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Abstract: Mycoviruses are known to be difficult to cure in fungi but their spontaneous loss occurs
commonly. The unexpected disappearance of mycoviruses can be explained by diverse reasons,
from methodological procedures to biological events such as posttranscriptional silencing machinery.
The long-term effects of a virus infection on the host organism have been well studied in the case of
human viruses; however, the possible residual effect on a fungus after the degradation of a mycovirus
is unknown. For that, this study analyses a possible residual effect on the transcriptome of the
pathogenic fungus Fusarium circinatum after the loss of the mitovirus FcMV1. The mycovirus that
previously infected the fungal isolate was not recovered after a 4-year storage period. Only 14 genes
were determined as differentially expressed and were related to cell cycle regulation and amino acid
metabolism. The results showed a slight acceleration in the metabolism of the host that had lost the
mycovirus by the upregulation of the genes involved in essential functions for fungal development.
The analysis also revealed a weak expression in the annotated genes of the RNA silencing machinery.
To our knowledge, this is the first time that a potential residual effect on the host transcriptome
caused by the past infection of a mycovirus is reported.

Keywords: pine pitch canker disease; RNA-Seq; mitoviruses; transcriptome; differentially expressed
genes

1. Introduction

Mycoviruses are ubiquitous in fungi [1], generally causing cryptic and persistent
infections [2,3]. However, some of them are associated with variable effects on their hosts,
from beneficial impacts [4,5] or mutualistic association [6] to deleterious effects [7–10].
These negative impacts usually reduce the physical integrity of the host fungus (hypoviru-
lence). So far, the mycoviruses associated with this phenomenon have been reported
in several plant pathogenic fungi, including Ophiostoma novo-ulmi, Botrytis spp., and
Fusarium graminearum [11]. The model case of virocontrol of a forest disease is that of
Cryphonectria parasitica hypovirus 1 (CHV1), the mycovirus of the highly destructive
fungus of chestnut blight Cryphonectria parasitica. This hypovirus is used successfully as a
biocontrol agent against chestnut blight in Europe and United States [12,13]. In a recent
study, it has been demonstrated how a small DNA mycovirus of the necrotrophic pathogen
Sclerotinia sclerotiorum is able to suppress the host pathogenicity and, in turn, stimulate the
plant’s growth and defences [14]. Interestingly, this mycovirus acts as a vaccine for plants.

Fungal viruses are thus good candidates for the biological control of plant dis-
eases [15]. There is a growing body of literature focused on the study of fungal viruses
with the aim of using virocontrol [3,16,17]. Three mycoviruses were recently reported from
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Fusarium circinatum, the causal agent of the disease commonly known as pine pitch canker
(PPC) on pine trees [18,19]. The F. circinatum mycoviruses belong to the genus Mitovirus
in the family Narnaviridae [18]. Species from this genus are capsidless ssRNA viruses that
inhabit mitochondria and have genomes in the range of 2.3 to 3.5 kb [8,20].

To effectively study the effect of viruses on their host, virus-free and virus-infected
isogenic lines are needed. The most common way of achieving this purpose is to remove
the virus from infected strains. This can be done using different methods, such as the
generation of monosporic isolates as well as antibiotic or thermal treatments [21]. It is
also reported that unintentional loss of these mycoviruses can also occur during culturing
and long-term storage of the fungi [22]. While loss of mycoviruses seem to be common,
limited data exist regarding the stability of mycoviruses in their host.

A well-characterized fungi defence against virus infection from fungi is RNA silenc-
ing. The RNA-induced silencing complex (RISC) is an internal defence mechanism that
protects genomes against invasion by mobile genetic elements such as viruses [23]. This
machinery includes Dicer-like proteins that process viral structured dsRNA into small
interfering RNAs (siRNAs), and Argonaute-like proteins that unwind the paired strands,
degrade one of them, and use the other (aberrant RNA) as a template to identify similar
sequences. The Argonaute-RISC complex then degrades the viral target, resulting in an
antiviral response [24–26]. RNA silencing was first observed in C. parasitica where deletion
of genes encoding Dicer- or Argonaute-like proteins could lead to severe growth defects
in the strains infected by CHV1 but not the virus-free strains [27,28]. Furthermore, the
presence of virus-derived siRNAs (vsiRNA) in C. parasitica, Magnaporthe oryzae [29], and
Aspergillus nidulans [24] demonstrated the existence of active antiviral defence in filamen-
tous fungi. Moreover, despite the fact that mitoviruses presumably replicate into the
mitochondria, a proper functioning of RISC has been reported in members of the Mitovirus
genus [30,31]. This possible biological explanation may lie behind the degradation of
mycoviruses in their fungal hosts.

