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Abstract

Two one-parametric bifurcation problems for scalar nonautonomous ordinary differential equations are 
analyzed assuming the coercivity of the time-dependent function determining the equation and the concavity 
of its derivative with respect to the state variable. The skewproduct formalism leads to the analysis of the 
number and properties of the minimal sets and of the shape of the global attractor, whose abrupt variations 
determine the occurrence of local saddle-node, local transcritical and global pitchfork bifurcation points of 
minimal sets and of discontinuity points of the global attractor.
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1. Introduction

The objective of this paper is to develop a bifurcation theory for nonautonomous scalar ordi-
nary differential equations defined by time-dependent scalar functions with concave derivative 
with respect to the state variable: d-concave functions (or equations), for short. We analyze in 
detail different types of d-concavity and describe rigorously conditions giving rise to saddle-
node, transcritical and pitchfork nonautonomous bifurcation patterns for suitable one-parametric 
families of scalar d-concave ODEs.

Nonautonomous bifurcation theory is a challenging problem intensively studied during the 
last years. The works of Alonso and Obaya [1], Anagnostopoulou and Jäger [2], Anagnos-
topoulou et al. [3], Braaksma et al. [5], Fabbri and Johnson [14], Fuhrmann [15], Johnson and 
Mantellini [19], Johnson et al. [20], Kloeden [22], Langa et al. [24], Núñez and Obaya [29,30], 
Pötzsche [33,34], Rasmussen [35,36], and the references therein, offer an overview of the present 
state of this theory, paying special attention to scalar ordinary differential equations. Since, in 
general, a nonautonomous differential equation does not have constant or periodic solutions, it 
is not clear how to identify the objects whose bifurcation should be studied. In this paper, we 
make use of the skewproduct formalism, which gives some natural answers to this question: we 
analyze the number and shape of certain compact invariant subsets of the skewproduct flow and 
the changes of these structures as the parameter varies.

Let f0 : R × R → R be a continuous function, and let us denote the t-shift of f0 by 
(f0·t)(s, x) = f0(t + s, x). Standard conditions on f ensure that its hull �, given by the clo-
sure of {f0·t : t ∈ R} in a suitable topology of C(R × R, R), is a compact metric space and 
that the map σ : R × � → �, (t, ω) �→ σ(t, ω) = ω·t defines a continuous flow. By defining 
f (ω, x) = ω(0, x), we obtain the family of equations

x′ = f (ω·t, x) , ω ∈ �, (1.1)

which includes the initial one: it corresponds to ω0 = f0 ∈ �. For the first results, we will not 
restrict ourselves to this hull situation: � will be any compact metric space, σ : � × R →
R, (ω, t) �→ ω·t will be a continuous flow, and f : � × R → R will be a continuous func-
tion such that the partial derivative fx : � × R → R is jointly continuous and concave in x for 
all ω ∈ � (d-concave). If u(t, ω, x0) denotes the solution of (1.1) with u(0, ω, x0) = x0, then 
τ : R × � × R → � × R, (t, ω, x0) �→ (ω·t, u(t, ω, x0)) defines a local skewproduct semiflow 
on � × R. For our most relevant results, we will assume that � is minimal (and hence it is the 
hull of any of its elements) and that the flow τ is dissipative. Our one-parametric bifurcation 
analysis refers to changes in the number and characteristics of the minimal sets, and in the shape 
of the global attractor. This type of analysis is useful for many interesting problems.

The results are organized in five sections. Section 2 contains some basic notions and proper-
ties of ergodic theory and topological dynamics. Section 3 deals with the d-concavity property. 
As proved by Tineo [38], f is d-concave if and only if, for every ω ∈ �, the second order 
divided differences satisfy f (ω, [x1, x0, x2]) ≥ f (ω, [x1, x0, x3]) for every x0, x1, x2, x3 ∈ R
with x1 < x2 < x3 and x0 /∈ {x1, x2, x3}. But this condition does not suffice to our purposes. 
Given a real interval J = [a, b] and 0 < ε < l(J )/2 = (b − a)/2, we define the standardized 
ε-module of d-concavity bJ,ε : � → [0, ∞): a function which satisfies f (ω, [x1, x0, x2]) −
f (ω, [x1, x0, x3]) ≥ bJ,ε(ω) for every ω ∈ �, x0, x1, x2, x3 ∈ J , x2 − x1, x3 − x2 ≥ ε and 
x0 /∈ {x1, x2, x3}, and which is, to some extent, optimal with this condition. We introduce dif-
ferent levels of strict d-concavity (abbreviated as SDC) in terms of these modules. In particular, 
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our function f is (SDC)m with respect to a σ -ergodic measure m on � if for any J there exists 
ρJ > 0 such that m({ω ∈ � : bJ,ε(ω) > 0}) > ρJ whenever 0 < ε < l(J )/2, and f is (SDC) if 
m({ω ∈ � : bJ,ε(ω) > 0}) > 0 for every m, J and 0 < ε < l(J )/2.

In Section 4, we analyze some ergodic and topological properties of the compact invariant sets 
K ⊂ � × R. We prove that, if f is (SDC)m, then there exist at most three τ -ergodic measures 
concentrated on K projecting onto m. Similarly, if f is (SDC), then K contains at most three 
disjoint compact τ -invariant sets projecting onto �. In addition, if fxx is also continuous (what 
we assume in the rest of this introduction), then the sum of any pair of Lyapunov exponents of 
K with respect to two different ergodic measures projecting onto the same one on � is lower 
than or equal to zero. Previous results of this same type have been obtained by Tineo [38] for 
periodic differential equations under stronger conditions of d-concavity and by Jäger [17] for 
quasiperiodically forced increasing maps T : S1 × [a, b] → S1 × [a, b] with strictly negative 
Schwarzian derivative. We also explain in this section the relation between their results and ours.

In Section 5, we assume that the flow (�, σ) is minimal and add to the hypotheses on f its 
coercivity, which implies the existence of a global attractor Aλ for each one of the families x′ =
f (ω·t, x) + λ, with λ ∈ R. We describe several possibilities for the global bifurcation diagrams 
of this one-parametric problem. Our main tool is to determine the number of the minimal sets 
and their structure for each λ ∈ R, and the relation of these properties with the shape of Aλ. We 
prove that, if f is (SDC) and there exist three minimal sets for a point λ0 ∈ R, then Aλ contains 
three minimal sets, which are hyperbolic, if and only if λ belongs to a nondegenerate interval 
(λ−, λ+), and it is simply the graph of a continuous map on � if λ /∈ [λ−, λ+]. In addition, the 
two upper (resp. lower) minimal sets collide on a residual invariant subset of � when λ ↓ λ−
(resp. λ ↑ λ+), giving rise to two local saddle-node bifurcation points of minimal sets and two 
points of discontinuity of Aλ: the global bifurcation diagram is the nonautonomous analogue 
of that of x′ = −x3 + x + λ, with the fundamental difference of the possibility of occurrence 
of highly complicated dynamics on the nonhyperbolic minimal set existing at the bifurcation 
points. This is an extension of the saddle-node bifurcation pattern studied in [1], [29] and [31]
for the concave case. In addition, we establish conditions ensuring that, if there exist exactly two 
minimal sets for a value λ1, then the situation is that described above, with λ1 = λ− or λ1 = λ+. 
We also describe the dynamical possibilities for Aλ when there is only a minimal set for all λ (as 
in x′ = −x3 + λ).

In Section 6, also under the hypothesis of minimality of (�, σ), we analyze a problem of para-
metric bifurcation of a recurrent solution of a given equation. First, we show how to reformulate 
this problem in terms of the bifurcation analysis around the minimal set � × {0} of a family 
x′ = f (ω·t, x) + λx, with f (·, 0) ≡ 0. A first description of the possible local transcritical, local 
saddle-node and global pitchfork bifurcation points which may appear for this model was given 
in [29] in the case of uniquely ergodic flow on �. For an (SDC) function f , the results of Sec-
tion 6 extend the casuistic described in [29] to the more general case of coexistence of several 
Lyapunov exponents on � × {0}, which may give rise to scenarios of greater dynamical com-
plexity. Some particular cases for which the bifurcation diagram is completely characterized are 
described, and an interpretation of the conclusions for the initial bifurcation problem of recurrent 
solutions completes the paper.

2. Preliminaries

Subsection 2.1 explains the definition of a skewproduct flow from a family of scalar nonau-
tonomous ordinary differential equations. Subsection 2.2 includes the basic definitions of equi-
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libria, semiequilibria and global upper and lower solutions, and relations among them. In Sub-
section 2.3, we recall some particular properties of compact invariant sets and minimal sets in the 
scalar case. Finally, Subsection 2.4 summarizes the required notions and properties concerning 
exponential dichotomy, Sacker and Sell spectrum and Lyapunov exponents of a family of scalar 
ODEs.

The interested reader can find in [4], [6], [9], [10], [13], [16], [18], [20], [21], [23], [25], [27], 
[28], [37] and [39] all the details of the properties summarized here.

2.1. Scalar skewproduct flow

Let � be a compact metric space, and let σ : R × � → �, (t, ω) �→ σt (ω) = ω·t define a 
global continuous flow on �. All our results refer to the dynamical systems generated by the 
solutions of nonautonomous scalar ordinary differential equations of the family

x′ = f (ω·t, x) , ω ∈ �, (2.1)

where f : � ×R →R is assumed to be jointly continuous and fx is supposed to exist and to be 
jointly continuous. We shall denote the set of this kind of functions by C0,1(� ×R, R). Along the 
paper, C0,2(� ×R, R) and successive function spaces will appear. For example, C0,2(� ×R, R)

denotes the set of functions f : � × R → R for which f , fx and fxx exist and are jointly 
continuous. The family (2.1) allows us to define the local continuous flow

τ : U ⊆ R× � ×R → � ×R , (t,ω, x0) �→ (ω·t, u(t,ω, x0)) , (2.2)

where Iω,x0 → R, t �→ u(t, ω, x0) is the maximal solution of (2.1) with initial datum 
u(0, ω, x0) = x0, and U = ⋃

(ω,x0)∈�×R(Iω,x0 × {(ω, x0)}). That is, u satisfies the cocycle 
property u(t + s, ω, x0) = u(t, ω·s, u(s, ω, x0)) when the right-hand term is defined. The fiber-
monotonicity of the flow τ is guaranteed by the uniqueness of solutions of the ordinary differ-
ential equation: if x1 < x2, then u(t, ω, x1) < u(t, ω, x2) for any t in the common interval of 
definition of both solutions. The flow (� ×R, τ) is a type of local skewproduct flow on � × R
projecting onto (�, σ), which is called the base flow of the skewproduct. The ω-section of a set 
K ⊆ � ×R is defined as (K)ω = {x ∈R : (ω, x) ∈ K}, and B�(ω, δ) represents the open ball of 
radius δ and centered in ω ∈ �.

2.2. Equilibria, superequilibria and subequilibria

We shall say that a map β : � →R is a τ -equilibrium if β(ω·t) = u(t, ω, β(ω)) for all ω ∈ �

and t ∈ R, a τ -subequilibrium if β(ω·t) ≤ u(t, ω, β(ω)) for all ω ∈ � and t ≥ 0, a time-reversed 
τ -subequilibrium if this property is satisfied when t ≤ 0 instead of t ≥ 0, a τ -superequilibrium if 
β(ω·t) ≥ u(t, ω, β(ω)) for all ω ∈ � and all t ≥ 0, and a time-reversed τ -superequilibrium if this 
property is satisfied when t ≤ 0. Note that these definitions require u(t, ω, β(ω)) to be defined for 
either the whole R or a half-line. The reference to the flow τ will be frequently omitted if there is 
no risk of confusion. Both superequilibria and subequilibria are generally called semiequilibria. 
Time-reversed semiequilibria satisfy the first semiequilibria definitions for the time-reversed flow
defined by ̃σ : R × � → �, (t, ω) �→ σ̃t (ω) = ω � t = ω · (−t) and

τ̃ : Ũ ⊆ R× � ×R → � ×R , (t,ω, x0) �→ (ω � t, ũ(t,ω, x0)) ,
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where ũ(t, ω, x0) = u(−t, ω, x0) can be obtained as solutions of x′ = −f (ω � t, x), and Ũ =
{(t, ω, x) : (−t, ω, x) ∈ U}.

Given a Borel measure m defined on �, we shall say that an equilibrium (resp. semiequilib-
rium) β : � → R is m-measurable if β is measurable with respect to the m-completion of the 
Borel σ -algebra. We shall say that an equilibrium (resp. semiequilibrium) β : � → R is a semi-
continuous equilibrium (resp. semiequilibrium) if β is a bounded semicontinuous map. A copy 
of the base for the flow τ is the graph of a continuous τ -equilibrium.

Let β : � → R be a superequilibrium (resp. subequilibrium). Following the construction in 
[9] and [28], if we define

βs : � →R , ω �→ u(s,ω·(−s), β(ω·(−s)))

for s ≥ 0, then we obtain a family {βs}s≥0 of superequilibria (resp. subequilibria) which is 
nonincreasing (resp. nondecreasing) as s increases. If, in addition, β is upper (resp. lower) semi-
continuous and {u(t, ω, β(ω)) : t ≥ 0, ω ∈ �} is bounded, then β∞(ω) = lims→∞ βs(ω) is an 
upper (resp. lower) semicontinuous equilibrium.

Now, let β : � → R be a time-reversed superequilibrium (resp. subequilibrium). Analogously, 
we define

βs : � → R, ω �→ u(s,ω·(−s), β(ω·(−s))) = ũ(−s,ω � s, β(ω � s)))

for s ≤ 0, and conclude from the previous properties applied to τ̃ that {βs}s≤0 is a family of 
time-reversed superequilibria (resp. subequilibria) which is nonincreasing (resp. nondecreasing) 
as s decreases. If, in addition, β is upper (resp. lower) semicontinuous and {u(t, ω, β(ω)) : t ≤
0, ω ∈ �} is bounded, then β−∞(ω) = lims→−∞ βs(ω) is an upper (resp. lower) semicontinuous 
equilibrium.

A superequilibrium (resp. subequilibrium) β : � → R shall be said to be strong if there exists 
a time s∗ > 0 such that β(ω·s∗) > u(s∗, ω, β(ω)) (resp. β(ω·s∗) < u(s∗, ω, β(ω))) for all ω ∈
�. Recall that the flow (�, σ) is minimal if every σ -orbit is dense in �. In this case, if β is 
a semicontinuous strong superequilibrium (resp. subequilibrium), then Proposition 4.3 of [28]
ensures that there exist e0 > 0 and a time s∗ > 0 such that β(ω) ≥ βs∗(ω) + e0 (resp. β(ω) ≤
βs∗(ω) − e0) for every ω ∈ �. Note that the nonincreasing (resp. nondecreasing) monotonicity 
of the family {βs}s≥0 ensures that β(ω) ≥ βs(ω) + e0 (resp. β(ω) ≤ βs(ω) − e0) for every ω ∈ �

and all s ≥ s∗. Strong time-reversed semiequilibria have the same definition and properties with 
strictly negative times s∗ and s∗.

The concepts of superequilibria and subequilibria are strongly related to those of global upper 
and lower solutions. An m-measurable map κ : � → R will be said to be C1 along the base 
orbits if, for any ω ∈ �, the map t �→ κω(t) = κ(ω·t) is C1 on R. In this case, we represent 
κ ′(ω) = κ ′

ω(0). It is clear by definition that every m-measurable equilibrium is C1 along the 
base orbits. Such a map κ shall be said to be a global upper (resp. lower) solution for a family 
x′ = f (ω·t, x) of differential equations if κ ′(ω) ≥ f (ω, κ(ω)) (resp. κ ′(ω) ≤ f (ω, κ(ω))) for 
every ω ∈ �, and to be strict if the inequalities are strict for every ω ∈ �.

If every forward τ -semiorbit is globally defined, that is, if [0, ∞) ⊆ Iω,x0 for every (ω, x0) ∈
� × R, a comparison argument shows that β : � → R is C1 along the base orbits and a su-
perequilibrium (resp. subequilibrium) if and only if it is a global upper (resp. lower) solution. 
Analogously, if (−∞, 0] ⊆ Iω,x for every (ω, x0) ∈ � ×R, then β : � → R is C1 along the base 
0
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orbits and a time-reversed subequilibrium (resp. superequilibrium) if and only if it is a global up-
per (resp. lower) solution. Moreover, in the case of globally defined forward τ -semiorbits, any 
strict global upper (resp. lower) solution is a strong superequilibrium (resp. subequilibrium) and, 
in the case of globally defined backward τ -semiorbits, it is a strong time-reversed subequilibrium 
(resp. superequilibrium) (see Sections 3 and 4 of [28]).

The following two useful propositions explore the relations between different semiequilibria 
which are somehow connected.

Proposition 2.1. Let (�, σ) be minimal. Let β : � → R be a semicontinuous strong superequi-
librium (resp. subequilibrium), let κ : � → R be a semicontinuous superequilibrium (resp. sube-
quilibrium) and let us assume that there exists a residual set R of continuity points of both 
maps such that β(ω) = κ(ω) for all ω ∈ R. Then, there exist e > 0 and s∗ > 0 such that 
κ(ω·s∗) − e > u(s∗, ω, β(ω)) (resp. κ(ω·s∗) + e < u(s∗, ω, β(ω))) for all ω ∈ �.

Proof. If β is a semicontinuous strong superequilibrium, then there exist s0 > 0 and e0 > 0
such that u(s0, ω, β(ω)) < β(ω·s0) − e0 for all ω ∈ �. Let ω0 ∈ R ∩ σ−s0(R). Then, ω0 is a 
continuity point of β , β ◦ σs0 and κ ◦ σs0 and, in addition, β(ω0·s0) = κ(ω0·s0). Consequently, 
u(s0, ω0, β(ω0)) < β(ω0·s0) − e0 = κ(ω0·s0) − e0.

By the continuity of the involved semiequilibria at ω0 and the continuous dependence of 
solutions on initial data, there exists ρ > 0 such that u(s0, ω, β(ω)) < κ(ω·s0) − e0 for all 
ω ∈ B�(ω0, ρ). By minimality of (�, σ), there exists s1 > 0 such that for all ω ∈ � there 
exists 0 < sω ≤ s1 such that ω·sω ∈ B�(ω0, ρ). Therefore, using the cocycle property, the fiber-
monotonicity, the superequilibrium property and the previous inequality, we have, for all ω ∈ �,

u(s0 + sω,ω,β(ω)) = u(s0,ω·sω,u(sω,ω,β(ω)))

≤ u(s0,ω·sω,β(ω·sω)) < κ(ω·(s0 + sω)) − e0 .

