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Featured Application: The CAPT tool, ASR technology and procedure described in this work
can be successfully applied to support typical learning paces for Spanish as a foreign language
for Japanese people. With small changes, the application can be tailored to a different target L2,
if the set of minimal pairs used for the discrimination, pronunciation and mixed-mode activities
is adapted to the specific L1–L2 pair.

Abstract: General-purpose automatic speech recognition (ASR) systems have improved in quality
and are being used for pronunciation assessment. However, the assessment of isolated short utter-
ances, such as words in minimal pairs for segmental approaches, remains an important challenge,
even more so for non-native speakers. In this work, we compare the performance of our own tailored
ASR system (kASR) with the one of Google ASR (gASR) for the assessment of Spanish minimal
pair words produced by 33 native Japanese speakers in a computer-assisted pronunciation training
(CAPT) scenario. Participants in a pre/post-test training experiment spanning four weeks were split
into three groups: experimental, in-classroom, and placebo. The experimental group used the CAPT
tool described in the paper, which we specially designed for autonomous pronunciation training.
A statistically significant improvement for the experimental and in-classroom groups was revealed,
and moderate correlation values between gASR and kASR results were obtained, in addition to
strong correlations between the post-test scores of both ASR systems and the CAPT application scores
found at the final stages of application use. These results suggest that both ASR alternatives are valid
for assessing minimal pairs in CAPT tools, in the current configuration. Discussion on possible ways
to improve our system and possibilities for future research are included.

Keywords: automatic speech recognition (ASR); automatic assessment tools; foreign language
pronunciation; pronunciation training; computer-assisted pronunciation training (CAPT); automatic
pronunciation assessment; learning environments; minimal pairs

1. Introduction

Recent advances in automatic speech recognition (ASR) have made this technology
a potential solution for transcribing audio input for computer-assisted pronunciation
training (CAPT) tools [1,2]. Available ASR technology, properly adapted, might help
human instructors with pronunciation assessment tasks, freeing them from hours of tedious
work, allowing for the simultaneous and fast assessment of several students, and providing
a form of assessment that is not affected by subjectivity, emotion, fatigue, or accidental
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lack of concentration [3]. Thus, ASR systems can help in the assessment and feedback of
learner production, reducing human costs [4,5]. Although most of the scarce empirical
studies which include ASR technology in CAPT tools assess sentences in large portions of
either reading or spontaneous speech [6,7], the assessment of words in isolation remains a
substantial challenge [8,9].

General-purpose off-the-shelf ASR systems such as Google ASR (https://cloud.google.
com/speech-to-text, accessed on 27 June 2021) (gASR) are becoming progressively more
popular each day due to their easy accessibility, scalability, and, most importantly, effective-
ness [10,11]. These services provide accurate speech-to-text capabilities to companies and
academics who might not have the possibility of training, developing, and maintaining a
specific-purpose ASR system. However, despite the advantages of these systems (e.g., they
are trained on large datasets and span different domains), there is an obvious need for
improving their performance when used on in-domain data-specific scenarios, such as
segmental approaches in CAPT for non-native speakers. Concerning the existing ASR
toolkits, Kaldi has shown its leading role in recent years, with its advantages of having
flexible and modern code that is easy to understand, modify, and extend [12], becoming a
highly matured development tool for almost any language [13,14].

English is the most frequently addressed L2 in CAPT experiments [6] and in com-
mercial language learning applications, such as Duolingo (https://www.duolingo.com/,
accessed on 27 June 2021) or Babbel (https://www.babbel.com/, accessed on 27 June 2021).
However, there are scarce empirical experiments in the state-of-the-art which focus on
pronunciation instruction and assessment for native Japanese learners of Spanish as a
foreign language, and as far as we are concerned, no one has included ASR technology. For
instance, 1440 utterances of Japanese learners of Spanish as a foreign language (A1–A2)
were analyzed manually with Praat by phonetics experts in [15]. Students performed
different perception and production tasks with an instructor, and they achieved positive
significant differences (at the segmental level) between the pre-test and post-test values.
A pilot study on the perception of Spanish stress by Japanese learners of Spanish was
reported in [16]. Native and non-native participants listened to natural speech recorded
by a native Spanish speaker and were asked to mark one of three possibilities (the same
word with three stress variants) on an answer sheet. Non-native speech was manually
transcribed with Praat by phonetic experts in [17], in an attempt to establish rule-based
strategies for labeling intermediate realizations, helping to detect both canonical and erro-
neous realizations in a potential error detection system. Different perception tasks were
carried out in [18]. It was reported how the speakers of native language (L1) Japanese tend
to perceive Spanish /y/ when it is pronounced by native speakers of Spanish, and how the
L1 Spanish and L1 Japanese listeners evaluate and accept various consonants as allophones
of Spanish /y/, comparing both groups.

