νξ ′(ã(i)
p�i

). In the first case, we would have

that νξ ′(θ p�i

i ) = νξ ′
(
ã(i)
j θ

p�i − j
i

)
which by Proposition 2.10 implies that

p�i νξ ′(θi ) = νξ ′(ã(i)
j ) + (p�i − j)νξ ′(θi ),

and therefore, νξ ′(θi ) = νξ ′(ã(i)
j )/ j = να(ξ ′)(ã

(i)
j )/ j ≥ ordα(ξ ′) G(d) (by

Remark 7.10) which is a contradiction. Thus, necessarily, νξ ′(θi ) = νξ ′(ã(i)
p�i

)/p�i =
να(ξ ′)(ã

(i)
p�i

)/p�i < ordα(ξ ′) G(d) (since by assumption νξ ′(θi ) < ordα(ξ ′) G(d)).

Conversely, if for some i = 1, . . . , e, να(ξ ′)(ã
(i)
p�i

)/p�i < ordα(ξ ′)(G(d)), then this

leads to νξ ′(θi ) = νξ ′(ã(i)
p�i

)/p�i = να(ξ ′)(ã
(i)
p�i

)/p�i . Hence equality (8.26) holds.

Now we check that the theorem follows from here for ξ ′ ∈ X ′. On the one
hand, by Lemma 8.9, for each λξ ′ -sequence, δ1, . . . , δt , we can find suitable elements
θ1, . . . , θt , . . . , θe, so that B ′ = S[θ1, . . . , θe] and

min
i=1,...,t

{νξ ′(θi )} ≥ min
i=1,...,t

{νξ ′(δi )},

for which we either fall in case (a’), or else we fall in case (b’) and then equality (8.26)
holds.

On the other hand, higher values of Sl(P)(ξ ′) are only obtained in case (b’) after
translations on the coefficients ã(i)

p�i
by elements on S. These in turn induce changes of

the form θ ′
i := θi + si , with si ∈ mα(ξ ′) and with the additional property pointed out in

(8.13), thus νξ ′(θ ′
i ) ≥ νξ ′(θi ) for i = 1, . . . , e. Observing that also B ′ = S[θ ′

1, . . . , θ
′
e],

again by Lemma 8.9, we can extract a λξ ′ -sequence among θ ′
1, . . . , θ

′
e for which we

either fall in case (a’) or else we fall in case (b’) and equality (8.26) holds.
To conclude, to check that the theoremholds at (OX ,ξ ,m, k(ξ)) it suffices to observe

that by Proposition 8.6 and Remark 8.5, Grmξ (OX ,ξ ) = Grm′(B ′). Therefore, the
theorem follows from Proposition 3.10.
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Non-closed points. Let ζ = η ∈ X be a non-closed point of multiplicity m ≥ 1.
Denote by pη the prime defined by η in some affine open setU ⊂ X . Choose a closed
point

ξ ∈ {η} ⊆ X (8.27)

with the following conditions:

(1) ξ and η has the same multiplicity m.
(2) OX ,ξ /pη is a regular local ring of dimension d − r for r ≥ 1.

Let B = OX ,ξ , and let B −→ B ′ an étale extension, and S −→ B ′ a finitemorphism as
in Sect. 8.2. Denote by and pη′ the prime dominating pη, ξ ′ the closed point dominating
ξ , and pα(η′) the prime pη′ ∩ S. By [3, Corollary 3.2], pα(η′) determines a regular
prime. Under these assumptions, using [3, Lemma 3.6], we can assume that B ′ =
S[θ1, . . . , θe] with θi ∈ pη′ (see Sect. 8.7 (C)). Note that νpη′ (θi ) ≥ 1 and νξ ′(θi ) ≥ 1,
for i = 1, . . . , e. Since θi ∈ pη′ , it follows that pη′ = pα(η′) + 〈θ1, . . . , θe〉.
Non-closed points in the non-extremal case. If η′ is not in the extremal case, nec-
essarily νpη′ (θi ) = 1 for some i . After reordering we may assume that νη′(θ1) =
1, . . . , νη′(θc) = 1 and νη′(θc+1) > 1, . . . , νη′(θe) > 1. Note that, in particular,
νpη′ (θi ) = 1 for i = 1, . . . , c.

