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ABSTRACT

In this paper, we study the optimal management of an aggregated pension fund of defined benefit type
by means of a differential game with two players, the firm and the participants. We assume that the fund
wealth is greater than the actuarial liability and then the manager builds a pension fund surplus. In order
to contemplate sudden changes in the financial market, the surplus can be invested in a portfolio with
a bond and several risky assets where the uncertainty comes from Brownian motions and Poisson pro-
cesses. The aim of the participants is to maximize a utility of the extra benefits. The game is analyzed in
three scenarios. In the first, the aim of the firm is to maximize a utility of the fund surplus, in the second,
to minimize the probability that the fund surplus reaches a low level, and in the third, to minimize the
expected time of reaching a benchmark surplus. An infinite horizon is considered, and the game is solved
by means of the dynamic programming approach. The influence of the jumps of the financial market on

the Nash equilibrium strategies and the fund surplus is studied by means of a numerical illustration.

© 2023 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The role of pension plans in the economy has become more rel-
evant in this time due to the importance for the manager and the
plan participants to guarantee future benefits that allow them to
have a reasonable standard of living. In the case of defined benefit
(DB henceforth) pension plans, where benefits are fixed in advance,
the manager has to comply with the liabilities, then it is the firm
that takes the financial risk. But at the same time, the manager
will be rewarded with the returns of the optimal investment of the
fund, so there is an intrinsic motivation to find an optimal invest-
ment strategy. In this way, participants will receive the promised
benefits at the end of the plan. When the fund assets achieve high
values, both manager and participants can obtain extra benefits,
even in a non-cooperative scenario. In this paper we consider a
game to distribute the fund surplus between both. Thus, the firm
is not the only agent and its aim is not to default the promised
payments as in other pension models.
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According to the Thinking Ahead Institute, in 2021, DB funds
account for 63.5% of the total assets of the world’s leading pension
funds, as shown in Hodgson et al. (2022). The reason for this is
the advantage of the participant in making the manager concerned
about the fund’s solvency instead themselves, and having ensured
a final benefit in advance. On the other hand, the DB pension plans
continue to be important in the OCDE countries because their pen-
sion systems are of DB type, as described Table 2 in Urbano et al.
(2021). These are some reasons why it is still pertinent to analyze
this type of pension plan.

The optimal management of pension plans using techniques of
dynamic programming has been studied in the specialized litera-
ture. The first papers date back to Haberman & Sung (1994), where
dynamic programming in discrete time was applied to a DB pen-
sion plan model. Later, Boulier et al. (1995); Cairns (2000) and
Josa-Fombellida & Rincén-Zapatero (2001), used dynamic program-
ming in continuous time by means of the accommodation of the
portfolio selection problems, presented in Merton (1971), to pen-
sion plans, both DB and defined contribution type. Other rele-
vant papers are Baltas et al. (2022); Boulier et al. (2001); Chang
et al. (2003); Gao (2009); Gerrard et al. (2004); Hainaut (2014);
Hainaut & Deelstra (2011); Josa-Fombellida & Rincén-Zapatero
(2004); Le Courtois & Menoncin (2015); Li et al. (2021) and Zhao
& Wang (2022).
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Fig. 1. Bitcoin evolution from January 2019 to September 2021.

Attending to the gap between liabilities and fund assets, there
are two different types of defined benefit pension plans. When
liabilities are more than assets, then we are referring to an un-
derfunded pension plan. However, when assets are over liabilities,
then the pension plan is overfunded. Although most of the DB pen-
sion plans are underfunded, a good investment or a bull market
can result in a plan being overfunded. Silverblatt (2019), Exhibit 2,
showed that some companies of the S&P 500 had overfunded pen-
sion plans, concretely 43 firms in 2017 and 46 in 2018. In an over-
funded plan, the manager can decide how to invest a fund surplus
in the stock market in order to give the possibility of providing ex-
tra benefits to the participants. There is no standard rule to define
the best strategy to follow in these cases, but the extra benefits
obtained due to the surplus investment can be a good incentive to
participants. Josa-Fombellida & Rincén-Zapatero (2019) have stud-
ied this approach by means of a non-cooperative overfunded pen-
sion plan game, where the investment of the surplus (to provide
additional benefits to the participants) is realized in a standard
stock market where the uncertainty comes from Brownian mo-
tions. We propose, however, a new scenario of investment where
the financial market is more realistic, allowing jumps.

The appearance of jumps is observed in the financial markets
in periods that not necessarilly coincides with a global economic
or health crisis. Wu (2003) analyzed and calibrated a jump model
with U.S. stock market index (S&P 500), concluding that jumps are
an inherent part of the asset price movement. Several authors have
taken into account jumps to model the risky asset price coming
from this and other markets. More intensity is observed in new
emerging markets as Nasdaq and cryptocurrencies. News or events
can have a big impact on financial market values, specially con-
cerning these new markets. As an example to demonstrate this,
we show the evolution of Bitcoin over time because it is visual-
ized more clearly. Although it is not the main market for investing
pension funds, there have recently been pension funds that have
partially invested in the cryptocurrency market. Figure 1 shows
the evolution of the Bitcoin price from January 2019 to September
2021. Some remarkable facts in the period studied, during which
the price fell or rose suddenly around 25% are: the lockdown and
the vaccine discoveries by the worldwide pandemic of COVID-19,
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the Tesla investment announcement in Bitcoin or the sale of its
shares, and the new regulations of the Chinese government with
a crackdown on cryptocurrency. For all these reasons, it is not
strange to see sudden shocks in the time series of the stock mar-
ket and it is important to be prepared to deal with this type of
events. At the same time, it may also be possible to take advan-
tage of the higher benefits that can be obtained from them. Jump
diffusion processes, where uncertainty comes from Brownian mo-
tions and Poisson processes, can then be a great option to model
these sudden changes in the series. Although we have now con-
sidered the Bitcoin example, in the numerical illustration of this
paper we will work with the S&P500.

There has been literature referring to jumps since the dy-
namic programming approach in continuous time. The first one
was Merton (1971), describing a model composed of a riskless
bond and several risky assets, whose uncertainty is modeled sep-
arately by a Brownian motion and a Poisson process. Later, Wu
(2003) considered that the risky asset is a jump diffusion pro-
cess in a dynamic asset allocation problem, while Guo & Xu
(2004) studied a mean-variance portfolio selection problem where
the prices of stocks follow a jump-diffusion process with Pois-
son jumps. In addition, Ngwira & Gerrard (2007) introduced the
Poisson jumps in the risky asset of a dynamic defined bene-
fit stochastic pension plan model. In Josa-Fombellida & Rincén-
Zapatero (2012), the management of a defined benefit pension
plan model is also considered, but one where both benefits and
risky assets are jump diffusion processes. Finally, Zhang & Guo
(2020) consider the management of a defined contribution pension
plan where the salary and the risky asset are both jump diffusion
processes.

We assume an interaction between the two agents, the firm
(through the manager) and the participants (through the union of
these workers), as a dynamic game in a pension plan with jumps.
Leong & Huang (2010) applied this concept to the dividend pay-
ments of a government, modeling this as a stochastic differential
game; as well as Guan & Liang (2016), where the interaction be-
tween two different pension plans is fitted as a dynamic game.
Later, Josa-Fombellida & Rincén-Zapatero (2019) considered a game
for a unique pension plan where the firm and the participants
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are the players. Guan et al. (2022) have recently analyzed a ro-
bust stochastic game built from the defined benefit pension plan
model of Josa-Fombellida & Rincén-Zapatero (2019), but without
jumps. Nevertheless, in this paper, we are considering the game
for a unique pension plan extending the model of Josa-Fombellida
& Rincon-Zapatero (2019), so the challenge is to find the equilib-
rium strategies for both the manager and the participants with the
addition of Poisson uncertainty. This increases the technical diffi-
culties to apply the Hamilton-Jacobi-Bellman (HJB henceforth) sys-
tem and get totally explicit solutions. Three scenarios of the game
are considered according to the preferences of the firm. In the first,
the firm maximizes a utility of the surplus, in the second, min-
imizes the probability that the surplus reaches a low value, and
in the third, minimizes the expected time of reaching an objective
surplus value. The main novelties of the current paper with respect
to Josa-Fombellida & Rincon-Zapatero (2019) are: 1) the risky as-
sets are stochastic processes with Poisson jumps in addition to the
Brownian motion; 2) the effects of the sign and intensity of the
jumps on the Nash equilibrium strategies and on the fund surplus
are studied; 3) the time evolution of the fund surplus is analyzed;
and 4) the study of the new third game scenario.