In previous work, we presented the development and the first pilot test of a CAPT
application with ASR and text-to-speech (TTS) technology, Japañol, through a training
protocol [19,20]. This learning application for smart devices includes a specific exposure–
perception–production cycle of training activities with minimal pairs, which are presented
to students in lessons on the most difficult Spanish constructs for native Japanese speakers.
We were able to empirically measure a statistically significant improvement between the
pre and post-test values of eight native Japanese speakers in a single experimental group.
The students’ utterances were assessed by experts in phonetics and by the gASR system,
obtaining strong correlations between human and machine values. After this first pilot test,
we wanted to take a step further and to find pronunciation mistakes associated with key
features of the proficiency-level characterization of more participants (33) and different
groups (3). However, assessing such a quantity of utterances by human raters can lead
to problems regarding time and resources. Furthermore, the gASR pricing policy and its
limited black-box functionalities also motivated us to look for alternatives to assess all the
utterances, developing a specific ASR system for Spanish from scratch, using Kaldi (kASR).
In this work, we analyze the audio utterances of the pre-test and post-test of 33 Japanese
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learners of Spanish as a foreign language with two different ASR systems (gASR and
kASR) to address the research question of how these general and specific-purpose ASR
systems compare in the assessment of short isolated words used as challenges in a learning
application for CAPT.

This paper is organized as follows. The experimental procedure is described in
Section 2, which includes the participants and protocol definition, a description of the
CAPT tool, a brief description of the process for elaborating the kASR system, and the
collection of metrics and instruments for collecting the necessary data. Section 3 presents,
on one hand, the results of the training of the users that worked with the CAPT tool and,
on the other hand, the performance of the two versions of the ASR systems: the word
error rate (WER) values of the kASR system developed, the pronunciation assessment of
the participants at the beginning and at the end of the experiment, including intra- and
inter-group differences, and the ASR scores’ correlation of both ASR systems. Then, we
discuss the user interaction with the CAPT tool, the performance of both state-of-the-art
ASR systems in CAPT, and we shed light on lines of future work. Finally, we end this paper
with the main conclusions.

2. Experimental Procedure

Figure 1 shows the experimental procedure followed in this work. At the bottom,
we see that a set of recordings of native speakers is used to train a kASR of Spanish words.
On the upper part of the diagram, we see that a group of non-native speakers are evaluated
in pre/post-tests in order to measure improvements after training. Speakers are separated
into three different groups (placebo, in-classroom, and experimental) to compare different
conditions. Both the utterances of the pre/post-tests and the interactions with the software
tool (experimental group) are recorded, so that a corpus of non-native speech is collected.
The non-native audio files are then evaluated with both the gASR and the kASR systems,
so that the students’ performance during training can be analyzed.

PRE-Test
Google ASR
PRE/POST
Test Scores

POST-Test

TRAIN (3 sessions)

Placebo

Google
ASR

Specific
ASR

Log-Files

Specific ASR
PRE/POST
Test Scores

Audio
Files

In-Classroom Experimental

Audio
Files

Audio
Files

Native
corpus

ASR Training 
(Kaldi)

Non-native

Native

Phonetician
Scores

Analysis

RESULTS

NATIVE PRONUNCIATION MODEL TRAINING

PRONUNCIATION TRAINING EXPERIMENT

Figure 1. Scheme of the experimental procedure.