Now using the fact that

νη′(ã(i)
j ) = να(η′)(ã

(i)
j ) = νpα(η′) (ã

(i)
j ) = νpη′ (ã

(i)
j )

cases (a) and (b.1) follow using the same argument as in the closed point case. Observe
that in case (b.2) if νpη′ (ã

(i)
p�i

) = p�i , after replacing θi by θi + si , for some si ∈ S,

we may assume that the initial part of ã(i)
p�i

is not a p�i -th power (here we consider

Inpα(η′) (ã
(i)
p�i

) = H(Y1, . . . ,Yr ) ∈ Grpα(η′) (S) as a homogeneous polynomial of degree

p�i ). Here there is no need to localize as it is shown in the proof of [5, Proposition
5.8].

After the translations θi + si we may fall into cases (a), (b.1) or (b.2). From here it
follows that H-ord(d)

X (η) = 1.

Non-closed points in the extremal case. Here we can repeat the arguments in cases
(a’) or (b’) for B ′

pη′ = Spα(η′) [θ1, . . . , θe] where the arguments are valid for a local
ring (see 8.7(B)). Thus:

H-ord(d)

X ′ (η′) = min{S-Sl(OX ′,η′), ord(d)

X ′ (η′)}. (8.28)

We have that S-Sl(OX ,η) ≤ S-Sl(OX ′,η′). To prove the theorem for η ∈ X we will
want to use Proposition 3.11. But to do so, among other things, we need to show that
there is some λη′-sequence in B ′ (without localizing at pη′ ), that is also a λξ ′ -sequence,
γ ′
1, . . . , γ

′
tη′ ∈ pη′ , for which the following equality holds:

H-ord(d)

X ′ (η′) = min{νη′(γ ′
1), . . . , νη′(γ ′

t ′η ), ord
(d)

X ′ (η′)}. (8.29)
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From here the theorem will follow for OX ,η because

• either H-ord(d)
X (η) = H-ord(d)

X ′ (η′) = ord(d)

X ′ (η′) = ord(d)
X (η), and applying Propo-

sition 3.11 to γ ′
1, . . . , γ

′
tη′ we would get that:

S-Sl(OX ,η) ≥ min{νη′(γ ′
1), . . . , νη′(γ ′

t ′η )} ≥ ord(d)

X ′ (η′) = ord(d)
X (η);

• or H-ord(d)
X (η) = H-ord(d)

X ′ (η′) = S-Sl(OX ′,η′), and, again, by Proposition 3.11
applied to the same sequence we would get that:

S-Sl(OX ,η) = S-Sl(OX ′,η′).

To find γ ′
1, . . . , γ

′
tη′ ∈ pη′ ⊂ B ′, with the previous properties, we will proceed as

follows.

Using the same arguments as in the proof of Proposition 8.13 below, the closed
point ξ ∈ {η} ⊆ X in (8.27) can be selected so that in addition to (1) and (2) it also
satisfies the following condition:

(3) Both points, ξ and η, are in the extremal case.

Recall that under these conditions, we have that

tξ ≤ tη. (8.30)

Also, following the same arguments as in the proof of Proposition 8.13 below we
can assume that νpη′ (θi ) > 1 and hence that νξ ′(θi ) > 1 for i = 1, . . . , e (see (8.44)).

Suppose first that H-ord(d)

X ′ (η′) = ord(d)

X ′ (η′). Since

ordpη′ (hi (θi )W
p�i

) ≥ ordpη′ (GX ′) = ordα(η′) G(d), (8.31)

and by Remark 7.10,

ordpα(η′) (G(d)) ≤ νpα(η′) (ã
(i)
j )

j
,

for all i = 1, . . . , e and j = 1, . . . , p�i − 1, the hypothesis νpη′ (θi ) > 1 for i =
1 . . . , e, implies

νpα(η′) (ã
(i)
p�i

)

p�i
> 1.
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Now, by the discussion in Sect. 7.11, after a finite number of translations of the
form θ ′

i = θi + si with si ∈ S it can be assumed that for i = 1, . . . , e,

νpα(η′) (ã
(i)
p�i

)

p�i
≥ ord(d)

X ′ (η′).