Loss of viruses that cause a symptomatic infection in the host essentially eliminates
the symptoms. Nevertheless, little attention has been paid to the potential long-term
functional impact of the loss of viruses on host organisms. In fact, to our knowledge,
the potential residual effects result of a spontaneous virus loss event have only been
reported on human viruses, such as the hepatitis B virus and West Nile virus [32], that
trigger chronic diseases. More recent is the worrying clinical sequelae of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) post-infection in the patients [33].

The original aim of this study was to compare two isogenic fungal lineages, one which
contained the virus FcMV1 (Fc072v) and one that had been cured of this virus (Fc072).
However, during the study it was found that the isolate Fc072v had in fact spontaneously
lost this virus. This thus presented us with the opportunity to investigate whether there
were differences in gene expression between two isogenic lineages, one that had very
recently lost the virus FcMV1 and one that had been cultured for some time without
this virus.

2. Materials and Methods
2.1. Fungal Culture, Sample Preparation, RNA Extraction, and High-Throughput Sequencing

The F. circinatum isolate (Fc072v) used in this work belongs to mating type 2 (MAT-2)
and was isolated from an infected Pinus radiata tree located in the North of Spain (Cantabria,
Spain). This isolate initially harboured the mycovirus “FcMV1”. An isolate without this
virus (Fc072) was obtained by monosporic culture in 2014 [19,34]. Likewise, after four
years of storage, the unintentional loss of mycovirus “FcMV1” was confirmed according to
Martínez-Álvarez et al. [18] (Table 1).
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Table 1. Presence (+) or loss/absence (−) of the mitovirus FcMV1 of Fusarium circinatum, detected by
polymerase chain reaction (PCR).

Mycovirus
Previous 4-Year Storage After 4-Year Storage

Fc072 Fc072v Fc072 Fc072v

Fusarium circinatum mitovirus 1
(FcMV1) − + − −

Each F. circinatum isolate (Fc072 and Fc072v) was cultured in three Petri dishes con-
taining PDA medium (3.90% w/v potato dextrose agar, Scharlab S.L., Barcelona, Spain).
After culturing for a week in darkness at 25 ◦C, each colony was subcultured in three
Erlenmeyer flasks with 100 mL of PDB medium (2.40% w/v potato dextrose broth, Scharlab
S.L., Barcelona, Spain) and incubated in an orbital shaker at 150 cycles for 4 days at 25 ◦C.
The filtered tissue was flash frozen in liquid nitrogen and ground to a fine powder using
a mortar and pestle. The powder of the three flasks were pooled before RNA extraction,
which was performed using the Spectrum™ Plant Total RNA Kit (Sigma Aldrich, St. Louis,
MO, USA) following the manufacturer’s protocols. Any contaminating traces of genomic
DNA from RNA were removed by on-column DNase Digestion (DNASE10-1SET, Sigma-
Aldrich, St. Louis, MO, USA). The concentration and purity of the RNA was measured by
estimating the absorbance ratios A260/A230 and A260/A280 (NanoDrop 2000 Spectropho-
tometer, Thermo Fisher Scientific, Waltham, MA, USA). RNA integrity was checked by
electrophoresis on an agarose gel (1% TAE).

The RNA was sent to Fasteris SA (Switzerland; https://www.fasteris.com) for Illu-
mina Stranded RNA library construction and HTS (Illumina HiSeq 4000, Illumina Inc.,
San Diego, CA, USA). The sample processing consisted of purification using poly(A) se-
lection, chemical fragmentation, synthesis of single- and double-stranded cDNA using
random hexamer priming, end repair, ligation of the 3′ and 5′ adapters, and amplification by
PCR. The 75-bp raw paired-end reads were generated by the Illumina HiSeq 4000 platform
across only one Illumina lane, in order to avoid technical errors due to sample position in
the sequencer.