With this modeling, we found that small or big jumps in the
risky assets have an impact on the time evolution of the fund sur-
plus. Moreover, jumps give relevance to the effect of the risk aver-
sion on the returns of the investment. The same conclusion was
obtained for the worker’s extra benefit ratio, where the interaction
between risk aversion and Poisson uncertainty determines whether
or not benefits increase. The model illustrates that, with a bull eco-
nomic regime, the benefits increase for low values of the risk aver-
sion parameters and decrease for high values. In addition, with a
bull market and upward jumps, a greater intensity of the jumps
produces an increase in surplus and extra benefits, but at the cost
of slightly increasing the investment. Upward jumps in the bear
market bring about a decrease in the investment with respect to
the risk aversion, but with downward jumps it increases and the
manager should short sell.

Likewise, in the first game scenario, the jump intensity has a
higher impact on the benefits in a bull regime than in a bear
regime, especially when jumps are negative. This makes sense
since, when the market declines prominently, benefits will be neg-
atively affected at the retirement time. In this same scenario, with
a bull market, the investment is decreasing in line with the risk
aversion, but independently of the jump type, and borrowing is
necessary with low risk aversion. However, borrowing can be nec-
essary with a bear market and downward jumps. In the second
game, with a bull regime, the investment is a concave function of
the risk aversion (increases until a moderate value and then de-
creases), and neither borrowing nor shortselling are necessary. In
the third game, the optimal growth portfolio of Merton’s model
is the investment equilibrium strategy when there are no jumps.
More fund surplus is obtained than with the other scenarios, be-
cause when a low value is reached, this fact is not taken into ac-
count.

The paper is structured as follows. Section 2 establishes the
basis of the DB pension plan, describes the financial market where
the surplus operates and obtains its evolution. At the end of the
section, the admissible strategies and the Markov perfect Nash
equilibrium concepts are presented in a general framework for this
model. Three scenarios for the game in an infinite horizon are con-
sidered. The aim of the participants is to maximize a CRRA utility
function of the benefits in all scenarios. In the first game scenario,
the firm maximizes a CRRA utility of the surplus, in the second,
minimizes the probability that the surplus reaches a low value and,
in the third, minimizes the expected time for reaching a high aim
surplus value. The Nash equilibrium strategies for both players are
shown and analyzed for the first game scenario in Section 3 and
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for the second and third in Section 4. Section 5 contains a sen-
sitivity analysis of the equilibrium strategies and surplus with
respect to the jump and risk aversion parameters. In Section 6, we
establish some conclusions and propose further related research.

2. The pension game

Consider an overfunded defined benefit pension plan, that is,
there are more fund assets than liabilities. The firm creates a fund
surplus and from it decides to negotiate dynamically extra benefits
between the firm and the representatives of the participants. This
excess pension benefit is added to the agreed benefits at the mo-
ment of retirement. We model this conflict between the firm and
the union as a non-cooperative dynamic game with two agents, the
fund manager or the owner of the firm and the union that repre-
sents the workers or participants. The main objective of the firm
is to keep the fund surplus at an acceptable level and the aim of
the workers is to increase the extra benefits or premium benefits
as much as possible.

In this section, we describe the first elements of the game. The
fund surplus is invested in a financial market composed of one
riskless asset and several risky assets. In order to include the sud-
den variations of the market, the uncertainty is modeled by Brow-
nian motions and Poisson processes. The players’ payoffs and the
Nash equilibrium strategies are defined for a general framework,
which are specified in three game scenarios in the next sections.
The game is an extension of the pension game analyzed in Josa-
Fombellida & Rincén-Zapatero (2019) that includes Poisson jumps
in the model.

2.1. The financial market

Following Josa-Fombellida & Rincon-Zapatero (2012), we
suppose that the risky assets are jump diffusion processes
where the wuncertainty is given by Brownian motions and
Poisson processes. To model the pension game, we consider
a probability space (QY,#W%,P%), where PW is a probabil-
ity measure on QY and FW ={%"}o is a complete and
right continuous filtration generated by the [-dimensional
standard Brownian motion w = (wy,...,w;)T, that is to say,

FW =o{(w(s),....,wi(s)); 0<s<t}, t=0. We also con-
sider an m-dimensional Poisson process N = (Nq,...,Nm)T
with constant intensity A= (A1,....,Am)T, Af,....Am€Ry,

defined on a complete probability space (QN,.ZN PN), where
FN =0 {(N1(s),....Nn(s)); 0 <s <t}, t > 0. Note that the process
H;(t) = N;(t) — At, i=1,...,m, is an .ZN-martingale, which is
called the compensated Poisson process; see Jeanblanc-Picqué &
Pontier (1990) and Garcia & Griego (1994). This fact facilitates
the stochastic calculus and the use of the dynamic program-
ming method. Let (Q,.7,P)=(Q" x QN, 7% g ZN P g PV)
denote the product probabilistic space. We suppose w and N are
independent processes on this space.

The plan sponsor manages the fund in an unbounded planning
horizon by means of a portfolio formed by n risky assets S, ..., S,
which are extended geometric Brownian motions (GBM henceforth,
stochastic processes extending the deterministic exponential func-
tion),! and a riskless asset or bond S (its price is an exponential

1 The extented GBM with Poisson jumps is a particular case of the exponential
Lévy process where the jump process is a Poisson process. Following, for instance,
Oksendal & Sulem (2005) or Hanson (2007), in the scalar case, the risky asset S can
be expressed in the exponential form as follows: S(t) = se(b=0?/2t+ow(O) (1 4 )NO,
and then, it is positive. This property will be observed for the equilibrium fund
surplus in the three scenarios considered along the paper. Other papers, such as
Bihary et al. (2020), have used and analyzed a class of exponential Lévy processes
to model holding stocks.
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Fig. 2. Jumps of the Bitcoin prices from January 2019 to September 2021.

function), as proposed Guo & Xu (2004), that is, whose evolutions
are given by the equations:

ds®t) =rs°(t)dt, S°(0) =1, (1)
) ) 1 m
dsi(t) = S' (t—)(b,-dt + 3 oyjdw;(6) + Z(pidek(t)),
j=1 k=1
Si0) =s5>0, i=1,...,n. (2)

Here r > 0 denotes the short risk-free rate of interest and
b; > 0 the mean rate of return of the risky asset Si. The uncer-
tainty parameters are the volatility coefficients oj; >0 and the
jump magnitude coefficients @; > —1. It is usual to assume that
bi + 3 pq Aggy > 1, for each i=1,...,n, so the manager has in-
centives to invest with risk. The matrix (oj;) is denoted by o, the
matrix () is denoted by ¢, b is the (column) vector (bq,...,by)"T
and 1 is the (column) vector of 1's. We will suppose that the sym-
metric matrix ¥ = oo and the matrix (o|@)(o|@)T are positive
definite.

