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Abstract. We construct optimal flat functions in Carleman–Roumieu ul-
traholomorphic classes associated to general strongly nonquasianalytic
weight sequences, and defined on sectors of suitably restricted opening.
A general procedure is presented in order to obtain linear continuous ex-
tension operators, right inverses of the Borel map, for the case of regular
weight sequences in the sense of Dyn’kin. Finally, we discuss some ex-
amples (including the well-known q-Gevrey case) where such optimal flat
functions can be obtained in a more explicit way.
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1. Introduction

The asymptotic Borel map sends a function, admitting an asymptotic expan-
sion in a sectorial region, into the formal power series providing such expansion.
In many instances it is important to decide about the injectivity and surjec-
tivity of this map when considered between so-called Carleman–Roumieu ul-
traholomorphic classes and the corresponding class of formal series, defined
by restricting the growth of some of the characteristic data of their elements
(the derivatives of the functions, the remainders in the expansion, or the co-
efficients of the series) in terms of a given weight sequence M = (Mp)p∈N0 of
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positive real numbers (see Sect. 2.3 for the definition of such classes). While
the injectivity has been fully characterized for sectorial regions and general
weight sequences [14,19,29], the surjectivity problem is still under study. The
classical Borel–Ritt–Gevrey theorem of Malgrange and Ramis [28], solving the
case of Gevrey asymptotics (for which M = (p!α)p∈N0 , α > 0), was partially
extended to different more general situations by Schmets and Valdivia [31],
Thilliez [32,33] and the authors [14,15,30]. Summing up, it is known now that
the strong nonquasianalyticity condition (snq) for M, equivalent to the fact
that the index γ(M) introduced by V. Thilliez is positive (see Sect. 2.2), is
indeed necessary for surjectivity. Moreover, for an unbounded sector Sγ of
opening πγ (γ > 0) in the Riemann surface of the logarithm and for regular
weight sequences in the sense of Dyn’kin [8] (see Sect. 2.1 for the definitions),
the Borel map is surjective whenever γ < γ(M), while it is not for γ > γ(M)
(the situation for γ = γ(M) is still unclear in general). It is important to
note that the current proof of surjectivity in this situation is not constructive,
but rests on the characterization, by abstract functional-analytic techniques,
of the surjectivity of the Stieltjes moment mapping in Gelfand-Shilov spaces
defined by regular sequences due to Debrouwere [6]. This information is trans-
ferred into the asymptotic framework in a halfplane by means of the Fourier
transform, and in [15] Laplace and Borel transforms of arbitrary order allow to
conclude for general sectors. However, in the particular case of classes given by
strongly regular sequences in the sense of V. Thilliez, the proof of surjectivity
of the Borel map [33] rests on the construction of optimal flat functions in
suitable sectors and a double application of Whitney extension results. Sub-
sequently, Lastra et al. [18] reproved surjectivity in a more explicit way by
means of formal Borel- and truncated Laplace-like transforms, defined from
suitable kernel functions obtained from those optimal flat functions.

The first aim of this paper is to construct such optimal flat functions
for Carleman–Roumieu ultraholomorphic classes defined by general weight se-
quences (not just strongly regular ones) and in sectors Sγ with γ < γ(M).
The key idea comes from a recent paper by Nenning et al. [22], where they
have studied the mixed Borel problem in Beurling ultradifferentiable classes.
They consider a mixed condition inspired by a related one (see (3.7) in this
paper) appearing in a work of Langenbruch [17]. It turns out that the condi-
tion of Langenbruch is, under natural hypotheses, equivalent to the fact that
γ(M) > 1, and it is crucial in order to construct optimal flat functions in a
halfplane by means of the classical harmonic extension of the associated func-
tion ωM. A ramification process provides then optimal flat functions in the
general situation. These results completely close the problem of the explicit
construction of optimal flat functions in sectors of appropriate opening for
classes defined in terms of a general weight sequence. Moreover, the construc-
tive techniques developed in this paper could be used in other contexts where
weighted structures appear.
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Secondly, for ultraholomorphic classes defined by regular sequences we
establish the connection with the surjectivity of the Borel map by providing a
constructive technique for the corresponding extension results, in the same vein
as in [18]. For sake of completeness, in the case of strongly regular sequences
we also give an alternative approach, based on the work of Bruna [5], to this
connection.

In order to highlight the power of the technique in concrete situations,
we will also present a family of (non strongly) regular sequences for which such
optimal flat functions can be provided in any sector of the Riemann surface of
the logarithm (what agrees with the fact that the index γ(M) is in this case
equal to ∞), resting on precise estimates for the associated function ωM instead
of appealing to its harmonic extension. We end by showing how optimal flat
functions and extension results can be obtained for convolved sequences, in
case the factor sequences admit such constructions separately. Some examples
are commented on in regard with this technique.

The paper is organized as follows. Section 2 consists of all the prelimi-
nary information concerning weight sequences and some indices or auxiliary
functions associated with them, and the main facts about ultraholomorphic
classes and the (asymptotic) Borel map defined for them. In Sect. 3 we de-
fine optimal flat functions and carefully detail their construction for general
weight sequences. Next, we show that their existence entails the surjectivity
of the Borel map in ultraholomorphic classes defined by regular sequences. In
the particular case of sequences of moderate growth, different statements are
presented relating the property of strong non-quasianalyticity to the existence
of such flat functions. In Sect. 4 we give a family of sequences (among which
the classical q-Gevrey sequences are found) for which optimal flat functions
can be constructed in a more explicit way. We need to work first in C\(−∞, 0],
and then apply a ramification in order to reason for arbitrary sectors in the
Riemann surface of the logarithm. Finally, the last section is devoted to the
work with convolved sequences.

2. Preliminaries

2.1. Weight Sequences and Their Properties

We set N := {1, 2, ...}, N0 := N ∪ {0}. In what follows, M = (Mp)p∈N0 will
always stand for a sequence of positive real numbers with M0 = 1. We define
its sequence of quotients m = (mp)p∈N0 by mp := Mp+1/Mp, p ∈ N0; the
knowledge of M amounts to that of m, since Mp = m0 · · · mp−1, p ∈ N.
The following properties for a sequence will play a role in this paper:

(i) M is logarithmically convex (for short, (lc)) if M2
p ≤ Mp−1Mp+1, p ∈ N.

(ii) M is stable under differential operators or satisfies the derivation closed-
ness condition (briefly, (dc)) if there exists D > 0 such that Mp+1 ≤
Dp+1Mp, p ∈ N0.
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(iii) M is of, or has, moderate growth (for the sake of brevity, (mg)) if there
exists A > 0 such that Mp+q ≤ Ap+qMpMq, p, q ∈ N0.

(iv) M satisfies the condition (nq) of non-quasianalyticity if
∞∑

p=0

Mp

(p + 1)Mp+1
< +∞.

(v) Finally, M satisfies the condition (snq) of strong non-quasianalyticity if
there exists B > 0 such that

∞∑

q=p

Mq

(q + 1)Mq+1
≤ B

Mp

Mp+1
, p ∈ N0.

It is convenient to introduce the notation M̂ := (p!Mp)p∈N0 . All these
properties are preserved when passing from M to M̂. In the classical work of
Komatsu [16], the properties (lc), (dc) and (mg) are denoted by (M.1), (M.2)′

and (M.2), respectively, while (nq) and (snq) for M are the same as properties
(M.3)′ and (M.3) for M̂, respectively. Obviously, (mg) implies (dc).

The sequence of quotients m is nondecreasing if and only if M is (lc).
In this case, it is well-known that (Mp)1/p ≤ mp−1 for every p ∈ N, the
sequence ((Mp)1/p)p∈N is nondecreasing, and limp→∞(Mp)1/p = ∞ if and only
if limp→∞ mp = ∞. In order to avoid trivial situations, we will restrict from
now on to (lc) sequences M such that limp→∞ mp = ∞, which will be called
weight sequences.

Following Dyn’kin [8], if M is a weight sequence and satisfies (dc), we
say M̂ is regular. According to Thilliez [33], if M satisfies (lc), (mg) and (snq),
we say M is strongly regular ; in this case M is a weight sequence, and the
corresponding M̂ is regular.

We mention some interesting examples. In particular, those in (i) and
(iii) appear in the applications of summability theory to the study of formal
power series solutions for different kinds of equations.

(i) The sequences Mα,β :=
(
p!α

∏p
m=0 logβ(e + m)

)
p∈N0

, where α > 0 and
β ∈ R, are strongly regular (in case β < 0, the first terms of the sequence
have to be suitably modified in order to ensure (lc)). In case β = 0,
we have the best known example of a strongly regular sequence, Mα :=
Mα,0 = (p!α)p∈N0 , called the Gevrey sequence of order α.

(ii) The sequence M0,β := (
∏p

m=0 logβ(e + m))p∈N0 , with β > 0, satisfies (lc)
and (mg), and m tends to infinity, but (snq) is not satisfied.

(iii) For q > 1 and 1 < σ ≤ 2, Mq,σ := (qpσ

)p∈N0 satisfies (lc), (dc) and (snq),
but not (mg). In case σ = 2, we get the well-known q-Gevrey sequence.
Two sequences M = (Mp)p∈N0 and L = (Lp)p∈N0 of positive real numbers,

with M0 = L0 = 1 and with respective quotient sequences m and �, are
said to be equivalent, and we write M ≈ L, if there exist positive constants
A,B such that ApMp ≤ Lp ≤ BpMp, p ∈ N0. They are said to be strongly
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equivalent, denoted by m � �, if there exist positive constants a, b such that
amp ≤ �p ≤ bmp, p ∈ N0. Whenever m � � we have M ≈ L but, in general,
not conversely.

In case M0 or L0 is not equal to 1, the previous definitions of equivalence
are meant to deal with the normalized sequences (Mp/M0)p∈N0 or (Lp/L0)p∈N0 .