2.2. RNA-Seq Analysis

The software package CLC Genomics Workbench 6.0.1 (CLC bio, Aarhus, Denmark)
was used to discard poor-quality terminal nucleotides. In particular, two nucleotides were
removed from the 5′ terminal of the reads. This software was used to align the trimmed
sequence reads to the annotated F. circinatum reference genome. To ensure optimal align-
ment, we used a filtering threshold of 0.5 for the length fraction and a similarity parameter
value of 0.8. Thus, at least 50% of an individual read needed to match the reference se-
quence at a similarity of >80% for the read to be used in the mapping. Comparisons of the
expression levels between the samples were done according to Mortazavi et al. [35]. Data
normalization of each sample was carried out by dividing the number of reads mapping to
each gene by its length and by the total number of reads sequenced across the transcrip-
tome (reads per kilobase per million mapped reads, or RPKM). A quantile normalization
algorithm was also applied on the RPKM values to account for technical variability in the
RNA-Seq data [36].

Baggerley’s Z test on the expression proportions was performed to test the RPKM
differences between the samples [37], using the normalized RPKM values. This test
compares the proportions of counts in a group of samples against those of another group of
samples (i.e., Fc072 vs. Fc072v), where the samples are given different weights depending
on their sizes (total counts). The weights are obtained by assuming a β distribution
on the proportions in each group, and estimating these, along with the proportion of a
binomial distribution, by the method of moments. The result is a weighted t-type test
statistic. The Benjamini–Hochberg false discovery rate (FDR) method was used for multiple
test correction [38]. In this study, a conservative threshold for identifying differentially

https://www.fasteris.com
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expressed (DE) genes was used, ignoring those genes showing lower effects. DE genes
were considered only if they displayed a 2-fold change in expression at an FDR-corrected
p-value of 0.05.

In an attempt to identify viral expression, F. circinatum mitoviruses genomes from
the NCBI Taxonomy Database (https://www.ncbi.nlm.nih.gov/taxonomy) were used as
queries in the local mapping tool against the libraries in CLC Genomics Workbench.
The mapping approach was the same as that described above (length fraction = 0.5;
similarity parameter = 0.8).

Genes known to be involved in post-transcriptional gene silencing in F. graminearum
were investigated for their presence and possible over or under-regulated expression in
the two conditions. These included the RNA silencing core components already known to
be present in F. graminearum: two Argonaute-like, two Dicer-like, and five RNA-directed
RNA polymerase genes [25]. Also included in this list were an exonuclease QIP (QDE2-
interacting protein) that is involved in the activation of RISC and a QDE-3 (RecQ DNA
helicase homologous to the Werner/Bloom Syndrome proteins) required for recognizing
aberrant RNA [39]. In addition, an MRPL3 (RNase III domain-containing protein) identified
in Neurospora crassa that could collaborate with Dicer [40] was included (Table S8). The gene
sequences were downloaded from the NCBI Gene Database (www.ncbi.nlm.nih.gov/gene)
and identified by blasting them against the draft genome assemblies of F. circinatum using
local BLAST.

2.3. Gene Ontology (GO) Enrichment Analysis

To shed light on the functional processes that may have been modified by a past
infection of mycovirus FcMV1, enrichment of the differentially expressed genes in gene
ontology (GO) terms was carried out. Because of the poor annotation for F. circinatum
genes, all genes (a total of 14,865) were annotated using the BLAST2GO program [41].
BLAST2GO was also used to predict the protein domains through InterProScan 5 [42] as
well as to perform Gene Ontology (GO) and Enzyme Code (EC) mapping.

GO enrichment analyses were performed using Fisher’s exact test (FET) in the
BLAST2GO program to determine whether any GO terms were enriched in the DE gene
list with respect to all of the GO terms of the complete F. circinatum transcriptome [41]. It
was run with the default settings, taking a false discovery rate (FDR) < 0.05. In addition,
the highly expressed genes were also subjected to FET testing for GO term enrichment,
with a p-value of 0.05 or less indicating significant enrichment. The identified GO terms
were classified into three ontologies: biological process, cellular component, and molecular
function. General GO terms (parent terms) were removed to keep the most specific terms
using the REViGO 2017 [43] tool with the “small, 0.5 allowed similarity” setting. The
REViGO output was then visualized using Cytoscape v3.8.0 (ISB, Seattle, WA, USA).