By fiber-monotonicity, evolving both sides s1 − sω > 0 we obtain

u(s0 + s1,ω,β(ω)) < u(s1 − sω,ω·(s0 + sω), κ(ω·(s0 + sω)) − e0) . (2.3)

Since u(t, ω, x) − u(t, ω, x − e0) > 0 for all (t, ω, x) ∈ [0, s1] × � × clR(κ(�)), which is a 
compact set, there exists e > 0 such that u(t, ω, x − e0) < u(t, ω, x) − e for all (t, ω, x) ∈
[0, s1] × � × clR(κ(�)). Then, (2.3) yields

u(s0 + s1,ω,β(ω)) < u(s1 − sω,ω·(s0 + sω), κ(ω·(s0 + sω))) − e ≤ κ(ω·(s0 + s1)) − e

for all ω ∈ �, since κ is a also a superequilibrium. Rewriting s∗ = s0 + s1, we obtain 
u(s∗, ω, β(ω)) < κ(ω·s∗) − e for all ω ∈ �, as we wanted to show. The subequilibrium case 
is proved analogously. �
Proposition 2.2. Let (�, σ) be minimal. Let β : [0, 1] × � → R, (λ, ω) �→ βλ(ω) be a continu-
ous map such that βλ is a strong superequilibrium (resp. subequilibrium) for every λ ∈ [0, 1]
and βλ(ω) ≤ βξ (ω) for all ω ∈ � if λ ≤ ξ . Then, there exist e0 > 0 and s0 ≥ 0 such that 
u(s0, ω, β1(ω)) ≤ β0(ω·s0) − e0 (resp. β1(ω·s0) + e0 ≤ u(s0, ω, β0(ω))) for all ω ∈ �.
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Proof. We work in the superequilibrium case. Let us define A = {λ ∈ [0, 1] : there exist eλ >

0 and sλ ≥ 0 such that (β1)sλ(ω) ≤ βλ(ω) − eλ for all ω ∈ �}. It is nonempty since β1 is a con-
tinuous strong superequilibrium, so let us define λ0 = infA. As (λ, ω) �→ βλ(ω) is continuous, 
for each λ ∈ [0, 1], there exists a neighborhood Vλ ⊆ [0, 1] of λ such that |βλ(ω) −βξ (ω)| < eλ/2
for every ξ ∈ Vλ and ω ∈ �. This shows that A is open in [0, 1]. Now, let us prove that λ0 ∈ A.

Since βλ0 is a continuous strong superequilibrium, there exist e > 0 and s∗ > 0 such that 
(βλ0)s∗(ω·s∗) = u(s∗, ω, βλ0(ω)) ≤ βλ0(ω·s∗) − e for all ω ∈ �. Fixed 0 < e0 < e, we deduce 
from the uniform continuity on a compact neighborhood of βλ0(�) the existence of δ0 > 0 such 
that

u(s∗,ω, x) ≤ βλ0(ω·s∗) − e0 (2.4)

for every ω ∈ � and x ∈ BR(βλ0(ω), δ0). Now, let us take λ1 ∈ A with |βλ1(ω) − βλ0(ω)| < δ0
for all ω ∈ �. Then, by definition of A, there exists sλ1 ≥ 0 such that

u(sλ1 ,ω,β1(ω)) < βλ1(ω·sλ1)

for every ω ∈ �. Evolving the last inequality by monotonicity a time step s∗ > 0 and applying 
(2.4), we obtain

(β1)s∗+sλ1
(ω·(s∗ + sλ1)) = u(s∗ + sλ1 ,ω,β1(ω))

< u(s∗,ω·sλ1, βλ1(ω·sλ1)) ≤ βλ0(ω·(s∗ + sλ1)) − e0

for all ω ∈ �. This shows that λ0 ∈ A. Therefore, λ0 = 0 ∈ A, and the statement follows easily 
from here. The subequilibrium case is proved analogously. �
2.3. Compact invariant sets and minimality

Let us recall some properties of compact τ -invariant sets for a local skewproduct flow (� ×
R, τ) over a compact base �, as well as some properties of minimal sets when (�, σ) is a 
minimal flow.

A set K ⊆ � ×R is τ -invariant if it is composed by globally defined τ -orbits, and it is minimal
if it is compact, τ -invariant and it does not contain properly any other compact τ -invariant set. A 
compact τ -invariant set K ⊂ � × R is pinched if there exists ω ∈ � such that the section (K)ω
is a singleton.

We shall say that a compact τ -invariant set projects onto � if the continuous map π : K → �, 
(ω, x) �→ ω is surjective. In this case, π maps orbits onto orbits preserving its direction (i.e., it is 
a flow epimorphism), and

K ⊆
⋃
ω∈�

({ω} × [αK(ω),βK(ω)]) ,

where αK(ω) = inf{x ∈ R : (ω, x) ∈ K} and βK(ω) = sup{x ∈ R : (ω, x) ∈ K}. As K is closed, 
the graphs of αK and βK are contained in K, and αK and βK are respectively lower and upper 
semicontinuous. The flow monotonicity and the τ -invariance of K allow us to check that, in fact, 
αK and βK are equilibria, which will be called the lower and upper delimiter equilibria of K. If 
(�, σ) is minimal, any τ -invariant compact set projects onto �.
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Proposition 2.3. Let (�, σ) be minimal, let β : � → R be a semicontinuous equilibrium and let 
ω0 be any continuity point of β . Then,

M = cl�×R{(ω0·t, β(ω0·t)) : t ∈R} (2.5)

is a minimal set, and it is independent of the choice of ω0. In addition, the sections (N )ω of any 
τ -minimal set N ⊂ � × R are singletons for all the points ω in a residual σ -invariant subset 
of �.

Proof. It is obvious that M is τ -invariant, and it is compact since β is bounded. Let us deduce 
from the minimality of (�, σ) that (M)ω = {β(ω)} for any continuity point ω of β . Given 
x ∈ (M)ω , we write (ω, x) = limn→∞(ω0·tn, β(ω0·tn)) for a suitable sequence {tn}n∈N . Since 
β is continuous at ω, then x = β(ω), as asserted. In particular, if N ⊆ M is minimal, then 
(N )ω0 = {β(ω0)} and hence M ⊆ N , which shows the minimality. The independence of the 
choice of ω0 follows from cl�×R{(ω·t, β(ω·t)) : t ∈ R} ⊆ M for every continuity point ω of β . 
Finally, the last assertion is deduced by applying the previous properties to one of the delimiter 
equilibria of any minimal set N . �
Proposition 2.4. Let (�, σ) be minimal, let β1, β2 : � → R be semicontinuous equilibria, let 
R1, R2 be σ -invariant residual sets of continuity points of β1 and β2 respectively, and let R =
R1 ∩R2. The following statements are equivalent:

(a) β1(ω0) = β2(ω0) for a point ω0 ∈R,
(b) β1(ω0) = β2(ω0) for every ω0 ∈R,
(c) there exist ω1 ∈ R1 and ω2 ∈R2 such that

cl�×R{(ω1·t, β1(ω1·t)) : t ∈ R} = cl�×R{(ω2·t, β2(ω2·t)) : t ∈R} .

Proof. (b)⇒(a) and (a)⇒(c) are immediate. Let us prove (c)⇒(b). Proposition 2.3 proves 
that cl�×R{(ω1·t, β1(ω1·t)) : t ∈ R} and cl�×R{(ω2·t, β2(ω2·t)) : t ∈ R} are minimal sets, 
and they independent of the choice of ω1 ∈ R1 and ω2 ∈ R2. Hence, if ω0 ∈ R, then 
cl�×R{(ω0·t, β1(ω0·t)) : t ∈ R} = cl�×R{(ω0·t, β2(ω0·t)) : t ∈ R}. In particular, there ex-
ists a sequence {tn}n∈N such that (ω0·tn, β1(ω0·tn)) → (ω0, β2(ω0)). As ω0 ∈ R, we have 
β1(ω0) = β2(ω0), as asserted. �
Proposition 2.5. Let (�, σ) be minimal and let β1, β2 : � → R be, respectively, lower and upper 
semicontinuous equilibria such that β1(ω) ≤ β2(ω) for every ω ∈ �. If there exists ω0 ∈ � such 
that β1(ω0) = β2(ω0), then ω0 is a continuity point of both maps and hence the equivalences of 
Proposition 2.4 hold.

Proof. If ωn → ω0 as n → ∞, then

β1(ω0) ≤ lim inf
n→∞ β1(ωn) ≤ lim sup

n→∞
β1(ωn) ≤ lim sup

n→∞
β2(ωn) ≤ β2(ω0) = β1(ω0) .

The third term can be replaced by lim infn→∞ β2(ωn). This shows the assertion. �
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We shall say that two disjoint compact τ -invariant sets K1, K2 ⊂ � × R which project onto 
� are fiber-ordered, K1 < K2, if x < y for every (ω, x) ∈ K1 and (ω, y) ∈ K2. When (�, σ) is 
minimal, two different τ -minimal sets are always fiber-ordered: see Section 2.4 of [6]. Finally, 
we shall say that a τ -minimal set M ⊂ � × R is hyperbolic attractive (resp. repulsive) if it is 
uniformly exponentially asymptotically stable at ∞ (resp. at −∞). If none of these situations 
holds, then M is nonhyperbolic.

2.4. Ergodic measures and Lyapunov exponents

Given a normalized Borel measure m on �, we shall say that it is σ -invariant if m(σt (B)) =
m(B) for every t ∈ R and every Borel subset B ⊆ �, and that it is σ -ergodic if it is σ -invariant 
and m(B) ∈ {0, 1} for every σ -invariant subset B ⊆ �. The nonempty sets of normalized σ -
invariant and σ -ergodic Borel measures on � are represented by Minv(�, σ) and Merg(�, σ)

respectively. The flow (�, σ) is said to be uniquely ergodic if Minv(�, σ) reduces to just one 
element m, in which case m is ergodic; and it is said to be finitely ergodic if Merg(�, σ) is a 
finite set. The support of m ∈ Minv(�, σ), Supp(m), is the complement of the largest open set 
with zero measure, and it is a compact invariant set. If (�, σ) is minimal, then Supp(m) = � for 
every m ∈Minv(�, σ).

Let a : � →R be a continuous map. The Lyapunov exponent of the family of linear differen-
tial equations x′ = a(ω·t) x with respect to m ∈Merg(�, σ) is

γa(�,m) =
∫
�

a(ω)dm .

The family x′ = a(ω·t) x has exponential dichotomy over � if there exist k ≥ 1 and δ > 0 such 
that either

exp

t∫
0

a(ω·s) ds ≤ ke−δt whenever ω ∈ � and t ≥ 0

or

exp

t∫
0

a(ω·s) ds ≤ keδt whenever ω ∈ � and t ≤ 0 .

The Sacker and Sell spectrum of a : � → R is the set �a of λ ∈ R such that the family x′ =
(a(ω·t) − λ) x does not have exponential dichotomy over �. It is known ([21], [37]) that there 
exist ml, mu ∈Merg(�, σ) such that inf�a = γa(�, ml) and sup�a = γa(�, mu), and that, if �
is connected, then �a = [

γa(�,ml), γa(�,mu)
]

and 
∫
�

a(ω) dm ∈ �a for any m ∈Minv(�, σ).
Now, assume that the map f of (2.1) belongs to C0,1(� ×R, R). The Lyapunov exponent of 

a compact τ -invariant set K ⊂ � ×R with respect to ν ∈Merg(K, τ) is

γfx (K, ν) =
∫

fx(ω,x) dν . (2.6)
K
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We will omit the subscript fx . The Sacker and Sell spectrum of fx on a compact τ -invariant set 
K ⊂ � × R is that of fx : K → R. Recall that, when the base flow is minimal, a τ -minimal set 
M ⊂ � ×R is nonhyperbolic if and only if 0 belongs to the Sacker and Sell spectrum of fx on 
M. In addition, if all its Lyapunov exponents are strictly negative (resp. positive), then M is an 
attractive (resp. repulsive) hyperbolic copy of the base. See e.g. Proposition 2.8 of [6].

The results of Furstenberg [16] (see also Theorem 1.8.4. of [4]) show that, given a compact 
τ -invariant set K ⊂ � × R projecting onto � and ν ∈ Merg(K, τ) which projects onto m ∈
Merg(�, σ) (i.e., m(A) = ν((A ×R) ∩K)), there exists an m-measurable equilibrium β : � → R
with graph contained in K such that, for every continuous function g : � ×R →R,∫

K

g(ω,x) dν =
∫
�

g(ω,β(ω)) dm . (2.7)

In particular, the Lyapunov exponent of K for (2.1) with respect to any τ -ergodic measure pro-
jecting onto m is given by 

∫
�

fx(ω, β(ω)) dm for a suitable m-measurable equilibrium. It is 
easy to check that the converse of the previous property is also true: any m-measurable equilib-
rium β : � → R with graph contained in K defines ν ∈ Merg(K, τ) projecting onto m by (2.7). 
Clearly, β1 and β2 define the same measure if and only if they coincide m-a.e.

3. D-concavity and related properties

In this section, we shall define and study some properties which will assumed on the function 
f of our family of scalar nonautonomous differential equations (2.1) in due time. All of them are 
related to the concavity with respect to the state variable of the function f .

3.1. Divided differences and modules of d-concavity

A map f ∈ C0,1(� ×R, R) is d-concave ((DC) for short) if its derivative fx(ω, ·) is concave 
on R for all ω ∈ �. As this property is not enough to achieve some of the desired results, we 
need to define some kind of stronger properties in terms of modules of d-concavity. To this end, 
we recall the definition of second order divided differences,

f (ω, [x1, x2, x3]) = f (ω, [x2, x3]) − f (ω, [x1, x2])
x3 − x1

,

with xi �= xj for i, j ∈ {1, 2, 3}, where, for i ∈ {1, 2},

f (ω, [xi, xi+1]) = f (ω,xi+1) − f (ω,xi)

xi+1 − xi

.

Lemma 3.1. A function f ∈ C0,1(� ×R, R) is (DC) if and only if, for all ω ∈ �,

f (ω, [x1, x0, x2]) ≥ f (ω, [x1, x0, x3])
for every x0, x1, x2, x3 ∈ R satisfying x1 < x2 < x3 and x0 �= xi for i ∈ {1, 2, 3}.

Proof. See Lemma 2.1 of part II of [38]. �
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Definition 3.2. Let f be a (DC) function and let J ⊂ R be a compact interval. We shall say that 
a continuous function bε : � → [0, ∞) is an ε-module of d-concavity of f on J if, for every 
ω ∈ �,

f (ω, [x1, x0, x2]) ≥ f (ω, [x1, x0, x3]) + bε(ω) (3.1)

if xi ∈ J for i ∈ {0, 1, 2, 3}, x0 �= xi for i ∈ {1, 2, 3} and x2 − x1, x3 − x2 ≥ ε; and that bε is 
m-strict for m ∈ Minv(�, σ) if, in addition, m({ω ∈ � : bε(ω) > 0}) > 0.

Modules of d-concavity are only coherently defined when 0 < 2ε ≤ l(J ) = supJ − infJ . This 
restriction over the possible range of ε will be assumed from now on. The linearity of divided 
differences ensures that the sum of ε-modules of d-concavity on J of two (DC) functions is an ε-
module of d-concavity on J of the sum of both functions. For this reason, adding a finite number 
of d-concave functions ends up in a d-concave function with m-strict ε-module of d-concavity 
on J if any of the terms has an m-strict ε-module of d-concavity on J .

Proposition 3.3. Let (�, σ) be minimal. Let ε > 0 and m ∈ Minv(�, σ) be fixed and let bε : � →
[0, ∞) be an ε-module of d-concavity on a compact interval J of a (DC) function f . Then, bε is 
m-strict if and only if there exists ω0 ∈ � such that bε(ω0) > 0.

Proof. If there exists ω0 ∈ � such that bε(ω0) > 0, then bε(ω) > 0 for all ω ∈ B�(ω0, ρ) for 
some ρ > 0. By minimality, Supp(m) = �. So, m(B�(ω0, ρ)) > 0 and hence bε is m-strict. The 
converse assertion is trivial. �
Definition 3.4. Let J be a compact interval. Given a (DC) function f and ε ∈ [0, l(J )], we shall 
define the standardized ε-module of d-concavity of f on J as

bJ,ε(ω) = ε

4 l(J )2 min
x∈Jε

{
2fx(ω,x) − fx(ω,x − ε/2) − fx(ω,x + ε/2)

}
,

where l(J ) = supJ − infJ and Jε = {x ∈ R : [x − ε/2, x + ε/2] ⊆ J }.

Note that it is well defined since the minimum has a continuous argument and is taken on a 
compact set, that bJ,0(ω) = 0 for every ω ∈ � and that [0, l(J )] ×� → [0, ∞), (ε, ω) �→ bJ,ε(ω)

is continuous.

Theorem 3.5. Let f be (DC), let m ∈Minv(�, σ), and let J be a compact interval. Then,

(i) the map [0, l(J )] → [0, ∞), ε �→ bJ,ε(ω) is nondecreasing for all ω ∈ �.
(ii) The map bJ,ε is an ε-module of d-concavity of f on J whenever 0 < ε ≤ l(J )/2, and it is 

m-strict for ε ∈ [ε0, l(J )/2] if bJ,ε0 is m-strict.

(iii) The map ω �→ (1/ε) 
∫ 2ε

0 bJ,s(ω) ds is also an ε-module of d-concavity of f on J and it 
takes the value 0 if and only if bJ,2ε(ω) = 0.

(iv) If bε : � →R is any other ε-module of d-concavity of f on J , then

bε(ω) ≤ 1
(

l(J )
)2

bJ,2ε(ω) (3.2)

3 ε
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for all ω ∈ �. In particular, if bε is m-strict, then bJ,2ε is m-strict.

The proof requires the next result, which asserts that concavity is equivalent to a monotonicity 
property in the extreme points of a second order finite differences scheme.

Lemma 3.6. A function g : R → R is concave if and only if

(x3 − x1) g(x2) − (x3 − x2) g(x1) − (x2 − x1) g(x3)

≤ (x4 − x0) g(x2) − (x4 − x2) g(x0) − (x2 − x0) g(x4)
(3.3)

for all real x0 ≤ x1 ≤ x2 ≤ x3 ≤ x4.

Proof. Firstly, concavity in x1 ≤ x3 ≤ x4 and in x0 ≤ x1 ≤ x3 gives{
(x3 − x1) g(x4) ≤ (x4 − x1) g(x3) − (x4 − x3) g(x1) ,

(x3 − x1) g(x0) ≤ (x3 − x0) g(x1) − (x1 − x0) g(x3) .

Adding up (x2 − x0) times the first inequality plus (x4 − x2) times the second one, and dividing 
by (x3 − x1)(x4 − x0), results in

x4 − x2

x4 − x0
g(x0) + x2 − x0

x4 − x0
g(x4) ≤ x3 − x2

x3 − x1
g(x1) + x2 − x1

x3 − x1
g(x3) .

We can write the previous inequality as

g(x2) − x3 − x2

x3 − x1
g(x1) − x2 − x1

x3 − x1
g(x3) ≤ g(x2) − x4 − x2

x4 − x0
g(x0) − x2 − x0

x4 − x0
g(x4) .

The result follows from multiplying by x3 −x1 and bounding x3 −x1 ≤ x4 −x0, as both sides are 
positive by concavity. The converse assertion is obtained by writing x1 = x2 = x3 in (3.3). �
Proof of Theorem 3.5. (i)-(iii) Lemma 3.6 applied to fx(ω, ·) ensures that, if 0 < ε ≤ l(J )/2, 
x2 ∈ J2ε and x1 ≤ x2 − ε ≤ x2 ≤ x2 + ε ≤ x3, then

(x3 − x1)fx(ω,x2) − (x3 − x2)fx(ω,x1) − (x2 − x1)fx(ω,x3) ≥ 2 l(J )2bJ,2ε(ω) . (3.4)

Let 0 < ε ≤ l(J )/2 and xi ∈ J for i ∈ {0, 1, 2, 3} be fixed, with x0 �= xi for i ∈ {1, 2, 3}, x2 −x1 ≥
ε and x3 −x2 ≥ ε. Given s ∈ (0, 1], we replace xi in (3.4) by xs

i = sxi + (1 − s)x0 for i ∈ {1, 2, 3}
and ε by sε: since xs

2 − xs
1 ≥ sε and xs

3 − xs
2 ≥ sε, we get

(x3 − x1)fx(ω,xs
2) − (x3 − x2)fx(ω,xs

1) − (x2 − x1)fx(ω,xs
3)

≥ 2 l(J )2

s
bJ,2sε(ω) ≥ 2 l(J )2bJ,2sε(ω) .