2.2. Index γ(M) and Auxiliary Functions for Weight Sequences and Functions

The index γ(M), introduced by Thilliez [33, Sect. 1.3] for strongly regular se-
quences M, can be equally defined for (lc) sequences, and it may be equivalently
expressed by different conditions:

(i) A sequence (cp)p∈N0 is almost increasing if there exists a > 0 such that
for every p ∈ N0 we have that cp ≤ acq for every q ≥ p. It was proved in
[12,13] that for any weight sequence M one has

γ(M) = sup{γ > 0 : (mp/(p + 1)γ)p∈N0 is almost increasing} ∈ [0,∞].
(2.1)

(ii) For any β > 0 we say that m satisfies the condition (γβ) if there exists
A > 0 such that

∞∑

�=p

1
(m�)1/β

≤ A(p + 1)
(mp)1/β

, p ∈ N0. (γβ)

In [10,13] it is proved that for a weight sequence M,

γ(M) = sup{β > 0; m satisfies (γβ) }; γ(M) > β ⇐⇒ m satisfies (γβ).
(2.2)

If we observe that the condition (snq) for M is precisely (γ1) for m̂,
the sequence of quotients for M̂, and that γ(M̂) = γ(M) + 1 (this is clear
from (2.1)), we deduce from the second statement in (2.2) that

M satisfies (snq) if, and only if, γ(M) > 0. (2.3)

Given a weight sequence M = (Mp)p∈N0 , we write

ωM(t) := sup
p∈N0

ln
(

tp

Mp

)
, t > 0,

and ωM(0) = 0. This is the classical (continuous, nondecreasing) function as-
sociated with the sequence M, see [16].

Another associated function will play a key-role, namely

hM(t) := inf
p∈N0

Mpt
p, t > 0.

The functions hM and ωM are related by

hM(t) = exp(−ωM(1/t)), t > 0. (2.4)

In [16, Prop. 3.2] we find that, for a weight sequence M,

Mp = sup
t>0

tp exp(−ωM(t)) = sup
t>0

tphM(1/t), p ∈ N0. (2.5)
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We record for the future some elementary facts about hM.

Lemma 2.1. Let M = (Mp)p∈N0 be a weight sequence, then:
(i) t ∈ (0,∞) 	→ hM(t) is nondecreasing and continuous,
(ii) hM(t) ≤ 1 for all t > 0, hM(t) = 1 for all t sufficiently large and

limt→0 hM(t) = 0.

We also introduce the counting function νm for the sequence m,

νm (λ) := #{p ∈ N0 : mp ≤ λ}. (2.6)

If M is a weight sequence, then the functions νm and ωM are related by the
following useful integral representation formula, e.g. see [19] and [16, (3.11)]:

ωM(x) =
∫ x

0

νm (λ)
λ

dλ =
∫ x

m0

νm (λ)
λ

dλ, x > 0. (2.7)

In [13], the nature of the index γ(M), fundamental in the study of the
surjectivity of the asymptotic Borel map, is explained. More precisely, it is
shown that γ(M) is the lower Matuszewska index of m. In addition, the relation
between ORV-indices of m and νm is clarified and from this connection we
characterized some properties of νm that will be important for our aim.

Lemma 2.2. Let M = (Mp)p∈N0 be a weight sequence, then:
(i) γ(M) > 0 if and only if νm satisfies the condition νm (2t) = O(νm (t)) as

t tends to ∞.
(ii) γ(M) > 1 if and only if νm satisfies the condition (ωsnq), i.e., there exists

D > 0 such that∫ ∞

1

νm (ys)
s2

ds ≤ Dνm (y) + D, y ≥ 0.

Proof. (i) Follows by (2.3) and [13, Coro. 4.2.(ii)]. (ii) Holds true by combining
[13, Lemma 2.10], [13, Coro. 2.13], [13, Thm. 3.10] and [13, Prop. 4.1]. �

We conclude this subsection by introducing the harmonic extension and
a particular majorant of a nondecreasing nonquasianalytic function.

A nondecreasing (or even just measurable) function σ : [0,∞) → [0,∞)
satisfies the nonquasianalyticity property (ωnq) (and we say σ is nonquasian-
alytic) if

∫ ∞

1

σ(t)
t2

dt < ∞.

Let σ : [0,∞) → [0,∞) be a nondecreasing nonquasianalytic function.
The harmonic extension Pσ of σ to the open upper and lower halfplanes of C
is defined by

Pσ(x + iy) =

⎧
⎨

⎩

σ(|x|) if x ∈ R, y = 0,
|y|
π

∫ ∞

−∞

σ(|t|)
(t − x)2 + y2

dt if x ∈ R, y �= 0.
(2.8)
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For every z ∈ C one has (see, for example, [4, Remark 3.2] or [22, Prop.
5.5]):

σ(|z|) ≤ Pσ(z). (2.9)

We list some basic properties of the harmonic extension that will be used
later:

(1) σ1 ≤ σ2 implies Pσ1 ≤ Pσ2 .
(2) λPσ1(z) + μPσ2(z) = Pλσ1+μσ2(z), λ, μ ∈ R.
(3) Pt�→σ(Ct)(z) = Pσ(Cz), C > 0.

Another important auxiliary function appears in the study of extension
results in Braun–Meise–Taylor ultradifferentiable classes, defined in terms of
weight functions (see, for example, [4,21] and the references therein).

Let σ : [0,∞) → [0,∞) be a nondecreasing and nonquasianalytic func-
tion. Then, the function κσ is defined by

κσ(y) =
∫ ∞

1

σ(ys)
s2

ds, y ≥ 0,

and satisfies
σ(y) ≤ κσ(y), y ≥ 0. (2.10)

If σ is also continuous, then κσ is concave, cf. the proof of (3) ⇒ (4) in Prop.
1.3 in [21].

In particular, consider a weight sequence M such that
∑∞

p=0 1/mp < ∞
(this is condition (M3)′ in [16]); in other words, the sequence qM := (Mp/p!)p∈N0

satisfies (nq). According to [16, Lemma 4.1], this property amounts to νm

and/or ωM being nonquasianalytic. So, it makes sense to consider the con-
cave function κωM

associated with ωM, and κνm
associated with the counting

function νm . The equality

κωM
(y) = ωM(y) + κνm

(y), y ≥ 0, (2.11)

can be found on p. 58 in the proof of [16, Prop. 4.4].

2.3. Asymptotic Expansions, Ultraholomorphic Classes and the Asymptotic
Borel Map

R stands for the Riemann surface of the logarithm. C[[z]] is the space of formal
power series in z with complex coefficients.

For γ > 0, we consider unbounded sectors bisected by direction 0,

Sγ :=
{

z ∈ R : |arg(z)| <
γ π

2

}

or, in general, unbounded sectors with bisecting direction d ∈ R and opening
γ π,

S(d, γ) :=
{

z ∈ R : |arg(z) − d| <
γ π

2

}
.
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A sector T is said to be a proper subsector of a sector S if T ⊂ S (where
the closure of T is taken in R, and so the vertex of the sector is not under
consideration).

In this paragraph S is an unbounded sector and M a sequence. We start
by recalling the concept of uniform asymptotic expansion.

We say a holomorphic function f : S → C admits f̂ =
∑

n≥0 anzn ∈ C[[z]]
as its uniform M-asymptotic expansion in S (of type 1/A for some A > 0) if
there exists C > 0 such that for every p ∈ N0, one has

∣∣∣∣∣f(z) −
p−1∑

n=0

anzn

∣∣∣∣∣ ≤ CApMp|z|p, z ∈ S. (2.12)

In this case we write f ∼u
M,A f̂ in S, and Ãu

M,A(S) denotes the space of functions
admitting uniform M-asymptotic expansion of type 1/A in S, endowed with
the norm

‖f‖
M,A,

∼
u

:= sup
z∈S,p∈N0

|f(z) − ∑p−1
k=0 akzk|

ApMp|z|p , (2.13)

which makes it a Banach space. Ãu
{M}(S) stands for the (LB) space of functions

admitting a uniform {M}-asymptotic expansion in S, obtained as the union
of the previous classes when A runs over (0,∞). When the type needs not be
specified, we simply write f ∼u

{M} f̂ in S. Note that, taking p = 0 in (2.12),

we deduce that every function in Ãu
{M}(S) is a bounded function.

Finally, we define for every A > 0 the class AM,A(S) consisting of the
holomorphic functions f in S such that

‖f‖
M,A := sup

z∈S,p∈N0

|f (p)(z)|
ApMp

< ∞.

(AM,A(S), ‖ · ‖
M,A) is a Banach space, and A{M}(S) := ∪A>0AM,A(S) is called

a Carleman–Roumieu ultraholomorphic class in the sector S, whose natural
inductive topology makes it an (LB) space.

We warn the reader that these notations, while the same as in the paper
[15], do not agree with the ones used in [14,30], where Ãu

{M}(S) was denoted

by Ãu
M

(S), AM,A(S) by AM/L1,A(S), and A{M}(S) by AM/L1(S).

If M is (lc), the spaces A{M}(S) and Ãu
{M}(S) are algebras, and if M is (dc)

they are stable under taking derivatives. Moreover, if M ≈ L the corresponding
classes coincide.

Since the derivatives of f ∈ AM,A(S) are Lipschitz, for every p ∈ N0 one
may define

f (p)(0) := lim
z∈S,z→0

f (p)(z) ∈ C. (2.14)
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As a consequence of Taylor’s formula and Cauchy’s integral formula for
the derivatives, there is a close relation between Carleman–Roumieu ultraholo-
morphic classes and the concept of asymptotic expansion (the proof may be
easily adapted from [1]).

Proposition 2.3. Let M be a sequence and S be a sector. Then,

(i) If f ∈ A
M̂,A(S) then f admits f̂ :=

∑
p∈N0

1
p!f

(p)(0)zp as its uniform
M-asymptotic expansion in S of type 1/A, where (f (p)(0))p∈N0 is given by
(2.14). Moreover, ‖f‖

M,A,
∼
u

≤ ‖f‖
M̂,A, and so the identity map

A
M̂,A(S) ↪→ Ãu

M,A(S) is continuous. Consequently, we also have that

A{M̂}(S) ⊆ Ãu
{M}(S) and A{M̂}(S) ↪→ Ãu

{M}(S) is continuous.
(ii) If S is unbounded and T is a proper subsector of S, then there exists a

constant c = c(T, S) > 0 such that the restriction to T , f |T , of functions
f defined on S and admitting a uniform M-asymptotic expansion in S of
type 1/A > 0, belongs to A

M̂,cA(T ), and ‖f |T ‖
M̂,cA ≤ ‖f‖

M,A,
∼
u
. So, the

restriction map from Ãu
M,A(S) to A

M̂,cA(T ) is continuous, and it is also

continuous from Ãu
{M}(S) to A{M̂}(T ).