3. Results
3.1. RNA-Seq Statistics

High-quality RNA (RIN > 7) was extracted from each sample used in this study.
Illumina HiSeq sequencing of the F. circinatum libraries produced from 54,741,864 to
72,397,413 reads with a length of 75 nucleotides (Table 2). The raw sequencing data have
been deposited in the National Center for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) database under the following accession number: PRJNA666978. After
quality trimming (two nucleotides per read) the Phred-scale quality score was higher than
40 in at least 75% of the sequences. The mapping approach allowed an efficient alignment
of the reads generated for the respective samples against the F. circinatum reference genome,
with 98% of fungal reads (Table 2). Unmapped reads were most likely the result of sequenc-
ing errors, reads from repetitive or unassembled genome regions [44], and the presence of
viral sequences.

https://www.ncbi.nlm.nih.gov/taxonomy
www.ncbi.nlm.nih.gov/gene
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Table 2. Summary of the sequence reads.

Samples Number of Raw Reads a Number of Mapped Fungal Reads b

(1) Fc072 58,988,010 57,818,686 (98.02%)

(2) Fc072 59,120,902 57,957,023 (98.03%)

(3) Fc072 66,538,581 65,199,515 (97.99%)

(4) Fc072V 54,741,864 53,618,877 (97.95%)

(5) Fc072V 57,606,375 56,514,903 (98.11%)

(6) Fc072V 72,397,413 70,933,962 (97.98%)
a Passed filter clusters that fulfil the default Illumina quality criteria; b Reads mapped to the
F. circinatum reference genome in pairs and in broken pairs.

3.2. Detection of Gene Expression

Out of the 14,865 predicted genes in the F. circinatum genome (44 Mb), approximately
77% of the genes were expressed similarly across all the libraries in this study. A transcript
was considered to be expressed if at least 3 unique gene reads were mapped to its anno-
tation and if it was detected above a threshold of 0.1 normalized RPKM value [45]. The
number of highly expressed genes (RPKM > 1000) was similar in both conditions (Table 3).
Unfortunately, ~50% of these genes were not annotated or encoded hypothetical proteins
with conserved domains. The genes that could be assigned to a probable function were
enriched for processes such as regulation of gene expression, protein binding, and response
to stimulus (Table S3). In particular, the GO analysis identified many items associated with
the transcriptional and translational machinery. RNA polymerase II transcription preinitia-
tion complex assembly (GO:0045899), activation of transcription by nitrogen catabolites
(GO:0001080), rRNA transcription (GO:0009303), nucleosome assembly (GO:0006334), and
cytoplasmatic translational elongation (GO:0002182) were enriched.

Table 3. RNA-Seq gene expression results for the two conditions.

Category Fc072 Fc072V

Highly expressed genes (>1000 RPKM) 36 34

Medium expressed genes (≥10 to 1000 RPKM) 7172 7158

Lowly expressed genes (<10 RPKM) 4290 4292

RPKM values ≥ 0.2 11,494 11,484

In the isolate previously infected by the mitovirus (Fc072v), 34 genes were highly
expressed with only three being unique to this condition (Table S4). Canonical glycol-
ysis (GO:0061621), gluconeogenesis (GO:0006094), and pyruvate biosynthetic process
(GO:0042866) were enriched GO terms. All three of these GO terms are involved in car-
bohydrate metabolism. Transcripts involved in the metabolic process of reactive oxygen
species (ROS) (GO:0072593) and osmotic stress (GO:0071470) were upregulated. A set of
GO terms associated with the oxidative stress response, such as detection of oxidative stress
(GO:0070994), cellular response to oxidative stress (GO:0034599), and apoptotic process
(GO:0006915), were enriched. In addition, positive regulation of the stress-activated MAPK
cascade (GO:0032874) and Mcs4 RR-MAPKKK complex (GO:1990315), which play a pivotal
role in the regulation of stress responses, were over-represented. Nucleotide catabolic
process (GO:0009166) and purine ribonucleoside monophosphate biosynthetic process
(GO:0009168), both involved in the synthesis and degradation of nucleotides, were also
over-represented. Other terms related to the regulation of all these processes, including
heme transport (GO:0015886), GAPDH activity (GO:0004365), NAD biosynthetic process
(GO:0009435), and ATP biosynthesis process (GO:0006754), were upregulated as well
(Table S5).
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Out of the genes expressed in the Fc072 isolate, 36 genes were highly expressed, with
five unique to this condition. The only gene that could be assigned to the probable function
was phosphatidylserine decarboxylase proenzyme 2 (Table S6).