It is easy to check that f (ω, [x0, xi]) =
∫ 1

0 fx(ω, xs
i ) ds for i ∈ {1, 2, 3} and obvious that l(J )2 ≥

(x3 − x1)(x2 − x1). So, integrating the preceding inequality yields
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(x3 − x1)f (ω, [x0, x2]) − (x3 − x2)f (ω, [x0, x1]) − (x2 − x1)f (ω, [x0, x3])

≥ (x3 − x1)(x2 − x1)2

1∫
0

bJ,2sε(ω)ds = (x3 − x1)(x2 − x1)
1

ε

2ε∫
0

bJ,s(ω)ds .

It follows easily that b̃ε(ω) = (1/ε) 
∫ 2ε

0 bJ,s(ω) ds satisfies Definition 3.2, which proves (iii). 
Lemma 3.6 also implies that [0, l(J )] → [0, ∞), δ �→ bJ,δ(ω) is nondecreasing for all ω ∈ �, 
which proves (i) and makes easy to check that ̃bε(ω) = 0 if and only if bJ,2ε(ω) = 0.

To complete the proof of (ii), we must check that bJ,ε is also an ε-module of d-concavity, 
which follows from

2

1∫
0

bJ,2sε(ω)ds ≥ 2

1∫
1/2

bJ,2sε(ω)ds ≥ 2bJ,ε(ω)

1∫
1/2

ds = bJ,ε(ω) .

We have used bJ,δ(ω) ≥ 0 for all ω ∈ � and the monotonicity of δ �→ bJ,δ(ω).
(iv) Let x ∈ J2ε . We call x1 = x − ε, x2 = x, x3 = x + ε, write (3.1) for bε and any x0, and 

add up the three expressions obtained by taking limits x0 → xi (i ∈ {1, 2, 3}). We get

2εfx(ω,x) − εfx(ω,x − ε) − εfx(ω,x + ε) ≥ 6ε2 bε(ω) ,

from where (3.2) follows. The last assertion in (iv) is a consequence of (3.2), since it implies that 
{ω ∈ � : bJ,2ε(ω) > 0} ⊃ {ω ∈ � : bε(ω) > 0}. �

Theorem 3.5 explains the scope of Definition 3.4: although the standardized ε-module of d-
concavity is probably not the largest ε-module, it has the smallest set of zeros that any other 
(ε/2)-module can have; and the smaller these sets are, the less restrictive the strict d-concavity 
conditions required by our main results.

Proposition 3.7. Let f ∈ C0,2(� × R, R) be (DC) and let ω0 ∈ � be fixed. Then, for any ε ∈
(0, l(J )], bJ,ε(ω0) = 0 if and only if J contains a subinterval of length ε on which fxx(ω0, ·)
is constant. Moreover, fxx(ω0, ·) is strictly decreasing on a compact interval J if and only if 
bJ,ε(ω0) > 0 for every ε ∈ (0, l(J )].
Proof. It is easy to check that

2fx(ω0, x) − fx(ω0, x − ε/2) − fx(ω0, x + ε/2)

= ε

2

1∫
0

(
fxx(ω0, x − ε(1 − s)/2) − fxx(ω0, x + ε(1 − s)/2)

)
ds .

(3.5)

The properties of f ensure that the integrand is continuous on s ∈ [0, 1], it is never strictly 
negative, and it is identically zero if and only if fxx(ω0, x − ε/2) = fxx(ω0, x + ε/2), as this 
condition is equivalent to fxx(ω0, ·) being constant on the interval [x − ε/2, x + ε/2]. Now, 
given any ε > 0, bJ,ε(ω0) = 0 if and only if there exists some x̃ ∈ Jε such that (3.5) vanishes, 
and this occurs if and only if fxx(ω0, ·) is constant on [̃x − ε/2, ̃x + ε/2]. The second statement 
follows immediately from the first one. �
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3.2. Strictly concave derivatives in measure

Now, we shall define the properties which will be part of our main assumptions in the rest of 
the paper.

Definition 3.8. We shall say that f ∈ C0,1(� ×R, R) is

(i) strictly d-concave with respect to m ∈ Merg(�, σ) on a compact interval J ((SDC)m on 
J ) if it is (DC) and there exists ρ > 0 such that m({ω ∈ � : bJ,ε(ω) > 0}) > ρ for all 
ε ∈ (0, l(J )/2]; and strictly d-concave with respect to m ((SDC)m) if it is (SDC)m on J for 
every compact interval J ⊂ R;

(ii) strictly d-concave with respect to every measure on a compact interval J ((SDC)∗ on J ) if 
it is (SDC)m on J for every m ∈ Merg(�, σ); and strictly d-concave with respect to every 
measure ((SDC)∗) if it is (SDC)∗ on J for every compact interval J ⊂ R.

In particular, the (SDC)m property on J implies that bJ,ε is m-strict in some uniform way. We 
recall that Theorem 3.5 shows that these restrictions on f are weaker for the maps bJ,ε than for 
any other family of modules of d-concavity.

Proposition 3.9. Let m ∈ Merg(�, σ), let f ∈ C0,2(� ×R, R) be (DC) and let J be a compact 
interval. Then, f is (SDC)m on J if and only if m({ω ∈ � : fxx(ω, ·) is strictly decreasing on J })
> 0.

Proof. Necessity follows from Proposition 3.7. We prove sufficiency by contradiction. We define 
�0 = {ω ∈ � : fxx(ω, ·) is not strictly decreasing on J } and assume m(�0) = 1. For any ω ∈ �0
there exists a nondegenerate interval Jω ⊆ J on which fxx(ω, ·) is constant. If

�ε
0 = {ω ∈ �0 : fxx(ω, ·) is constant on an interval Jω ⊆ J of length ε} ,

then �0 = ⋃
ε>0 �ε

0 and, if ε1 < ε2, then �ε2
0 ⊆ �

ε1
0 . Therefore, 1 = m(�0) = limε→0 m(�ε

0), 
so given any 0 < ρ < 1 there exists ερ > 0 such that m(�

ερ

0 ) > 1 − ρ > 0. As bJ,ερ (ω) = 0

for every ω ∈ �
ερ

0 (see Proposition 3.7), we deduce that m({ω ∈ � : bJ,ερ (ω) > 0}) ≤ ρ, which 
contradicts the (SDC)m property. �
Definition 3.10. We shall say that f ∈ C0,1(� ×R, R) is

(i) weakly strictly d-concave on a compact interval J ((sDC) on J ) if it is (DC) and for every ε ∈
(0, l(J )/2] there exists mJ,ε ∈ Merg(�, σ) such that bJ,ε is mJ,ε -strict; and weakly strictly 
d-concave ((sDC)) if it is (sDC) on J for every compact interval J .

(ii) strictly d-concave on a compact interval J ((SDC) on J ) if it is (DC) and bJ,ε is m-strict for 
every ε ∈ (0, l(J )/2] and m ∈Merg(�, σ); and strictly d-concave ((SDC)) if it is (SDC) on 
J for every compact interval J .

Proposition 3.11. The following statements hold:

(i) if there exists m ∈Merg(�, σ) such that f is (SDC)m then it is (sDC),
(ii) if f is (SDC) then it is (sDC),
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(iii) if f is (SDC)∗ then it is (SDC), and (SDC)m for all m ∈Merg(�, σ).

Proof. It follows immediately from Definitions 3.8 and 3.10. �
Proposition 3.12. Let J be a compact interval. Then,

(i) if f ∈ C0,3(� × R, R) is (DC) and there exists ω0 ∈ Supp(m) for some m ∈ Merg(�, σ)

such that fxxx(ω0, ·) is strictly negative on J , then f is (SDC)m on J .
(ii) If f ∈ C0,2(� × R, R) is (DC) and there exists ω0 ∈ ⋃

m∈Merg(�,σ ) Supp(m) such that 
fxx(ω0, ·) is strictly decreasing on J , then f is (sDC) on J .

(iii) If (�, σ) is a minimal, f ∈ C0,2(� × R, R) is (DC) and there exists ω0 ∈ � such that 
fxx(ω0, ·) is strictly decreasing on J , then f is (SDC) on J .

Proof. Recall that m(B�(ω0, ρ)) > 0 for all ρ > 0 if ω0 ∈ Supp(m). If f ∈ C0,3(� ×R, R) and 
fxxx(ω0, ·) is strictly negative on J , then so is fxxx(ω, ·) for all ω ∈ B�(ω0, ρ) if ρ > 0 is small 
enough. Proposition 3.9 proves (i). If f ∈ C0,2(� ×R, R) and fxx(ω0, ·) is strictly decreasing on 
J , then Proposition 3.7 ensures that bJ,ε(ω0) > 0 for all ε > 0. So, for each ε > 0, bJ,ε(ω) > 0
for all ω in an open ball B�(ω0, ρε) and hence bJ,ε is m-strict if ω0 ∈ Supp(m), which proves 
(ii). If (�, σ) is minimal, then � = Supp(m) for all m ∈Merg(�, σ) and (ii) ensures (iii). �

The following examples show that the subsets of C0,1(� ×R, R) which satisfy the different 
described d-concavity properties are different. They also show this remarkable fact: it is possible 
to have some strict d-concavity properties without strictly concave derivative at any point of �.

Example 3.13. Let (�, σ) be a minimal and uniquely ergodic base flow with unique measure m. 
Let M be a τ -minimal set, and let α(ω) = inf(M)ω and β(ω) = sup(M)ω . Let us suppose that

(1) m({ω ∈ � : α(ω) �= β(ω)}) = 1,
(2) there are continuous maps αn, βn : � →R such that (αn) ↑ α and (βn) ↓ β .

The construction of such an example is detailed in Section 8.7 of [20] for a concave differential 
equation: the Riccati equation of the Hamiltonian system of Example 8.44. The present paper 
will suggest its existence in skewproduct flows coming from d-concave ordinary differential 
equations. Now, let us define

fn(ω,x) =

⎧⎪⎨⎪⎩
−(x − αn(ω))3 , x ∈ (−∞, αn(ω)) ,

0 , x ∈ [αn(ω),βn(ω)] ,
−(x − βn(ω))3 , x ∈ (βn(ω),∞) .

Let J = [a, b] ⊃ [α1(ω), β1(ω)] for all ω ∈ �. As f (ω, x) = ∑∞
n=1(1/2n)fn(ω, x) and its term-

by-term first and second derivatives with respect to x converge uniformly on � × J , it defines a 
C0,2(� × J, R) function whose derivative fx(ω, ·) is concave on J for every ω ∈ �. Hence, the 
function
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f̃ (ω, x) =

⎧⎪⎨⎪⎩
f (ω,a) + fx(ω,a)(x − a) + fxx(ω,a)

2 (x − a)2 − (x − a)3, x < a ,

f (ω,x) , a ≤ x ≤ b,

f (ω,b) + fx(ω,b)(x − b) + fxx(ω,b)
2 (x − b)2 − (x − b)3, b < x ,

(3.6)

is C0,2(� × R, R) and (DC). In addition, f̃xx(ω, ·) is strictly decreasing on the intervals 
(−∞, α(ω)) and (β(ω), ∞) and zero on [α(ω), β(ω)]. Let us define Cε = {ω : β(ω) − α(ω) ≤
ε}. It is clear that Cε1 ⊆ Cε2 if ε1 < ε2, and that 

⋂
ε>0 Cε = {ω : α(ω) = β(ω)}. The semi-

continuity properties of α and β ensure that Cε contains an open set for all ε > 0, and hence 
m(Cε) > 0 (since (�, σ) is minimal). Proposition 3.7 ensures that Cε1 ⊆ {ω : bJ,ε2(ω) > 0} ⊆
Cε2 if 0 < ε1 < ε2 ≤ l(J )/2. Consequently, 0 < m({ω : bJ,ε(ω) > 0}) → 0 as ε ↓ 0, so f̃ is 
(sDC) = (SDC) but not (SDC)m = (SDC)∗.

Example 3.14. Let � = R
/
πZ and let σ be the trivial identity flow over � defined by the 

differential equation ω′ = 0. Let us define

f (ω,x) =

⎧⎪⎨⎪⎩
−(x + (sin2 ω)/2)3 sin2 ω , x ∈ (−∞,−(sin2 ω)/2) ,

0 , x ∈ [−(sin2 ω)/2, (sin2 ω)/2] ,
−(x − (sin2 ω)/2)3 sin2 ω , x ∈ ((sin2 ω)/2,∞) .

(3.7)

Then, f belongs to C0,2(� × R, R) and it is (DC). Let us take ω ∈ (0, π]. Since fxx(ω, ·)
is strictly decreasing when |x| > (sin2 ω)/2, Proposition 3.7 ensures that bJ,ε(ω) > 0 for any 
ε > 0 and any compact interval J with l(J ) ≥ ε and [−1/2, 1/2] ⊆ J if and only if sin2 ω < ε, 
that is, Aε = {ω ∈ [0, π) : bJ,ε(ω) > 0} = (0, δ(ε)) ∪ (π − δ(ε), π), where δ(ε) = arcsin

√
ε ∈

(−π/2, π/2).
The Dirac measure mω on ω belongs to Merg(�, σ) for every ω ∈ [0, π). Recall that 

mω(Aε) = 1 if and only if ω ∈ Aε , and mω(Aε) = 0 if and only if ω /∈ Aε . Hence, f is not 
(SDC); and since 

⋂
ε>0 Aε = ∅, f is not (SDC)mω for any ω ∈ [0, π). Nonetheless, f is (sDC), 

since for each ε > 0 we can choose ω ∈ Aε in order to get mω(Aε) = 1. (Note that the measure 
mJ,ε in the definition of (sDC) cannot be selected independently of ε.) For the simple variation 
of (3.7) given by

f̃ (ω, x) =

⎧⎪⎨⎪⎩
−(x + (sin2 ω)/2)3 , x ∈ (−∞,−(sin2 ω)/2) ,

0 , x ∈ [−(sin2 ω)/2, (sin2 ω)/2] ,
−(x − (sin2 ω)/2)3 , x ∈ ((sin2 ω)/2,∞) ,

we have {ω ∈ � : bJ,ε(ω) > 0} = [0, δ(ε)) ∪ (π − δ(ε), π), where δ(ε) = arcsin
√

ε. It follows 
that f̃ is (SDC)m for m = m0 but not for any m = mω with ω ∈ (0, π), so it is not (SDC)∗.

4. Ergodic measures and compact invariant sets on K

Throughout this section, the function f of the family of equations (2.1) will always be as-
sumed to belong, at least, to C0,1(� ×R, R) without further mention to this. We will study how 
the additional hypotheses on f described in Section 3 limit the number of distinct measurable 
equilibria and compact invariant sets for the local skewproduct flow τ defined by (2.2).
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4.1. Number of ergodic measures and compact invariant sets

Given a compact τ -invariant set K ⊂ � × R, we define its variation interval by JK =
[inf(ω,x)∈K x, sup(ω,x)∈K x]. In the following results, we will exclude the cases in which JK
reduces to a point, that is, when K is the graph of a constant equilibrium. In that case, the dy-
namics is trivial and bJK,ε (see Section 3.1) is not defined for any ε > 0. Recall that the Lyapunov 
exponent γ (K, ν) is defined by (2.6).

Theorem 4.1. Let m ∈Merg(�, σ), let K ⊂ � ×R be a compact τ -invariant set projecting onto 
� and assume that f is (SDC)m on the variation interval JK of K. Then, there exist at most 
three distinct τ -ergodic measures ν1, ν2, ν3 concentrated on K which project onto m. In this 
case, γ (K, νj ) < 0 < γ (K, ν2) for j = 1, 3.

Proof. Let us suppose the existence of three different measures νi ∈ Merg(K, τ), i ∈ {1, 2, 3}, 
projecting onto m and let βi : � → R be m-measurable equilibria with graph in K satisfying 
(2.7) for i ∈ {1, 2, 3}. Clearly, m({ω : βi(ω) < βj (ω)}) ∈ {0, 1} for i �= j , as the set is τ -invariant 
and m is ergodic. Since m({ω : βi(ω) �= βj (ω)}) > 0, there exists a σ -invariant set �0 ⊆ �

with m(�0) = 1 such that β1(ω) < β2(ω) < β3(ω) for all ω ∈ �0 (by changing the indices if 
required). We will prove that the Lyapunov exponents of K for (2.1) with respect to ν1 and ν3
(resp. ν2) are strictly negative (resp. strictly positive). This fact precludes the existence of more 
than three different τ -ergodic measures on K.

Let ρ > 0 be given by the (SDC)m property of f . We apply Lusin’s Theorem to find a compact 
set � ⊆ �0 satisfying m(�) > 1 − ρ such that βi |� : � → R are continuous for i ∈ {1, 2, 3}. 
Then, we can define

ε = 1

2
inf

{
β3(ω) − β2(ω), β2(ω) − β1(ω) : ω ∈ �

}
> 0

and observe that 2ε ≤ l(JK). We also define

b(ω,x0) = f (ω, [β1(ω), x0, β2(ω)]) − f (ω, [β1(ω), x0, β3(ω)])
for ω ∈ �0 and x0 �= βi(ω) if i ∈ {1, 2, 3}; and bi(ω) = limx0→βi(ω) b(ω, x0), which exists 
since limx0→x̃ f (ω, [x0, ̃x]) = fx(ω, ̃x). Theorem 3.5 and Definition 3.2 ensure that b(ω, x0) ≥
bJK,ε(ω) if ω ∈ � and x0 ∈ JK. Thus, bi(ω) ≥ bJK,ε(ω) if ω ∈ �. In addition, the (DC) property 
of f and Lemma 3.1 ensure that b(ω, x0) ≥ 0 and hence bi(ω) ≥ 0 for all ω ∈ �0.

Let us prove that the Lyapunov exponents are negative for ν1 and ν3, following the ideas of 
the proof of Theorem 3.2 of part II of [38]. It is not hard to check that

b1(ω) −
(

f (ω,β2(ω)) − f (ω,β1(ω))

(β2(ω) − β1(ω))2 − f (ω,β3(ω)) − f (ω,β1(ω))

(β3(ω) − β1(ω))2

)
= −

(
1

β2(ω) − β1(ω)
− 1

β3(ω) − β1(ω)

)
fx(ω,β1(ω)) ,

(4.1)

β2(ω) − β1(ω)

β3(ω) − β2(ω)
b3(ω) −

(
f (ω,β3(ω)) − f (ω,β2(ω))

(β3(ω) − β2(ω))2 − f (ω,β3(ω)) − f (ω,β1(ω))

(β3(ω) − β1(ω))2

)
= −

(
1 − 1

)
fx(ω,β3(ω)) ,

(4.2)
β3(ω) − β2(ω) β3(ω) − β1(ω)
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for ω ∈ �0. For ν1, we define v1 on �0 by v1 = 1/(β2 − β1) − 1/(β3 − β1), so that v1 > 0. 
Writing (4.1) for ω·t and using f (ω·t, βi(ω·t)) = β ′

i (ω·t), we get

fx

(
ω·t, β1(ω·t)) = −v′

1(ω·t)
v1(ω·t) − b1(ω·t)

v1(ω·t)
for all ω ∈ �0 and t ∈R. In consequence, we have

1

t

t∫
0

fx

(
ω·s, β1(ω·s))ds = −1

t
log

(
v1(ω·t)
v1(ω)

)
− 1

t

t∫
0

b1(ω·s)
v1(ω·s) ds (4.3)

for t > 0 and ω ∈ �0. Birkhoff’s Ergodic Theorem (see Theorem 1 in Section 2 of Chapter 1 
of [11] and Proposition 1.4 of [20]) implies the existence of a σ -invariant subset �∗

0 ⊆ �0 with 
m(�∗

0) = 1 such that, for every ω ∈ �∗
0,

lim
t→∞

1

t

t∫
0

fx

(
ω·s, β1(ω·s))ds =

∫
�

fx

(
ω,β1(ω)

)
dm ∈R ,

lim
t→∞

1

t

t∫
0

b1(ω·s)
v1(ω·s) ds =

∫
�

b1(ω)

v1(ω)
dm ∈ [0,∞] ,

lim
t→∞

1

t

t∫
0

χ�(ω·s) ds = m(�) .