Consider again the Bitcoin example as an illustration. In order
to estimate the value of the parameters of the jump diffusion pro-
cess, we use the logarithms of the returns and a variation is con-
sidered as a jump when its absolute value is higher than the quan-
tile 0.9995. Figure 2 shows the downward and upward jumps of
the Bitcoin price from January 2019 to September 2021.

A standard estimation of the values of the parameters was car-
ried out considering one Brownian motion and two Poisson pro-
cesses. The parameters b and o are estimated as in Josa-Fombellida
& Rincon-Zapatero (2019), and the intensity jump parameters as
the mean of the jumps over the total number of days and the
diffusion jump parameters as the mean of the jump amplitudes.
Table 1 shows the estimated values of the parameters.

2.2. The fund surplus

Since the pension plan is overfunded, the union claims extra
benefits P over the excess fund, or fund surplus X, to be dis-
tributed among retired workers. The fund surplus X > 0 is invested
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Table 1

Estimated values of the parameters.
b o A 1 A2 ©2
3.199279 1.255706 0.004032258 0.160932 0.006048387 —0.1982548

in the riskless asset SO and in the n risky assets S!,..., S, Let
Il = (mq,...,7mn) ", where each 7; is the proportion of surplus to
be invested in S, so that 1 — Y, 7; is invested in SO. Borrowing
and shortselling are allowed. A negative value of 7; means that the
sponsor sells a part of the risky asset S' short while, if 7; is larger
than 1, he or she then gets into debt to purchase the corresponding
stock, borrowing money at the riskless interest rate r.
The dynamics of the surplus X is driven by

dsi(t)
Si(t)

KO = Y mOX©
i=1

dso(t)

(0

with X(0) = x > 0. By substituting (1) and (2) in (3), the dynamic
surplus evolution under the investment policy IT is

dX(t) = (rX(t) ST () (b — rDX(6) — P(t))dt

+ T ()X (t)o dw(t) + TIT ()X (t)p dN(t),
with the initial condition X(0) = x> 0.

(1= Xmo)xo — P(tydt, (3)

i=1

(4)

2.3. The players’ strategies

The firm chooses the portfolio and the union chooses the ben-
efits. A strategic profile (P,IT1) is called admissible if the extra
benefits strategy {P(t) : t > 0} and the investment strategy {TI(t) :
t > 0} are Markovian processes and stationary, P = P(X) and I1 =
I1(X), adapted to filtration {.%};~0, and P(t) and TII(t) are .%-
measurable, Vt > 0, and such that they satisfy the integrability
condition

T T
IE/ P(t)dt +IE/ M7 ()T (t)dt < 0o, VT > 0.
0 0
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Thus, the stochastic differential equation (SDE henceforth) (4) ad-
mits a unique solution for every initial condition X (0) = x. We de-
note by AY x AF the set of admissible strategy profiles.

Given an initial condition x, we denote the payoff of the union
with the admissible strategy (P, IT) as Jy(x; P, IT) and the payoff
of the firm Jg(x; P, IT). As introduced in Josa-Fombellida & Rincén-
Zapatero (2019), in a dynamic non-cooperative setting, the relevant
solution concept is the Markov perfect Nash equilibrium (MPNE
henceforth).2 An MPNE of the pension game is a pair of admissible
strategies (P*, IT*) € AU x AF, such that, for any (P, I1) € AU x AF
for any x > 0

Ju(x: P* I17) = Ju (x; P ITF),
Jr(x; P IT7) = Jp (x: P*, IT).

The value functions of the union V;; and the firm Vi are, respec-
tively,

Vy(x) = max {Jy (x; P, TT*) : s.t. (4) and X(0) = x},
PeAY

Vr(x) = max {Jr(x; P*, TT) : s.t. (4) and X(0) = x},
MeAF
that is,
Vo (X) =Ju(x; P*, TT7),
Ve (x) = Jp (x; P*, IT%).

The next sections describe the players’ payoffs in three situa-
tions. In all of them, the aim of the union is to maximize a utility
of the extra benefits. In the first, the firm wants to maximize a
utility of the fund surplus, while in the others, the firm minimizes
the probability that the fund surplus will reach a low level, be-
fore an objective high level or minimizes the expected time that it
takes to reach a benchmark level. The Nash equilibrium strategies
are analyzed in all of them.

3. Nash equilibrium strategies when the firm maximizes a
utility of the fund surplus

In this section, we consider the first game scenario where the
firm maximizes a utility function of the surplus. This objective
makes the DB plan attractive to the participants.

As said before, the workers union controls P. The payoff of the
union, to be maximized on the class of the admissible controls AY,
is:

oo
Jo P = By [ e etu(p(o)de, (5)
0
where u is a utility function of benefits and « > 0 is the time pref-
erence of the union. Here Ey denotes the conditional expectation,
given that X(0) = x. The firm controls I1. The payoff of the firm, to
be maximized on the class of the admissible controls AF, is:
oo
S P =By [ e Puco), (6)
0
where v is a utility function of the surplus and g > 0 is the time
preference of the manager. We consider CRRA utility functions:>

Pr 1
u(P)=ﬁ, y>0y#1,

1= _
v(X):%, 5081,

2 References as Basar & Olsder (1999) and Dockner et al. (2000) can be consulted.
3 When y =1 or § =1, the utility functions considered are of logarithmic type:
u(P) =InP, v(X) =In X.
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These functions are both increasing and strictly concave. We are
assuming both players are risk-averse, y,§ > 0. When 0 < y,§ < 1,
they are low risk-averse, when y = § =1, they are moderate risk-
averse, and when y, 8 > 1, they are high risk-averse.

In order to solve the game with the dynamic programming ap-
proach, we obtain the HJB equations. We extend the arguments fol-
lowed in Josa-Fombellida & Rincén-Zapatero (2012) to game theory
in the sense of Dockner et al. (2000). Let V; and V¢ be the value
function of the players, respectively; then, the HJB system of PDEs
is

P17 1

aVy(x) = max { Ty

+(rx+ T (b—rx—P)V (x)}

1 m n

+ TSRV 0+ 3 h(Vo (x4 Yo mixou) = Vo ).
k=1 i=1

1-6

BVr(x) = max { % + (rx+TI7 (b= r)x — P)Vi(x)

m
+ %HTE Ve (%) + ) Ay
k=1

<VF (X + i:ﬂi?“/)ik) - VF(X)> }

From the optimality conditions, one gets

PV —Vj(x)=0=P= (V,(x)) 7, (7)
n
(b — N)xVL (%) + Z a; X VY (x)
j=1
m n
+ Y MVi (x + anmpjk><p,-kx =0, (8)
k=1 j=1
for alli=1,...,n, where g;; = Zi;:l Oip0jp, that is to say, the ele-
ment (i, j) of matrix £ = oo ". Plugging into the HJB system,
-1 Y _ g
aVy(x) = Ty m(v{,(x))] VY 4 V(%) + TTT (b — r1)xV (%)

1 m n
+ 5 TSV (%) + Z Ak (VU (x + Z ni)«p,-,() - W (x)),
k=1 i=1

9)
prrio = = 7 (b - rDx — (Vy() ™7 )W)
Fx_ﬁ-i-(rx-i- —rhx— () )Fx
1 m n
+ il'[TEJ X2V (x) + gkk (VF (x + gnimp,—k) — Ve (x)).

(10)

The following result shows the Nash equilibrium benefit and in-
vestment strategies and the equilibrium fund surplus for the first
game scenario.

In order to simplify the length of some equations along the pa-
per, we denote

WL, p) i=r+T7(b-r) - %MHTEH

m
+ ﬁZ)\k((lﬁ—HTgok)]‘“—l), (11)
k=1

where @ >0, w# 1 and g, is the column k of the matrix ¢, k=
1,...,m. When p = 1, applying the L’'Hépital rule, we have

WL 1) = lim W(T ) = r+ 117 (b—1T)
n—

1 m
- EHTZHJrZ)\kln(lnLHT(pk)‘ (12)

k=1
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We assume the technical conditions: 1+ I1"¢, > 0, for all k.