The results of the local mapping using the genomes of the mitoviruses of F. circinatum
confirmed the absence of FcMV1 in both treatments, as checked by PCR. No reads of any
of the libraries analysed in this study matched the FcMV1 genome. Surprisingly, a total of
4100 reads from the six libraries were mapped against the FcMv2-1 genome, confirming
the hitherto unknown presence of this mitovirus in the isolates in this study (Table 4).

Table 4. Mapping summary statistics, with the reference genomes of mitoviruses FcMV1 and FcMV2-
1 as queries.

Mycovirus
Genome

Reference
Length

Reads Mapped to Genome *

(1) Fc072 (2) Fc072 (3) Fc072 (4) Fc072v (5) Fc072v (6) Fc072v

FcMV1 2419 0 0 0 0 0 0

FcMV2-1 2193 575 452 805 835 737 696

* Reads mapped in pairs and in broken pairs.

3.3. Expression of Genes Involved in Post-Transcriptional Gene Silencing

Based on similarity, genes involved in post-transcriptional gene silencing were identi-
fied and their expression was examined. Using the F. graminearum and N. crassa genes as
queries, we identified the homologous loci from the F. circinatum genome (Table S8). The
gene that encodes the Dicer protein DCL-1, which plays presumably an antiviral role in
F. graminearum, and one of the RNA-dependent RNA polymerases, were not found. None
of the genes identified showed evidence of differential expression (Table S9) and were
categorized as medium/lowly expressed genes in the study.

3.4. Differentially Expressed Genes

Out of the expressed genes, only 14 were differentially expressed (DE; Figure S1),
as they displayed a 2.0-fold change at an FDR of q ≤ 0.05 during pairwise comparisons
between the two treatments (with residual effects and without virus). A probable function
of 12 out of the 14 transcripts could be assigned (Table 5, Figure S2). All the DE genes
were upregulated, except a cytochrome P450 that encodes an oxidative enzyme required
in lovastatin biosynthesis (Figure S3). To gain insights into the functions of the differ-
entially expressed genes, as a residual effect of the FcMV1 infection, we analysed them
for enriched GO terms; all listed in Table S7. The genes indicated significant enrichment
with a p-value of 0.05 or less for biological regulation, transport, metabolic, and cellular
processes (Figures S4 and S5). The majority of upregulated functional groups were related
to cellular component organization and cell cycle regulation, such as positive regulation
of formin-nucleated actin cable assembly (GO:0090338), regulation of barbed-end actin
filament capping (GO:2000812), mitotic actomyosin contractile ring assembly (GO:1903475),
actin cortical patch organization (GO:0044396), actin monomer binding (GO:0003785), and
cell cortex of cell tip (GO:0051285). In addition, terms involved in the biosynthesis of the
methionine pathway, including homoserine metabolic process (GO:0009092) and methio-
nine biosynthetic process (GO:0009086), were enriched. The NAD, NADH, and NADP
metabolic processes (GO:0019674, GO:0006734, and GO:0006739) that modulate numer-
ous biological events were enriched as well. Transcripts involved in the macromolecule
metabolic process (GO:0043170) were under-represented in this analysis. More results of
Blast2GO are represented in Figures S6 and S7.
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Table 5. GO terms of the differentially expressed genes. ↑ = upregulated by the FcMV1 residual
effect; ↓ = downregulated by the FcMV1 residual effect.