We fix ω ∈ �∗
0 and deduce from the last equality the existence of a sequence {tn}n∈N ↑ ∞

such that ω·tn ∈ � for every n ∈ N . Therefore, the sequence {log(v1(ω·tn)/v1(ω))}n∈N is 
bounded. Writing (4.3) for t = tn and taking limit as n → ∞, we get 

∫
K fx(ω, x) dν1 =

− 
∫
�
(b1(ω)/v1(ω)) dm ∈ (−∞, 0]. Hence,

γ (K, ν1) =
∫
K

fx(ω,x) dν1 ≤ −
∫
�

b1(ω)

v1(ω)
dm ≤ −

∫
�

bJK,ε(ω)

v1(ω)
dm < 0 ,

since b1/v1 ≥ 0 on �0, b1 ≥ bJK,ε on �, and the choice of ρ guarantees that m(� ∩ {ω ∈
� : bJK,ε(ω) > 0}) > 0. Analogously, γ (K, ν3) < 0, taking v3 = 1/(β3 −β2) − 1/(β3 −β1) and 
using (4.2), since (β2 − β1)/(β3 − β2) > ε/l(JK) on �. To prove that γ (K, ν2) > 0 we use the 
same argument after getting the equality involving fx(ω, β2(ω)) analogous to (4.2), and with 
v2 = 1/(β2 − β1) + 1/(β3 − β2). �
Theorem 4.2. Let K ⊂ � × R be a compact τ -invariant set with variation interval JK and 
projecting onto �. Then, K contains at most three disjoint compact τ -invariant sets projecting 
onto � at least in the following cases:

(i) if f ∈ C0,1(� ×R, R) is (sDC) on JK, or
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(ii) if f ∈ C0,1(� × R, R) is (SDC) on JK. In this case, if K contains three such sets and they 
are ordered, then they are hyperbolic copies of the base, attractive the upper and lower ones, 
and repulsive the middle one.

Proof. (i) We assume the existence of such three subsets of K, take ε > 0 smaller than the dis-
tances between them, call m the measure mJK,ε provided by the (sDC) property of f , and define 
ρ = m({ω : bJK,ε(ω) > 0}). Each one of the compact τ -invariant subsets of K concentrates a τ -
ergodic measure projecting onto m, given by the expression (2.7) corresponding to, for instance, 
its upper delimiter equilibrium. We repeat the proof of Theorem 4.1 applying Lusin’s Theorem 
only to ρ, and conclude that the three τ -ergodic measures are the unique ones projecting onto m. 
The assertion follows from here.

(ii) The first assertion follows from (i) and Proposition 3.11. Now we assume the existence 
of three disjoint τ -invariant ordered compact subsets K1 < K2 < K3 of K, with β1 < β2 < β3
for the corresponding upper equilibria. Let us choose i ∈ {1, 2, 3} and νi ∈ Merg(Ki , τ), let m ∈
Merg(�, σ) be the projection of νi , and define νj ∈ Merg(Kj , τ) for j �= i from βj by (2.7), 
so that νj projects onto m. According to Theorem 4.1, γ (K, νj ) < 0 < γ (K, ν2) for j = 1, 3. 
Since this happens independently of the choices of i and νi , we conclude that all the Lyapunov 
exponents of K1 and K3 (resp. K2) are strictly negative (resp. strictly positive).

Note that, since there are at most three ergodic measures on K projecting onto any fixed m ∈
Merg(�, σ), the upper and lower equilibria βi and αi of Ki coincide on a set �0 with m(�0) = 1
for all m ∈ Merg(�, σ), for i ∈ {1, 2, 3}. It follows easily that the projection of any compact τ -
invariant set contains points of �0. Let us prove that Ki is an attractive hyperbolic copy of the 
base if i ∈ {1, 3}. We take (ω, αi(ω)) ∈ Ki , a point (ω̃, αi(ω̃)) = (ω̃, βi(ω̃)) in its α-limit set, with 
ω̃ ∈ �0, and a sequence {tn}n∈N ↓ −∞ with (ω̃, αi(ω̃)) = limn→∞ τ(tn, ω, αi(ω)) and such that 
there exists limn→∞ τ(tn, ω, βi(ω)). Then, this last limit is also (ω̃, αi(ω̃)). This property allows 
us to check the assertion by repeating the proof of Proposition 2.8 of [6], which makes use of 
First Approximation Theorem and the strictly negative character of all the Lyapunov exponents 
of Ki : just replace the points (ω1, x1) and (ω1, x2) of that proof by (ω, αi(ω)) and (ω, βi(ω)). 
The proof is analogous for K2, working now with uniform exponential stability at −∞ and with 
analogous sets. �
Corollary 4.3. Let (�, σ) be a minimal flow, let K ⊂ � × R be a compact τ -invariant set 
with variation interval JK, and let f be a (DC) function such that for every ε > 0 there exists 
ωJK,ε ∈ � with bJK,ε(ωJK,ε) > 0. Then, there exist at most three disjoint compact τ -invariant 
sets contained in K and, if there exist three, then they are hyperbolic copies of the base ordered 
as in Theorem 4.2(ii).

Proof. Combine Theorem 4.2(ii) with Proposition 3.3. �
The last result of this section shows that two different ergodic measures concentrated on a 

compact τ -invariant set K provide two Lyapunov exponents of K with nonpositive sum. This 
property will be fundamental in some of the main proofs.

Proposition 4.4. Let f ∈ C0,2(� × R, R) be (DC), m ∈ Merg(�, σ), K ⊂ � × R a compact 
τ -invariant set projecting onto � with variation interval JK and βν, βμ : � → R two different 
m-measurable τ -equilibria with graphs contained in K. Then,
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∫
�

fx(ω,βν(ω)) dm +
∫
�

fx(ω,βμ(ω)) dm ≤ 0 .

In addition, the previous inequality is strict in any of the following cases:

(i) if f is (SDC)m on the variation interval JK of K,
(ii) if the graphs of βν and βμ are contained in disjoint compact τ -invariant subsets of K and 

if, in addition, f is (SDC) or, more generally, if m({ω ∈ � : bJK,ε(ω) > 0}) > 0 for every 
ε > 0.

Proof. There is no loss of generality in assuming βν(ω) < βμ(ω) for m-a.e. ω ∈ �, and hence 
on a σ -invariant set �0 ⊆ � with m(�0) = 1. Let us define k(ω) = βμ(ω) − βν(ω). Then,

k′(ω·t) = f (ω·t, k(ω·t) + βν(ω·t)) − f (ω·t, βν(ω·t)) = k(ω·t)F (ω·t, k(ω·t)) , (4.4)

where F(ω, y) = ∫ 1
0 fx(ω, sy + βν(ω)) ds. As f is (DC), Fy(ω, ·) is a nonincreasing function 

for any ω ∈ �, so

F(ω, k(ω)) = F(ω,0) +
1∫

0

k(ω)Fy(ω, sk(ω)) ds ≥ F(ω,0) + k(ω)Fy(ω, k(ω)) . (4.5)

Deriving the equality yF(ω, y) = f (ω, y +βν(ω)) −f (ω, βν(ω)) with respect to y and evaluat-
ing at y = k(ω) yields F(ω, k(ω)) + k(ω)Fy(ω, k(ω)) = fx(ω, βμ(ω)). This equality combined 
with F(ω, 0) = fx(ω, βν(ω)) and (4.5) provides∫

�

fx(ω,βν(ω)) dm +
∫
�

fx(ω,βμ(ω)) dm

=
∫
�

(
F(ω,0) + F(ω, k(ω)) + k(ω)Fy(ω, k(ω))

)
dm ≤ 2

∫
�

F(ω, k(ω)) dm .

(4.6)

According to (4.4), k′(ω)/k(ω) = F(ω, k(ω)) for all ω ∈ �0, and hence Birkhoff’s Ergodic 
Theorem ensures that the right-hand side of (4.6) is zero. This proves the first assertion.

Now, let us check that the hypotheses of (i) or (ii) ensure that Fy(ω, 0) > Fy(ω, k(ω))

on a subset of � with positive m-measure. Hence, the inequality (4.5) is strict on that sub-
set, and therefore (4.6) is also strict, which completes the proof. To this end, it is enough to 
show that fxx(ω, βν(ω)) > fxx(ω, βμ(ω)) on a set with positive m-measure, since Fy(ω, 0) =∫ 1

0 sfxx(ω, βν(ω)) ds and Fy(ω, k(ω)) = ∫ 1
0 sfxx(ω, sβμ(ω) + (1 − s)βν(ω)) ds, both inte-

grands are continuous in s, and sfxx(ω, βν(ω)) ≥ sfxx(ω, sβμ(ω) + (1 − s)βν(ω)) for all 
s ∈ [0, 1]. Under the hypothesis of (i), the required inequality follows from Proposition 3.9. 
If the situation is that of (ii), then ε = inf{βμ(ω) − βν(ω) : ω ∈ �} is strictly positive; and, 
since l([βν(ω), βμ(ω)]) ≥ ε for all ω ∈ �, Proposition 3.7 ensures that fxx(ω, βν(ω)) >
fxx(ω, βμ(ω)) for all the points ω of the set on which bJK,ε(ω) > 0, which has positive m-
measure. �
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Previous results of this same type were obtained in [38] for periodic differential equations 
under stronger conditions of d-concavity and in [17] for quasiperiodically forced increasing maps 
T : S1 × [a, b] → S1 × [a, b] with strictly negative Schwarzian derivative. In what follows, for 
the case of our real flow, we will show the relation between some properties of d-concavity on 
the function f and the condition of negative Schwarzian derivative of its flow at discrete time.

4.2. Negative Schwarzian derivative

Let us suppose that f ∈ C0,3(� × R, R). Recall that U ⊃ {0} × � × R is the (open) 
domain of the flow τ : see (2.2). Since, for all (ω, x) ∈ � × R, t �→ ux(t, ω, x) solves the 
variational equation of x′ = f (ω·t, x) and satisfies ux(0, ω, x) = 1, we have ux(t, ω, x) =
exp

( ∫ t

0 fx(ω·s, u(s, ω, x)) ds
)

for all (t, ω, x) ∈ U . It follows easily that uxx(0, ω, x) = 0, 
uxxx(0, ω, x) = 0 and uxxxt (0, ω, x) = fxxx(ω, x) for every (ω, x) ∈ � × R. Since ux(t, ω, x)

never vanishes, the Schwarzian derivative with respect to the space variable, given by

Sxu(t,ω, x) = uxxx(t,ω, x)

ux(t,ω, x)
− 3

2

(
uxx(t,ω, x)

ux(t,ω, x)

)2

,

is well defined on U .

Proposition 4.5. Let f ∈ C0,3(� ×R, R). Then,

(i) Sxu(0, ω, x) = 0 for all (ω, x) ∈ � ×R.
(ii) The partial derivative of Sxu with respect to t exists and is continuous on U , and 

(Sxu)t (0, ω, x) = fxxx(ω, x) for every (ω, x) ∈ � ×R.

Proof. Property (i) is trivial, and the existence and continuity of (Sxu)t on U follows from 
the regularity properties of all the involved functions. The last assertion is proved by straight 
computation and evaluation at t = 0. �
Proposition 4.6. Let f ∈ C0,3(� ×R, R). Let us suppose that fxxx(ω, x) < 0 for every (ω, x) ∈
� ×R. Then, Sxu(t, ω, x) < 0 for every (t, ω, x) ∈ U with t > 0.

Proof. Let us fix (t0, ω0, x0) ∈ U with t0 > 0. We set k = supt∈[0,t0] |u(t, ω0, x0)| and note that 
x0 ∈ [−k, k]. Proposition 4.5(ii) ensures that (Sxu)t (0, ω, x) < 0 for every (ω, x) ∈ � ×[−k, k]. 
Combining the continuity of s �→ (Sxu)t (s, ω, x) with open character of U and the compactness 
of � × [−k, k], we find 0 < δ ≤ t0 and l < 0 such that (Sxu)t (s, ω, x) ≤ l for every (s, ω, x) ∈
[0, δ] × � × [−k, k]. Consequently, it follows from Proposition 4.5(i) that

Sxu(s,ω, x) =
s∫

0

(Sxu)t (r,ω, x) dr ≤ ls < 0 (4.7)

for every (s, ω, x) ∈ (0, δ] × � × [−k, k]. Let s0 ∈ (0, δ] and n0 ∈ N be fixed with s0n0 = t0. 
Section 6 of Chapter 2 of [26] gives the formula of Schwarzian derivative of a composition, 
which yields
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Sxu(ns0,ω0, x0) = Sx(u(s0,ω0·(n − 1)s0, u((n − 1)s0,ω0, x0)))

= Sxu(s0,ω0·(n − 1)s0, u((n − 1)s0,ω0, x0)) · (ux((n − 1)s0,ω0, x0))
2

+ Sxu((n − 1)s0,ω0, x0)

(4.8)

for n ∈ {1, 2, . . . , n0}. Let us show by induction that Sxu(ns0, ω0, x0) < 0 for every n ∈
{1, 2, . . . , n0}. Equality (4.7) shows it for n = 1; and, since u((n − 1)s0, ω0, x0) ∈ [−k, k], (4.7)
(resp. the induction hypothesis) ensures that the first (resp. second) term in the sum is strictly 
negative. In particular, Sxu(t0, ω0, x0) = Sxu(n0s0, ω0, x0) < 0, as asserted. �
Proposition 4.7. Let f ∈ C0,3(� ×R, R). Let us suppose that for all (ω, x) ∈ � ×R there exists 
a sequence {tn}n∈N of positive numbers with limit 0 such that (tn, ω, x) ∈ U and Sxu(tn, ω, x) ≤
0 for every n ∈N . Then, f is (DC).

Proof. Let (ω, x) ∈ � × R be fixed. It follows from Proposition 4.5 that Sxu(t, ω, x) > 0 for 
t > 0 small enough if (Sxu)t (0, ω, x) = fxxx(ω, x) > 0. Since our hypotheses ensure that this is 
not the case, fxxx(ω, x) ≤ 0 and hence f is (DC). �
5. A first one-parametric bifurcation problem

This section deals with a parametric family of scalar ODEs

x′ = f (ω·t, x) + λ , ω ∈ �, (5.1)

where f ∈ C0,1(� × R, R) and λ ∈ R. We will write (5.1)λ to make reference to a particular 
value of the parameter. Let Iλ

ω,x0
→ R, t �→ uλ(t, ω, x0) be the maximal solution of (5.1)λ with 

uλ(0, ω, x0) = x0, and let (� ×R, τλ) be the corresponding local skewproduct flow. We will also 
assume a coercivity property on f , which will guarantee the existence of a global attractor for 
all the flows τλ.

5.1. Coercivity and global attractor

A set A ⊂ � ×R is said to be the global attractor of the flow τ if it is a compact τ -invariant 
set and if it attracts every bounded set C ⊂ � × R; that is, if τt (C) is defined for any t ≥ 0 and 
also limt→∞ dist(τt (C), A) = 0, where

dist(C1,C2) = sup
(ω1,x1)∈C1

(
inf

(ω2,x2)∈C2

(
dist�×R((ω1, x1), (ω2, x2))

))
is the Hausdorff semidistance from C1 to C2. The Hausdorff distance between two compact sets 
C1, C2 ⊂ � ×R is defined by

distH(C1,C2) = max{dist(C1,C2),dist(C2,C1)} .

A function f : � ×R → R is said to be coercive ((Co) for short) if

lim|x|→∞
f (ω,x)

x
= −∞

uniformly on ω ∈ �.
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Theorem 5.1. Let f ∈ C0,1(� ×R, R) be (Co) and let τ be the flow induced by the family (5.1)0. 
Then,

(i) the flow τ admits global attractor

A =
⋃
ω∈�

({ω} × [αA(ω),βA(ω)]) . (5.2)

In particular, any forward τ -semiorbit is globally defined and bounded. Moreover, αA and 
βA are, respectively, lower and upper semicontinuous τ -equilibria, and can be obtained as 
the pullback limits

αA(ω) = lim
t→∞u(t,ω·(−t), ρ1) ≥ ρ1 ,

βA(ω) = lim
t→∞ u(t,ω·(−t), ρ2) ≤ ρ2 ,

(5.3)

where the constants ρ1 and ρ2 satisfy f (ω, x) > 0 if x ≤ ρ1 and f (ω, x) < 0 if x ≥ ρ2 for 
all ω ∈ �.

(ii) A is the union of all the globally defined and bounded τ -orbits.
(iii) If κ : � → R is a bounded global lower (resp. upper) solution, then κ(ω) ≤ βA(ω)

(resp. αA(ω) ≤ κ(ω)) for every ω ∈ �; and if, in addition, it is strict, then κ(ω) < βA(ω)

(resp. αA(ω) < κ(ω)) for every ω ∈ �.

Proof. (i) and (ii) These properties are proved by repeating the arguments leading to Theorem 16 
of [7] (see also Section 1.2 of [8]). The existence of the constant ρ0 is ensured by the coercivity 
property.

(iii) Let us work in the lower case. It is easy to deduce from the boundedness of any for-
ward τ -semiorbit that x0 ≤ βA(ω) if and only if u(t, ω, x0) is bounded from above as time 
decreases. The initial (non strict) conditions on κ and a standard comparison argument ensures 
that u(t, ω, κ(ω)) ≤ κ(ω·t) for any t ≤ 0, and hence u(t, ω, κ(ω)) remains bounded from above 
as time decreases. Therefore, κ ≤ βA. Now, we assume also that κ is strict, and, for contradiction, 
that κ(ω0) = βA(ω0) for some ω0 ∈ �. Then, κ(ω0·t) > u(t, ω0, κ(ω0)) = u(t, ω0, βA(ω0)) =
βA(ω0·t) if t < 0, which is not possible. We proceed analogously in the upper case. �

Our next result guarantees that any compact τ -invariant set which contains the graph of either 
αA or βA has a nonpositive Lyapunov exponent corresponding to the ergodic measure defined 
by such equilibrium by (2.7) for m ∈ Merg(�, σ).

Proposition 5.2. Let f ∈ C0,2(� ×R, R) be (Co), and let αA and βA be defined by (5.2). Given 
any m ∈Merg(�, σ),∫

�

fx(ω,αA(ω)) dm ≤ 0 and
∫
�

fx(ω,βA(ω)) dm ≤ 0 .

