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by using taqman assays. the results showed that there was 
no association between the SnPs and basal BmD. how-
ever, rs2297480 and rs11264359 alleles, which are in link-
age disequilibrium, were associated with changes in hip 
BmD following atorvastatin therapy. thus, patients with 
aa genotype at the rs2297480 locus had a 0.8 ± 0.8 % 
increase in BmD at the femoral neck, whereas in patients 
with aC/CC genotypes, BmD showed a 2.3 ± 0.8 % 
decrease (p = 0.02). Similar results were obtained regard-
ing changes of BmD at the femoral trochanter and when 
alleles at the rs11264359 locus were analyzed. however, 
there was no association between BmD and rs17367421 
alleles. In conclusion, these results suggest that polymor-
phisms of the FDPS gene may influence the bone response 
to various drugs targeting the mevalonate pathway, includ-
ing not only aminobisphosphonates but also statins.
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Introduction

atherosclerosis and osteoporosis are prevalent chronic dis-
orders. they are an important cause of morbidity and mor-
tality in elderly people and represent a large economical 
burden for the public health systems. these disorders are 
characterized by a long asymptomatic period prior to the 
development of complications, cardiovascular events and 
fractures, respectively [1, 2].

Several studies have shown an association between 
cardiovascular risk and fractures. Besides an increasing 
prevalence with advancing age, they share some risk fac-
tors, such as smoking, sedentarism and estrogen deficiency. 

Abstract although their primary therapeutic indications 
are different, aminobisphosphonates and statins target 
enzymes in the mevalonate pathway, which is critical for 
bone homeostasis. Previous studies have shown that some 
polymorphisms of the gene encoding farnesyl diphosphate 
synthase (FDPS), the main target of aminobisphospho-
nates, modulate the response to these drugs. In this study, 
we explored whether those single nucleotide polymor-
phisms (SnPs) also influence the changes in bone mineral 
density (BmD) following therapy with statins. Sixty-six  
patients with coronary heart disease were studied at base-
line and after 1-year therapy with atorvastatin. BmD 
was measured by DXa. three SnPs of the FDPS gene 
(rs2297480, rs11264359 and rs17367421) were analyzed 
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moreover, it has been suggested that they might share 
genetic risk factors and some common pathophysiologi-
cal mechanisms, mediated by pro-inflammatory cytokines 
(IL-1, IL-6, tnF), which may favor the growth and rupture 
of atheroma plaques, as well as bone resorption and conse-
quently bone loss [3, 4].

another link between osteoporosis and atherosclerosis is 
the mevalonate pathway, a common target for drugs used in 
both disorders. this pathway is essential for the synthesis 
of cholesterol. In fact, statins, major drugs in the preven-
tion and therapy of atherosclerosis, inhibit 3-hydroxy-3- 
methylglutaryl-coenzyme-a reductase (hmGCR), an 
enzyme in the mevalonate pathway [5]. On the other hand, 
farnesyl diphosphate synthase (FDPS; also known as 
farnesyl pyrophosphate synthase or FPPS), another enzyme 
in the mevalonate pathway, is the main target for aminobi-
sphosphonates, drugs that inhibit osteoclast-mediated bone 
resorption and are the first-line therapy for many patients 
with osteoporosis [6, 7]. although the clinical relevance is 
unclear, statins have favorable effects on bone homeostasis 
in several experimental models [8–10].

aminobisphosphonates and statins are highly effective 
drugs for increasing bone mass and lowering cholesterol 
levels, respectively. however, some patients do not show 
an optimal response. We have shown recently that polymor-
phisms of the FDPS gene are associated with differences 
in bone mineral density (BmD) following therapy with 
aminobisphosphonates [11]. In this study, we explored the 
hypothesis that those polymorphisms could also modulate 
the response to statins.

Subjects and methods

Subjects

We included 66 patients with acute coronary syndrome, 
diagnosed according to the criteria of the European Soci-
ety of Cardiology. Patients with active cancer, alcohol-
ism, chronic renal failure or disorders influencing bone 
metabolism were excluded. they were treated with vari-
ous doses of atorvastatin according to their vascular risk. 
high-risk patients were given 40–80 mg/day, whereas 
low-risk patients received 10–20 mg/day. Blood samples 
were obtained after 8-h fasting. Cholesterol, triglycerides, 
hDL cholesterol and LDL cholesterol were measured 
using a hitachi 917 autoanalyzer (tokyo, Japan). Osteo-
calcin was measured by immunoassay (Immulite DPC, 
uSa) with a 6.7 interassay coefficient of variation. BmD 
was measured by DXa (Lunar Corporation, madison, WI, 
uSa) at the lumbar spine and the hip, both at baseline and 
after 1 year of atorvastatin. the study was approved by 

the institutional ethical committee, and all patients gave 
informed consent.