Gene Locus Gene Function Fold
Change

FDR p-Value
Correction

FCIRG_04875 Nicotianamine synthase 3 2.22 ↑ 8.29 × 10−5

FCIRG_04876 O-acetylhomoserine (thiol)-lyase 2.62 ↑ 0

FCIRG_04877 Carnosine synthase 1 2.22 ↑ 0.02

FCIRG_04879 Uncharacterized protein 2.01 ↑ 0

FCIRG_04880 GA4 desaturase 2.43 ↑ 0

FCIRG_04881 Probable O-acetylhomoserine (thiol)-lyase 2.53 ↑ 9.13 × 10−9

FCIRG_04882 Related to oxidoreductase 2.24 ↑ 0

FCIRG_04883 Related to naringenin, 2-oxoglutarate
3-dioxygenase 2.33 ↑ 0

FCIRG_04972 Profilin 2.34 ↑ 0.01

FCIRG_05571 Related to human TGR-CL10C 2.06 ↑ 8.29 × 10−5

FCIRG_07760 ABC transporter YOR1 2.19 ↑ 0

FCIRG_11031 No significant similarity 2.18 ↑ 0.02

FCIRG_14348 Homoserine O-acetyltransferase 2.19 ↑ 0

FCIRG_14896 Probable CYP450 monooxygenase (lovA) 3.20 ↓ 0

4. Discussion

Although the spontaneous loss of mycoviruses after a storage period is well known by
mycovirus researchers, as far as we are aware this is the first time that a potential residual
effect on the host transcriptome caused by a past infection of a mycovirus is reported. This
study represents a preliminary attempt to analyse a genome-wide transcriptome by RNA-
Seq of the pathogenic fungus F. circinatum infected by F. circinatum mitovirus 1 (FcMV1)
and its subsequent spontaneous loss.

The transcriptomic analysis confirmed the loss of the FcMV1 mycovirus, since no
reads of the set of the sequenced libraries matched the FcMV1 genome. Unfortunately,
the disappearance of this mycovirus in the Fc072 strain made it impossible to include this
strain harbouring FcMV1 in the transcriptomic analysis. An unexpected result emerging
from the data was the detection of FcMV2-1 in all the libraries. This virus was not detected
before by using the conventional method of PCR and its specific primers [19]. Similar
findings also occurred in a study with Heterobasidion annosum, where cryptic mitovirus
infections were not detected by dsRNA extraction but by RNA deep sequencing and
RNA-Seq analysis [31,46]. The fact that mycoviruses can be detected or not depends
on the state of replication, the titre, and the sample handling. The use of conventional
PCR in viral detection is a widely used method and considered as highly sensitive [47].
However, if the number of copies of the target molecule is very scarce, the use of real-
time PCR (qPCR) or High-Throughput Sequencing (HTS) technologies are more sensitive
and, therefore, recommended [48–50]. The results regarding the viral accumulation of
FcMV2-1 (0.001%) are consistent with previous transcriptome analysis where the amount
of virus accumulation was very low [51]. A low rate of viral replication (latency) at the time
when the RNA was extracted could be an explanation. As viral replication relies on the
host translational machinery to produce viral proteins, an increment in the expression of
translational genes is expected. Indeed, the translational machinery was highly expressed
in all the samples; however, it cannot be claimed that FcMV2-1 was using this machinery for
its replication. Another biological explanation behind the unsuccessful detection of FcMV2-
1 by conventional PCR could be a high activity of the RISC machinery in the host, the
protection mechanism of eukaryotes from viral infections. Nevertheless, the examination
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of the expression of the posttranscriptional gene silencing showed a low activity of the
RISC core in all the samples. Therefore, the factors that regulate the FcMV2-1 titre must be
further studied.

The presence of the cryptic mycovirus FcMV2-1 was reflected in the reads mapped to
its genome. The results of the mapping showed a similar number of FcMV2-1 reads in both
conditions (Welch’s two-sample t-test; t= −1.305, p= 0.29). It is reasonable to assume that
the viral abundance in each individual library is correlated with the relative abundance of
the virus in the host [52]. Thus, it is likely that both isolates had the same infection load of
FcMV2-1 and that FcMV2-1 would be affecting the transcriptome of its host in an equal
manner and probably not contributing to the differential gene expression.