Proposition 3.1. Consider the system of algebraic equations

n m
b,' —r—(SZaijnj+Zk,<(l +HT(pk)75(p,‘k =0, i= 1,...,n.
j=1 k=1
(13)
Assume that the constants A and B, determined by
> vy Y
(155 - wap)arr =1 (14)
B R Ay
(m—\p(n,a)ﬁ )B_m, (15)

where T is the vector of solutions of (13) and W (I1,.) is given by
(11), are both positive and finite. Then the value functions for the
game (5), (6), (4) are

x1-r 1
W a1
v =AT Ty
x1-3 1
Vp(x):B—l_S—iﬂ(]_a),

and the Nash equilibrium in feedback form is (P*, I1*), where
Pr(x) = A 17x, (16)

IT* is the constant determined by (13), and the equilibrium fund sur-
plus is the extended GBM with Poisson jumps given by

dX*(f) = (r ST (b—rT) — A*W>X* (t)dt
+ T o X" (t) dw(t) + T oX* () dN(t),
with X*(0) =x > 0.

(17)

Proof. Let us complete the previous arguments. Because it is not
possible to obtain IT explicitly from (8), we first try Vy(x) =

A’f__; - M ve(x) =B% — &, with A,B.M,N suitable con-

11—y
stants, in tr};e optimality conditions. From (7), we get that the ben-
efit P is explicitly found in terms of the surplus X, P = A~1/7x, that
is to say (16), where the constant A must be determined with the
HJB equation. From (8), we get that the vector of investments IT is
the constant proportion of surplus that solves the algebraic system
(13).

We now insert the expressions for Vj; and V¢ into the HJB equa-
tions above (9), (10). We obtain that M = 1/« and N = 1/, while
A and B are also the positive solutions to (14) and (15), where IT
is the vector of solutions of (13). Note that V/ < 0 because A > 0
and V{' < 0 because B > 0. Thus IT* and P* are the maximizers of
the HJB system.

Substituting (P*, IT*) in the SDE (3) of the surplus X* we get
(17). By Theorem 8.5 of Dockner et al. (2000), the proof concludes
when the transversality conditions

tlim eUE WV (X* (1)) = [lim e PELVE(X*(t)) =0 (18)
are checked. It is straightforward that the surplus evolution (4),
under the optimal strategies, is given by (17). It is an extended
GBM because the optimal investment IT* is constant in X. Thus,
adapting Arnold (1974), p. 139, to Poisson jumps, we obtain that
for a real number p,

)t

ﬁ*T *}
21'[ ZIT*t¢.

1

E(X*(£))P = xP exp {p(r+ M7 (b—rT) - AW - ST ST

m

+ Zkk((l + 7 g )P - 1)r +

k=1
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Replacing p by (1 —y) and later by (1 —§), we obtain that the
transversality conditions (18) are

A=y (wa.y) -a7) <a.
(1- 3)(\11(11*, 5) —A’”V) <B.

These two inequalities are equivalent to the non-negative assump-
tion of the constants A and B, respectively. O

As we have already discussed in Section 2.1, the fund surplus
can be expressed as follows

X*(t) = xexp {((r+ M (b-r1)—AVY - %H*TEH*)t
+ o w© I, (14 IO

and then it is positive almost surely because x >0 and 1+
[T*T ¢ > 0, for all k.

Note that, in the scalar case, where n=[=m=1, it is pos-
sible to check if a solution to (13) exists. A necessary condition
for a solution to exist is 1+ mw@ > 0, that is, the uncertainty of
the Poisson processes and the investment strategies are positively
compensated. If we define f(m)=b—r—o?n8+1(1+mp)lep,
then we have lim;_,_o f(;r) =00 and lim;_  f(r) = —o0, be-
cause § > 0. Thus, applying Bolzano’s Theorem, an investment
strategy m such that f(wr) =0 exists, that is, it is a solution of
(13). On the other hand, f'(7) = —8(02 + Ap?(1+m@)~0-1) <0,
then f(7r) is strictly decreasing and this implies uniqueness. If we
assume f(0) =b-—r+ Ap to be positive, then we have a unique
positive investment strategy if the condition 1+ 7w ¢ > 0 holds (for
instance, when ¢ > 0). Note that negative investments, that is, al-
lowing shortselling, can be found for negative diffusion jump pa-
rameters. Given a solution 7 of (13), it is straightforward to obtain
A and B from (14), (15).

Remark 3.1. It is not difficult to check that for logarithmic util-
ity functions u(P) = InP and v(X) = InX, the value functions of the
union and the firm are

1 1 1 .

W (x) = 5 Inx + &(lna -1+ ﬁ\ll(l'[ 1),
1lnx o + !

B B> B
where W(IT*,1) is given by (12), the MPNE is (P*, I1*), where

P*(x) = ax and IT* is the constant solution of (13), but for § =1,
and the fund surplus evolution is

Ve (x) = W (I, 1),

AX*(t) = (r FTT(b—rT) — oz)X*(t)dt
+ o X*(6) dw(t) + T X* (£) dN(t).

Remark 3.2. For A = 0, we are considering the pension game with-
out jumps. This case is also achieved for ¢ = 0. We obtain the
same value functions and equations (13)-(15), for A,B,m, as in
Josa-Fombellida & Rincén-Zapatero (2019), which allows the game
to be explicitly solved. In the particular case where o = 0, uncer-
tainty comes only from Poisson jumps.

The jump parameters intervene in the implicit expressions of
the constants A, B and the investment strategies I[1*. So they also
influence the value functions V; and Vg, the extra benefits P* and
the equilibrium surplus X*. From (14), the extra benefit relative to
surplus is the constant

23
e =2 LYy y),

A VY =
14 14
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where W(IT*, y) is given by (11), and then its first order derivative
with respect to the jump intensity A is

a 1
g =y (e ey ),
for each k. Note that it is positive when y > 1 and IT*T¢, > 0
and when y <1 and IT*Tg, < 0. In this case, the extra benefit
increases with the jump intensity A,. It is negative when y > 1
and IM*Tg, <0 and when y <1 and IT*T¢, > 0 (the extra ben-
efit decreases with the jump intensity). We can observe that the
extra benefit PY converges to —oo when the risk aversion parame-
ter tends to infinite. It is difficult to analytically examine the in-
fluence of the parameters on the equilibrium investment strate-
gies because it is not possible to obtain the investment explicitly
from (13). For this reason, we carry out a numerical analysis in
Section 5. However, first of all, we show a previous approximation
to an explicit form of the solutions in the following Remark.

Remark 3.3. For small jumps we can approximate the value of IT
by Taylor’s series. The most complicated terms to clear in (13) are
(14 M7 ¢,) =%, which can be approximated by 1 — 8T1" ;. Now, af-
ter the approximation, the system (13)-(15) can be solved explic-
itly. In order to simplify, we show the solution in the scalar case,

where n =1 =m = 1. The equilibrium investment strategy is
1b—r+A 1 0
PPN el s , (19)
8 o2 +rp? 8 [o2 1 )2
where 6 = % is the Sharpe ratio or market price of risk
@

of the portfolio, and it is assumed that b+ Ag >r, thus the

manager has more incentives to invest in the risky asset. Tak-

mg the approximation to be good, the first derivative 7/(8) =
0

—52 Wi 0, and then a greater risk aversion of the man-

ager § implies a lower investment 7. Analogously, investment 7
decreases when the Brownian uncertainty o2 increases. However

7'\ = —% > 0 when ¢ > 0 and (b—r)¢ < o2, thus the
investment increases with the jump intensity when the diffusion
jump parameter is positive and a technical condition on the pa-
rameters of the assets holds. The opposite property holds, that is,
investment is decreasing with the jump intensity when ¢ < 0 and
(b—r)@ > o2. Finally the investment increases with the Sharpe ra-
tio. It is possible to obtain explicitly A=1/¥ = P*/X from (14) to (19),
but is not very tractable for analyzing the sensitivity of the equi-
librium strategies and the surplus with respect to the parameters
from a theoretical point of view. For this reason, we decided to
make a numerical illustration without the use of this Taylor ap-
proximation.