One may accordingly define classes of formal power series

C[[z]]M,A =

{
f̂ =

∞∑

p=0

apz
p ∈ C[[z]] :

∣∣∣ f̂
∣∣∣
M,A

:= sup
p∈N0

|ap|
ApMp

< ∞
}

. (2.15)

(C[[z]]M,A, | · |
M,A) is a Banach space and we put C[[z]]{M} := ∪A>0C[[z]]M,A,

again an (LB) space.
It is natural to consider the asymptotic Borel map B̃ sending a func-

tion f ∈ Ãu
M,A(S) into its M-asymptotic expansion f̂ ∈ C[[z]]M,A. By Propo-

sition 2.3.(i) the asymptotic Borel map may be defined from Ãu
{M}(S) or

A{M̂}(S) into C[[z]]{M}, and from A
M̂,A(S) into C[[z]]M,A.

If M is (lc), B̃ is a homomorphism of algebras; if M is also (dc), differen-
tiation commutes with B̃. Moreover, it is continuous when considered between
the corresponding Banach or (LB) spaces previously introduced. Finally, note
that if M ≈ L, then C[[z]]{M} = C[[z]]{L}, and the corresponding Borel maps
are in all cases identical.

Since the problem under study is invariant under rotation, we will focus
on the surjectivity of the Borel map in unbounded sectors Sγ . So, we define

S{M̂} :={γ > 0; B̃ : A{M̂}(Sγ) −→ C[[z]]{M} is surjective},

S̃u
{M} :={γ > 0; B̃ : Ãu

{M}(Sγ) −→ C[[z]]{M} is surjective}.

We again note that these intervals were respectively denoted by SM and S̃u
M

in [14].
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It is clear that S{M̂} and S̃u
{M} are either empty or left-open intervals

having 0 as endpoint, called surjectivity intervals. Using Proposition 2.3, we
easily see that

(S̃u
{M})

◦ ⊆ S{M̂} ⊆ S̃u
{M}, (2.16)

where I◦ stands for the interior of the interval I.

3. Optimal Flat Functions and Surjectivity of the Borel Map

The following result appeared, in a slightly different form, in [14, Lemma 4.5].

Lemma 3.1. Let M be a weight sequence. If S̃u
{M} �= ∅, then M satisfies (snq)

or, equivalently, γ(M) > 0.

Subsequently, a converse, more precise statement appeared in [15, Th. 3.7]
under the additional hypothesis of condition (dc).

Theorem 3.2. Let M̂ be a regular sequence such that γ(M) > 0. Then,

(0, γ(M)) ⊆ S{M̂} ⊆ S̃u
{M} ⊆ (0, γ(M)].

In particular, if γ(M) = ∞, we have that S{M̂} = S̃u
{M} = (0,∞).

So, the surjectivity of the Borel map for regular sequences is governed by
the value of the index γ(M).

3.1. Construction of Optimal Flat Functions

Our aim is to relate the surjectivity of the Borel map in a sector to the existence
of optimal flat functions in it, which we now define and construct in this
subsection.

Definition 3.3. Let M be a weight sequence, S an unbounded sector bisected
by direction d = 0, i.e., by the positive real line (0,+∞) ⊂ R. A holomorphic
function G : S → C is called an optimal {M}-flat function in S if:

(i) There exist K1,K2 > 0 such that for all x > 0,

K1hM(K2x) ≤ G(x). (3.1)

(ii) There exist K3,K4 > 0 such that for all z ∈ S, one has

|G(z)| ≤ K3hM(K4|z|). (3.2)

Besides the symmetry imposed by condition (i) (observe that G(x) > 0
for x > 0, and so G(z) = G(z), z ∈ S), we note that the estimate in (3.2)
amounts to the fact that

|G(z)| ≤ K3K
p
4Mp|z|p, p ∈ N0, z ∈ S,

what exactly means that G ∈ Ãu
{M}(S) and is {M}-flat, i.e., its uniform

{M}-asymptotic expansion is given by the null series. The inequality imposed
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in (3.1) makes the function optimal in a sense, as its rate of decrease on the
positive real axis when x tends to 0 is accurately specified by the function
hM. Note that, in previous instances where such optimal flat functions appear
[11,18,33], the estimates from below in (3.1) are imposed and/or obtained in
the whole sector S, and not just on its bisecting direction. We think the present
definition is more convenient, since it is easier to check for concrete functions,
and for our purposes it provides all the necessary information in order to work
with such functions.

As a first step for the construction of such flat functions, we need to
estimate the harmonic extension Pσ in terms of the majorant κσ. The right-
hand side estimate in the next result is a slight refinement of the one in [4,
Lemma 3.3], which was not precise enough for our purposes. We include the
whole proof for the sake of completeness.

Proposition 3.4. Let σ : [0,∞) → [0,∞) be a nondecreasing nonquasianalytic
function. Then, we have

1
π

κσ(y) ≤ Pσ(iy) ≤ κσ(y), y ≥ 0. (3.3)

Proof. If y = 0 all the values are equal to σ(0) and so the inequalities hold
true. Now, for y > 0 we have

Pσ(iy) =
y

π

∫ ∞

−∞

σ(|t|)
t2 + y2

dt =
2y

π

∫ ∞

0

σ(t)
t2 + y2

dt

=
2
π

∫ ∞

0

σ(ys)
s2 + 1

ds ≥ 2
π

∫ ∞

1

σ(ys)
s2 + 1

ds.

Since s2 + 1 ≤ 2s2 for s ≥ 1, we deduce that

Pσ(iy) ≥ 1
π

∫ ∞

1

σ(ys)
s2

ds =
1
π

κσ(y).

In order to prove the right inequality, we start by splitting the integral
into two parts:

Pσ(iy) =
2
π

∫ ∞

0

σ(ys)
s2 + 1

ds =
2
π

(∫ 1

0

σ(ys)
s2 + 1

ds +
∫ ∞

1

σ(ys)
s2 + 1

ds

)
. (3.4)

As σ is nondecreasing, we may write
∫ 1

0

σ(ys)
s2 + 1

ds ≤ σ(y)
∫ 1

0

1
s2 + 1

ds =
π

4
σ(y) (3.5)

and
∫ ∞

1

σ(ys)
s2 + 1

ds = κσ(y)−
∫ ∞

1

(
1
s2

− 1
s2 + 1

)
σ(ys)ds ≤ κσ(y)−σ(y)

(
1 − π

4

)
.

(3.6)
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From (3.4), (3.5), (3.6) and (2.10) we deduce that

Pσ(iy) ≤ 2
π

(π

2
σ(y) + κσ(y) − σ(y)

)
≤ κσ(y). �

The key condition for weight sequences that will allow us to construct
optimal flat functions appeared in a work of Langenbruch [17].

Definition 3.5. Let M be a weight sequence such that qM satisfies (nq), so
that PωM

is well-defined. We say that the sequence satisfies the Langenbruch’s
condition if there exists a constant C > 0 such that for all y ≥ 0 we have

PωM
(iy) ≤ ωM(Cy) + C. (3.7)

We can characterize the previous condition in terms of the index γ(M).
This connection has very recently appeared for the first time in a work of
Nenning et al. [22]. Although the additional hypothesis of (dc) appears in
their (indirect) arguments, it can be removed as long as the sequence satisfies
(snq), as we now show. Observe that, by Lemma 3.1, the condition (snq)
(equivalently, γ(M) > 0) is necessary for surjectivity, so it is not a restriction
for our aim.

Proposition 3.6. Let M be a weight sequence. The following are equivalent:

(i) γ(M) > 0, qM satisfies (nq) and M satisfies Langenbruch’s condition.
(ii) γ(M) > 1.

Proof. First, from (2.7) we deduce that for all r ≥ 0 and B ≥ 0,

ωM(eBr) =
∫ eBr

0

νm (u)
u

du = ωM(r) +
∫ eBr

r

νm (u)
u

du ≥ ωM(r) + Bνm (r).

(3.8)
The last inequality is a consequence of the monotonicity of νm .

(i)⇒(ii) By taking into account (2.9) and (3.3), we deduce

ωM(y) + κνm
(y) ≤ PωM

(iy) + πPνm
(iy) = PωM+πνm

(iy), y ≥ 0.

Thanks to (3.8) and the monotonicity of the harmonic extension with
respect to the argument function we get from above

ωM(y) + κνm
(y) ≤ PωM(eπ·) = PωM

(ieπy) ≤ ωM(Ceπy) + C, y ≥ 0.

Next, by using the integral expression (2.7) and the monotonicity of νm

we have that

κνm
(y) ≤ ωM(Ceπy) − ωM(y) + C =

∫ Ceπy

y

νm (u)
u

du + C

≤ ln(Ceπ)νm (Ceπy) + C, y ≥ 0.

Finally, by Lemma 2.2, we deduce that

κνm
(y) ≤ Dνm (y) + D, y ≥ 0,
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for suitable D > 0. This is condition (ωsnq) for νm and, by Lemma 2.2, we
may conclude that γ(M) > 1.

(ii)⇒(i) Condition γ(M) > 1 implies that γ(M) > 0, and amounts to
condition (γ1) for m (see (2.2)), so that qM clearly satisfies (nq). By Lemma 2.2,
the condition γ(M) > 1 is equivalent to the existence of a constant C > 0 such
that

κνm
(y) ≤ Cνm (y) + C, y ≥ 0. (3.9)

Then, from (3.3), (2.11) and the above inequality we deduce that

PωM
(iy) ≤ κωM

(y) = ωM(y) + κνm
(y) ≤ ωM(y) + Cνm (y) + C, y ≥ 0.