Proof. We reason with βA, assuming for contradiction that 
∫
�

fx(ω, βA(ω)) dm = ρ > 0. 
Birkhoff’s Ergodic Theorem provides a nonempty σ -invariant subset �0 ⊆ � and, for each 
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ω ∈ �0, a time tω > 0 such that 
∫ t

0 fx(ω·s, βA(ω·s)) ds ≥ (ρ/2) t for all t ≥ tω. Let L > 0
satisfy |fx(ω, x) − fx(ω, βA(ω))| ≤ L|x − βA(ω)| for all ω ∈ � and x ∈ [βA(ω), βA(ω) + 1]. 
Let us take k ∈ (0, 1) with Lk ≤ ρ/4, fix ω0 ∈ �0 and x0 > βA(ω0), and use the definition of βA
to find t1 > 0 such that u(t, ω0, x0) − βA(ω0·t) ≤ k for all t ≥ t1. Then, for ω1 = ω0·t1 (which 
belongs to �0) and t > 0, there exists ξt ∈ [βA(ω1), x1] such that, if x1 = u(t1, ω0, x0), then

u(t + t1,ω0, x0) − βA(ω0·(t + t1)) = ux(t,ω1, ξt ) (x1 − βA(ω1)) . (5.4)

It is easy to check that |fx(ω1·s, u(s, ω1, ξt )) − fx(ω1·s, βA(ω1·s))| ≤ Lk ≤ ρ/4 for all s > 0, 
and to deduce that ux(t, ω1, ξt ) = exp

∫ t

0 fx(ω1·s, u(s, ω1, ξt )) ds ≥ e(ρ/4)t if t ≥ tω1 . Hence, the 
left-hand term of (5.4) cannot converge to 0 as t → ∞, which is the sought-for contradiction. 
The argument is similar for αA. �

Recall that any hyperbolic minimal set is a copy of the base: see Subsection 2.4.

Proposition 5.3. Let (�, σ) be minimal and let f ∈ C0,2(� ×R, R) be (Co). Then,

(i) if τ admits a repulsive hyperbolic minimal set, then it admits at least three different minimal 
sets.

(ii) If τ admits two distinct hyperbolic minimal sets, then it admits at least three different minimal 
sets.

Proof. (i) Let κ : � → R provide the repulsive hyperbolic copy of the base M, and let Mu be 
the minimal set defined from the delimiter equilibrium βA by (2.5). Assuming for contradiction 
that M ≮Mu leads us to M =Mu, and hence to κ(ω0) = βA(ω0) for a continuity point ω0 of 
βA. So, limt→∞(u(t, ω0, x0) − κ(ω0·t)) = 0 for x0 > κ(ω0). But this contradicts the repulsive 
hyperbolicity of M: see e.g. Proposition 2.8 of [6]. An analogous argument shows the existence 
of Ml < M.

(ii) If there were exactly two minimal sets and they were hyperbolic attractive, then Theo-
rem 3.4 of [6] would guarantee that the global attractor is a hyperbolic copy of the base, which is 
a contradiction. Consequently, at least one of the two hyperbolic minimal sets is repulsive, and 
then (i) concludes the proof. �

Hereafter, we will consider the parametric problem (5.1)λ.

Proposition 5.4. Every global upper (resp. lower) solution of (5.1)λ is a strict global upper 
(resp. lower) solution of (5.1)ξ if ξ < λ (resp. λ < ξ ). Particularly, any equilibrium for (5.1)λ is 
a strong superequilibrium and a strong time-reversed subequilibrium for (5.1)ξ if ξ < λ, as well 
as a strong subequilibrium and a strong time-reversed superequilibrium for (5.1)ξ if λ < ξ .

Proof. The results are easy consequences of the definitions of global upper and lower solutions 
and their relation with semiequilibria, described in Subsection 2.2. �

The information provided by Theorem 5.1 plays a role on the next statement.
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Theorem 5.5. Let f ∈ C0,1(� ×R, R) be (Co) and let

Aλ =
⋃
ω∈�

({ω} × [αλ(ω),βλ(ω)]) (5.5)

be the global attractor for the flow τλ given by (5.1)λ. Then,

(i) for every ω ∈ �, the maps λ �→ βλ(ω) and λ �→ αλ(ω) are strictly increasing on R and they 
are, respectively, right- and left-continuous.

(ii) limλ→±∞ αλ(ω) = limλ→±∞ βλ(ω) = ±∞ uniformly on �.
(iii) If f satisfies lim|x|→∞ fx(ω, x) = −∞ uniformly on �, then there exists λ∗ > 0 such that 

Aλ is an attractive hyperbolic copy of the base if |λ| ≥ λ∗.

Proof. (i) Let ξ < λ. Proposition 5.4 ensures that βξ is a strict global lower solution of (5.1)λ. 
Hence, Theorem 5.1(iii) yields βξ (ω) < βλ(ω) for all ω ∈ �. Analogously, αλ is a strict global 
upper solution for (5.1)ξ and Theorem 5.1(iii) ensures αξ (ω) < αλ(ω) for all ω ∈ �.

As mentioned in the proof of Theorem 5.1(iii), x0 ≤ βλ(ω) if and only if uλ(t, ω, x0) is 
bounded from above as time decreases. Let ω0 ∈ � be fixed. We take a decreasing sequence 
{λn}n∈N with λn ↓ λ0 and call y0 = limn→∞ βλn(ω0), which (by the previous part) satisfies 
y0 ≥ βλ0(ω0). Then, for any t ∈ Iλ0

ω0,y0 , we have uλ0(t, ω0, y0) = limn→∞ uλn(t, ω0, βλn(ω0)) =
limn→∞ βλn(ω0·t) ≤ βλ1(ω0·t), so that uλ0(t, ω0, y0) remains bounded from above as time de-
creases. The previously mentioned property ensures that y0 ≤ βλ0(ω0), and hence that βλ0(ω0) =
limn→∞ βλn(ω0). The proof is analogous for αλ.

(ii) Let us take ρ > 0 and use the coercivity property to find λρ > 0 large enough to guarantee 
that f (ω, x) +λρ > 0 whenever x ≤ ρ and f (ω, x) −λρ < 0 whenever x ≥ −ρ. Theorem 5.1(i) 
ensures that, if λ ≥ λρ , then αλ(ω) ≥ ρ and β−λ(ω) ≤ −ρ for all ω ∈ �, which imply the asser-
tions in (ii).

(iii) The additional hypothesis on f provides ρ > 0 such that fx(ω, x) < 0 if |x| > ρ and 
ω ∈ �. By (ii), there exists λ∗ such that Aλ ⊂ � ×[ρ, ∞) and A−λ ⊂ � × (−∞, −ρ] if λ > λ∗. 
We fix λ with |λ| > λ∗, so all the Lyapunov exponents of any compact invariant subset of Aλ are 
strictly negative. Let S ⊆ � be a σ -minimal set, and consider the family (5.1)λ for ω ∈ S . The 
corresponding attractor is AS

λ = {(ω, x) ∈ Aλ : ω ∈ S}, and Theorem 3.4 of [6] guarantees that 
AS

λ is an attractive hyperbolic copy of the base of (S × R, τ). Let us check the same property 
for Aλ, for which we proceed as in the second paragraph of the proof of Theorem 4.2(ii). The 
only difference is that, given (ω, x) ∈ Aλ, we choose a point ω0 in a minimal subset S of the 
α-limit of ω for σ , and a sequence {tn}n∈N ↓ −∞ with ω0 = limn→∞ ω·tn and such that there 
exists limn→∞ u(tn, ω, x). Then, this limit is αλ(ω0), the unique element of (AS

λ )ω0 . The rest of 
the argument is identical. �

Figs. 1 and 2 depict the evolution of the attractor Aλ in some particular cases. They also show 
the possibility of occurrence of discontinuity points. The upper semicontinuity of the global 
attractor at λ = ξ (see Chapter 3 of [8]), defined by limλ→ξ dist(Aλ, Aξ ) = 0, is well-known 
for every ξ ∈ R. In addition, the simultaneous continuity of λ �→ αλ(ω) and λ �→ βλ(ω) at ξ for 
all ω ∈ � implies limλ→ξ distH(Aλ, Aξ ) = 0, that is, the continuous variation of attractors at 
λ = ξ . However, this is not a general property.
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Proposition 5.6. Let f ∈ C0,1(� ×R, R) be (Co). Given m ∈ Merg(�, σ), there exists a count-
able set � ⊂ R such that λ �→ αλ(ω) and λ �→ βλ(ω) are continuous at λ = ξ for m-a.e. ω ∈ �

if ξ /∈ �.

Proof. Recall that Theorem 5.5(i) ensures that λ �→ αλ(ω) is left-continuous and λ �→ βλ(ω)

is right-continuous for all ω ∈ �. It remains to show continuity in the other direction. Theo-
rem 5.5(i) ensures that λ �→ ∫

�
βλ(ω) dm is an increasing function, so its set � ⊂ R of dis-

continuity points is at most countable. For ξ /∈ �, we have limλ↑ξ

∫
�

|βξ (ω) − βλ(ω)| dm =
limλ↑ξ

∫
�

(
βξ (ω) −βλ(ω)

)
dm = 0, and hence limλ↑ξ βλ = βξ in L1(�, m). Consequently, there 

exists {λn}n∈N ↑ ξ such that limn→∞ βλn(ω) = βξ (ω) for m-a.e. ω ∈ �, and the monotonicity 
ensures that limλ↑ξ βλ(ω) = βξ (ω) for m-a.e. ω ∈ �. We proceed analogously with αλ and take 
the union of both sets. �
5.2. Dealing with d-concavity

In this section, we will assume that f is (DC) and (Co). We shall say that a function f : � ×
R → R is concave-convex if there exist xl ≤ xu such that f (ω, ·) is concave in [xu, ∞) and 
convex in (−∞, xl] for every ω ∈ �. The following proposition ensures that if f is coercive 
and d-concave, it generates concave-convex dynamics. The uniformity on � of the coercivity 
property is not needed in its proof.

Proposition 5.7. Let f ∈ C0,2(� ×R, R) be (Co). Then, for each ω ∈ � there exist {xn
ω,l}n∈N ↓

−∞ and {xn
ω,u}n∈N ↑ ∞ such that fxx(ω, xn

ω,l) > 0 and fxx(ω, xn
ω,u) < 0 for every n ∈ N . 

Moreover, if f is (DC), then there exist xl ≤ xu such that fxx(ω, x) > 0 for all x < xl and all 
ω ∈ � and such that fxx(ω, x) < 0 for all x > xu and all ω ∈ �.

Proof. We proceed with {xn
ω,u}n∈N . Let us fix ω ∈ � and assume for contradiction the existence 

of x0 such that fxx(ω, ·) ≥ 0 on [x0, ∞), in which case fx(ω, ·) is nondecreasing on [x0, ∞). 
This fact and the mean value theorem ensure the existence of ξx ∈ (x0, x) for any x > 0 such that

f (ω,x) − f (ω,x0)

x − x0
= fx(ω, ξx) ≥ fx(ω,x0) . (5.6)

From here, we get

lim
x→∞

f (ω,x)

x − x0
≥ lim

x→∞
f (ω,x0)

x − x0
+ fx(ω,x0) = fx(ω,x0) > −∞ ,

which contradicts the coercivity property. We proceed analogously to prove the existence of 
{xn

ω,l}n∈N .
Now, let us assume that f is (DC). The previous properties and the nonincreasing character 

of fxx ensure that Iω = {x : fxx(ω, x) < 0} is a positive half-line. Let us define g(ω) = inf Iω, 
and let us check that xu = supω∈� g(ω) is finite. For each ω0 ∈ �, we look for y0 > g(ω0), so 
fxx(ω0, y0) < 0 since y0 ∈ Iω0 . The continuity of fxx provides fxx(ω, y0) < 0 and hence g(ω) <
y0 for all ω in an open neighborhood of ω0. The compactness of � proves that xu ∈R. If x > xu, 
then x ∈ Iω for all ω ∈ �, and hence fxx(ω, x) < 0, as asserted. We define xl analogously. �
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Proposition 5.8. Let f ∈ C0,2(� ×R, R) be (DC) and (Co). Then, we have lim|x|→∞ fx(ω, x) =
−∞ uniformly on �.

Proof. Let us take a < xl and b > xu, where xl and xu are defined by Proposition 5.7, which 
shows that fxx has a strictly negative upper bound in [b, ∞) and a strictly positive lower bound in 
(−∞, a]. Taylor’s Theorem concludes the proof, taking into account the boundedness of fx(·, a)

and fx(·, b) on �. �
In particular, the last proposition shows that the hypotheses of Theorem 5.5(iii) are satisfied 

by a C0,2(� × R, R) function which is (DC) and (Co). The next result establishes a relation 
between two Lyapunov exponents of two compact sets which are τλ-invariant for two different 
values of the parameter, which will be extremely useful in the proofs of the main results. Note 
that the (Co) condition is not required.

Proposition 5.9. Let f ∈ C0,2(� ×R, R) be (DC), let us fix m ∈Merg(�, σ) and λν < λμ, and 
let βν, βμ : � → R be two m-measurable equilibria for τλν and τλμ respectively. If βν(ω) <
βμ(ω) for all m-a.e. ω ∈ �, then

∫
�

fx(ω,βν(ω)) dm +
∫
�

fx(ω,βμ(ω)) dm < 0 .

Proof. The argument is similar to that of Proposition 4.4. The function k(ω) = βμ(ω) − βν(ω)

satisfies

k′(ω·t)/k(ω·t) = F(ω·t, k(ω·t)) + (λμ − λν)/k(ω·t)

for all ω at the σ -invariant set �0 at which k(ω) > 0 and t ∈R, where F(ω, y) = ∫ 1
0 fx(ω, sy +

βν(ω)) ds. Then, the application of Birkhoff’s Ergodic Theorem yields

∫
�

F(ω, k(ω)) dm = −(λμ − λν)

∫
�

1

k(ω)
dm < 0 ,

which combined with (4.6) completes the proof. �
5.3. Bifurcation diagram with minimal base flow

Hereafter, we will always assume that (�, σ) is a minimal flow. The results in this section will 
describe several possible bifurcation diagrams of minimal sets for (5.1)λ. The bifurcations of the 
family of global attractors will be deduced. We point out that an (SDC)∗ function f satisfies all 
the strict d-concavity conditions required in the results of this subsection (see Proposition 3.11), 
which are optimized to be less restrictive.

The next result establishes conditions under which the global bifurcation diagram presents 
two local saddle-node bifurcation points of minimal sets which are also points of discontinuity 
of the global attractor. The maps αλ and βλ of its statement are those of (5.5)λ.
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Theorem 5.10 (Global bifurcation diagram with double saddle-node). Let f ∈ C0,2(� ×R, R)

be (SDC) on J and (Co), where J is a compact interval which contains the interval of variation 
of Aλ for all λ ∈ [−λ∗, λ∗] with λ∗ given by Theorem 5.5(iii) and Proposition 5.8. Assume that 
there exists λ0 ∈R such that τλ0 admits three different minimal sets. Then, there exists an interval 
I = (λ−, λ+) with λ0 ∈ I such that

(i) for every λ ∈ I , there exist exactly three τλ-minimal sets Ml
λ < Nλ < Mu

λ which are hyper-
bolic copies of the base, given by the graphs of αλ < κλ < βλ. In addition, Nλ is repulsive 
and Ml

λ, Mu
λ are attractive, and λ �→ κλ is strictly decreasing on I .

(ii) The graphs of κλ and βλ (resp. αλ and κλ) collide on a σ -invariant residual set as λ ↓ λ−
(resp. λ ↑ λ+), giving rise to a nonhyperbolic minimal set Mu

λ− (resp. Ml
λ+ ). In addition, 

there is exactly other minimal set for τλ− (resp. τλ+ ) and it is an attractive hyperbolic copy 
of the base given by the graph Ml

λ− of αλ− (resp. Mu
λ+ of βλ+ ).

(iii) For λ ∈ (−∞, λ−) ∪ (λ+, ∞), Aλ is an attractive hyperbolic copy of the base, given by the 
graph of the map αλ = βλ.

In particular, local saddle-node bifurcations of minimal sets and discontinuous bifurcations of 
attractors occur at λ− and λ+.

Proof. Since (�, σ) is minimal, Theorem 4.2 ensures that the three τλ0 -minimal sets are the 
unique ones, and that they are hyperbolic copies of the base. The persistence under small C0,1

perturbations of a hyperbolic set (see e.g. Theorem 3.8 of [32]) provides a maximal interval 
I such that λ0 ∈ I and that, for any λ ∈ I , there are (exactly) three τλ-minimal sets Ml

λ <

Nλ < Mu
λ and they are hyperbolic copies of the base, given by the graphs of αλ < κλ < βλ. 

This persistence also ensures the continuity of the maps I → C(�, R), λ �→ αλ, κλ, βλ with 
respect to the uniform topology. The attractive character of Ml

λ and Mu
λ allow us to deduce from 

Proposition 2.3 that αλ and βλ are the delimiter equilibria of Aλ, and hence Theorem 5.5(i) shows 
that λ �→ αλ and λ �→ βλ are increasing on I . Let us check that λ �→ κλ is strictly decreasing on I . 
We take ξ < λ in I close enough to guarantee αξ < κλ < βξ . Since κλ is a continuous strong time-
reversed τξ -subequilibrium, there exist e > 0 and s∗ < 0 such that uξ (s, ω, κλ(ω)) ≥ κλ(ω·s) + e

for all ω ∈ � and s ≤ s∗ (see Subsection 2.2). This implies that the graph of κλ is strictly below 
any τξ -minimal subset N ∗

ξ of the α-limit set for τξ of a point (ω, κλ(ω)). The repulsive properties 

of Ml
λ and Mu

λ as time decreases ensure that they are not α-limit sets of points placed outside 
them. Therefore, N ∗

ξ = Nξ and hence κξ > κλ, as asserted.
Notice that I ⊆ (−λ∗, λ∗): see Theorem 5.5(iii). We define λ− = inf{λ < λ0 : there exist 

three hyperbolic τξ -minimal sets ∀ξ ∈ [λ, λ0]} = inf I ∈ [−λ∗, λ0). Since I is open, λ− /∈ I , 
and hence there exist at most two τλ−-minimal sets. We define βλ−(ω) = limλ↓λ− βλ(ω), and 
analogously αλ−(ω) = limλ↓λ− αλ(ω) and κλ−(ω) = limλ↓λ− κλ(ω). As they are monotone limits 
of continuous functions, they are semicontinuous on �. In particular, αλ− and βλ− are upper 
semicontinuous and κλ− is lower semicontinuous. The continuous variation with respect to λ
ensures

βλ−(ω·t) = lim
λ↓λ−

βλ(ω·t) = lim
λ↓λ−

uλ(t,ω,βλ(ω)) = uλ−(t,ω,βλ−(ω)) ,

that is, βλ− is a τλ− -equilibrium. The same holds for αλ− and κλ− . Theorem 5.5(i) shows that βλ−
is the same map that in (5.5)λ , so the notation is coherent. Now, Proposition 5.9 applied to κλ
− 0
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(whose graph is a repulsive hyperbolic copy of the base) and to any ergodic measure concentrated 
on the minimal set Ml

λ− = cl�×R{(ω0·t, αλ−(ω0·t)) : t ∈ R}, being ω0 a continuity point of 
αλ− , ensures that every Lyapunov exponent of this minimal set is strictly negative. Consequently, 
Ml

λ− is an attractive hyperbolic copy of the base, so αλ− is, in fact, continuous and the hyperbolic 
continuation of αλ as λ → λ−.

Let M be the minimal set associated to κλ− by (2.5). The strict monotonicity properties of αλ

and κλ ensure that Ml
λ− < M. Therefore, Ml

λ− and Mu
λ− = M are the two unique τλ− -minimal 

sets. This fact and Proposition 2.3 ensure these properties: that αλ− is the lower delimiter of Aλ− , 
and that Mu

λ− is also associated to βλ− by (2.5). In particular, βλ−(ω) = κλ−(ω) for all ω in the 
residual set R of their common continuity points, and hence (Mu

λ−)ω is a singleton for all ω ∈R. 
Note also that Mu

λ− is contained in the set 
⋃

ω∈�

({ω} × [κλ−(ω), βλ−(ω)]), which is a compact 
τλ− -invariant pinched set.