Following the footnote of Section 2.1, the fund surplus equilib-
rium X* is positive independently of the jump. In order to study
the expected surplus evolution, from (17) we obtain

EX*(t) =xexp {(r+ " (b—r1) =A™V + TTT )t}

that converges to oo if and only if r+ 1T (b — 1) + 1T @A > A~1/7,
Jumps with high intensity favor this behavior. In the opposite case,
where the exponent is negative, the expected surplus converges to
0.

We also can obtain the evolution of the equilibrium extra ben-
efits. From (17), and using P* = A~/ X, it satisfies the SDE:

dP(t) = (rP(t) LTI (b — rT)P(t) —A*”VP(t))dt
+ TIToP(t) dw(t) + TTT@P(t) dN(t),

4 Bjork & Slinko (2006), in Appendix A, define the Sharpe ratio for a jump diffu-
sion process, in particular for a Wiener-Poisson process.
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where P(0) = A~1x, thus the sources of uncertainty are the
Brownian motions and the Poisson processes. Therefore, the ben-
efits have the same convergency properties as the surplus.

The manager of the plan is also interested in the study of the
equilibrium fund assets F. As the plan is overfunded, that is, the
fund F exceeds the actuarial liability AL, the manager considers a
fund surplus X equal to a proportion of the overfunded actuarial
liability F — AL, X = k(F — AL), with k being a constant fixed by the
manager, 0 < k < 1. Then the fund is F = ,%X + AL, and we can find
the SDE that it satisfies if we know the evolution of AL.

A sensitivity analysis of the parameters can be very difficult
because of the implicit solutions found for the system (13)-(15).
Therefore, we draw the main conclusions numerically in Section 5.

Remark 3.4. When there is a hierarchical interaction between the
agents, the firm and the union, it is possible to find and analyze
Stackelberg® equilibrium strategies of the non-cooperative differ-
ential game, depending which agent assumes the leader role. It is
not difficult to check that, if the manager is the leader and de-
cides to use constant feedback investment strategies, the invest-
ment and benefit Stackelberg equilibrium strategies coincide with
the Nash equilibrium strategies. We obtain the same conclusion
when the union is the leader and decides to use a linear feed-
back benefit strategy. Thus, the Nash equilibrium strategies solve
the leader-follower problem in the pension plan game, maximizing
the utilities.

4. Nash equilibrium strategies behind boundary conditions

In this section, we consider the other two scenario games
where the firm minimizes: 1) the probability that the fund surplus
reaches a low level, or 2) the expected time of reaching a bech-
mark fund surplus. The first objective supports the sustainability
of the plan. For this purpose, we consider a variant of the previous
game, adding two boundary levels v > 0 (for the upper level) and
¢ > 0 (for the lower level), where v > | and a starting point of the
surplus X(0) =x € (¢, v).

Both objectives fit a general form of the payoff of the firm

T
Jr(x: P.7r) = Ex</ FX®M (£))de +h(x<P~“>(T))), C<x<v,
0
(20)

where f and h are general utility and bequest functions, respec-
tively, P € Ay is fixed and Il € Ar is the proportion of the sur-
plus that the firm chooses. We denote by T, the first time that X
hits the value z > 0, that is to say, T, = inf{t > 0|X®™D(t) =z}, and
T = min{T,, T, }.

On the other hand, the payoff of the union is

Ju(; Pomr) = Ex(/OT e u(P(t))dt + e *Tg(X "™ (T))>,

where g is a bequest function and X(*™) is the fund surplus under
profile (P, i) satisfying (4). We assume that u(P) is the same CRRA
utility function as in Section 3.

The game would be specified with two expressions for the pay-
offs and the evolution of X given by (4). Finally, the boundary con-
ditions are

u(©) =g(0). W) =g),

The difficulty of finding a solution for any function g was covered
in Josa-Fombellida & Rincon-Zapatero (2006). So, following Josa-
Fombellida & Rincon-Zapatero (2019), the problem is reformulated

Ve(€) =h(6).  Vp(v) =h(v).

5 References as Basar & Olsder (1999) and Dockner et al. (2000) can be consulted.
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as an approximation of the true game, where the payoff of the
union turns is

Ty P.T) = E, /OOQ e~aty(P())dt. (21)

the transversality condition being the boundary condition for the
value function Vj;. So now the boundary conditions are

tlim e EVy (XPI(t)) =0, Ve(€) = h(e), VE(v) = h(v).

(22)

This stochastic control problem of Dirichlet type has been
analyzed in Krylov (1980). Following, Josa-Fombellida & Rincén-
Zapatero (2006), the HJB system for this game is

Py 1
1-

aVy (x) = max { + (rx+ 7 (b —rT)x — )V (x)}

1 m n
+ S TSRV () + ) (vU (x+ > mixgw) — Vo (x)),
k=1 i=1

0= max { (rx+ 7 (b — r)x — P)Vi (%)

m
+ %nTznxzv;’ )+ A
k=1

From the optimality conditions, one gets

P —V/(x) = 0= P = (V ()17, (23)
n
(b — )XV, (x) + Z a7t x>V (x)
=
m n
+ ) MVi (x +y rrjx<pjk><p,-kx =0, (24)
k=1 =

for alli=1,...,n. Plugging into the HJB system,

aVy(x) = 1:77/ %(Vl} ()Y XV (x) + T (b — 11XV (x)
1 m n
+3 7 =XV (%) + ;kk (VU (x + 21: qu),»k> -V (x)),
- =

(25)

0= (rx + 7 (b—rx — (V} (x))—”y)vg(x) + %HTznxzvp”(X)

m n
£ Y h(Ve(x+ Yo ) ~ Ve 0) + 0. (26)
k=1 i=1
In the following, we analyze the two game scenarios depending
on the aim of the firm.

4.1. Minimizing the probability of reaching a low surplus

The firm’s aim is to maximize the probability of reaching the
objective value v before the ruin value ¢. The payoffs of the firm
can be defined as

JFX:Pm) =Px(Ty <Tp), L <x<v, (27)

where P € Ay is fixed and 7 € Ar is the proportion of the surplus
that the firm chooses. Here Px denotes the conditional probability,
given that X(0) = x. Recall that we denote by T, the first time that
X hits the value z > 0. With this specification of the objective func-
tional of the firm, f =0, h(¢) =0 and h(v) =1 in (20). The union’s
aim is given by (21), that is to say, to maximize the expected utility
along an unbounded time horizon.

(ve(x+ gmxcpik) Vi) } + 0.
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The following result shows the Nash equilibrium benefit, the in-
vestment strategies and the equilibrium fund surplus for this sec-
ond game scenario.

Proposition 4.1. Assume that the system

n m
bi—r—n)_aym; +Z)‘k(1 + ) gy =0, i=1,...,n,
j=1 k=1
(28)
1f‘y DXL wLy), (29)
0=\W(Il,n)—-D V7, (30)

where W (I1, .) is given by (11), has the constants D, n, I1, with D pos-
itive and finite, and 1+ 1T ¢, > 0, for all k, as a solution. Then the
union and firm value functions of the pension game (4), (27), (21) are

x-v 1
W (x) =D71 — “ad-y)
x1=n — g1-n
Vr(x) = DI — i

the MPNE is (P", T1"), where
P'(x) =D "7x, (31)

and T1" is a constant solution of (28), while the equilibrium fund sur-
plus is the extended GBM with Poisson jumps given by

X (1) = (r AT (b= 1) — D-”V)xf(t)dr
+ Mo X" (t) dw(t) + TTI"T X" (t) dN(t).