By (3.8), we have from above that

PωM
(iy) ≤ ωM(eCy) + C, y ≥ 0,

which completes the proof. �

Remark 3.7. The condition γ(M) > 1 is the same as γ( qM) > 0, or equiva-
lently, (snq) for qM (even if qM might not satisfy (lc), we can apply [13, Coro.
3.13] to obtain this equivalence). So, for a weight sequence M satisfying (snq),
Langenbruch’s condition allows to pass from (nq) to (snq) for qM.

Observe also that, by [13, Lemma 3.20], the condition (nq) for qM implies
that the index ω( qM), introduced in [30] and studied in detail in [13], is nonneg-
ative, and so ω(M) = ω( qM) + 1 ≥ 1. As one only knows that γ(M) ≤ ω(M) in
general, and these indices can perfectly be different, one may better understand
the effect of Langenbruch’s condition.

Remark 3.8. On the one hand, as said before, for a weight sequence M the
condition γ(M) > 1 amounts to the condition (γ1) for m, and it is well-known
(see [16, Prop. 4.4]) that then ωM satisfies (ωsnq). As it can be deduced from
[21, Prop. 1.7], this last fact is, in its turn, equivalent to the existence of a
constant C > 0 such that

PωM
(iy) ≤ CωM(y) + C, y ≥ 0.

On the other hand, in [16, Prop. 3.6] the condition (mg) for a weight sequence
M is shown to be equivalent to the fact that 2ωM(y) ≤ ωM(Dy) + D for all
y ≥ 0 and suitable D > 0. Gathering these estimates, we conclude that if M
is strongly regular then γ(M) > 1 if, and only if, M satisfies Langenbruch’s
condition. This was basically the reasoning that allowed V. Thilliez to ob-
tain optimal {M}-flat functions, in the very same way as we are doing in the
next result, but dropping now the moderate growth condition by means of
Proposition 3.6.

Thanks to the previous result, we will construct optimal {M}-flat func-
tions in the right half plane as long as γ(M) > 1.



   98 Page 14 of 35 J. Jiménez-Garrido et al. Results Math

Proposition 3.9. Let M be a weight sequence. If γ(M) > 1, then the function

G(z) = exp(−PωM
(i/z) − iQωM

(i/z))

is an optimal {M}-flat function in the halfplane S1, where QωM
is the harmonic

conjugate of PωM
in the upper half plane.

Proof. It is clear that the function G is holomorphic in S1. On the one hand,
by taking into account (2.9), for z ∈ S1 we have that

|G(z)| = exp(−PωM
(i/z)) ≤ exp(−ωM(1/|z|)) = hM(|z|).

On the other hand, the condition γ(M) > 1 implies, by Proposition 3.6, that
there exists C > 0 such that PωM

(ix) ≤ ωM(Cx) + C for every x > 0. Since
one can easily check that QωM

(i/x) = 0, we have that

G(x) = exp(−PωM
(i/x)) ≥ exp(−ωM(C/x) − C) = exp(−C)hM(x/C),

as desired. �

By a ramification of the variable we can extend this method to an ar-
bitrary weight sequence with γ(M) > 0 and any sector whose opening is less
than πγ(M).

Proposition 3.10. Let M be a weight sequence with γ(M) > 0. Then, for any
0 < γ < γ(M) there exist an optimal {M}-flat function in Sγ .

Proof. Let s > 0 be such that γ < 1/s < γ(M). Then, by [13, Th. 3.10,
Prop. 3.6] we have that γ(Ms) = sγ(M) > 1, where M

s := (Ms
p )p∈N0 is again a

weight sequence. We apply the last result to the sequence Ms, so there exists an
optimal {Ms}-flat function G in S1. It is important to note that the bounds for
G appearing in Definition 3.3 will be in terms of hMs , instead of hM. Moreover,
the following relation between the functions ωMs and ωM is straightforward:

ωM(t1/s) =
1
s
ωMs(t), t ≥ 0. (3.10)

Now, let us prove that the function F (z) = (G(zs))1/s, z ∈ Sγ , is an
optimal {M}-flat function in Sγ . From the fact that G is an optimal {Ms}-flat
function, (2.4) and (3.10), we get

F (x) = (G(xs))1/s ≥ K
1/s
1 exp(−s−1ωMs(1/(K2x

s)))

≥ K
1/s
1 exp(−ωM(1/(K1/s

2 x))) = K
1/s
1 hM(K1/s

2 x), x > 0,

for suitable constants K1,K2 > 0. Moreover, we have that

|F (z)| ≤ K
1/s
3 exp(−s−1ωMs(1/(K4|z|s)))

≤ K
1/s
3 exp(−ωM(1/(K1/s

4 |z|))) = K
1/s
3 hM(K1/s

4 |z|), z ∈ Sγ ,

for suitable constants K3,K4 > 0, and we are done. �
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3.2. Surjectivity of the Borel Map for Regular Sequences

We will describe next how, by means of an optimal flat function, one can obtain
extension operators, right inverses for the Borel map, for ultraholomorphic
classes defined by regular sequences.

If G is an optimal {M}-flat function in Ãu
{M}(S), we define the kernel

function e : S → C given by

e(z) := G

(
1
z

)
, z ∈ S.

It is obvious that e(x) > 0 for all x > 0, and there exist K1,K2,K3,K4 > 0
such that

K1hM

(
K2

x

)
≤ e(x), x > 0, and |e(z)| ≤ K3hM

(
K4

|z|
)

, z ∈ S.

(3.11)
For every p ∈ N0 we define the p-th moment of the function e(z), given by

m(p) :=
∫ ∞

0

tpe(t) dt.

Note that the positive value m(0) need not be equal to 1.
The following result is crucial for our aim.

Proposition 3.11. Suppose M̂ is a regular sequence and G is an optimal {M}-
flat function in Ãu

{M}(S). Consider the sequence of moments m := (m(p))p∈N0

associated with the kernel function e(z) = G(1/z). Then, there exist B1, B2 > 0
such that

m(0)Bp
1Mp ≤ m(p) ≤ m(0)Bp

2Mp, p ∈ N0. (3.12)
In other words, M and m are equivalent.

Proof. We only need to reason for p ∈ N. On the one hand, because of the
right-hand inequalities in (3.11) and Lemma 2.1.(ii), for every p ∈ N and s > 0
we may write

m(p) =
∫ s

0

tpe(t) dt +
∫ ∞

s

1
t2

tp+2e(t) dt

≤ K3

∫ s

0

tp dt + K3 sup
t>0

tp+2hM

(
K4

t

) ∫ ∞

s

1
t2

dt

= K3
sp+1

p + 1
+ K3

1
s
Kp+2

4 Mp+2 ≤ K3

(
sp+1

p + 1
+

(K4D)p+2Mp

s

)
.

Note that in the last equality we have used (2.5), and then we have applied
(dc) with a suitable constant D > 0. Since s > 0 was arbitrary, we finally get

m(p) ≤ inf
s>0

K3

(
sp+1

p + 1
+

(K4D)p+2Mp

s

)

= K3
p + 2
p + 1

(K4D)p+1(Mp)(p+1)/(p+2) ≤ m(0)Bp
2Mp
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for a suitably enlarged constant B2 > 0 (observe that p ≥ 1 and that, eventu-
ally, Mp ≥ 1).

On the other hand, by the left-hand inequalities in (3.11) and Lemma 2.1.(i),
for every p ∈ N and s > 0 we may estimate

m(p) ≥
∫ s

0

tpe(t) dt ≥ K1

∫ s

0

tphM

(
K2

t

)
dt ≥ K1hM

(
K2

s

)
sp+1

p + 1
.

Then, again by (2.5), we deduce that

m(p) ≥ K1

p + 1
sup
s>0

hM

(
K2

s

)
sp+1 =

K1

p + 1
Kp+1

2 Mp+1 ≥ m(0)Bp
1Mp

for a suitable constant B1 > 0 (note that M is eventually nondecreasing). �

We can already state the following main result. The forthcoming im-
plication (ii) ⇒ (v) for strongly regular sequences M was first obtained by
Thilliez [33, Th. 3.2.1], and the proof heavily rested on the moderate growth
condition, both for the construction [33, Th. 2.3.1] of optimal {M}-flat func-
tions in sectors Sγ for every γ > 0 such that γ < γ(M), and for the subsequent
use of Whitney extension results in the ultradifferentiable setting. In [18] the
implication (ii) ⇒ (iii) was proved again for strongly regular sequences, but
with a completely different technique, and it is this approach which allows here
for the weakening of condition (mg) into (dc).

Theorem 3.12. Let M̂ be a regular sequence (that is, M is a weight sequence
and satisfies (dc)) with γ(M) > 0, and let γ > 0 be given. Each of the following
statements implies the next one:

(i) γ < γ(M).
(ii) There exists an optimal {M}-flat function in Ãu

{M}(Sγ).
(iii) There exists c > 0 such that for every A > 0 there exists a linear continu-

ous map TM,A : C[[z]]M,A → Ãu
M,cA(Sγ) such that B̃ ◦ TM,A is the identity

map in C[[z]]M,A (i.e., TM,A is an extension operator, right inverse for
B̃).

(iv) The Borel map B̃ : Ãu
{M}(Sγ) → C[[z]]{M} is surjective. In other words,

(0, γ] ⊂ S̃u
{M}.

(v) (0, γ) ⊂ S{M̂}.
(vi) γ ≤ γ(M).