The hyperbolic attractive character of αλ− yields the first inequality of

∫
�

fx(ω,αλ−(ω)) dm < 0,

∫
�

fx(ω,κλ−(ω)) dm ≥ 0

and
∫
�

fx(ω,βλ−(ω)) dm ≤ 0 .

(5.7)

The other ones follow from Lebesgue’s Monotone Convergence Theorem. Let us check that 
Aλ is an attractive hyperbolic copy of the base for all λ < λ−. If λ < λ−, Theorem 5.5(i) and 
Proposition 2.1 provide e > 0 and s > 0 such that

κλ−(ω) − e > uλ(s,ω·(−s), βλ−(ω·(−s))) > uλ(s,ω·(−s), βλ(ω·(−s))) = βλ(ω)

for all ω ∈ �. In particular, any τλ-equilibrium κ : � → R is strictly below κλ− . Proposition 5.9
and the second inequality of (5.7) ensure that 

∫
�

fx(ω, κ(ω)) dm < 0 for all m ∈ Merg(�, σ), 
which combined with (2.7) ensures that all the Lyapunov exponents of Aλ are strictly negative. 
This property and Theorem 3.4 of [6] prove the assertion. Note that Mu

λ− is nonhyperbolic, since 
it does not persist for λ < λ−.

The same arguments for λ+ = sup I complete the proof of (i), (ii) and (iii). Note that a saddle-
node of minimal sets takes place at λ− (resp. λ+), as the two minimal sets which collide at that 
value of the parameter actually disappear for λ < λ− (resp. λ > λ+). In addition, λ �→ βλ(ω) and 
λ �→ αλ(ω) are respectively discontinuous at λ− and λ+ for all ω ∈ �, which shows the “strong” 
discontinuity of the attractor at both bifurcation points. �

Fig. 1 depicts the bifurcation diagram described by Theorem 5.10. As we point out in the 
figure description, the dynamics at the nonhyperbolic minimal set occurring at any of the bifur-
cation points of the previous theorem can be highly complicated. The next result contributes to 
understand the possibilities for this complex dynamics. In particular, strictly positive and strictly 
negative Lyapunov exponents can coexist on that set.

Proposition 5.11. Let us add to the hypotheses of Theorem 5.10 that f is (SDC)m on the varia-
tion interval JA of Aλ− for a measure m ∈Merg(�, σ). Then,
λ−

166



J. Dueñas, C. Núñez and R. Obaya Journal of Differential Equations 361 (2023) 138–182
Fig. 1. Double saddle-node bifurcation diagram described in Theorem 5.10. The strictly increasing solid red curves 
represent the families of attractive hyperbolic solutions of the λ-parametric family (5.1): αλ for λ �= λ+ and βλ for 
λ �= λ− . The strictly decreasing dashed blue curve represents the family of repulsive hyperbolic solutions of (5.1): κλ for 
λ ∈ (λ−, λ+). A large black point over λ+ represents the complex possibilities which arise for the collision of αλ and κλ

as λ ↑ λ+ , which is partly explained in the right zoom: the limit maps αλ+ and κλ+ are not necessarily continuous, but 
lower and upper semicontinuous; for a residual invariant set of points ω, they take the same value; but this residual set 
may coexist with an invariant set �0 ⊂ �, at whose points αλ+ (ω) < κλ+ (ω); and the set �0 can have measure 0 or 1 for 
an ergodic measure on �. The situation is analogous for λ− , and simply represented by “κλ− ≤ βλ− ”. The hyperbolic 
minimal sets are given by the graphs of the curves αλ , κλ and βλ whenever they are hyperbolic. A nonhyperbolic minimal 
set Ml

λ+ exists for λ+ , lying in the region delimited by the graphs of αλ+ and κλ+ , and with a possibly highly complex 
shape. The situation is, again, analogous for λ− , and no more minimal sets exist for any λ. The green-shadowed area 
represents the global attractor Aλ , and the light gray arrows just try to depict the attracting and repulsive properties of 
αλ, κλ and βλ. (We will use “large black points” and analogous inequalities in the remaining figures to depict similar 
situations, as well as red and blue “hyperbolic” curves, green-shadowing, and gray arrows.) (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

(i) one of the following situations holds:

(a) m({ω : κλ−(ω) = βλ−(ω)}) = 1 and∫
�

fx(ω,βλ−(ω)) dm =
∫
�

fx(ω,κλ−(ω)) dm = 0 ,

(a) m({ω : κλ−(ω) = βλ−(ω)}) = 0,∫
�

fx(ω,βλ−(ω)) dm < 0 and
∫
�

fx(ω,κλ−(ω)) dm > 0 .

Moreover, situation (a) holds if and only if all the Lyapunov exponents of the compact τλ−-
invariant set 

⋃
ω∈�

({ω} × [κλ−(ω), βλ−(ω)]) are zero.
(ii) Let αM and βM be the delimiting equilibria of M =Mu

λ− . Then, αM (resp. βM) coincides 
with κλ− or βλ− m-a.e. If, in addition, Merg(�, σ) = {m}, then αM = κλ− and βM = βλ−
m-a.e.

Analogous properties hold for λ+.
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Proof. (i) As the set {ω : κλ−(ω) = βλ−(ω)} is σ -invariant and m ∈ Merg(�, σ), then 
m({ω : κλ−(ω) = βλ−(ω)}) ∈ {0, 1}. If m({ω : κλ−(ω) = βλ−(ω)}) = 1, then (5.7) yields 
0 ≤ ∫

�
fx(ω, βλ−(ω)) dm = ∫

�
fx(ω, κλ−(ω)) dm ≤ 0, and hence (a) holds. If m({ω : κλ−(ω) =

βλ−(ω)}) = 0, then αλ− , κλ− and βλ− define three different elements of Merg(Aλ− , τλ−) project-
ing onto m. According to Theorem 4.1, 

∫
�

fx(ω, βλ−(ω)) dm < 0 and 
∫
�

fx(ω, κλ−(ω)) dm > 0, 
as asserted. Let us prove the last assertion. If situation (a) holds, then every equilibria with graph 
contained in 

⋃
ω∈�

({ω} × [κλ−(ω), βλ−(ω)]) must coincide m-a.e. with κλ− and βλ− , so it de-
fines a zero exponent. Conversely, if situation (b) holds, then there exist nonzero exponents of ⋃

ω∈�

({ω} × [κλ−(ω), βλ−(ω)]).
(ii) According to Theorem 4.1, Aλ− concentrates at most three ergodic measures projecting 

onto m. Since Ml
λ− concentrates one, then the τλ− -equilibria κλ− ≤ αM ≤ βM ≤ βλ− can define 

at most two (by (2.7)), which ensures the first assertion in (ii). Now, let (�, σ) be uniquely 
ergodic. If m({ω : κλ−(ω) = βλ−(ω)}) = 1, then the four equilibria define the same measure, so 
that they coincide m-a.e. If m({ω : κλ−(ω) = βλ−(ω)}) = 0, then κλ− and βλ− define the two 
remaining measures. By contradiction, assume that αM = βM m-a.e. and that they coincide m-
a.e. with βλ− (resp. with κλ− ). Then, (i)(b) ensures that the unique Lyapunov exponent of M
is negative (resp. positive), and hence M is a hyperbolic copy of the base which contradicts 
Theorem 5.10(ii). In consequence, αM = κλ− and βM = βλ− m-a.e. �

The next two results show an alternative hypothesis to get the bifurcation diagram of Theo-
rem 5.12, and conditions under which this alternative hypothesis holds unless the flow τλ admits 
a unique minimal set for all the values of the parameter; that is, conditions under which there are 
only two possible global bifurcation diagrams: that of Theorem 5.10, and that of Theorems 5.14
and 5.15 below. The definition of the Sacker and Sell spectrum is given in Subsection 2.4.

Theorem 5.12. Let f ∈ C0,2(� × R, R) be (SDC) on J and (Co), where J is a compact in-
terval which contains the interval of variation of Aλ for all λ ∈ [−λ∗, λ∗], with λ∗ given by 
Theorem 5.5(iii). Assume the existence of ξ ∈ R such that τξ admits exactly two different mini-
mal sets M1 < M2 with M1 (resp. M2) hyperbolic. Then, the bifurcation diagram of (5.1)λ is 
that described by Theorem 5.10, with λ− = ξ (resp. λ+ = ξ ).

Proof. Let us suppose that the lower τξ -minimal set M1 ⊆ Aξ is the hyperbolic one and let 
M2 be the upper τξ -minimal set, with α(ω) = inf(M2)ω and β(ω) = sup(M2)ω. The other 
case follows analogously. Note that Proposition 5.3 guarantees that M1 is hyperbolic attrac-
tive, as otherwise there would exist three τξ -minimal sets. Let λ0 > ξ be close enough to ξ to 
guarantee the existence of an attractive hyperbolic minimal set Ml

λ0
< M2, obtained by hy-

perbolic continuation of M1. Proposition 5.4 ensures that α and β are semicontinuous strong 
τλ0 -subequilibria and Proposition 2.1 ensures that there exist s1 > 0 and e1 > 0 such that 
β(ω) +e1 < (α)

λ0
s1 (ω) = uλ0(s1, ω·(−s1), α(ω·(−s1))) for all ω ∈ �. Let Mu

λ0
be the ω-limit set 

for τλ0 of a point (ω0, α(ω0)) of the graph of α, and note that it coincides with the ω-limit set for 
τλ0 of the point (ω0·s1, (α)

λ0
s1 (ω0·s1)) of the graph of (α)

λ0
s1 . As (α)

λ0
s1 is a lower semicontinuous 

subequilibria, taking into account the inequality provided by Proposition 2.1, we get M2 < Mu
λ0

. 
Using now that α and β are semicontinuous strong time-reversed τλ0 -superequilibria, and the 
analogous of Proposition 2.1 for the time-reversed case, we check that a minimal subset Nλ0 con-
tained in the α-limit set for τλ0 of some point (ω0, β(ω0)) of the graph of β satisfies Nλ0 < M2. 
In addition, Nλ �= Ml , due to the repulsive properties of Ml as time decreases (see e.g. 
0 λ0 λ0
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Proposition 2.8 of [6]). Hence, there exist three different τλ0 -minimal sets: all the hypotheses of 
Theorem 5.10 hold. �
Theorem 5.13. Let f ∈ C0,2(� ×R, R) be (SDC) and (Co). Assume that the flow τ defined by 
(2.2) admits at least two minimal sets M1 and M2.

(i) If the Sacker and Sell spectrum of fx on M1 is contained in [0, ∞), then M2 is hyperbolic 
attractive.

(ii) If the Sacker and Sell spectrum of fx on one of the minimal sets reduces to a point, then 
either M1 or M2 is hyperbolic attractive.

(iii) If (�, σ) is uniquely ergodic, then either M1 or M2 is hyperbolic attractive.

Proof. (i) We will prove that every Lyapunov exponent of M2 is strictly negative (see Sub-
section 2.4). Let ν ∈ Merg(M2, τ) projecting onto m ∈ Merg(�, σ), let βν : � → R be an 
m-measurable equilibrium with graph contained in M2 satisfying (2.7) for ν, and let μ ∈
Merg(M1, τ) be defined by the upper delimiter βμ of M1, m, and (2.7). As the hypothesis of (i) 
ensures that γ (μ, M1) ≥ 0, Proposition 4.4 applied to βν and βμ ensures that γ (ν, M2) < 0, as 
asserted.

(ii) Suppose that the Sacker and Sell spectrum of fx on M1 reduces to a point {a}. If a < 0, 
then M1 is hyperbolic attractive. If not, then {a} ⊂ [0, ∞), and (i) proves the assertion.

(iii) In the uniquely ergodic case, if M1 is not hyperbolic attractive, then there exists 
μ ∈ Merg(M1, τ) projecting onto the unique measure m ∈ Merg(�, σ) such that γ (μ, M1) ≥
0. Since every ergodic measure on M2 projects onto m, Proposition 4.4 guarantees that 
γ (ν, M2) < 0 for every ν ∈Merg(M2, τ). �

The simplest global bifurcation diagram of minimal sets (without bifurcation points) occurs 
when the flow τλ admits only one minimal set for every value of the parameter. The next two 
results analyze this situation.

Theorem 5.14. Let f ∈ C0,1(� × R, R) be (Co) such that there exists only one τλ-minimal set 
for all λ ∈R. Then, Aλ is pinched for all λ ∈R, and Aλ < Aξ (i.e., βλ < αξ ) if λ < ξ .

Proof. Propositions 2.3 and 2.4 applied to the delimiter equilibria αλ and βλ of Aλ show that 
they coincide in a residual set of common continuity points. Proposition 5.4 shows that αλ and 
βλ are semicontinuous strong τξ -subequilibria if ξ > λ, so Proposition 2.1 provides e > 0 such 
that βλ(ω) + e < αξ (ω) for all ω ∈ �. �
Theorem 5.15. Let f ∈ C0,2(� × R, R) be (DC) and (Co) such that there exists only one τλ-
minimal set for all λ ∈R.

(i) If (�, σ) is uniquely ergodic (resp. finitely ergodic), then there exists at most a value (resp. a 
finite number of values) of the parameter at which the minimal set is a nonhyperbolic copy 
of the base.

(ii) If there exists λ0 ∈ R such that the Sacker and Sell spectrum of fx on Aλ0 is {0}, then λ0 is 
the only value of the parameter at which the minimal set is nonhyperbolic.
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Fig. 2. Evolution of the attractor Aλ of (5.5) in the cases of a unique value λ0 of non hyperbolicity (of αλ0 , βλ0 and 
Mλ0 ) described in Theorem 5.15. See Fig. 1 to understand the meaning of the different elements.

Proof. (i) Assume that Mi is a nonhyperbolic τλi
-minimal set for i ∈ {1, 2}, with λ1 < λ2. 

Then, Mi concentrates a τi -ergodic measure giving rise to a nonnegative Lyapunov exponent. 
Let mi ∈ Merg(�, σ) be the projection of this measure. Theorem 5.14 shows that Mλ1 < Mλ2 , 
and hence the previous property and Proposition 5.9 show that m1 �= m2. The assertions follow 
easily.

(ii) The hypothesis ensures that all the Lyapunov exponents of the only τλ0 -minimal set are 
zero, so it is nonhyperbolic and we can reason as in (i). �

Fig. 2 depicts the “reasonably simple” variation of Aλ with respect to λ under the hypotheses 
of Theorem 5.15(ii) and in the uniquely ergodic case of (i).

The last result of this section is a local bifurcation theorem: at least a local saddle-node bi-
furcation of minimal sets occurs under the (SDC) hypothesis on an interval which contains the 
variation interval of two minimal sets with some hyperbolicity properties. Recall that (�, σ) is 
assumed to be minimal.

Theorem 5.16 (Local saddle-node bifurcations). Let f ∈ C0,2(� × R, R) be (SDC) on a com-
pact interval J and let us suppose that the flow τ given by (5.1)0 admits two minimal sets 
M1 < M2 contained on � × intJ . Then,

(i) if M1 is hyperbolic attractive or M2 is hyperbolic repulsive, then there exists λ+ > 0 such 
that (5.1)λ exhibits a local saddle-node bifurcation of minimal sets at λ+.

(ii) If M2 is hyperbolic attractive or M1 is hyperbolic repulsive, then there exists λ− < 0 such 
that (5.1)λ exhibits a local saddle-node bifurcation of minimal sets at λ−.

(iii) If both M1 and M2 are hyperbolic attractive, then there exists an intermediate repulsive 
hyperbolic minimal set M, and two local saddle-node bifurcations of minimal sets take 
place at λ− and λ+, with λ− < 0 < λ+.

Proof. We define f̃ by extending f outside of � × J as in (3.6). Then, f̃ ∈ C0,2(� ×R, R) is 
(Co) and (SDC). In addition, the minimal sets for the flow ̃τλ provided by f̃ + λ and contained 
in � × J are also minimal sets for the flow τλ given by f + λ, and hence a local saddle-node 
bifurcation of minimal sets (lsnb for short) for τ̃λ at some λ0 ∈ R taking place on � × intJ
ensures an lsnb for τλ at λ0.

Assume that ̃τ0 admits three minimal sets N1 < N2 < N3. Theorem 5.10 provides an lsnb at 
λ− < 0 on the open band of � × R delimited by N2 and N3, as well as an lsnb at λ+ > 0 on 
the open band delimited by N1 and N2. Under the hypotheses of (iii), Proposition 5.3 provides 
a ̃τ0-minimal set M with M1 < M < M2, and hence we have two lsnb on � × intJ at λ− < 0
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and λ+ > 0. If M1 (resp. M2) is hyperbolic repulsive, Proposition 5.3 provides M with M <
M1 < M2 (resp. M1 < M2 < M), and hence we have at least an lsnb on � × intJ at λ− < 0
(resp. λ+ > 0). If M1 (resp. M2) is hyperbolic attractive but M2 (resp. M1) is nonhyperbolic, 
Theorems 5.12 and 5.10 show that ̃τλ has an lsnb on � × intJ at λ+ > 0 (resp. λ− < 0). These 
properties prove (i) and (ii). �
6. A second one-parametric bifurcation problem

In this section we shall bring forward a technical procedure, which is the change of skewprod-
uct base. This procedure will allow us to study the different one-parametric bifurcation problems 
which we will describe in Subsection 6.2.

6.1. Procedure of change of skewproduct base

The main purposes of the technical procedure described in this subsection are to transform a 
general minimal set for a given flow in a copy of the base for an extended flow and to find the 
relations between the Lyapunov exponents for these two flows.

Let (� ×R, τ1) and (� ×R, τ2) be local skewproduct flows on � ×R, given by

τi : Ui ⊆ R× � ×R→ � ×R , (t,ω, x0) → (ω·t, ui(t,ω, x0)) ,

for i ∈ {1, 2}, where I i
ω,x0

→ R, t �→ ui(t, ω, x0) represents the maximal solution of x′ =
fi(ω·t, x) satisfying ui(0, ω, x0) = x0, with fi ∈ C0,1(� ×R, R), and Ui = ⋃

(ω,x0)∈�×R(I i
ω,x0

×
{(ω, x0)}) for i ∈ {1, 2}. We allow f2 to be different from f1 to obtain a more general framework, 
although frequently the assumption τ1 = τ2 simplifies the scenario.

Let ϒ ⊂ � ×R be a compact τ1-invariant set projecting onto �. As ϒ is composed by global 
τ1-orbits, (ϒ, τ1) is a global flow, which will provide the base of the new local skewproduct flow. 
We represent υ·t = τ1(t, υ) for υ = (ω, z0) ∈ ϒ and consider the local skewproduct flow defined 
on ϒ ×R by

φτ1,τ2 : Uτ1,τ2 ⊆ R× ϒ ×R → ϒ ×R, (t, υ, x0) �→ (
υ·t, u2(t,π(υ), x0)

)
,

where π : ϒ → �, υ = (ω, z) �→ ω and Uτ1,τ2 = ⋃
(υ,x0)∈ϒ×R(I2

π(υ),x0
× {(υ, x0)}). We shall 

say that (ϒ×R, φτ1,τ2) is the local skewproduct flow obtained from (� ×R, τ1) and (� ×R, τ2)

by a change of base. The second component of this flow represents the solutions of the scalar 
ordinary differential equation

x′ = f̃2(υ·t, x) , (6.1)

where f̃2(υ, x) = f2(π(υ), x). Note that, if τ1 = τ2, then the map ϒ → R, (ω, z) �→ z is a 
continuous φτ1,τ1 -equilibrium, that is, its graph is a copy of the base.