Recall that for each translations, θ ′
i = θi + si , we have that

νpα(η′) (si ) ≥
νpα(η′) (ã

(i)
p�i

)

p�i
> 1

(see (8.15) and (8.17), which implies that, after a finite number of translations, we are
in the following situation: B ′ = S[θ1, . . . , θe], with

νpη′ (θi ) ≥ ord(d)

X ′ (η′) (8.32)

and

νpη′ (θi ) > 1 (8.33)

for i = 1, . . . , e. This already implies that S-Sl(OX ′,η′) ≥ ord(d)

X ′ (η′). Since mξ ′ =
mα(ξ ′) + 〈θ1, . . . , θe〉, after relabeling, we can assume that θ1, . . . , θtξ ′ form a λξ ′-
sequence. Thus

mξ ′ = mα(ξ ′) + 〈θ1, . . . , θtξ ′ 〉,

and by Lemma 8.10,

pη′ = mα(η′) + 〈θ1, . . . , θtξ ′ 〉.

Hence tη′ = tξ ′ and setting t = tη′ , we have that θ1, . . . , θt form also a λη′ -sequence.
Since in addition ξ ′ is in the extremal case, we can assume that k(ξ) = k(ξ ′) (see
Remark 8.5). Finally, we can use Proposition 3.11 (with γ ′

i = θi for i = 1, . . . , t) to
conclude that

H-ord(d)
X (η) = ord(d)

X (η) = min{S-Sl(OX ,η), ord
(d)
X (η)}.

Suppose now that H-ord(d)

X ′ (η′) < ord(d)

X ′ (η′). Since η′ is in the extremal case, by
Proposition 8.13 below, we only have to consider the case where

1 < H-ord(d)

X ′ (η′) < ord(d)

X ′ (η′). (8.34)
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As in Sect. 8.2, we can assume that

hi (θi )W
p�i = (θ

p�i

i + ã(i)
1 θ

p�i −1
i + . . . + ã(i)

p�i
)W p�i ∈ GB′ . (8.35)

By (8.34), there must be some indexes i1, . . . , ic, for which

1 < νpη′ (θi j ) =
νpη′ (ã

(i j )

p
�i j

)

p�i j
≤ H-ord(d)

X ′ (η′).

If the second inequality is strict for all i1, . . . , ic, thenwe canmake changes of variables
of the form θ ′

i j
= θi j + si j with si j ∈ S and

νpα(η′) (si j ) ≥
νpη′ (ã

(i j )

p
�i j

)

p�i j

(see (8.17)), such that for some index, which we can assume to be e,

νpη′ (θ
′
e) = H-ord(d)

X ′ (η′) ≤ νpη′ (θ
′
i ),

for i = 1, . . . , e − 1. Notice that from the way the changes are made, νξ ′(θ ′
i ) ≥

νξ (θi ) > 1 and B ′ = S[θ ′
1, . . . , θ

′
e] (here there is no need to localize as it is shown in

the proof of [5, Proposition 5.8]; see also Sect. 7.11).
To summarize, there is a presentation of B ′, B ′ = S[θ ′

1, . . . , θ
′
e], such that

νpη′ (θ
′
i ) > 1 for i = 1, . . . , e (thus νξ ′(θi ) > 1 for i = 1, . . . , e), and so that

νpη′ (θe) = Sl(P)(η′) = H-ord(d)

X ′ (η′).

Now recall that mξ ′ = mα(ξ ′) + 〈θ ′
1, . . . , θ

′
e〉. We claim that we can select tξ ′

elements among θ ′
1, . . . , θ

′
e so that the order of at least one of them at pη′ equals

νpη′ (θ ′
e). The claim follows immediately if θ ′

e ∈ mξ ′ \m2
ξ ′ . Otherwise, we can assume,

without loss of generality, that the classes of θ ′
1, . . . , θ

′
tξ ′ are linearly independent at

mξ ′/m2
ξ ′ and that νpη′ (θ

′
i ) > νpη′ (θ ′

e) for i = 1, . . . , tξ ′ . Then we can replace θ ′
1

by θ ′
1 + θ ′

e, so mξ ′ = mα(ξ ′) + 〈θ ′
1, . . . , θ

′
tξ ′ 〉, θ ′

1, . . . , θ
′
tξ ′ form a λξ ′-sequence and

νpη′ (θ
′
1) = νpη′ (θ ′

e). By Lemma 8.10, pη′ = pα(η′) + 〈θ ′
1, . . . , θ

′
tξ ′ 〉, thus tξ ′ ≥ tη′ ,

hence by (8.30), tξ ′ = tη′ , we have that θ ′
1, . . . , θ

′
tξ ′ is also a λη′ -sequence and setting

t := tη′ , by construction

min{νpη′ (θ
′
1), . . . , νpη′ (θ

′
t )} = H-ord(d)