Genotyping

We analyzed several single nucleotide polymorphisms 
(SnPs) that were previously selected among a set of tagging 
and functional polymorphisms of the FDPS gene, identified 
using haploview and PupaSuite software [12, 13], as previ-
ously reported [11]. thus, we studied 3 SnPs: rs2297480, 
located in the 5′ region of FDPS gene, 778 bp upstream 
of the translation start site; rs11264359, an intronic SnP 
at +4,125 from the translation start site; and rs17367421, 
located in an intron at +8,543. Dna was isolated from 
peripheral blood with commercial methods (Qiagen or GE 
healthcare). alleles at each locus were genotyped by using 
specific taqman assays (applied Biosystems, Foster City, 
Ca, uSa).

Data analysis

hardy–Weinberg equilibrium was analyzed with an 
exact test implemented in hWSIm software (available at  
http://krunch.med.yale.edu/hwsim/hwsim.txt). the response  
of BmD to drug therapy was estimated as the percent 
change from baseline. Given the low frequency of homozy-
gotes for the less common alleles, they were grouped with 
heterozygotes. then, the differences between genotypes 
were tested by t tests. the influence of covariates was 
explored in multiple regression models.

Results

the study group included 66 patients (27 women and 39 
men), of these 90 % had acute myocardial infarction and 
10 % had unstable angina. mean age was 61 ± 10 year; 
mean body mass index was 28 ± 4 kg/m2. twenty per-
cent of the patients were hypertensive and 13 % diabetic. 
all women were postmenopausal. In addition to atorvas-
tatin, 28 % received treatment with angiotensin convert-
ing enzyme inhibitor, 57 % with β-blockers, 20 % with 
nitrates, 2 % with angiotensin antagonists and 1 % with 
thiazides. the atorvastatin decreased the levels of choles-
terol (180 ± 47 vs. 154 ± 36 mg/dl, p = 0.0001), LDL 
cholesterol (113 ± 44 vs. 86 ± 33 mg/dl, p = 0.001) 
and triglycerides (144 ± 64 vs. 126 ± 66 mg/dl, 
p = 0.001) and increased hDL cholesterol (39 ± 12 vs. 
46 ± 11 mg/dl, p = 0.001). however, there were no rela-
tionship between changes in LDL cholesterol and changes 
in BmD. the atorvastatin decreased the levels of osteo-
calcin, bone marker of bone turnover (3.07 ± 1.82 vs. 
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1.34 ± 1.33 ng/ml, p = 0.0001). We did not find differ-
ences in baseline and final osteocalcin across genotypes 
for any of the polymorphisms studied. Baseline BmD was 
1.128 ± 0.230, 0.915 ± 0.150 and 0.776 ± 0.210 g/cm2, 
at the lumbar spine, femoral neck and femoral trochanter, 
respectively.

Genotype frequencies are shown in table 1; there was 
no evidence for departure from hardy–Weinberg equilib-
rium. Rs2297480 and rs11264359 alleles were in strong 
linkage disequilibrium (p < 0.0003).

We did not find differences in baseline BmD 
across genotypes for any of the polymorphisms stud-
ied (table 2). however, alleles at loci rs11264539 and 
rs2297480 were associated with differences in the hip 
BmD changes following atorvastatin therapy. Whereas 
BmD tended to increase in patients homozygotes for 
the most common a allele at either the rs11264359 
or the rs2297480 loci, it tended to decrease in patients 
with the less common alleles (G at rs11264359 and C at 
rs2297480) (Fig. 1). Changes in spine BmD were not sig-
nificantly associated with the patients’ genotypes. Very 
similar results were obtained when baseline BmD, age 
and sex were included in the analysis as covariates. there 
was no evidence for interaction between those variables 
and the genotypes. there was no association between the 

genotypes and the dose of atorvastatin used. Likewise, 
there was no interaction between genotypes and the dose 
of atorvastatin on BmD response.