Proof. Trying with the solutions

XM
W) =Di— -7

XN
Ve®) =By— — 15

where D, M,B,N and 7 are constants to determine, the optimal-
ity conditions (23) and (24) let us obtain Il" as the solution of
(28) and the expression (31) for P'.

After substitution, the first equation of HJB (25) turns to

aDx'V  aM  (yD Y 1
1—;/_1—)/_(1— 1-y°

for any initial condition x. We deduce that M = % and (29). From
the second HJB equation (26) we obtain (30). By the boundary con-
ditions we obtain: B¢'~" = N and Bv!-7 — N = 1 — 5, which allows
us obtain V. Note that V/ < 0 because D > 0 and V¢’ < 0 for all 7.
Thus IT" and P" are the maximizers of the HJB system.

Finally, we prove that the transversality condition (22) holds,
following Theorem 8.5 of Dockner et al. (2000), as in the previous
Proposition 3.1. By Arnold (1974), p. 139, for a real number p,

(T, y))DxFV _

Ex(X"(£))P = xP exp{ p<r+ m"(b-r1)-D 1V - %HTTEH’>t
T T
+’21:Ak(<1 + 7 gy)P — 1)t+ P znft},
-

After replacing p by (1 — y), (22) holds if and only if
1 -y)(¥(T.y) D) <a. (32)

It is easy to prove that this inequality is equivalent to the nonneg-
ative assumption of D, replacing (29) in (32). O
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The equilibrium fund surplus X" is positive a.s. as in the first
game scenario. The extra benefit strategy is proportional to the
surplus and the investment strategy is constant. Neither strategy
depends on ¢ or v. The expected surplus evolution evolves accord-
ing to the SDE

EX'(t) = xexp {(r+TI"" (b—rT) - D~V + T )t}

that converges to oo if and only if r+II""(b—r1) + 1" @A >
D-1/v,

In a similar way to the first game scenario, the jump param-
eters influence the equilibrium strategies and surplus. From (29),
the extra benefit relative to surplus
PL —D 1 = o _ ﬂ\p(ng ¥),

X 14 Y

increases with the intensity of the jump A if y > 1 and 1" ¢, >
0 and decreases with A if ¥ > 1 and IT"" ¢, < 0. We numerically
analyze the sensitivity of the equilibrium strategies with respect to
some parameters in Section 5, as with the first game scenario.

Remark 4.1. For A =0 or ¢ =0, we consider the pension game
without jumps. We obtain the corresponding equations to (28),
(29), (30), for IT",D,n, as in Josa-Fombellida & Rincén-Zapatero
(2019), which allows the game to be solved explicitly obtaining
two MPNE when 0 < ¥ <1 and one when y > 1.

The logarithmic case, where y =1, can be analyzed easily, as
in the first game scenario. Parameter ¢ only affects equation (29),
that where D = 1/« when y =1, and then the equilibrium extra
benefit is P"(x) = ax.

The Taylor approximation of IT can also be considered here, but
we prefer to analyze the solutions numerically.

If we assume a hierarchical interaction between the firm and
the union, it is possible to check that, if the manager is the leader
and decides to use constant feedback investment strategies, the in-
vestment and benefit Stackelberg equilibrium strategies coincide
with the Nash equilibrium strategies. We obtain the same conclu-
sion when the union is the leader and decides to use a linear feed-
back benefit strategy.

4.2. Minimizing the expected time to reach a benchmark surplus

The firm’s aim is to minimize the expected time to reach a good
benchmark fund surplus v. The payoff of the firm can be defined
as

Jr(x; P,m) =BTy, X < v, (33)

where P e Ay is fixed and 7 € A is the proportion of the surplus
that the firm chooses. Here E, denotes the conditional expectation,
given that X(0) = x. Recall that we denote by T, the first time that
X hits the value v > 0. With this specification of the objective func-
tional of the firm, f =1 and h(v) =0 in (20). The union’s aim is
still given by (21), that is to say, to maximize the expected utility
along an unbounded time horizon.

The following result shows the Nash equilibrium benefit, the in-
vestment strategies and the equilibrium fund surplus for the third
game scenario.

Proposition 4.2. Consider the system

n m
bl‘—r—Zal‘jT[j-i-Z)\,k(]+HT(P]()_1§0“<=O, i=1,..

j=1 k=1

., n,

(34)

and, from its vector of solutions T1, with 1+ I1T ¢, > 0, for all k, de-
fine the constants K and R, as follows:

o _ )4 -1/y
1—)/_7— K + (I, ),

(35)
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R= (WL k), (36)

where W (I1,.) is given by (11) and (12), with K and R positive and

finite. Then the union and firm value functions of the pension game

(4), (33), (21) are

x1-v 1

1-y a(l-y)’
v

Vi =RIn( -

+G0 =Rin ().

the MPNE is (P®, T1?), where
Pb(x) = K~/ x,

Vux) =K

(37)

and T1Y is a constant solution of (34), while the equilibrium fund sur-
plus is the extended GBM with Poisson jumps given by

dXb(t) = <r ST (b — 1) — K*”V>Xr(t)dt

+ IPToXT(t) dw(t) + ITPTXP (1) dN(1).

Proof. The proof is very similar to the proof of Proposition 4.1. O

The equilibrium fund surplus X? is positive a.s. as in the other
two scenarios. The extra benefit strategy is proportional to the sur-
plus and the investment strategy is constant and does not depend
on y. Neither strategy depends on v. The expected surplus evolu-
tion evolves according to the SDE

ExXP(t) = xexp {(r+ TP (b—rT) =K~V + " pA )t}

which converges to oo if and only if r+ IT°T (b —r1) 4+ ITYT @A >
K-y,

In a similar way to the previous game scenarios, the jump pa-
rameters influence the equilibrium strategies and surplus. From
(35), the extra benefit relative to surplus
Pb

K- — o _ Q\p(nb’ Y),

Y 4
increases with the intensity of the jump A, if y > 1 and I1*T¢, > 0
and decreases with Ay if y > 1 and T1"T¢, < 0. We numerically
analyze the sensitivity of the equilibrium strategies with respect
to some parameters in Section 5.

Remark 4.2. The pension game without jumps, where A =0 or
¢ =0, was not analyzed in Josa-Fombellida & Rincén-Zapatero
(2019). It is very easy to obtain the corresponding equations to
(28), (29), (30), for ITP, K, R. The famous optimal growth portfolio
strategy I1°(x) = £-1(b — r1) of Merton’s model is the equilibrium
investment strategy of the game where the firm minimizes the ex-
pected time to reach a benchmark fund surplus. The relative ben-
efit is

Pb(x) 1-y
X

— K1 = g _
Y

where 6 = o~1(b—r1) is the market price of risk.

Analogous comments to Remark 4.1 with respect to the loga-
rithmic case, the Taylor approximation and the Stackelberg equi-
librium can be made.