In the present study, the RNA-Seq-based genome-wide expression analysis showed
that approximately 77% of genes of F. circinatum were expressed. The residual effect caused
by a past FcMV1 infection was only represented by 12 known DE genes. Although the
value concurs with the number of DE genes reported in response to the coinfection of four
mycoviruses (FgV1, FgMV2, FgMV3, and FgMV4) in F. graminearum [53], other studies
found a much larger number of DE genes as a result of mycovirus infections. For example, a
total of 683 and 848 genes were DE in H. annosum and Phytophthora infectans by the infection
of the partitivirus HetPV13-an1 and PiRV-2, respectively [46,54]. Likewise, F. graminearum
hypovirus 1 (FgHV1) caused a significant alteration in a total of 378 genes [55]. This could
suggest that the residual effect of a past mycovirus infection is limited to a few genes and
functions in comparison with those affected in the presence of the mycovirus.

In particular, out of the 12 DE genes, only “cytochrome P450 monooxigenase (lovA)”
was downregulated by the FcMV1 post-infection. This cytochrome encodes an oxidative
enzyme essential for the production of lovastatin biosynthesis [56], a fungal secondary
metabolite. The gene lovA is considered as a gene required by the pathogenic fungus to
establish infections [57]. In addition, this gene product may also be involved in generating
compounds that exercise control over expression of the β-oxidation system [58], which are
necessary for conidial germination and invasive growth of the host [59].

Actin filaments are one of the major components that constitute the cytoskeleton of
the eukaryotic cells. These fibres are directly involved in morphogenesis, cytokinesis, and
organelle transport in filamentous fungi [60]. Because actin is essential for determining the
shape of the cell, it takes on great importance during mitosis. A large number of ontology
terms involved in the actin cytoskeleton were over-represented by the upregulated DE
genes. Some of them were involved in the organization and formation of structures that
serve as tracks for intracellular transport in the process of cytokinesis. These terms include
actin cortical patches, formin-nucleated actin cables, and mitotic actomyosin contractile
rings. Assembly and constriction of the actomyosin ring occur during cell division in
fungal cells [61]. This suggests that the fungal cultures that had lost the virus have a higher
cellular development than the virus-free isolate.

Some of the upregulated genes, considered as the residual effect of a past infection,
encode proteins involved in the response and regulation of oxidative stress. The ATP-
binding cassette transporter YOR1, a drug efflux pump, also intervenes in pathogenicity
and stress response [62]. A gene related to naringenin 2-oxoglutarate 3-dioxygenase
also has been upregulated by FcMV1 post-infection; these gene products are involved in
the biosynthesis of flavonoids, recently described in the fungi kingdom [63]. Although
the production of this secondary metabolite has an important role in plant defence, it is
unclear what role this plays in fungi. Due to the antioxidant effects of flavonoids, we
could think they can be important in fungal counter-attack against reactive oxygen species
(ROS). The ROS metabolic process was present among the items identified in the GO
term enriched analyses of the highly expressed genes, uniquely in the cultures that had
lost the mycovirus. Together with ROS, multiple terms enriched were involved in redox
regulation and response to osmotic stress, suggesting a counterbalance and defence reaction
of F. circinatum triggered by an own oxidative burst. Other researchers found a cellular
response to oxidative stress under mycovirus infection [46,55].
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Osmotic stress or high levels of ROS cause stress in the fungus, resulting in growth
cessation. ROS are highly potent oxidants and their inappropriate regulation causes
damage of macromolecules such as DNA and proteins, which could lead to an apoptotic-
like cell death. However, local bursts of ROS regulate different cellular functions, such
as cell proliferation, cell differentiation, and ion transport [64]. The thin line between a
destructive and signalling role of ROS in the cell depends on the equilibrium between
their production and scavenging [65]. An increment in intracellular ROS concentration
before each stage of the development cycle has been demonstrated in different fungi [66].
Taking all together, these results seem to suggest that the oxidative burst could not be
related to a defence mechanism against a viral infection, but to the development of the
colony, inducing hyphae and macroconidium formation. This would be consistent with
a preliminary study of FcMV1 infection, where the mitovirus caused a slight increase in
F. circinatum virulence [34]. Thus, the residual effect of a recent infection by FcMV1 could
have somehow accelerated the metabolism of the F. circinatum cultures.