Proof. (i) ⇒ (ii) See Proposition 3.10, valid for any weight sequence M.
(ii) ⇒ (iii) Let A > 0 and f̂ =

∑∞
p=0 apz

p ∈ C[[z]]M,A be given. Let
(m(p))p∈N0 be the sequence of moments associated to the function e(z) =
G(1/z), where G is an optimal {M}-flat function in Ãu

{M}(Sγ). By the definition
of the norm in C[[z]]M,A (see (2.15)), we have

|ap| ≤ |f̂ |M,AApMp, p ∈ N0.
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From the left-hand inequalities in (3.12), we deduce that
∣∣∣∣

ap

m(p)

∣∣∣∣ ≤ |f̂ |M,A

m(0)

(
A

B1

)p

, p ∈ N0. (3.13)

Hence, the formal Borel-like transform of f̂ ,

ĝ =
∞∑

p=0

ap

m(p)
zp,

is convergent in the disc D(0, R) for R = B1/A > 0, and it defines a holomor-
phic function g there. Choose R0 := B1/(2A) < R, and define

TM,A(f̂ )(z) :=
1
z

∫ R0

0

e
(u

z

)
g(u) du, z ∈ Sγ ,

which is a truncated Laplace-like transform of g with kernel e. By virtue of
Leibniz’s theorem for parametric integrals and the properties of e, we deduce
that this function, denoted by f for the sake of brevity, is holomorphic in Sγ .
We will prove that f ∼u

{M} f̂ uniformly in Sγ , and that the map f̂ 	→ f ,

which is obviously linear, is also continuous from C[[z]]M,A into Ãu
M,cA(Sγ) for

suitable c > 0 independent from A.
Let p ∈ N0 and z ∈ Sγ . We have

f(z) −
p−1∑

n=0

anzn = f(z) −
p−1∑

n=0

an

m(n)
m(n)zn

=
1
z

∫ R0

0

e
(u

z

) ∞∑

n=0

an

m(n)
un du −

p−1∑

n=0

an

m(n)

∫ ∞

0

vne(v) dv zn.

After a change of variable u = zv in the last integral, one may use
Cauchy’s residue theorem and the right-hand estimates in (3.11) in order to
rotate the path of integration and obtain

zn

∫ ∞

0

vne(v)dv =
1
z

∫ ∞

0

une
(u

z

)
du.

So, we can write the preceding difference as

1
z

(∫ R0

0

e
(u

z

) ∞∑

n=p

an

m(n)
un du −

∫ ∞

R0

e
(u

z

) p−1∑

n=0

an

m(n)
un du

)
.

Then, we have ∣∣∣∣∣f(z) −
p−1∑

n=0

anzn

∣∣∣∣∣ ≤ 1
|z| (f1(z) + f2(z)), (3.14)

where

f1(z) =

∣∣∣∣∣

∫ R0

0

e
(u

z

) ∞∑

n=p

an

m(n)
un du

∣∣∣∣∣ , f2(z) =

∣∣∣∣∣

∫ ∞

R0

e
(u

z

) p−1∑

n=0

an

m(n)
un du

∣∣∣∣∣ .
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We now estimate f1(z) and f2(z). Observe that for every u ∈ (0, R0] we
have 0 < Au/B1 ≤ 1/2. So, from (3.13) we get

∞∑

n=p

|an|
m(n)

un ≤ |f̂ |M,A

m(0)

∞∑

n=p

(
Au

B1

)n

≤ 2|f̂ |M,A

m(0)

(
A

B1

)p

up.

Hence,

f1(z) ≤ 2|f̂ |M,A

m(0)

(
A

B1

)p ∫ R0

0

∣∣∣e
(u

z

)∣∣∣ up du. (3.15)

Regarding f2(z), for u ≥ R0 and 0 ≤ n ≤ p − 1 we have (u/R0)n ≤
(u/R0)p, so un ≤ Rn

0up/Rp
0. Again by (3.13), and taking into account the

value of R0, we may write
p−1∑

n=0

|an|
m(n)

un ≤ |f̂ |M,A

m(0)
up

Rp
0

p−1∑

n=0

(
AR0

B1

)n

≤ |f̂ |M,A

m(0)

(
2A

B1

)p

up.

Then, we get

f2(z) ≤ |f̂ |M,A

m(0)

(
2A

B1

)p ∫ ∞

R0

∣∣∣e
(u

z

)∣∣∣ up du. (3.16)

In order to conclude, note that the second inequality in (3.11), followed
by the first one, and the fact that e(x) > 0 for x > 0, together imply that for
every z ∈ Sγ and every u > 0 we have

|e(u/z)| ≤ K3hM

(
K4

|z|
u

)
≤ K3

K1
e

(
K2u

K4|z|
)

.

We use this fact, a simple change of variable and the right-hand estimates
in (3.12), and obtain that
∫ ∞

0

∣∣∣e
(u

z

)∣∣∣ up du ≤
∫ ∞

0

K3

K1
e

(
K2u

K4|z|
)

up du

=
K3

K1

(
K4|z|
K2

)p+1

m(p) ≤ m(0)K3K4

K1K2

(
K4B2

K2

)p

Mp|z|p+1.

This estimate can be taken into both (3.15) and (3.16), and from (3.14)
we easily get that for every p ∈ N0,

∣∣∣∣∣f(z) −
p−1∑

n=0

anzn

∣∣∣∣∣ ≤ 3K3K4

K1K2
|f̂ |M,A

(
2K4B2A

K2B1

)p

Mp|z|p, z ∈ Sγ ,

and so f admits f̂ as its uniform {M}-asymptotic expansion in Sγ . More-
over, recalling the definition (2.13) of the norm in these spaces with uniform
asymptotics and fixed type, if we put c := 2K4B2/(K2B1) > 0, we see that
f ∈ Ãu

M,cA(Sγ) and

‖f‖
M,cA,

∼
u

≤ 3K3K4

K1K2
|f̂ |M,A,
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what proves the continuity of the linear map TM,A.
(iii) ⇒ (iv) Immediate for any weight sequence M.
(iv) ⇒ (v) It follows from (2.16), again valid for any weight sequence.
(v) ⇒ (vi) This statement is a consequence of Theorem 3.2. �

Remark 3.13. The facts in Theorem 3.12.(iii) and Proposition 2.3.(ii) together
guarantee that for every δ ∈ (0, γ) there exists c′ > 0 such that for every
A > 0 there exists a linear and continuous extension operator from C[[z]]M,A

into A
M̂,c′A(Sδ). In fact, V. Thilliez stated his main result in this regard [33,

Th. 3.2.1] in terms of the existence of such extension operators for every δ <
γ(M) and M a strongly regular sequence.

The following three corollaries become now clear.

Corollary 3.14. Let M̂ be a regular sequence, and γ > 0. The following are
equivalent:

(i) γ(M) > γ,
(ii) There exists γ1 > γ such that the space Ãu

{M}(Sγ1) contains optimal
{M}-flat functions.

(iii) There exists γ1 > γ such that the Borel map B̃ : Ãu
{M}(Sγ1) → C[[z]]{M}

is surjective, i.e., γ1 ∈ S̃u
{M}.

Proof. (ii) ⇒ (iii) and (iii) ⇒ (i) are respectively contained in Theorem 3.12
and Theorem 3.2, under weaker hypotheses. (i) ⇒ (ii) is immediately deduced
from Proposition 3.10. �

As a consequence of (2.3) and Theorem 3.12 we get the following result.

Corollary 3.15. Let M̂ be a regular sequence. The following are equivalent:
(i) M satisfies (snq).
(ii) There exists γ > 0 such that the space Ãu

{M}(Sγ) contains optimal {M}-
flat functions.

(iii) There exists γ > 0 such that the Borel map B̃ : Ãu
{M}(Sγ) → C[[z]]{M} is

surjective. In other words, S̃u
{M} �= ∅.

Note that, according to Proposition 2.3, in the previous items (ii) and
(iii) one could change Ãu

{M}(Sγ) and S̃u
{M} into A{M̂}(Sγ) and S{M̂}, respec-

tively.

Corollary 3.16. Let M̂ be a regular sequence, and γ > 0. The following are
equivalent:

(i) γ(M) > γ,
(ii) There exists γ1 > γ such that the space A{M̂}(Sγ1) contains optimal {M}-

flat functions,
(iii) There exists γ1 > γ such that B̃ : A{M̂}(Sγ1) → C[[z]]{M} is surjective,

i.e., γ1 ∈ S{M̂}.
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3.3. Optimal Flat Functions and Strongly Regular Sequences

Under the moderate growth condition, the implication (ii) ⇒ (i) in the version
of Corollary 3.15 for the space A{M̂}(Sγ) can be shown independently by using
a result from Bruna [5], where a precise formula for nontrivial flat functions in
Carleman–Roumieu ultradifferentiable classes, appearing in a work of Bang [2],
is exploited. For the sake of completeness, we will present this proof below.

Theorem 3.17. Let M be a weight sequence satisfying (mg). If there exists γ >
0 such that A{M̂}(Sγ) contains optimal {M}-flat functions, then M is strongly
regular.

The proof requires two auxiliary results which we state and prove now.
First, given a weight sequence M, the sequence of quotients m = (mp)p∈N0

is nondecreasing and tends to infinity, but it can happen that it remains con-
stant on large intervals [p0, p1] of indices, so that the counting function νm

defined in (2.6) yields νm (mp0) = νm (mp1) = p1 + 1. However, in some appli-
cations or proofs it would be convenient to have νm (mp) = p + 1 for all p ≥ 0.
This can be assumed without loss of generality by the following result.

Lemma 3.18. Let a = (ap)p≥1 be a nondecreasing sequence of positive real
numbers satisfying limp→+∞ ap = +∞ (it suffices that ap−1 < ap holds true
for infinitely many indices p). Then there exists a sequence b = (bp)p≥1 of
positive real numbers such that p 	→ bp is strictly increasing and satisfies

0 < inf
p≥1

bp

ap
≤ sup

p≥1

bp

ap
< +∞.

So, in the language of weight sequences, we prove that for any weight
sequence M there exists a strongly equivalent weight sequence L (and so M ≈
L) such that ν�(�p) = p+1 for all p ∈ N0. Note that equivalent weight sequences
define the same Carleman–Roumieu ultraholomorphic classes and associated
weighted classes of formal power series.

Proof. Since a is nondecreasing and limp→+∞ ap = +∞ there exists a sequence
(pj)j≥1 of indices such that apj−1 < apj

= · · · = apj+1−1 < apj+1 for all j ≥ 1
(and so p1 ≥ 2). For all j ≥ 1 we have now apj

/(apj−1) > 1+ εj for a sequence
(εj)j≥1 with possibly small strictly positive numbers εj . Finally we put p0 := 1.

We take some arbitrary A > 1 and choose δj > 0 small enough so as to
have (1+ δj)pj+1−pj−1 ≤ min{A, 1+εj+1}. Then the sequence (δj)j≥0 satisfies

(1 + δj)pj+1−pj−1 ≤ 1 + εj+1 <
apj+1

apj+1−1
, (1 + δj)pj+1−pj−1 ≤ A, j ≥ 0.