X ′ (η′). (8.36)

123



A. Benito et al.

Note that, in general, νpη′ (θi ) ≤ νη′(θi ). If these inequalities were strict for all i =
1, . . . , t then we would have found a λη′ -sequence for which

min{νη′(θ ′
1), . . . , νη′(θ ′

t )} > H-ord(d)

X ′ (η′),

and since H-ord(d)

X ′ (η′) < ord(d)

X ′ (η′) and we already know that the theorem holds for
Bpη′ , we would get a contradiction. Hence, there must be some index i for which

νη′(θi ) = H-ord(d)

X ′ (η′). Finally, since ξ ′ is in the extremal case, we can also assume
that k(ξ ′) = k(ξ), and apply Proposition 3.11 to γ ′

i = θ ′
i for i = 1, . . . , t , from where

it follows that the theorem holds for η ∈ X . ��
Proposition 8.13 Let X be an equidimensional variety of dimension d defined over a
perfect field k. Let ζ ∈ X be a point of multiplicity m > 1 which is in the extremal
case. If H-ord(d)

X (ζ ) < ord(d)
X (ζ ), then

H-ord(d)
X (ζ ) > 1.

Proof Closed points. Suppose first that ζ = ξ is a closed point in X . Consider a suit-
able étale extension of (OX ,ξ ,mξ , k(ξ)) as in Sect. 8.2, and work on (B ′,mξ ′ , k(ξ ′)).
Following the notation and results in §8.2 (A), we can write B ′ = S[θ1, . . . , θe] with
θi ∈ mξ ′ for i = 1, . . . , e. And since ξ ′ is in the extremal case, by Lemma 8.9, we can
assume that νξ ′(θi ) > 1 for i = 1, . . . , e.

Recall that

Sl(P)(ξ ′) = min
i=1,...,e

⎧⎨
⎩

να(ξ ′)(ã
(i)
p�i

)

p�i
, ordα(ξ ′)(G(d))

⎫⎬
⎭ , (8.37)

and that for every i ∈ 1, . . . , e and each j = 1, . . . , p�i − 1,

H-ord(d)

X ′ (ξ ′) < ordα(ξ ′)(G(d)) ≤ να(ξ ′)(ã
(i)
j )

j
, (8.38)

where the first inequality follows from the hypothesis in the proposition, and the second
from Remark 7.10. Thus, there must be some i ∈ {1, . . . , e} such that,

να(ξ ′)(ã
(i)
p�i

)

p�i
< ordα(ξ ′)(G(d)). (8.39)

For every i such that (8.39) holds, since hi (θi )W p�i ∈ GB′ ,

ordξ ′(hi (θi )W
p�i

) = ordξ ′(θ p�i

i + ã(i)
1 θ

p�i −1
i + . . . + ã(i)

p�i
)W p�i

≥ ordξ ′(GB′) = ordα(ξ ′) G(d), (8.40)
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(see equality (8.14)). Thus, necessarily, for those indexes i ,

νξ ′(θi ) =
να(ξ ′)(ã

(1)
p�i

)

p�i
,

and since νξ ′(θi ) > 1 the result follows from the definition of H-ord(d)

X ′ (ξ ′) =
H-ord(d)

X (ξ).

Non-closed points. Let ζ = η ∈ X be a non-closed point of multiplicity m ≥ 1.
Denote by pη the prime defined by η in some affine open set of U ⊂ X . Choose a
closed point ξ ∈ {η} ⊆ X with the following conditions:

1. ξ and η have the same multiplicity m.
2. OX ,ξ /pη is a regular local ring of dimension d − r for some r ≥ 1.
3. Both points, ξ and η, are in the extremal case.