Discussion

In the present study, we did not find an association of base-
line BmD with common polymorphisms of the FDPS gene, 
thus confirming previous results by our own group in a 
different Spanish population [11]. however, we found an 
association of the rs2297480 and rs11264359 polymor-
phisms with BmD changes following atorvastatin therapy. 
Statins target the mevalonate pathway. this pathway is 
essential for cholesterol synthesis, but it also leads to the 
synthesis of a number of intermediate products, such as 
farnesyl pyrophosphate and geranylgeranyl pyrophosphate 
that in turn contribute to the posttranslational modification 
of several regulatory proteins playing important roles in the 
activity and survival of a variety of cell types.

Following the seminal work by mundy et al. [14], the 
effects of statins on bone metabolism have been widely 
studied. as reviewed recently by Ruan et al. [15], statins 
promote the differentiation of osteoblast precursors and 
inhibit osteoblast apoptosis, which tend to increase bone 
formation. On the other hand, these drugs have been shown 
to inhibit RanKL expression in several experimental mod-
els [15, 16]. RanKL is a critical factor required to induce 
the differentiation of hemopoietic precursors toward mature 
osteoclasts, the cells responsible for bone resorption [17]. 
therefore, in experimental models, statins tend to stimulate 
bone formation and inhibit bone resorption, which results 
in a positive effect on bone mass.

Statins inhibit hmGCR, an early enzyme in the 
mevalonate pathway, but they are not known to target FDPS 
(Fig. 2). therefore, the mechanisms explaining the asso-
ciation between FDPS polymorphisms and statin-induced 
changes in BmD are unclear. Interestingly, a alleles at the 

Table 1  Genotype frequencies (number and rounded percentages) 
and p values for departure of a hardy–Weinberg equilibrium

SnP p (hWE)

rs2297480 aa aC CC

43 (65.2) 21 (31.8) 2 (3.0) >0.5

rs11264359 aa aG GG

41 (62.1) 22 (33.3) 3 (4.6) >0.5

rs17367421 CC CG GG

61 (92.4) 5 (7.6) 0 (0) >0.5

Table 2  Baseline BmD at the spine (L2–L4) and femoral neck across genotypes

SnP p

rs2297480 aa aC CC

Spine 1.147 (0.241) 1.122 (0.210) 1.071 0.88

Femoral neck 0.898 (0.157) 0.943 (0.147) 0.989 (0.098) 0.46

rs11264359 aa aG GG

Spine 1.150 (0.146) 1.222 (0.216) 1.071 0.96

Femoral neck 0.914 (0.156) 0.916 (0.159) 0.989 (0.10) 0.86

rs17367421 CC CG GG

Spine 1.144 (0.280) 1.183 (0.214) – 0.19

Femoral neck 0.917 (0.155) 0.929 (0.135) – 0.78
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rs2297480 and rs11264359 loci, associated with a better 
response of bone to statins in this study, were previously 
associated with a better response to bisphosphonates in a 

different population [11]. this suggests that in some way, 
those alleles of the FDPS gene are associated with a higher 
susceptibility to drugs interfering the mevalonate pathway, 
either by inhibiting FDPS itself (bisphosphonates) or by 
decreasing substrate availability following the inhibition of 
an upstream enzyme, as statins do.

Statins may have additional indirect effects on the 
expression of FDPS, which could represent another mecha-
nism linking FDPS genotype and statin-induced effects on 
bone. the mechanisms regulating FDPS expression have 
not been completely elucidated, but the promoter region 
has binding sites for several factors, including a sterol-
response element and nuclear factor −Y [18, 19]. tran-
scriptional activation induced by sterols is mediated by 
sterol-regulatory-element-binding protein 2 (SREBP-2) 
[20]. Expression and activity of the SREBP family depends 
on the cellular levels of cholesterol and other lipids [5, 21]. 
therefore, statin therapy may modulate SEBP-2 and con-
sequently FPPS expression, but it remains to be confirmed 
if this effect actually participates in the influence of statins 
on bone.

In summary, although these results should be consid-
ered preliminary until they are replicated in larger groups 
of patients, this study suggests that polymorphisms of the 
FDPS gene may influence the response of bone to different 
drugs targeting the mevalonate pathway, including not only 
aminobisphosphonates, but also statins.
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Fig. 1  BmD changes (% over baseline) after 1 year of atorvastatin 
treatment in patients with different FDPS genotypes
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