(3.17)
We define now b as follows:

bq := aq if q = pj , j ≥ 0, bq := (1+δj)bq−1 if 1+pj ≤ q ≤ pj+1 −1, j ≥ 0.
(3.18)
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So we have by iteration bq = (1 + δj)q−pj bpj
= (1 + δj)q−pj apj

= (1 +
δj)q−pj aq > aq for all q with 1 + pj ≤ q ≤ pj+1 − 1, j ≥ 0. On each such
interval of indices the mapping q 	→ bq is now clearly strictly increasing since
1 + δj > 1 for all j. Moreover, by the first half in (3.17), we have bpj+1−1 =
(1 + δj)pj+1−pj−1apj

< bpj+1 . Hence the sequence q 	→ bq is strictly increasing.

By definition (3.18) we have bq = aq for all q = pj , j ≥ 0, and bq > aq

otherwise. We conclude if we show that bq ≤ Aaq for all q with 1 + pj ≤
q ≤ pj+1 − 1, j ≥ 0. For this, since q 	→ bq is strictly increasing, it suffices
to observe that, thanks to the second half in (3.17), we have bpj+1−1 = (1 +
δj)pj+1−pj−1apj

≤ Aapj
= Aapj+1−1. �

The second result is the following.

Lemma 3.19. Let M be a weight sequence. Then M satisfies (mg) if and only
if ωM(t) = O(νm (t)) as t → +∞.

Proof. The condition (mg) for M is equivalent to mn ≤ A(Mn)1/n for some
A ≥ 1 and all n ∈ N (e.g., see [27, Lemma 2.2]). It is also known that ωM(mn) =
log (mn

n/Mn) for n ∈ N (see [19, Chapitre I]). So, if mn−1 ≤ t < mn for some
n ≥ 1, we get

ωM(t) ≤ ωM(mn) = n log
(

mn

M
1/n
n

)
≤ n log(A) = log(A)νm (t),

that is, ωM(t) = O(νm (t)) as t → +∞.

Conversely, suppose that there exists A ≥ 1 such that ωM(t) ≤ Aνm (t)
for all t ≥ m0. By [27, Lemma 2.2], (mg) for M holds true if and only if there
exists H ≥ 1 such that for all t large enough one has 2νm (t) ≤ νm (Ht) + H,
and this we will prove. Take H ≥ exp(2A) and t ≥ m0. Using (2.7), and since
νm is nondecreasing, we estimate

νm (Ht) ≥ A−1ωM(Ht) = A−1

∫ Ht

m0

νm (λ)
λ

dλ ≥ A−1

∫ Ht

t

νm (λ)
λ

dλ

≥ A−1νm (t)
∫ Ht

t

1
λ

dλ = A−1 log(H)νm (t) ≥ 2νm (t),

as desired.
We mention that an alternative, more abstract proof can be based in the

theory of O-regular variation and Matuszewska indices for functions. By [13,
Th. 4.4] we have that the lower Matuszewska indices of νm and ωM agree,
that is, β(νm ) = β(ωM), and by [13, Cor. 2.17 and Cor. 4.2] we know M has
(mg) if and only if β(νm ) > 0. So, if β(νm ) > 0, by [13, Th. 4.3] we have
that lim inft→∞

νm (t)
ωM(t) > 0, and we deduce that ωM(t) = O(νm (t)) as t → +∞.

Conversely, if ωM(t) = O(νm (t)) as t → +∞, then lim inft→∞
νm (t)
ωM(t) > 0, so by

[13, Th. 4.3] we have that β(ωM) > 0, and we are done. �
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Proof of Theorem 3.17. We follow the proof of necessity for [5, Th. 2.2]. By
Lemma 3.18 and the remark following it, we can assume without loss of gen-
erality that m is strictly increasing.

Let G be an optimal {M}-flat function in A{M̂}(Sγ) for some γ > 0. So,
there exists some A > 0 such that

p
M̂,A(G) := sup

n∈N0,x∈(0,+∞)

|G(n)(x)|
Ann!Mn

< +∞.

This shows that the Carleman–Roumieu ultradifferentiable class
E{M̂}((−ε,+∞)), consisting of all smooth complex-valued functions g defined
on the interval (−ε,∞) for some ε > 0, and such that

sup
n∈N0,x∈(−ε,+∞)

|g(n)(x)|
Dnn!Mn

< +∞

for suitable D > 0, contains nontrivial flat functions (it suffices to extend G
by 0 for x ∈ (−ε, 0]). Then, the well-known Denjoy-Carleman theorem (e.g.,
see [9, Th. 1.3.8]) yields that M satisfies (nq).

Let now

Rn :=
∑

k≥n

1
(k + 1)mk

< +∞, n ∈ N0,

and let the function h be defined by h(t) := n if Rn+1 < t ≤ Rn, n ∈ N0.
By [2, (14), p. 142] we obtain that

G(x) = |G(x)| ≤ p
M̂,A(G) exp

(−h(Aex)
)
, x ∈ (0,+∞).

Combining this with (3.1), with (2.4) and setting C := p
M̂,A(G), we get

exp
(
h(Aex)

) ≤ C

G(x)
≤ CK−1

1 exp(ωM(1/(K2x))), x > 0.

If we put t = Aex and B := Ae/K2, we obtain that for every t > 0,

h(t) ≤ log(CK−1
1 ) + ωM(B/t). (3.19)

By Lemma 3.19, there exists C1 ≥ 1 such that ωM(s) ≤ C1νm (s) + C1 for
s > 0. Choosing t = B/mn in (3.19), we see that

h(B/mn) ≤ log(CK−1
1 ) + ωM(mn) ≤ log(CK−1

1 ) + C1νm (mn) + C1

= log(CK−1
1 ) + C1(n + 1) + C1,

since m is strictly increasing. Hence, h(B/mn) ≤ C2(n + 1) for some C2 ∈ N

and all n ∈ N0. By definition of h, we get RC2(n+1)+1 ≤ B/mn, i.e.,

mn

∑

k≥C2(n+1)+1

1
(k + 1)mk

≤ B, n ∈ N0.
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Finally,

mn

∑

k≥n

1
(k + 1)mk

= mn

∑

k≥C2(n+1)+1

1
(k + 1)mk

+ mn

C2(n+1)∑

k=n

1
(k + 1)mk

≤ B + mn
n(C2 − 1) + C2 + 1

(n + 1)mn
≤ B + 2C2,

which is (snq) for M. �

4. Construction of Optimal Flat Functions for a Family of Non
strongly Regular Sequences

As deduced in Theorem 3.12, the construction of optimal {M}-flat functions
in sectors within an ultraholomorphic class, given by a regular sequence M̂,
provides extension operators and surjectivity results. Although such general
construction has been shown in Proposition 3.10, we wish to present here
a family of (non strongly) regular sequences for which an alternative, more
explicit technique works.

We recall that, for logarithmically convex sequences (Mp)p∈N0 , the con-
dition (dc) is equivalent to the condition log(Mp) = O(p2), p → ∞ (see [19,
Ch. 6]). On the other hand, the condition (mg) implies that the sequence is be-
low some Gevrey order (there exists α > 0 such that Mp = O(p!α) as p → ∞;
see e.g. [20,33]).

We will work, for q > 1 and 1 < σ ≤ 2, with the sequences Mq,σ :=
(qpσ

)p∈N0 . They are clearly weight sequences and, by (2.1), it is immediate
that γ(Mq,σ) = ∞, so they satisfy (snq) (see (2.3)). According to the previous
comments, they satisfy (dc) but not (mg). So, M̂q,σ is regular, but Mq,σ is not
strongly regular.

The case σ = 2 is well-known, as it corresponds to the so-called q-
Gevrey sequences, appearing in the study of formal and analytic solutions for
q-difference equations, see for example [3,7] and the references therein.

First, we will construct a holomorphic function on C \ (−∞, 0] which
will provide, by restriction, an optimal {Mq,σ}-flat function in any unbounded
sector Sγ with 0 < γ < 2. Subsequently, we will obtain such functions on
general sectors of the Riemann surface R of the logarithm by ramification.
This, according to Theorems 3.2 and 3.12, agrees with the fact that γ(Mq,σ) =
∞.

4.1. Flatness in the Class Given by Mq,σ

It will be convenient to note that for a fixed σ ∈ (1, 2], there exists a unique
s ≥ 2 such that σ = s/(s − 1).
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We start by suitably estimating the function

ωMq,σ
(t) = sup

p∈N0

ln
(

tp

qpσ

)
= sup

p∈N0

(p ln(t) − ps/(s−1) ln(q)), t > 0.

Due to the fact that ωMq,σ
(t) = 0 for t ≤ 1 [since m0 = M1/M0 = M1 =

q > 1 and by (2.7)], we will restrict our attention to the case t > 1. Obviously,
ωMq,σ

(t) is bounded above by the supremum of x ln(t) − xs/(s−1) ln(q) when x
runs over (0,∞), which is easily obtained by elementary calculus and occurs
at the point

x0 =
(

(s − 1) ln(t)
s ln(q)

)s−1

.

If we put

bq,s :=
1
s

(
s − 1
s ln(q)

)s−1

, (4.1)

then

ωMq,σ
(t) ≤

(
(s − 1) ln(t)

s ln(q)

)s−1

ln(t) −
(

(s − 1) ln(t)

s ln(q)

)s

ln(q) = bq,s lns(t), t > 1.

(4.2)

On the other hand, for t > qs/(s−1) (what amounts to x0 > 1) we also
have that ωMq,σ

(t) is at least the value of x ln(t) − xs/(s−1) ln(q) at x = �x0�,
that is,

ωMq,σ
(t) ≥

⌊(
(s − 1) ln(t)

s ln(q)

)s−1
⌋

ln(t) −
⌊(

(s − 1) ln(t)
s ln(q)

)s−1
⌋s/(s−1)

ln(q)

≥
((

(s − 1) ln(t)
s ln(q)

)s−1

− 1

)
ln(t) −

(
(s − 1) ln(t)

s ln(q)

)s

ln(q)

= bq,s lns(t) − ln(t). (4.3)

Lemma 4.1. For every t ≥ q2s/(s−1) it holds

bq,s lns(t) − ln(t) ≥ bq,s lns

(
t

qs/(s−1)

)
− ln

(
qs/(s−1)

)
. (4.4)

Proof. Observe that every t ≥ q2s/(s−1) may be written as t = qys/(s−1) for
some y ≥ 2. Then, we have that

bq,s lns(t) − bq,s lns

(
t

qs/(s−1)

)
= bq,s

(
s ln(q)
s − 1

)s (
ys − (y − 1)s

)

=
ln(q)
s − 1

(
ys − (y − 1)s

)
.