Now, we will discuss how ergodic measures of (ϒ × R, φτ1,τ2) are related to ergodic mea-
sures of (� × R, τ2). Let K ⊂ � × R be a compact τ2-invariant set. Then, we define K̃ =
{(ω, z, x) : (ω, z) ∈ ϒ, (ω, x) ∈ K} ⊂ ϒ × R. It is clear that K̃ is a compact φτ1,τ2 -invariant 
set and that π̃(K̃) = K, where π̃ : ϒ × R → � × R, (ω, z, x) �→ (ω, x) is a flow epimorphism. 
Let ν ∈ Merg(ϒ, τ1) be a fixed measure which projects onto m ∈Merg(�, σ). We will establish 
a one-to-one correspondence between the φτ ,τ -ergodic measures on K̃ which project onto ν
1 2
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and the τ2-ergodic measures on K which project onto m. To this end, we fix an m-measurable 
equilibrium βν : � → R satisfying (2.7) for ν.

Let μ̃ ∈ Merg(K̃, φτ1,τ2) project onto ν, and let β̃μ̃ : ϒ → R be a ν-measurable φτ1,τ2 -
equilibrium satisfying (2.7) for μ̃. Then, for every continuous ̃h : K̃ → R,∫

K̃

h̃(υ, x) dμ̃ =
∫
ϒ

h̃(υ, β̃μ̃(υ)) dν =
∫
�

h̃(ω,βν(ω), β̃μ̃(ω,βν(ω))) dm . (6.2)

Notice that, as ̃h(·, ̃βμ̃(·)) is not necessarily continuous, the second equality in (6.2) is not imme-
diate: it follows from applying Lusin’s Theorem to g(υ) = h̃(υ, ̃βμ̃(υ)). Notice also that, as βν

is a τ1-equilibrium, then (ω·t, βν(ω·t)) = (ω, βν(ω))·t . So, if we define βμ(ω) = β̃μ̃(ω, βν(ω)),

βμ(ω·t) = β̃μ̃((ω,βν(ω))·t) = u2(t,π(ω,βν(ω)), β̃μ̃(ω,βν(ω)) = u2(t,ω,βμ(ω)) .

Consequently, βμ : � → R is an m-measurable τ2-equilibrium with graph contained in K (as 
that of β̃μ̃ is in K̃), and hence βμ defines a τ2-ergodic measure μ on K which projects onto m, 
by (2.7): given a continuous function h : K → R, we have∫

K

h(ω,x)dμ =
∫
�

h(ω, β̃μ̃(ω,βν(ω)) dm

=
∫
K

h̃(ω, z, β̃μ̃(ω, z)) dν =
∫
K̃

h̃(ω, z, x) dμ̃

(6.3)

for h̃ : K̃ → R, (ω, z, x) �→ h(ω, x). Relation (6.2) has been used in the second equality. In 
particular, (6.3) shows that the definition of μ is independent of the choice of β̃μ̃. Notice that 
(6.3) ensures that the Lyapunov exponent of K̃ for (6.1) with respect to μ̃ coincides with that of 
K for z′ = f2(ω·t, z) with respect to μ.

On the other hand, (2.7) associates an m-measurable τ2-equilibrium βμ : � → R with graph 
in K to a τ2-ergodic measure μ on K which projects onto m. We define∫

K̃

h̃(υ, x) dμ̃ =
∫
�

h̃(ω,βν(ω),βμ(ω)) dm

for any continuous map ̃h : K → R, and obtain an ergodic measure μ̃ on K̃ which projects onto 
ν. As in the previous case, it can be seen that this process is well defined, that is, it is independent 
of the choice of βμ. It is not hard to check that this process is the inverse of the aforementioned.

Now, let us suppose that both � and ϒ ⊂ � × R are minimal for their respective flows. We 
will construct a one-to-one correspondence between the minimal sets of (ϒ × R, φτ1,τ2) and of 
(� × R, τ2). Recall that the sections of a minimal set on a scalar skewproduct flow with mini-
mal base are singletons for all the points on a residual subset of the base (see Proposition 2.3). 
Given a φτ1,τ2 -minimal set M̂ ⊂ ϒ × R, we define M = π̃(M̂) = {(ω, x) : (ω, z, x) ∈ M̂}. 
It is easy to check that M ⊂ � × R is τ2-minimal. Conversely, given a τ2-minimal set 
M ⊂ � × R, we look for ω0 ∈ � such that (ϒ)ω = {z0} and (M)ω = {x0}, and take M̂ =
0 0
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clϒ×R{φτ1,τ2(t, (ω0, z0), x0) : t ∈R}. It is easy to check that (M̂)(ω0,z0) = {x0}. As M̂ is a com-
pact φτ1,τ2 -invariant set, it contains a minimal set M̂′ ⊆ M̂, and necessarily (M̂′)(ω0,z0) = {x0}. 
Consequently, M̂ ⊆ M̂′, so M̂ is itself minimal. Moreover, it is easy to check that M̂ is in-
dependent of the choice of ω0 in the residual sets of points ω for which both (ϒ)ω and (M)ω
are singletons, and also that π̃(M̂) = M, since (ω0, x0) ∈ π̃(M̂). Finally, M̂ is the only φτ1,τ2 -
minimal set which verifies π̃(M̂) = M, since π̃(M̂′) = M would imply (ω0, z0, x0) ∈ M̂′. 
This is the one-to-one correspondence we referred to.

6.2. A new bifurcation problem

Throughout this section, (�, σ) will be minimal and f ∈ C0,1(� × R, R). As explained in 
Subsection 2.1, the solutions of

x′ = f (ω·t, x) , ω ∈ �, (6.4)

induce the local skewproduct flow

τ : U ⊆ R× � ×R → � ×R, (t,ω, x0) �→ (ω·t, u(t,ω, x0)) . (6.5)

A τ -minimal set M can be understood as the closure of the graph of a recurrent solution ̃x(t) =
u(t, ω0, ̃x(0)) of one of the equations. Therefore, the classical problem of bifurcation of recurrent 
solutions “around” ̃x(t) can be included in the analysis of bifurcation patterns for the family of 
equations

x′ = f (ω·t, x) + λ(x − u(t,ω, z)) , (6.6)

for (ω, z) ∈ M. As explained in Subsection 6.1, the families (6.6)λ induce local skewproduct 
flows on the bundle M × R, with base given by the global restricted flow (M, τ): we de-
fine f̂ : M × R → R, (ω, z, x) �→ f (ω, x) and β : M → R, (ω, z) �→ z and rewrite (6.6)λ
as x′ = f̂ (τ (t, ω, z), x) + λ(x − β(τ(t, ω, z))) for (ω, z) ∈ M. The change of variables y =
x − β(τ(t, ω, z)) takes this equation to

y′ = ĝ(τ (t,ω, z), y) + λy , (6.7)

for (ω, z) ∈ M, where ĝ(ω, z, y) = f̂ (ω, z, y +z) − f̂ (ω, z, z) = f (ω, y +z) −f (ω, z). Clearly 
M̂0 = M × {0} is a minimal set for the flow induced by (6.7)λ for all λ ∈ R, coming from 
M̃ = {(ω, z, z) : (ω, z) ∈ M}, which is minimal for (6.6)λ.

In this way, studying bifurcations for (6.6)λ “around” ̃x(t) has been transformed in studying 
bifurcations for (6.7)λ “around” zero. To simplify the forthcoming discussion, we recover the 
standard notation of this work: the analysis of (6.7)λ is included in that of

x′ = f (ω·t, x) + λx , (6.8)

where (�, σ) is a minimal flow, f ∈ C0,1(� ×R, R) satisfies f (ω, 0) = 0 for every ω ∈ �, and 
λ ∈R. We will impose appropriate d-concavity and coercivity hypotheses when needed. We will 
analyze the bifurcation patterns of minimal sets and attractors which may arise for (6.8)λ and, 
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afterwards, translate the information to understand the possible bifurcation patterns for (6.6)λ: 
see Subsection 6.4.

The solutions of (6.8)λ define a local skewproduct flow

τ̂λ : Ûλ ⊆ R× � ×R→ � ×R, (t,ω, x0) �→ (ω·t, ûλ(t,ω, x0)) .

Notice that M̂0 = � × {0} is always a τ̂λ-minimal set.

Proposition 6.1. The following statements hold:

(i) Any strictly positive (resp. negative) global upper solution of (6.8)λ is a strict global upper 
solution of (6.8)ξ whenever ξ < λ (resp. λ < ξ ). In particular, any strictly positive (resp. neg-
ative) equilibrium for (6.8)λ is a strong superequilibrium and a strong time-reversed sube-
quilibrium for (6.8)ξ whenever ξ < λ (resp. λ < ξ ).

(ii) Any strictly positive (resp. negative) global lower solution of (6.8)λ is a strict global lower 
solution of (6.8)ξ whenever λ < ξ (resp. ξ < λ). In particular, any strictly positive (resp. neg-
ative) equilibrium for (6.8)λ is a strong subequilibrium and a strong time-reversed su-
perequilibrium for (6.8)ξ whenever λ < ξ (resp. ξ < λ).

Proof. The statements follow from the properties described in Subsection 2.2. �
The information provided by Theorem 5.1 plays a role in the next statement.

Proposition 6.2. Assume that f ∈ C0,1(� ×R, R) is also (Co) and let

Âλ =
⋃
ω∈�

({ω} × [α̂λ(ω), β̂λ(ω)]) (6.9)

be the global attractor of (6.8)λ. Then,

(i) α̂λ(ω) ≤ 0 ≤ β̂λ(ω) for every ω ∈ � and λ ∈R.
(ii) For every ω ∈ �, the maps λ �→ β̂λ(ω) and λ �→ α̂λ(ω) are respectively nondecreasing and 

nonincreasing on R and both are right-continuous.
(iii) limλ→∞ α̂λ(ω) = −∞ and limλ→∞ β̂λ(ω) = ∞ uniformly on �. In particular, τ̂λ admits at 

least three minimal sets for λ large enough.
(iv) There exists λ0 ∈ R such that Âλ = M̂0 = � × {0} for every λ < λ0 and it is hyperbolic 

attractive.

Proof. Property (i) follows from M̂0 = � × {0} ⊆ Âλ. The arguments used to prove Theo-
rem 5.5(i)-(ii) can be used to check (ii) and the first assertion in (iii). The second one follows 
from the first one, Proposition 2.3 and the minimality of M̂0. To prove (iv), note that (ii) ensures 
that Âλ ⊆ Âξ if λ < ξ . Let us fix ξ ∈ R, take r > 0 such that Âξ ⊆ � × [−r, r] and define 
λ0 = min{ξ, inf{−fx(ω, x) : (ω, x) ∈ � × [−r, r]}}. Then, fx(ω, x) + λ < 0 for all λ < λ0 and 
(ω, x) ∈ � × [−r, r], so γ (Âλ, ν) < 0 for all ν ∈ Merg(Âλ, τ). Theorem 3.4 of [6] guarantees 
that Âλ is hyperbolic attractive and coincides with � × {0}. �

Figs. 3 and 4 depict the evolution of Âλ in two different cases.
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Now, we will study the bifurcation problem (6.8)λ in terms of two parameters:

μ− = inf{λ : the graph of α̂ξ is a hyperbolic minimal set M̂l
ξ < M̂0, ∀ξ > λ} ,

μ+ = inf{λ : the graph of β̂ξ is a hyperbolic minimal set M̂u
ξ > M̂0, ∀ξ > λ} .

Theorem 6.3. Let f ∈ C0,2(� × R, R) be (Co) and (SDC), and let [−λ+, −λ−] be the Sacker 
and Sell spectrum of fx on M̂0 = � × {0}, with λ− ≤ λ+. Then,

(i) M̂0 is hyperbolic attractive (resp. repulsive) if λ < λ− (resp. λ > λ+) and nonhyperbolic if 
λ ∈ [λ−, λ+]. Both M̂l

λ for λ > μ− and M̂u
λ for λ > μ+ are hyperbolic attractive.

(ii) μ−, μ+ ∈ (−∞, λ+], and either μ+ = λ+ (which happens if β̂λ collides with 0 on a residual 
σ -invariant set as λ ↓ λ+) or μ− = λ+ (which happens if α̂λ collides with 0 on a residual 
σ -invariant set as λ ↓ λ+).

(iii) (Global pitchfork bifurcation). If μ− = μ+ = λ+, then a global pitchfork bifurcation pattern 
of minimal sets arises around M̂0 at λ+: τ̂λ admits the three different hyperbolic minimal 
sets M̂l

λ < M̂0 < M̂u
λ for λ > λ+; both α̂λ and β̂λ collide with 0 on a residual σ -invariant 

set as λ ↓ λ+; M̂0 is the unique τ̂λ-minimal set if λ ≤ λ+; and Âλ = M̂0 if λ < λ−.

Proof. (i) The spectrum of the linearized equation fx + λ on M̂0 is [λ − λ+, λ − λ−], which 
yields the stated hyperbolicity properties for M̂0 (see Section 2.4). Proposition 5.2 ensures the 
attractiveness of the hyperbolic sets M̂l

λ and M̂u
λ.

(ii) Since M̂0 is hyperbolic repulsive if and only if λ > λ+, Proposition 5.3(i) and The-
orem 4.2(ii) ensure that λ+ = inf{λ ∈ R : τ̂ξ admits three different hyperbolic minimal sets for 
every ξ ∈ (λ, ∞)}. Proposition 2.3 shows that these three minimal sets are M̂l

λ < M̂0 < M̂u
λ, re-

spectively given by the graphs of α̂λ < 0 < β̂λ. Consequently, μ+, μ− ≤ λ+. Proposition 6.2(iv) 
ensures that μ+ and μ− are finite. Proposition 6.2(i)-(ii) ensure that α̂λ+(ω) = limλ↓λ+ α̂λ(ω) ≤ 0
and β̂λ+(ω) = limλ↓λ+ β̂λ(ω) ≥ 0. Let R be the residual set of common continuity points for α̂λ+
and β̂λ+ . Assume first that α̂λ+(ω) < 0 < β̂λ+(ω) for all ω ∈ �. Proposition 2.4 ensures that, in 
this case, there exist three different minimal sets at λ+ and Theorem 4.2 guarantees that they are 
hyperbolic. Hence, the nonhyperbolicity of M̂0 at λ+ precludes this case. Consequently, there 
exists ω0 ∈ � such that either α̂λ+(ω0) = 0 or β̂λ+(ω0) = 0, which according to Propositions 2.5
and 2.4 ensures that either α̂λ+ or β̂λ+ coincides with 0 on R and hence that either μ− = λ+ or 
μ+ = λ+.

(iii) Let us see that α̂+(ω) = β̂+(ω) = 0 for all ω ∈ R if μ− = μ+ = λ+. We proceed by 
contradiction: Proposition 2.4 ensures that either α̂λ+(ω) < 0 for all ω ∈ R or β̂λ+(ω) > 0 for 
all ω ∈ R. Proposition 2.3 ensures that there exists another τ̂λ+-minimal set distinct from M̂0

and Theorem 5.13(i) ensures that it is hyperbolic attractive (the spectrum of fx on M̂0 for τ̂λ+
is contained in [0, ∞)). Therefore, it has a hyperbolic continuation for λ < λ+ close enough, 
contradicting the definition of either μ− or μ+. The assertion follows. Now, Proposition 6.2(ii) 
ensures that Âλ is pinched for every λ < λ+, as Âλ ⊆ Âλ+ , and hence M̂0 is the unique τ̂λ-
minimal set; since M̂0 is hyperbolic attractive for λ < λ+, Theorem 3.4 of [6] ensures that 
Âλ = M̂0 for λ < λ+. �

Fig. 3 depicts the two possible bifurcation diagrams of Theorem 6.3(iii).
Recall that Theorem 6.3(ii) ensures μ− = λ+ or μ+ = λ+ (or both).
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Fig. 3. The two possible pitchfork bifurcation diagrams described in Theorem 6.3(iii): with λ− = λ+ (i.e. point Sacker 
and Sell spectrum) on the left, and with λ− < λ+ on the right. See Fig. 1 to understand the meaning of the differ-
ent elements. Notice that no hyperbolic solutions exist for λ ∈ [λ−, λ+]. In addition, neither αλ nor βλ is identically 
zero for λ ∈ (λ−, λ+], as deduced from the existence of m ∈ Merg(�, σ) with 

∫
�(fx(ω, 0) + λ) dm > 0 and from 

Proposition 5.2, which ensures that 
∫
�(fx(ω, αλ(ω)) + λ) dm ≤ 0 and 

∫
�(fx(ω, βλ(ω)) + λ) dm ≤ 0. In this case, 

M̂0 = � × {0} is a nonhyperbolic minimal set for λ ∈ [λ−, λ+], and the remaining minimal sets are hyperbolic and 
given by the graphs of the hyperbolic solutions.

Theorem 6.4 (Local saddle-node and transcritical bifurcations). Let f ∈ C0,2(� × R, R) be 
(Co) and (SDC), and let [−λ+, −λ−] be the Sacker and Sell spectrum of fx on M̂0 = � × {0}, 
with λ− ≤ λ+. Assume that μ+ = λ+ and μ− < λ−. Then,

(i) τ̂λ admits exactly three minimal sets M̂l
λ < M̂0 < M̂u

λ for λ > λ+, and β̂λ collides with 0
on a residual σ -invariant set as λ ↓ λ+,

(ii) τ̂λ admits exactly two minimal sets M̂l
λ < M̂0 for λ ∈ [λ−, λ+],

(iii) τ̂λ admits three hyperbolic minimal sets M̂l
λ < N̂λ < M̂0 if λ ∈ (μ−, λ−), where N̂λ is hy-

perbolic repulsive and given by the graph of a continuous map κ̂λ : � →R which increases 
strictly as λ increases in (μ−, λ−), and which collides with α̂λ (resp. with 0) on a residual 
set as λ ↓ μ− (resp. λ ↑ λ−),

(iv) τ̂μ− admits exactly two different minimal sets M̂l
μ− < M̂0, with M̂l

μ− nonhyperbolic,

(v) Âλ = M̂0 for λ < μ−.

In particular, μ−, λ− and λ+ are the unique bifurcation points: a local saddle-node bifurcation of 
minimal sets occurs around M̂μ− at μ−, as well as a discontinuous bifurcation of attractors; and 
the bifurcation pattern which arises around M̂0 on [λ−, λ+] can be understood as a generalized 
local transcritical bifurcation of minimal sets around M̂0 through the interval [λ−, λ+] (which 
is classic for λ− = λ+).

The possibilities for the global bifurcation diagram are symmetric to the described ones with 
respect to the horizontal axis if μ− = λ+ and μ+ < λ−.

Proof. (i) The results in (i) follow from Theorem 6.3(i)-(ii).
(ii) The nonhyperbolicity of M̂0 ensured by Theorem 6.3(i) and Theorem 4.2 preclude the 

existence of other minimal set apart from M̂0 and M̂l
λ for λ ∈ [λ−, λ+].

(iii) As both M̂0 and M̂l
λ are hyperbolic attractive for λ ∈ (μ−, λ−), Proposition 5.3 and 

Theorem 4.2 ensure the existence of an intermediate repulsive hyperbolic minimal set N̂λ for 
λ ∈ (μ−, λ−) given by the graph of a continuous equilibrium κ̂λ : � → R. Reasoning as in The-
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orem 5.10, but taking into account that in this case the kind of monotonicity depends on the half-
plane in which we are working (and we are in the negative one), we can check that λ �→ κ̂λ(ω) is 
strictly increasing on (μ−, λ−) for all ω ∈ �. In consequence, κ̂λ−(ω) = limλ↑λ− κ̂λ(ω) defines 
a lower semicontinuous τ̂λ− -equilibrium. Since κ̂λ− > κ̂λ > α̂λ > α̂λ− for λ ∈ (μ−, λ−) and M̂0

and M̂l
λ− are the unique τλ− -minimal sets, Propositions 2.3 and 2.4 ensure that the minimal set 

(2.5) provided by κ̂λ− is M̂0. That is, κ̂λ− vanishes at the residual set of its continuity points. 
Combining this information with that provided by Theorem 6.3(ii), we observe that: two hyper-
bolic minimal sets for λ < λ− close to λ− collide (at a residual set of base points) at λ− and two 
hyperbolic minimal sets for λ > λ+ close to λ+ collide at λ+, giving rise to a unique nonhyper-
bolic minimal set on the interval [λ−, λ+]. This is the generalized local transcritical bifurcation 
of minimal sets around M̂0 mentioned in the statement.