Conditions (1) and (2) hold in some open affine set U ⊂ X containing η.
To see that condition (3) can be achieved, choose a minimal set of generators
z1, . . . , zr , γ1, . . . , γtη ∈ OX ,η of pηOX ,η with νη(γi ) > 1, for i = 1, . . . , tη. Notice
that after shrinking U , if needed, we can assume that pη = 〈z1, . . . , zr , γ1, . . . , γtη 〉
on U , and that for any closed point ξ ∈ U ∩ {η}, νξ (γi ) > 1 for i = 1, . . . , tη.

Let ξ ∈ U ∩ {η} be a closed point. Since condition (2) holds, we can find
zr+1, . . . , zd ∈ mξ such that mξ = 〈z1, . . . , zd , γ1, . . . , γtη 〉 with νξ (zi ) = 1, for
i = 1, . . . , d. Since νξ (γi ) > 1 for i = 1, . . . , tη, (3) holds. In particular if γi denotes
the class of γi in mξ /m

2
ξ , then

ker(λξ ) = 〈γ1, . . . , γtη 〉 (8.41)

and tξ ≤ tη.
Let B = OX ,ξ , and let B −→ B ′ an étale extension, and S −→ B ′ a finite

morphism as in Sect. 8.2. Denote by and pη′ ⊂ B ′ the prime dominating pηB, ξ ′ the
closed point dominating ξ , and pα(η′) the prime pη′ ∩ S. By [3, Corollary 3.2], pα(η′)
determines a regular prime. Under these assumptions, using [3, Lemma 3.6], we can
assume that B ′ = S[θ1, . . . , θe] with θi ∈ pη′ . Note that νpη′ (θi ) ≥ 1 and νξ ′(θi ) ≥ 1
(see §8.7 (C)).

Since ker(λξ ) ⊗k(ξ) k(ξ ′) = ker(λξ ′), by (8.41) and Remark 8.4,

mξ ′ = mα(ξ ′) + 〈γ1, . . . , γtη 〉. (8.42)

Thus, by Lemma 8.10,

pη′ = pα(η′) + 〈γ1, . . . , γtη 〉. (8.43)

ByRemark 8.11,maybe after translating the θi , we can assume that B ′ = S[θ ′
1, . . . , θ

′
e]

and that

min{νpη′ (θ
′
i ) : i = 1, . . . , e} ≥ min{νpη′ (γi ) : i = 1, . . . , s} > 1. (8.44)
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Now, using (8.16) and the definition of H-ordX ′(η′), the proof of the proposition
follows using a similar argument as the one we used for closed points (see §8.2 (C)),
thus 1 < H-ordX ′(η′) = H-ordX (η). ��

The following example illustrates that, for a given d-dimensional variety X , there
may be non-closed points η ∈ X with S-Sl(OX ,η) = 1 but ord(d)(η) > 1. Thus the
last part of the first statement of Theorem 8.12 might not hold for non-closed points.

Example 8.14 Let p ∈ Z>0 be a prime and let X be the hypersurface in V (3) :=
Spec(Fp[x, y1, y2]) defined by f = x p − y p1 y2. Then p = 〈x, y1〉 determines a non-
closed point of maximum multiplicity p which is not in the extremal case. The Rees
algebra

G(3) = Diff
(
Fp[x, y1, y2][(x p − y p1 y2)W

p])
= Fp[x, y1, y2][y p1 W p−1, (x p − y p1 y2)W

p]. (8.45)

represents the stratum of p-fold points of X . Let ξ be the closed point corresponding
to m = 〈x, y1, y2〉. Then the natural inclusion Fp[y1, y2] ⊂ Fp[x, y1, y2] is G(3)-
admissible at ξ and provides a presentation of B = Fp[x, y1, y2]/〈 f 〉 as in Sect. 8.2.
The Rees algebra

G(2) = Fp[y1, y2][y p1 W p−1],

is an elimination algebra for G(3). Notice that (8.45) is a p-presentation of G(3) which
is already in normal form at η, and that

νη(y
p
1 y2)

p
= p

p
= 1.

On the other hand, setting q := p∩Fp[y1, y2], we have that ord(2)
X (η) = ordq(G(2)) =

p
p−1 . Thus, H-ord

(2)
X (η) = 1 < ord(2)

X (η), even though η is not in the extremal case.
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