Optimal flat functions in Carleman–Roumieu Page 25 of 35    98 

By the mean value theorem, ys − (y − 1)s > s(y − 1)s−1, and since s ≥ 2
and y ≥ 2, we have (y − 1)s−1 ≥ y − 1. So we deduce that

ln(q)
s − 1

(
ys − (y − 1)s

)
>

s ln(q)
s − 1

(y − 1) = ln(t) − ln
(
qs/(s−1)

)
,

as desired. �

Combining (4.2) with (4.3) and (4.4), and using (2.4), we get

exp
(

−bq,s lns

(
1
t

))
≤ hMq,σ

(t)

≤ qs/(s−1) exp
(

−bq,s lns

(
1

qs/(s−1)t

))
, 0 < t ≤ q−2s/(s−1). (4.5)

We can say that these estimates express optimal {Mq,σ}-flatness.

4.2. Optimal {Mq,σ}-Flat Function in S2

The estimates in (4.5) suggest considering the function exp
(−bq,s logs

(
1/z

))
,

with, say, principal branches, as a candidate for providing optimal flat func-
tions. However, its analyticity in wide sectors is not guaranteed. Moreover,
even in small sectors around the direction d = 0, its behaviour at ∞ might
not be as desired: For example, when s = 2 it tends to 0 as 0 < x → ∞, what
excludes the possibility of proving the inequality in (3.1).

Because of these reasons, we will first define a suitably modified function
in the sector S2 = C\(−∞, 0], prove its flatness there, and then turn to general
sectors by composing it with an appropriate ramification.

We define

Gq,s
2 (z) := exp

(
−bq,s logs

(
1 +

1
z

))
, z ∈ S2, (4.6)

where the principal branch of the logarithm is chosen for both log and the
power w 	→ ws = exp(s log(w)) involved. Observe that if z ∈ S2, then 1+1/z ∈
C \ (−∞, 1], and so log(1 + 1/z) = ln(|1 + 1/z|) + i arg(1 + 1/z) /∈ (−∞, 0].
This ensures that the map

z 	→ logs

(
1 +

1
z

)
= exp

(
s log

(
log(1 +

1
z
)
))

is also holomorphic in S2, and so is Gq,s
2 .

In order that Gq,s
2 is an optimal {Mq,σ}-flat function in S2, we are only left

with proving the estimates (3.1) and (3.2). It turns out to be more convenient
to work with the associated kernel

e2(z) := Gq,s
2 (1/z) = exp(−bq,s logs(1 + z)), z ∈ S2,

and verify the following result.

Lemma 4.2. There exist positive constants C1, C2 such that

|e2(z)| ≤ C1e2(C2|z|), z ∈ S2.
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Proof. In the first place, we observe that for every z ∈ S2,

�(logs(z + 1)) = | logs(z + 1)| cos(arg(logs(z + 1)))
= | log(z + 1)|s cos(s arg(log(z + 1))). (4.7)

Now,

s| arg(log(z + 1))| = s

∣∣∣∣arctan
(

arg(z + 1)
ln |z + 1|

)∣∣∣∣ ≤ s

∣∣∣∣arctan
(

π

ln |z + 1|
)∣∣∣∣ .

(4.8)

Hence, setting

R0 := 1 + exp
(

π

tan (π/(2s))

)
≥ 2,

we get that |z| > R0 implies that |z+1| > R0−1 ≥ 1, and therefore ln |z+1| > 0
and

π

ln |z + 1| < tan
( π

2s

)
.

From this and (4.8) we deduce that cos(s arg(log(z+1))) > 0. Then, continuing
with (4.7),

�(logs(z + 1)) ≥ |�(log(z + 1))|s cos(s arg(log(z + 1)))

= lns |z + 1| − lns |z + 1| sin2(s arg(log(z + 1)))
1 + cos(s arg(log(z + 1)))

. (4.9)

Now, from the equality in (4.8) we see that s arg(log(z + 1)) → 0 as z → ∞ in
S2, and moreover

lim
z→∞
z∈S2

[(
sin2(s arg(log(z + 1)))

1 + cos(s arg(log(z + 1)))

) / (
s2 arg2(z + 1)
2 ln2 |z + 1|

)]
= 1.

Therefore, there exist R1 ≥ R0 and C > 0 such that

sin2(s arg(log(z + 1)))
1 + cos(s arg(log(z + 1)))

≤ C
1

ln2 |z + 1| , |z| > R1.

We deduce from (4.9) that for z ∈ S2 with |z| > R1,

�(logs(z + 1)) ≥ lns |z + 1| − C lns−2 |z + 1| ≥ lns(|z| − 1) − C lns−2(|z| + 1).
(4.10)

We would be almost done if we obtain, for the right-hand side in (4.10), a
lower bound in terms of, say, lns(1 + |z|/2) for |z| sufficiently large.

This is easy in case s = 2, for it suffices to take |z| > 4 in order to have
3 < 1 + |z|/2 < |z| − 1, and so if |z| ≥ R2 := max{R1, 4} we have

�(logs(z + 1)) ≥ lns(|z| − 1) − C ≥ lns

(
1 +

|z|
2

)
− C.
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In case s > 2, it is not difficult to check that

lim
x→+∞

(
lns(x − 1) − C lns−2(x + 1) − lns

(
1 +

x

2

))
= +∞,

so that, according to (4.10), there exists R2 ≥ R1 such that for z ∈ S2 with
|z| ≥ R2 one has

�(logs(z + 1)) ≥ lns

(
1 +

|z|
2

)
.

In any case, we can deduce an upper estimate of the form

|e2(z)| = exp
( − bq,s�(logs(z + 1))

)

≤ eC exp
(

−bq,s lns

(
1 +

|z|
2

))
= eCe2

( |z|
2

)
, z ∈ S2, |z| > R2.

Finally, since the function |e2(z)| stays bounded and bounded away from
0 for bounded |z| (in particular, it tends to 1 when z tends to 0 in S2), the
previous estimate can be extended to the whole of S2 by suitably enlarging
the constant C. �

We are ready for the main objective of this section.

Theorem 4.3. The function Gq,s
2 defined in (4.6) is an optimal {Mq,σ}-flat

function in S2.

Proof. The previous lemma ensures that there exist positive constants C1, C2

such that

|Gq,s
2 (z)| ≤ C1 exp

(
−bq,s lns

(
1 +

C2

|z|
))

, z ∈ S2. (4.11)

Observe that this inequality guarantees that |Gq,s
2 (z)| is bounded. As the

same is true for hMq,σ
(t) for every t ≥ t0 and any fixed t0 > 0 (see Lemma 2.1),

we only need to check the estimate (3.2) for small enough |z|.
For |z| ≤ C2 it is clear that ln(1 + C2/|z|) > ln(C2/|z|) ≥ 0. Then,

from (4.5) we have that

|Gq,s
2 (z)| ≤ C1 exp

(
−bq,s lns

(
1 +

C2

|z|
))

≤ C1 exp
(

−bq,s lns

(
C2

|z|
))

≤ C1hMq,σ

( |z|
C2

)
, |z| ≤ C2q

−2s/(s−1),

and we have proved (3.2).
Now, let us note that Gq,s

2 (x) is bounded away from 0 as soon as x ≥ r
for any fixed r > 0, since then

exp (−bq,s lns (1 + 1/r)) ≤ Gq,s
2 (x).

Again, we only need to check the estimate (3.1) for small enough x.
Indeed, we have for x > 0 that

Gq,s
2 (x) = exp

(
−bq,s lns

(
1
x

))
exp

(
−bq,s

[
lns

(
1 +

1
x

)
− lns

(
1
x

)])
.
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The mean value theorem gives that lns(1 + 1/x) − lns(1/x) tends to zero
if x ↘ 0, and we deduce that there exists L such that

Gq,s
2 (x) ≥ L exp

(
−bq,s lns

(
1
x

))
, x ≤ q−s/(s−1).

The second inequality in (4.5) implies now that, as long as x ≤ q−s/(s−1),
we have

Gq,s
2 (x) ≥ Lq−s/(s−1)hMq,σ

(
x

qs/(s−1)

)
,

and so (3.1) holds. �

4.3. Optimal {Mq,σ}-Flat Function in Arbitrary Sectors

Let us consider a sector Sγ ⊂ R with γ > 2, and define the function

Gq,s
γ (z) := exp

(
−bq,s

(γ

2

)s

logs
(
1 + z−2/γ

))
=

(
Gq,s

2 (z2/γ)
)(γ/2)s

, z ∈ Sγ .

(4.12)
The map z 	→ z2/γ is holomorphic from Sγ into S2, and so Gq,s

γ is holo-
morphic in Sγ . We will prove that this function is an optimal {Mq,σ}-flat
function in this sector.

As before, we consider the kernel

eγ(z) := Gq,s
γ (1/z) = exp

(
−bq,s

(γ

2

)s

logs
(
1 + z2/γ

))

=
(
e2(z2/γ)

)(γ/2)s

, z ∈ Sγ .

Lemma 4.4. There exist constants B1, B2 > 0 such that

|eγ(z)| ≤ B1e2(B2|z|), z ∈ Sγ . (4.13)

Proof. According to the definition of eγ and by applying Lemma 4.2, there
exist constants C1, C2 > 0 such that for every z ∈ Sγ one has

|eγ(z)| =
∣∣∣e2(z2/γ)

∣∣∣
(γ/2)s

≤
(
C1e2(C2|z|2/γ)

)(γ/2)s

.