(r+9T9 - %y@T@),

5. Illustrations

In this section, a sensitivity analysis of the jump parameters
and the risk aversion parameters is performed. Our aim is to study
the equilibrium investment strategy, the extra benefits and the
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Market evolution, S(t)
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Fig. 3. Risky asset for A = 0.25 and ¢ = +0.1.

fund surplus for the three game scenarios. We begin the exposition
by considering a bull regime, and we later include a bear regime®

In order to simplify the development, we consider the scalar
case, where’” |=m=n=1. The parameters used to illustrate
the simulations in a bull regime are b= 0.144604, r =0.01, 0 =
0.10748, o = B = 0.02, with a final time T = 10 years and initial
asset price Sy = 1, taken from Josa-Fombellida & Rincén-Zapatero
(2019). The parameters were estimated from S&P 500 index data.
Consider an initial surplus X(0) = x = 0.1. We vary the values of
the jump intensity A = 0, 0.25, 0.5 along the graphical analysis. The
case without jumps is covered for A = 0. In order to cover two
types of jump, upward jumps and downward jumps, the uncer-
tainty Poisson process takes two values ¢ = —0.1, 0.1. We also con-
sider several values for the risk aversion parameters, y,§ > 1, de-
pending on the analysis. More specifically, we focus on risk aver-
sion parameters y, § € [0, 10] which agree with the empirical stud-
ies of Azar (2006). The equations are solved numerically with the
standard R Stats package.

The time evolution of the risky asset with Poisson jumps is
shown in Fig. 3 by means of two paths as an example. The left
hand graph shows the upward jumps case and the right shows
the downward jumps case. We consider a moderate intensity jump
value of the parameter 1=0.25, and ¢ = +0.1. The red vertical seg-
ments represent the time and the magnitude of the jump on the
same axis scale. The price of the risky asset shows a significative
increase with the upward jumps, but only a slight increase with
the downward jumps. We observe 5 positive jumps at the times
0.6, 1.8, 2.7, 4.6, and 8.9 years, in the left hand graph, and three
negative jumps at times 0.7, 3.5 and 9.6, in the right hand graph.

Now, the first game scenario is considered. The time evolu-
tion of the equilibrium surplus X in this Brownian-Poisson finan-
cial market is drawn in Fig. 4 for a risk aversion y =6 =2, a

6 In the bull regime, the economy is booming, and in the bear regime, it is in re-
cession. We select the data characterizing both regimes, following the recommen-
dations in Zou & Cadenillas (2017). The risk premium is greater in boom periods
than in recession periods, (1 — 1 > Wy — 1, the stock volatility is greater when the
economy is in recession, o, > 07, and we assume that the risk premium by unit
of volatility is higher in the boom periods than under recession, .57 > “2—}’2 We
have denoted the bull regime with subscript 1 and the bear regime with 2.

7 Another alternative for the illustration is to include two Poisson processes, that
is to say, m = 2, with different signs for ¢, as in Josa-Fombellida & Rinc6n-Zapatero
(2012). Similar situations would be reached having four cases of signs of ¢;, ¢, that
lead to two, going up or down.
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jump intensity A = 0.25, and the two cases of diffusion jump pa-
rameters ¢ = +0.1. The equilibrium risky investment strategy and
the equilibrium benefit proportion are 7* = 6.236489 and P*/X =
0.2580915, respectively, with upward jumps, and 7* = 3.366769
and P*/X = 0.1126737 with downward jumps. In this bull regime,
we observe the increase in the left hand path surplus, starting
with a small value of X(0) =0.1 and finishing with a value of
X(10) = 8.098480 at the end of the tenth year. Thus, a small effect
of the jump in the risky asset can suppose a big increment in the
surplus evolution. Otherwise, with downward jumps, the values of
the surplus remain low, specifically X(10) = 0.1356466.

After this, the effects of the jump and the risk aversion on
the equilibrium expected fund surplus are compared. We con-
sider several values of the parameters, including those used in the
previous surplus paths: risk aversion y =& = 2,5, jump intensity
X =0,0.25,0.5, and diffusion jump ¢ = +0.1. The expected surplus
evolution is represented in Fig. 5. It is strictly increasing and con-
vex with respect to the time, even though the market gives down-
ward jumps. The jump intensity has a great influence on the ex-
pected surplus. With a positive diffusion jump parameter, the ex-
pected surplus increases with the jump intensity. For instance, for
y =& =2, the final expected surplus in the case without jumps
is EX(10) = 34.0887063, versus EX(10) = 175.9474755 when the
market presents a positive jump intensity A = 0.25. However, with
downward jumps, the expected surplus decreases with the jump
intensity. In fact, as could be seen in the previous figure with
a path, the expected surplus values are much higher with posi-
tive diffusion jumps than with negative ones. In particular, upward
(downward) jumps provide more (less) surplus than if there are no
jumps. On the other hand, the risk aversion negatively influences
the expected surplus.

Figure 6 shows the investment strategy of the firm in the
first game scenario as a function of the risk aversion parameter
for several values of A and ¢. We consider only the case where
y =8 >1. The investment decreases when the risk aversion
y =6 increases. This decrease is significant because, for instance
with A =0.25, ¢ =0.1, the investment begins for y =§ =1 at
m* =12.60925 and finishes for y =§ = 10 at 7* = 1.232873. We
can observe that, with the positive jump diffusion parameter, the
risky investment must increase slightly when the jump intensity
increases. Thus, the investment without jumps is less. The behavior
is similar with a negative diffusion jump parameter, ¢ = —0.1. The
investment strategy is lower when the intensity of the jump in-
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Fig. 4. Surplus time evolution for risk aversion y = § = 2, Poisson jump parameters A = 0.25 and ¢ = +0.1. First game scenario. Bull regime.
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Fig. 5. Expected surplus time evolution with (blue and green, dashed) and without jumps (red, solid) for risk aversion y =& = 2,5, and Poisson jump parameters A =
0,0.25,0.5 and ¢ = +0.1. First game scenario. Bull regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

creases, but this growth is more intense than with a positive jump
magnitude.

The percentage of the workers’ extra benefit A=/ = P*/X is il-
lustrated in Fig. 7. The extra benefit increases with the risk aver-
sion until y =8 =2.5 and then decreases. Higher extra bene-
fits are obtained with upward jumps. In the upward (downward)
jumps case, the benefits are higher with a higher (lower) jump in-
tensity. In particular, more (less) benefit is obtained with upward
(downward) jumps than without jumps. The maximum proportion
of benefits from the surplus is reached when the risk aversion is
equal to 2.5, which in the upward jumps case is 28% of the fund
surplus with a jump intensity of 0.5, 24% with a moderate jump
intensity of 0.25 and 20% without jumps. In the downward jumps
case, the maximum benefits decrease to 11% for A = 0.25 and 7%
for A =0.5.

In the following, we analyze the equilibrium strategies in a bear
regime of the financial market. We consider that the values of the
parameters are b = 0.014, r = 0.01, 0 = 0.2678, o = 8 = 0.02, with
a final time T = 10 years and initial asset price Sy = 1, taken from
Josa-Fombellida & Rincon-Zapatero (2019). We also consider an ini-
tial surplus X(0) =x=0.1.

The evolution of the strategies is quite similar to the bull
regime case, but some trends change. The risky investment evo-
lution with a bear regime is shown in Fig. 8. With upward jumps,
the risky investment decreases with the risk aversion and is higher
with more jump intensity. Now borrowing is not necessary. How-
ever, with downward jumps, shortselling can be necessary. Note
that condition b+ Ag > r is not satisfied because ¢ = —0.1. The
jump intensity increases the shortselling. With the bear regime,
smaller extra benefits are obtained than with the bull regime. See
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Fig. 6. Proportion of fund surplus invested in the risky asset by the firm as a function of the risk aversion parameters y = § for the Poisson jump parameters A = 0,0.25, 0.5
and ¢ = +0.1. First game scenario. Bull regime.
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Fig. 7. Percentage of benefits claimed by the union as a function of the risk aversion parameters y = § for the Poisson jump parameters A = 0, 0.25,0.5 and ¢ = +0.1. First
game scenario. Bull regime.