Interestingly, four genes in the upregulated group are implicated direct or indirectly
in the methionine pathway. The methionine biosynthetic process and the homoserine
metabolic process were also enriched upon FcMV1 post-infection. Allen et al. [67] found
that strains of C. parasitica infected by the hypovirus CHV1 show transcript accumulation
for genes involved in the methionine pathway. Similar results were also observed in a
study of yeast–totivirus interaction, where a fungal response to the viral infection was
suggested [68]. Due to its central role in metabolism, it could be predicted that the increment
in the expression of genes involved in the methionine pathway would be affecting many
metabolic and physiologic processes, such as protein synthesis and membrane integrity [67].
These alterations may constitute the consequences of the previous presence of FcMV1 on
the stability of the F. circinatum genome. However, further experimental evidence must
support this hypothesis.

RNA silencing is an evolutionarily conserved system in eukaryotic organisms. Besides
its developmental regulation function in the organism, it has been demonstrated that RNA
silencing also acts as an antiviral defence mechanism in filamentous fungi [69]. There
was some evidence of the molecular antiviral response in F. circinatum. In a study of
vsiRNA fragments using HTS, more than 50% of reads from each F. circinatum mitovirus
strain ranged between 20 and 26 nt, the highest reported vsiRNA percentage in filamentous
fungi [70]. In the present study, the expression of genes involved in gene silencing pathways
was detected but no significative differences between the two isolates were observed. The
presence of the mitovirus FcMV2-1 in all the cultures did not trigger a strong response in
the post-transcriptional silencing machinery. The levels of expression of these genes were
low with an average of 7 to 8 RPKM. A slightly higher expression of silencing genes was
observed in H. annosum, with 49-50 RPKM [46], which may be explained by the fact that
the cultures were infected by two identified mitoviruses. The results reported here are
consistent with a recent study where it has been demonstrated that C. parasitica mitovirus
1 is unaffected by the RNA silencing mechanism [71]. The possibility that the mitoviruses
could escape the cytoplasmic RISC defences because of their subcellular localization still
has to be addressed.

To our knowledge, this is the first time that a residual effect on the gene expression of
a fungus caused by a past infection of a putative mycovirus has been reported. The limited
number of genes differentially expressed reveals a low interference in the transcriptome
on the host. However, the number of altered genes is not the only factor, the functions
of the genes affected is also important. The present study shows that several essential
functions were presumably upregulated by a recent infection of the putative mycovirus
FcMV1. However, the present work represents a preliminary study based on genome-wide
transcriptome and further experimental essays are needed to validate the residual effects
caused by the mycoviruses. These results highlight the importance of understanding more
about the viruses hosted by fungi isolates and their spontaneous losses. This study lays the
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groundwork for further studies on the loss of mycoviruses and their residual effects on the
host.

5. Conclusions

The spontaneous loss of mycoviruses is common and it can lead to a long-term
functional impact on the fungal hosts. RNA-Seq technology has allowed the analysis of
the residual effect of the past infection of the mitovirus FcMV1 on the fungal pathogen
Fusarium circinatum based on a genome-wide transcriptome. We demonstrated that the fun-
gal isolate that had lost the mycovirus was experiencing a slight acceleration in metabolism,
possibly due to the positive regulation of the genes involved in the essential functions for
the development of the fungus.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-490
7/12/1/11/s1, Figure S1: Venn diagram of the differentially expressed genes by the post-infection of
the virus FcMV1. Figure S2: Sequences of the differentially expressed genes by the post-infection of
the virus FcMV1 without a known function. Figure S3: Scatter plot representing the differentially
expressed genes of this analysis. Xaxis: normalized means in condition free of FcMV1 infection.
Y-axis: normalized means in condition of FcMV1 post-infection. Red dot: downregulated genes;
green dot: upregulated genes. Figure S4: FET enriched GO terms associated with the differentially
expressed genes of Fusarium circinatum previously infected by FcMV1. Figure S5: Distribution of
GO terms represented in this analysis by biological processes, cellular components and molecular
functions. Figure S6: Distribution of the sequences of the analysis in the InterProScan domains.
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