We recall that the function |e2(z)| stays bounded for bounded |z|; from
the previous estimates, the same can be said about |eγ(z)|, and so we can
prove (4.13) by restricting our considerations to large enough values of |z| and
well chosen B2 > 0, and then suitably enlarging the constant B1 > 0 involved.
Let us observe that

(
e2(C2|z|2/γ)

)(γ/2)s

= exp
(
−bq,s lns

[
(1 + C2|z|2/γ)γ/2

])
,

e2(B2|z|) = exp (−bq,s lns(1 + B2|z|)) .

So, we will be done if we see that

lns(1 + B2|z|) − lns[(1 + C2|z|2/γ)γ/2]
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admits an upper bound for large enough |z| and suitably chosen B2 > 0. But
this follows from the clear fact that

lns(1 + B2|z|) − lns

[(
1 + C2|z|2/γ

)γ/2
]

∼ −s ln

(
C

γ/2
2

B2

)
lns−1(1 + B2|z|), |z| → ∞,

where ∼ means that the quotient of both expressions tends to 1. Indeed, in
view of this equivalence it suffices to choose any B2 < C

γ/2
2 in order to have

the desired estimation for suitably large B1 and |z|. �

Corollary 4.5. The function Gq,s
γ defined in (4.12) is an optimal {Mq,σ}-flat

function in Sγ .

Proof. By the previous lemma, there exist B1, B2 > 0 such that

|Gq,s
γ (z)| ≤ B1 exp

(
−bq,s lns

(
1 +

B2

|z|
))

, z ∈ Sγ .

Note that this estimate is essentially that in (4.11), and so the conclusion
follows in exactly the same way as in the proof of Theorem 4.3. �

Remark 4.6. We mention that a similar approach has been followed in the
preprint [11], by A. Lastra and the first and third authors, in order to con-
struct extension operators for the ultraholomorphic classes associated with the
sequences M

τ,σ = (pτpσ

)p∈N0 , for τ > 0 and σ ∈ (1, 2). These sequences have
appeared in a series of papers by Pilipović et al. [23–26], inducing ultradiffer-
entiable spaces of so-called extended Gevrey regularity. However, in that case
the construction of suitable kernels for our technique involves the Lambert
function, whose handling is not so convenient. This fact has caused our results
to be available only in sectors strictly contained in S2, in spite of the fact that
γ(Mτ,σ) = ∞, what would in principle allow for such extension operators to
exist in sectors of arbitrary opening.

5. Convolved Sequences, Flat Functions and Extension Results

We show in this section that whenever two weight sequences are given and
there exist optimal flat functions in the respectively associated classes, then
optimal flat functions exist in the class defined by the so-called convolved
sequence as well (given by the point-wise product). Moreover, the extension
technique works if one of the convolved sequences satisfies (dc).

On the one hand the abstract statement is a straight-forward consequence
of a result by H. Komatsu, see Remark 5.1 for more details. On the other hand
this approach can be useful for constructing (counter-)examples. In general
even for nice sequences the convolved sequence can behave complicated, see
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Sect. 5.3, and so a direct explicit construction of optimal flat functions in the
class defined by the convolved sequence will be challenging.

5.1. Convolved Sequences

Let M
1 = (M1

p )p∈N0 , M
2 = (M2

p )p∈N0 be two sequences of positive real num-
bers, then the convolved sequence L := M

1 � M
2 is (Lp)p∈N0 given by

Lp := min
0≤q≤p

M1
q M2

p−q, p ∈ N0,

see [16, (3.15)]. Hence, obviously M
1 � M

2 = M
2 � M

1.
For all p ∈ N0 we have Lp ≤ min{M1

0M2
p ,M2

0M1
p }. So, if in addition

M1
0 = M2

0 = 1, then we get L0 = 1 and

Lp ≤ min{M1
p ,M2

p }, p ∈ N0. (5.1)

Given M = (Mp)p∈N0 with M0 = 1, put L = (Lp)p∈N0 = M � M. The
condition (mg) states precisely that there exists A > 0 such that Mp ≤ ApLp

for every p ∈ N0; according to (5.1), M satisfies (mg) if and only if M and
M � M are equivalent.
Remark 5.1. Let M,M1,M2 be weight sequences.

(i) In [16, Lemma 3.5] the following facts are shown: M1�M2 is again a weight
sequence. The corresponding quotient sequence m1�m2 is obtained when
rearranging resp. ordering the sequences m1 and m2 in the order of
growth. This yields, by definition of the counting function (see (2.6)),
that for all t ≥ 0 one has

νm 1�m2(t) = νm 1(t) + νm 2(t);

so, by (2.7) we get

ωM1�M2(t) = ωM1(t) + ωM2(t), t ≥ 0,

and by (2.4) we obtain

hM1�M2(t) = hM1(t)hM2(t), t > 0. (5.2)

(ii) If either M
1 or M

2 has (dc), then M
1 � M

2 as well: As said before, for
sequences (Mp)p∈N0 satisfying (lc), the condition (dc) amounts to the
condition log(Mp) = O(p2), p → ∞. Then, it suffices to apply (5.1).

(iii) As seen in item (i), for every t ≥ 0 we have

2ωM(t) = ωM�M(t).

Since M satisfies (mg) if and only if there exists H ≥ 1 such that

2ωM(t) ≤ ωM(Ht) + H, t ≥ 0

(see [16, Prop. 3.6]), it turns out that (mg) amounts to the fact that

ωM�M(t) ≤ ωM(Ht) + H, t ≥ 0,

for some H ≥ 1, or in other words,

hM(t) ≤ eHhM�M(Ht), t > 0.
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5.2. Optimal Flat Functions and Extension Procedure

Let M1 and M
2 be weight sequences such that optimal flat functions GM1 and

GM2 exist in the corresponding classes with uniform asymptotic expansion in
a given sector S. Then, we claim that GM1�M2 := GM1 · GM2 is an optimal
flat function (on the same sector S) in the class associated with the sequence
M

1 � M
2. Suppose Km and Jm, m = 1, 2, 3, 4, are the constants appearing

in (3.1) and (3.2) for GM1 and GM2 , respectively. By (5.2) we get that, for all
z ∈ S,

|GM1(z) · GM2(z)| ≤ K3hM1(K4|z|)J3hM2(J4|z|) ≤ K3J3hM1(D|z|)hM2(D|z|)
= ChM1�M2(D|z|),

with C := K3J3 and D := max{K4, J4}, since each function hM is nondecreas-
ing. Similarly, for x > 0 we can estimate

GM1(x) · GM2(x) ≥ K1hM1(K2x)J1hM2(J2x)

≥ K1J1hM1(D1x)hM2(D1x) = C1hM1�M2(D1x),

with C1 := K1J1 and D1 := min{K2, J2}, and the conclusion follows.
In case at least one of the sequences M

1 and M
2 satisfies (dc), M1 � M

2

does so, and the extension operators from Theorem 3.12 will be available for
the convolved sequence.

5.3. Some Examples

Fix q > 1 and σ ∈ (1, 2]. Let us put Lq,σ := Mq,σ � Mq,σ, Lq,σ = (Lp)p∈N0 . It
is not difficult to check that

L2p = q2pσ

, L2p+1 = qpσ+(p+1)σ

, p ∈ N0.

Observe that 2pσ = 21−σ(2p)σ, so that L2p equals the 2p-th term of the
sequence Mq21−σ ,σ. Regarding the odd terms, it is a consequence of Taylor’s
formula at x = 0 for the functions of the form x 	→ (1 + x)α, α > 0, that

pσ + (p + 1)σ − 21−σ(2p + 1)σ = O(pσ−2), p → ∞.

Since σ ∈ (1, 2], we deduce that Lq,σ is equivalent to Mq21−σ ,σ.
According to Sect. 5.2, an optimal flat function in the class associated

with Lq,σ in, say, the sector S2 is the function

G(z) := Gq,s
2 (z)Gq,s

2 (z) = exp
(

−2bq,s logs

(
1 +

1
z

))
, z ∈ S2.

It is not a surprise that, from the Definition (4.1) of bq,s and the relation

between σ and s, one obtains bq21−σ ,s = 2bq,s, and so G is precisely Gq21−σ
,s

2 ,
what agrees with the aforementioned equivalence of sequences.

If we consider instead 1 < σ < 2 and J := Mq,σ � Mq,2, J = (Jp)p∈N0 ,
the computation of the terms Jp is no longer possible in closed form, since
their values depend for general p on the position of σ within the interval (1, 2).
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However, the previous subsection shows that, for s associated with σ as usual,
the function

G(z) := Gq,s
2 (z)Gq,2

2 (z)

= exp
(

−bq,s logs

(
1 +

1
z

)
− bq,2 log2

(
1 +

1
z

))
, z ∈ S2,

is an optimal flat function in the class associated with J in S2. Note that s
is not equal to 2, hence the very aspect of the exponent in this function, and
the fact that the restriction G|(0,∞) is closely related to the function hJ (see
Definition 3.3), shows that J is not equivalent to any of the sequences Mq,σ.
Since the sequence J does satisfy (dc), the extension procedure described in
this paper is available for the classes associated with J.

Observe that these examples of optimal flat functions can also be provided
in general sectors Sγ , γ > 2, by using the functions Gq,s

γ introduced in (4.12).

Author contributions All authors contributed to the study and the preparation
of previous versions of the manuscript. All authors read and approved the final
manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agree-
ment with Springer Nature. The first three authors are partially supported by
the Spanish Ministry of Science and Innovation under the project PID2019-
105621GB-I00. The fourth author is supported by FWF-Project P33417-N.

Data Availibility Data sharing not applicable to this article as no datasets
were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no relevant financial or non-financial
interests to disclose.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Optimal flat functions in Carleman–Roumieu Page 33 of 35    98 

References

[1] Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary
Differential Equations. Springer, Berlin (2000)

[2] Bang, T.: The theory of metric spaces applied to infinitely differentiable func-
tions. Math. Scand. 1, 137–152 (1953)
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[25] Pilipović, S., Teofanov, N., Tomić, F.: A Paley–Wiener theorem in extended
Gevrey regularity. J. Pseudo-Differ. Oper. Appl. 11, 593–612 (2020)
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