Fig. 9. Note that the maximum values of the proportion of extra greater jump intensity. However, with downward jumps, the ben-
benefits with upward jumps are inside the range [1.9%, 2%], that efit is higher when the jump intensity increases, unlike in the

is, around 10 times lower than in the bull regime. The graphi- bull case. Thus, more benefit is achieved with jumps than without
cal behavior is different to the bull case, because P/X is a con- jumps, independently of the type of jump. The variation of the ex-
vex and decreasing function with respect to the risk aversion y = pected surplus with the bear regime is very small, less than 0.015

6. With upward jumps, more benefits are obtained, also with a units. The biggest expected surplus is reached for low risk aver-
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Fig. 8. Proportion of fund surplus invested in the risky asset by the firm as a function of the risk aversion parameters y = for the Poisson jump parameters A = 0, 0.25, 0.5

and ¢ = +0.1. First game scenario. Bear regime.
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Fig. 9. Percentage of benefits claimed by the union as a function of the risk aversion parameters y = § for the Poisson jump parameters A = 0,0.25,0.5 and ¢ = £0.1. First

game scenario. Bear regime.

sion, with upward and high intensity jumps: EX(10) = 0.11. It is
only time increasing for the high jump intensity, A = 0.5, other-
wise it is decreasing. The expected surplus is a little bit higher
with upward jumps. With upward jumps, the expected surplus
is higher when the risk aversion is lower. But with downward
jumps, this is not necessarily so. More surplus is obtained with
jumps than without jumps. The risk aversion y influences the ex-

1306

pected surplus, but this depend on the intensity of the jump. See
Fig. 10.

We now analyze the second game scenario, where the aim of
the firm is to maximize the probability that the surplus reaches a
good value before a ruin value. In order to simplify, we consider
the bull case. We first show two paths of the optimal surplus in
the baseline case described for the first game scenario, see Fig. 11.
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Fig. 10. Expected surplus time evolution with (blue and green, dashed) and without jumps (red, solid) for risk aversion y =& = 2,5, and Poisson jump parameters A =
0,0.25,0.5 and ¢ = +0.1. First game scenario. Bear regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 11. Surplus time evolution for risk aversion y = 2, Poisson jump parameters A = 0.25 and ¢ = +0.1. Second game scenario. Bull regime.

The variability is less than in the first scenario, and in the down-
ward jumps case than in the upward jumps case.

The expected surplus is smaller in the second than in the first
game scenario. With up (down)-ward jumps, the expected sur-
plus increases (decreases) when the jump intensity increases. It is
higher with upward jumps than with downward jumps. The be-
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havior is similar to the first game scenario, but it is bigger with
high risk than with low risk aversion. See Fig. 12.

We observe that I1" and P'/X are lower than IT* and P*/X,
respectively, as in the case without jumps analyzed in Josa-
Fombellida & Rincén-Zapatero (2019). See Figs. 6, 7, 13 and 14. The
behavior of the extra benefit P"/X is similar to P*/X, but the values
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Fig. 12. Expected surplus time evolution with (blue and green, dashed) and without jumps (red, solid) for risk aversion y = 2, 5, and Poisson jump parameters A = 0, 0.25, 0.5
and ¢ = +0.1. Second game scenario. Bull regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Proportion of fund surplus invested in the risky asset by the firm as a function of the risk aversion parameter y for the Poisson jump parameters A = 0,0.25,0.5
and ¢ = +0.1. Second game scenario. Bull regime.
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Fig. 14. Percentage of benefits claimed by the union as a function of the risk aversion parameter y for the Poisson jump parameters A = 0, 0.25,0.5 and ¢ = £0.1. Second

game scenario. Bull regime.
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Fig. 15. Expected surplus time evolution with (blue and green, dashed) and without (red,

and ¢ = +0.1. Third game scenario. Bull regime. (For interpretation of the references to c

are somewhat smaller. It is lower with downward jumps than with
upward jumps. With up (down) ward jumps, the extra benefit in-
creases (decreases) when the intensity jump increases. We observe
the same property for the investment strategy. However, the in-
vestment I1" has a different behavior from IT*. 1" is concave with
respect to risk aversion y and reaches lower values, between 0 and
2.5. The maximum investment proportion is achieved for a moder-
ate risk aversion of around 3.5. Finally, it is interesting to observe
that more surplus, investment and benefit are obtained with jumps
than without jumps.

With the third game scenario, more surplus is obtained than
with the second, even in the bear case, because the probability
that the surplus reaches a low value is not minimized, that is, it
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solid) jumps for risk aversion y = 2, and Poisson jump parameters A = 0, 0.25,0.5
olor in this figure legend, the reader is referred to the web version of this article.)

is only important that it reaches its target value v. With the very
high risk aversion of the union, it is not possible to find an equi-
librium strategy for the game. Figures 15-17 show the expected
equilibrium fund surplus EX? and the equilibrium strategies ITP
and PP, in the bull case, for some small high risk aversion param-
eters, respectively. A behavior similar to that of the second game,
with respect to the time and the risk aversion, is observed. With
upward (downward) jumps, the expected surplus, benefit and in-
vestment increase (decrease) with the intensity of the jump. The
investment effort must be greater than in the second game. The
highest extra benefit, above 20% of the surplus, is achieved with
a higher intensity positive jump and a moderate risk aversion

of 1.40.
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Fig. 16. Proportion of fund surplus invested in the risky asset by the firm as a function of the risk aversion parameter y for the Poisson jump parameters A = 0, 0.25, 0.5

and ¢ = £0.1. Third game scenario. Bull regime.
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Fig. 17. Percentage of benefits claimed by the union as a function of the risk aversion parameter y for the Poisson jump parameters A = 0,0.25,0.5 and ¢ = £0.1. Third

game scenario. Bull regime.

6. Conclusions

The financial market can be severely affected by unexpected
news because of results in sudden changes in the asset prices. For
instance, consider the evolution of the prices of the risky assets of
the financial market over a time interval with a home lockdown or
the first appearance of the vaccine against COVID-19; or consider
simply the cryptocurrency market at almost any period. This rein-
forces the idea of properly modeling unexpected situations, for a
defined benefit and overfunded pension plan game that contem-
plates the interaction between manager and participants. For that,
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we have considered a model with jumps given by Poisson pro-
cesses without excluding the randomness of the Brownian motion.

The aim of the participants of the pension plan is to maximize
a utility of the extra benefits. Three scenarios have been consid-
ered according to firm preferences. The jump process parameters,
the risk aversion parameters and the economic regime influence
the equilibrium strategies and the fund surplus in all scenarios. By
means of a numerical illustration, we have checked that it is pos-
sible to obtain more return in the form of surplus and benefit than
with the absence of jumps. Generally, with upward jumps, the ben-
efit increases with the jump intensity and it is higher in the first
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game scenario, where the aim of the firm is to maximize a utility
of the fund surplus. A lesser investment effort is necessary in the
second game, where the aim of the manager is to minimize the
probability that the fund surplus reaches a low level before a high
value. In the third game, where the aim of the manager is to max-
imize the expected time to reach a high value, only equilibrium
strategies are found with moderate and little high risk aversion,
but with high fund surplus and a reasonable extra benefit value.
Two interesting facts are observed in all the scenarios: the equi-
librium fund surplus never reaches the ruin value 0 and upward
jumps can make the surplus increase along time, even in bear pe-
riods.

Future research should be directed at including jumps, in order
to contemplate some unstable periods of the financial market in
other pension plan models. In this pension game model, it could
be interesting to consider other aims for the firm, such as to min-
imize/maximize the expected discounted penalty/reward obtained
upon achievement of a performance surplus goal and to consider,
in the true game with boundary conditions, hierarchical interaction
between the firm and the union, that is to say, to analyze Stackel-
berg equilibrium strategies, especially when the union assumes the
leader role.
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