(iv) Let us define κ̂μ−(ω) = limλ↓μ− κ̂λ(ω), and let us recall that α̂μ−(ω) = limλ↓μ− α̂λ(ω)

(see Proposition 6.2(ii)). Then, κ̂μ−(ω) ≥ α̂μ−(ω) for all ω ∈ �. It follows from the definition of 
μ− that the minimal set M̂l

μ− determined from α̂μ− by (2.5) is nonhyperbolic, and hence (by 
Theorem 4.2) that it coincides with that determined from κ̂μ− . That is, κ̂μ− and α̂μ− coincide at 
the residual set of their common continuity points, giving rise to a nonhyperbolic τ̂μ−-minimal 
set M̂l

μ− . In addition, M̂l
μ− < N̂λ < M̂0 for λ ∈ (μ−, λ−); and M̂l

μ− and M̂0 are the unique 

τ̂μ− -minimal sets, since M̂l
μ− is nonhyperbolic (see again Theorem 4.2(ii)).

(v) We must fix λ < μ− and check that Âλ = M̂0. Since M̂0 is an attractive hyperbolic 
copy of the base for τ̂λ, it suffices to check that it is the unique τ̂λ-minimal set and apply Theo-
rem 3.4 of [6]. Note first that β̂λ ≡ 0 for λ ≤ μ−, since β̂λ ≡ 0 for λ ∈ (μ−, λ−) and λ �→ β̂λ is 
nondecreasing, and hence M̂0 is the upper τ̂λ-minimal set. Let us take another one N̂λ ≤ M̂0, 
and prove that N̂λ = M̂0. We fix (ω0, x0) ∈ N̂λ. Since α̂μ− and κ̂μ− are strong τ̂λ-subequilibria 
which coincide at their continuity points, Proposition 2.1 provides s > 0 and e > 0 such that 
κ̂μ−(ω0) + e < ûλ(s, ω0·(−s), α̂μ−(ω0·(−s))) ≤ ûλ(s, ω0·(−s), α̂λ(ω0·(−s))) = α̂λ(ω0) ≤ x0. 
Since κ̂μ−(ω) = limλ↓μ− κ̂λ(ω), there exists ξ1 > μ− such that κ̂ξ1(ω0) < x0. We take any 
ξ ∈ (ξ1, λ−) and apply Proposition 2.2 to the family of strong τ̂λ-subequilibria κ̂μ with μ ∈ [ξ1, ξ ]
to conclude that there exist sξ > 0 and eξ > 0 such that κ̂ξ (ω0·s) + eξ ≤ ûλ(s, ω0, κ̂ξ1(ω0)) <
ûλ(s, ω0, x0) for all s ≥ sξ . The lower semicontinuity of κ̂ξ ensures that N̂λ, which is the ω-limit 
set of (ω0, x0), is strongly above the graph of κ̂ξ for all ξ ∈ [ξ1, λ−). So, it is above the graph of 
κ̂λ− . Hence, (N̂λ)ω = {0} for all the points ω of the residual set at which κλ− coincides with 0, 
which yields N̂λ = M̂0. This completes the proof of the theorem. Note that a local saddle-node 
bifurcation of minimal sets occurs at μ− around M̂l

μ− , due to the collision of M̂l
λ and N̂λ as 

λ ↓ μ−. Also, since λ �→ αλ(ω) is discontinuous at μ− for all ω ∈ �, there is a discontinuous 
bifurcation of attractors at μ−. �

Fig. 4 depicts the two possible bifurcation diagrams described by Theorem 6.4 in the case 
λ+ = μ+.

Note that, if λ− = λ+, then [λ−, λ+] reduces to a point, so Theorems 6.3(iii) and 6.4 describe 
the only possible bifurcation diagrams of minimal sets of the problem (6.8)λ. These diagrams, 
depicted in the left panels of Figs. 3 and 4, were found in Theorem 5.7 of [29] for the uniquely 
ergodic case. Moreover, in this case, the number of τ̂λ−-minimal sets characterizes what bifurca-
tion diagram takes place: there is either one (and we are in the pitchfork case) or two (and we are 
in the transcritical and saddle-node case). The description of the “generalized pitchfork bifurca-
tion of minimal sets through the interval [λ−, λ+]” with λ− < λ+ is completed in Theorem 3.1 
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Fig. 4. Two of the four possible bifurcation diagrams described in Theorem 6.4: with λ− = λ+ = μ+ on the left, and 
with λ− < λ+ = μ+ on the right. See Fig. 1 to understand the meaning of the different elements. Notice that only one 
hyperbolic solution exists for λ ∈ [λ−, λ+]. As in the case of Fig. 3, βλ is not identically zero for λ ∈ (λ−, λ+]. The 
nonhyperbolic minimal sets are M̂0 = � × {0} for λ ∈ [λ−, λ+], and M̂l

μ− for λ = μ− .

of [12]. Note also that, in all the cases that we have described, we find a compact τλ+-invariant 
pinched set containing M̂0 which is not, in general, a copy of the base.

We complete this subsection by describing a simple situation in which the bifurcation diagram 
for (6.8)λ is that of Theorem 6.3: a global pitchfork bifurcation occurs at the unique bifurcation 
point.

Proposition 6.5. Let f ∈ C0,2(� ×R, R) be (Co) and (DC), and let [−λ+, −λ−] be the Sacker 
and Sell spectrum of fx on M̂0 = � × {0}, with λ− ≤ λ+. Then,

(i) if fxx(ω, 0) ≥ 0 (resp. fxx(ω, 0) ≤ 0) for all ω ∈ �, then αλ (resp. βλ) takes the value 0 at 
its continuity points for all λ < λ+.

(ii) If f is (SDC) and fxx(ω, 0) = 0 for all ω ∈ �, then the bifurcation diagram is that described 
in Theorem 6.3(iii).

Proof. (i) If fxx(ω, 0) ≥ 0, then fxx(ω, x) ≥ 0 for all x ≤ 0. We assume for contradiction 
the existence of λ < λ+ such that αλ(ω) < 0 at its continuity points, which is equivalent to 
say that αλ is a strictly negative equilibrium (see Proposition 2.5). Taylor’s Theorem ensures 
that α′

λ(ω·t)/αλ(ω·t) ≤ fx(ω·t, 0) + λ, and hence Birkhoff’s Ergodic Theorem ensures that 
0 = ∫

�
(α′

λ(ω)/αλ(ω)) dm ≤ ∫
�
(fx(ω, 0) + λ) dm for all m ∈ Merg(�, σ). But this contradicts 

the existence of m+ with 
∫
�

fx(ω, 0) dm+ = −λ+ < −λ. The proof for βλ is analogous.
(ii) Property (i) shows that μ− = μ+ = λ+ for the values μ−, μ+ defined before Theorem 6.3, 

whose point (iii) shows the assertion. �
6.3. Transcritical bifurcation in a simple example

In what follows, we will study the bifurcation diagram for the one-parametric family

x′ = −x3 + (a2(ω·t) + ξ)x2 , ω ∈ �, (6.10)

where a2 ∈ C(�, R), x ∈ R, and ξ ∈ R. We will denote by τ̌ξ the local skewproduct flow de-
fined by (6.10)ξ , given by the solutions ǔξ (t, ω, x0). The study of such example will allow us to 
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characterize the bifurcation diagrams of minimal sets of x′ = −x3 + a2(ω·t)x2 + λx in terms of 
the Sacker and Sell spectrum of a2. Note that the right-hand side of (6.10)ξ is (Co) and (SDC)∗. 
The coercivity property and Theorem 5.1 ensure the existence of global attractor Ǎξ for τ̌ξ , de-
limited by semicontinuous equilibria α̌ξ and β̌ξ , and it is not hard to check that their properties 
are similar to those described in Theorem 5.5, i.e., the maps ξ �→ β̌ξ (ω) and ξ �→ α̌ξ (ω) are 
nondecreasing for all ω ∈ � and, respectively, right- and left-continuous. The Sacker and Sell 
spectrum of a : � �→R is defined in Subsection 2.4.

Proposition 6.6 (Weak generalized transcritical bifurcation). Let [−ξ+, −ξ−] be the Sacker and 
Sell spectrum of a2, with ξ− ≤ ξ+. Then, M̌0 = � × {0} is a nonhyperbolic τ̌ξ -minimal set for 
all ξ ∈ R. In addition,

(i) τ̌ξ admits exactly two minimal sets M̌l
ξ < M̌0 given by the graphs of α̌ξ < 0 for ξ < ξ−, 

and with M̌l
ξ hyperbolic attractive; and α̌ξ collides with 0 on a σ -invariant residual set as 

ξ ↑ ξ−;
(ii) M̌0 is the unique τ̌ξ -minimal set for ξ ∈ [ξ−, ξ+];

(iii) τ̌ξ admits exactly two minimal sets M̌0 < M̌u
ξ given by the graphs of 0 < β̌ξ for ξ > ξ+, 

and with M̌u
ξ hyperbolic attractive; and β̌ξ collides with 0 in a σ -invariant residual set as 

ξ ↓ ξ+.

Proof. Let us fix ξ < ξ+. We will prove the existence of ω0 ∈ � such that ǔξ (t, ω0, x) is 
unbounded for any x > 0, which ensures the absence of τ̌ξ -minimal sets above M̌0. Let 
m̌+ ∈ Merg(�, σ) satisfy 

∫
�
(a2(ω) + ξ+) dm̌+ = 0. Birkhoff’s Ergodic Theorem provides 

�0 ⊆ � with m̌+(�0) = 1 such that supt≤0

∫ t

0 (a2(ω·s) + ξ) ds = ∞. We take ω0 ∈ �0. Let 
v̌ξ (t, ω0, x0) solve x′ = (a2(ω0·t) + ξ)x2 with v̌ξ (0, ω0, x0) = x0 > 0. That is, v̌ξ (t, ω0, x0) =
(1/x0 − ∫ t

0 (a2(ω0·s) + ξ) ds)−1, which means that v̌ξ (t, ω0, x0) tends to ∞ as t decreases, in 
finite time. It is easy to check that ǔξ (t, ω0, x0) > v̌ξ (t, ω0, x0) if t < 0, from where the initial 
assertion follows. Analogously, it can be proved that there are no τ̌ξ -minimal sets below M̌0 for 
ξ > ξ−. In particular, M̌0 is the unique τ̌ξ -minimal set for ξ ∈ (ξ−, ξ+).

Let us now fix ξ > ξ+ and prove the existence of a τ̌ξ -minimal set M̌u
ξ strictly above M̌0. 

We will use this property: given α ∈ (0, ξ − ξ+), there exists tα > 0 such that 
∫ tα

0 (a2(ω·s) +
ξ) ds ≥ αtα for all ω ∈ �. To prove it, assume for contradiction the existence of {tn}n∈N ↑ ∞
and {ωn}n∈N such that (1/tn) 

∫ tn
0 (a2(ωn·s) + ξ) ds < α, and use an argument analogous to that 

of Kryloff and Bogoliuboff’s Theorem (see Theorem 9.05 of [27]) to construct m ∈ Minv(�, σ)

such that 
∫
�
(a2(ω) + ξ) dm ≤ α < ξ − ξ+, which is impossible (see Subsection 2.4).

Let us take α ∈ (0, ξ − ξ+) with α < 1. The coercivity of −x3 + (a2(ω) + ξ)x2 ensures that 
ǔξ (t, ω0, 1/α) is globally forward defined and bounded. We will check below that ǔξ (t, ω0, 1/α)

is also bounded away from zero for t ≥ 0, which shows the existence of a minimal set M̌u
ξ >

M̌0 contained in the ω-limit of (ω0, 1/α). The function w(t) = (ǔξ (t, ω0, 1/α))−1 solves y′ =
−(a2(ω·t) + ξ) +1/y with w(0) = α < 2/α. Let us call t1 = sup{t > 0 : w(s) ≤ 2/α + ltα for all 
s ∈ [0, t]}, where l = 1/α + supω∈� |a2(ω) + ξ |. We assume for contradiction that t1 < ∞, and 
define t0 = inf{t < t1 : w(s) ≥ 2/α for s ∈ [t, t1]}. Then, t0 ≤ t1 − tα : otherwise, w(t1) = w(t0) +∫ t1
t0

(−(a2(ω·s) + ξ) + 1/w(s)) ds < 2/α + ltα , which is not the case. In particular, w(t) ≥ 2/α

for t ∈ [t1 − tα, t1], and hence
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w(t1) = w(t1 − tα) −
tα∫

0

(a2(ω0·(t1 − tα)·s) + ξ) ds +
t1∫

t1−tα

1

w(s)
ds

≤ w(t1 − tα) + (−α + α/2)tα < w(t1 − tα) ,

which contradicts the definition of t1. This shows that ǔξ (t, ω0, 1/α) ≥ (2/α + ltα)−1, which 
completes this step.

We have proved the existence of M̌u
ξ > M̌0 for ξ > ξ+. Analogous arguments show the ex-

istence of M̌l
ξ < M̌0 for ξ < ξ−. Theorem 4.2 and the nonhyperbolicity of M̌0 ensure that τ̌ξ

admits at most two minimal sets. Hence, since the Sacker and Sell spectrum on M̌0 reduces to 
{0}, Theorem 5.13 ensures that M̌u

ξ (for ξ > ξ+) and M̌l
ξ (for ξ < ξ−) are hyperbolic attractive. 

Therefore, they are copies of the base: the graphs of β̌ξ and α̌ξ , respectively. Theorem 5.13 also 
precludes the existence of a second minimal set for τ̌ξ− (resp. τ̌ξ+ ), since it would be hyperbolic 
and hence persisting for ξ close to ξ+ (resp. ξ−). In turn, this means that β̌ξ+(ω) = limξ↓ξ+ β̌ξ (ω)

(resp. α̌ξ−(ω) = limξ↑ξ− α̌ξ (ω)) coincides with 0 at their continuity points: otherwise, Proposi-
tions 2.5 and 2.3 would provide a second τ̌ξ+ (resp. τ̌ξ− ) minimal set. This completes the proof 
of all the assertions. �

Our last result in this subsection is a remarkable consequence of the previous one: the bifur-
cation diagram of

x′ = −x3 + a2(ω·t)x2 + λx , ω ∈ �, (6.11)

just depends on the Sacker and Sell spectrum of a2.

Corollary 6.7. Let [−ξ+, −ξ−] be the Sacker and Sell spectrum of a2. Then,

(i) if 0 ∈ [ξ−, ξ+], then (6.11) exhibits the global pitchfork bifurcation diagram of minimal sets 
described by Theorem 6.3(iii).

(ii) If 0 /∈ [ξ−, ξ+], then (6.11) exhibits the transcritical and saddle-node bifurcation diagram of 
minimal sets described by Theorem 6.4.

Proof. The Sacker and Sell spectrum of −3x2 + 2a2(ω)x on the minimal set � × 0 reduces to 0. 
That is, with the notation of Theorems 6.3 and 6.4, λ− = λ+ = 0. As explained after Theorem 6.4, 
in this case, the bifurcation diagrams of Theorems 6.3(iii) and 6.4 are the only possible ones 
and we can distinguish between them by the number of τ̂0-minimal sets: one in the pitchfork 
case and two in the transcritical and saddle-node case. Note that (6.11)0 corresponds to (6.10)0. 
Proposition 6.6 ensures that (6.10)0, and therefore (6.11)0, admits M̂0 as unique minimal set if 
and only if 0 ∈ [ξ−, ξ+], from where the statements follow. �
6.4. Bifurcation of a recurrent solution

We complete the paper by translating part of the information that we have obtained to the 
problem we posed at the beginning of Subsection 6.2. Let us assume that the function f of (6.4)
is C0,2(� × R, R), (Co) and (SDC). Recall that the minimal set M for the flow τ defined by 
(6.5) is given by the hull of the graph of the recurrent solution ̃x(t) = u(t, ω0, ̃x(0)) of (6.4), and 
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note that ̃x(t) solves the equation (6.6)λ corresponding to (ω0, ̃x(0)) ∈ M for all λ ∈R. It is easy 
to check that the function g of (6.7)λ is C0,2(M × R, R), (Co) and (SDC), and the Sacker and 
Sell spectrum of gx on the corresponding minimal set M × {0} coincides with that of fx on M, 
which we represent by [−λ+, −λ−].

To begin with, we assume that the bifurcation diagram for (6.7)λ around M × {0} is that 
of a generalized transcritical bifurcation described by Theorem 6.4. Then, x̃(t) is hyperbolic 
attractive for (6.6)λ if λ < λ−, nonhyperbolic if λ ∈ [λ−, λ+] and hyperbolic repelling for 
λ > λ+; and, as λ crosses λ+ from the left (resp. λ− from the right), the solution x̃(t) “bi-
furcates” in two solutions of (6.6)λ corresponding to (ω0, ̃x(0)): x̃(t) and a new hyperbolic 
attractive (resp. repelling) recurrent solution x̃λ(t), which persists for all λ > λ+ (resp. in a 
bounded interval (λ0, λ−)). In general, we cannot assure that limλ→λ± x̃λ(t) = x̃(t) for all 
t ∈ R, but there is a certain type of approaching which we describe in what follows for λ+. 
Let M̃λ = {(ω, z, κ̃λ(ω, z)) | (ω, z) ∈ M} be the hull of the graph of x̃λ for λ > λ+. Then, 
there exists the pointwise limit κ̃λ+(ω, z) = limλ↓λ+ κ̃λ(ω, z), and κ̃λ is one of the two delim-
iter equilibria of the global attractor for all λ ≥ λ+; and hence, due to the collision properties 
explained in Theorem 6.4, κ̃λ+(ω, z) = z for all (ω, z) in a τ -invariant residual subset R of M. 
This means that limλ↓λ+ x̃λ(t) = x̃(t) for all t ∈ R in the case that (ω0, ̃x(0)) ∈ R, which we 
cannot a priori know. What we can assert in all the cases is that x̃λ+(t) = limλ↓λ+ x̃λ(t) is a 
bounded globally defined solution of the equation (6.6)λ+ corresponding to (ω0, ̃x(0)), and that 
lim inft→±∞ |̃xλ+(t) − x̃(t)| = 0. Similar limiting properties (and restrictions) can be described 
for λ ↑ λ−.

If the bifurcation diagram is that of Theorem 6.3(iii), with a global pitchfork bifurcation at 
λ+, then the asymptotic exponential stability of ̃x(t) for λ < λ− is also lost as λ crosses λ−, and 
two hyperbolic attractive recurrent solutions x̃u

λ(t) and x̃l
λ(t) appear for λ > λ+, with limiting 

approaching to ̃x(t) as λ ↓ λ+ similar to that described above.
The possible dynamical complexity of these cases is due to the possible existence of a pinched 

compact invariant set for (6.7)λ+ which is not a copy of the base. Examples of these “far away 
from trivial” situations can be found in [29], even in the simplest situation of uniquely ergodic 
flow on M.
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