The whole procedure can be compared with the one used in previous
experiments [19,20] where human-based scores (provided by expert phoneticians) were
used. Section 2.1 describes the set of informants that participated in the evaluation and au-
dio recordings. Section 2.2 describes the protocol of the training sessions, including details
of the pre- and post-tests. Section 2.5 shows the training of the kASR system. Section 2.6
presents the instruments and metrics used for the evaluation of the experiment.
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2.1. Participants

A total of 33 native Japanese speakers aged between 18 and 26 years participated
voluntarily in the evaluation of the experimental prototype. Participants came from two
different locations: 8 students (5 female, 3 male) were registered in a Spanish intensive
course provided at the Language Center of the University of Valladolid and had recently
arrived in Spain from Japan in order to start the L2 Spanish course; the remainder comprised
25 female students of the Spanish philology degree from the University of Seisen, Japan. The
results of the first location (Valladolid) allowed us to verify that there were no particularly
differentiating aspects in the results analyzed by gender [19]. Therefore, we did not expect
the fact that all participants were female in the location to have a significant impact on the
results. All of them declared a low level of Spanish as a foreign language, with no previous
training in Spanish phonetics. None of them had stayed in any Spanish speaking country
for more than 3 months. Furthermore, they were requested not to complete any extra work
in Spanish (e.g., conversation exchanges with natives or extra phonetics research) while
the experiment was still active.

Participants were randomly divided into three groups: (1) experimental group, 18 stu-
dents (15 female, 3 male) who trained their Spanish pronunciation with Japañol, dur-
ing three sessions of 60 min; (2) in-classroom group, 8 female students who attended
three 60 min pronunciation teaching sessions within the Spanish course, with their usual
instructor, making no use of any computer-assisted interactive tools; and (3) placebo group,
7 female students who only took the pre-test and post-test. They attended neither the
classroom nor the laboratory for Spanish phonetics instruction.

2.2. Protocol Description

We followed a four-week protocol which included a pre-test, three training sessions,
and a post-test for the non-native participants (see Appendix A to see the content of
the tests). Native speakers recorded the speech training corpus for the kASR system.
At the beginning, the non-native subjects took part in the pre-test session individually
in a quiet testing room. The utterances were recorded with a microphone and an audio
recorder (the procedure was the same for the post-test). All the students took the pre-test
under the sole supervision of a member of the research team. They were asked to read
aloud the 28 minimal pairs administered via a sheet of paper with no time limitation
(https://github.com/eca-simm/minimal-pairs-japanol-eses-jpjp, accessed on 27 June
2021). The pairs came from 7 contrasts containing Spanish consonant sounds consid-
ered the most difficult to perceive and produce by native Japanese speakers (see more
details in [19]): [T]–[f], [T]–[s], [fu]–[xu], [l]–[R], [l]–[r], [R]–[rr], and [fl]–[fR]. Students were
free to repeat each contrast as many times as they wished if they thought they might have
mispronounced them.

From the same 7 contrasts, a total of 84 minimal pairs (https://github.com/eca-
simm/minimal-pairs-japanol-eses-jpjp, accessed on 27 June 2021) were presented to the
experimental and in-classroom group participants in 7 lessons across three training sessions.
The minimal pairs were carefully selected by experts considering the gASR limitations
(homophones, word-frequency, very short words, and out-of-context words, in a similar
process as in [8]). The lessons were included in the CAPT tool for the experimental group
and during the class sessions for the in-classroom group (12 minimal pairs per lesson,
2 lessons per session, except for the last session that included 3 lessons; see more details
about the training activities in [19]). The training protocol sessions were carried out during
students’ course lectures in the classroom, in which a minimal pair was practiced in each
lesson (blocked practice) and most phonemes were practiced again in later sessions (spaced
practice). Regarding the sounds practiced in each session, in the first one, sounds [fu]–[xu]
and [l]–[R] were contrasted, then [l]–[r] and [R]–[rr], and the last session involved the sounds
[fl]–[fR], [T]–[f], and [T]–[s]. Finally, subjects of the placebo group did not participate in
the training sessions. They were supposed to take the pre-test and post-test and obtain

https://github.com/eca-simm/minimal-pairs-japanol-eses-jpjp
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results without significant differences. All participants were awarded with a diploma and
a reward after completing all stages of the experiment.

2.3. Description of the CAPT Mobile Application

To carry out all the experiments, we built a mobile app, Japañol, starting from a
previous prototype app designed for self-directed training of English as an L2 [8]. Figure 2
shows the regular sequence of steps to complete a lesson in Japañol. After user authentica-
tion in (step 1), seven lessons are presented at the main menu of the application (step 2).
Each lesson includes a pair of Spanish sound contrasts and users achieve a particular score,
expressed as a percentage. Lessons are divided into five main training modes, Theory,
Exposure, Discrimination, Pronunciation, and Mixed Modes (step 3), in which each one
proposes several task types with a fixed number of mandatory task tokens. The final
lesson score is the mean score of the last three modes. Users are guided by the system
in order to complete all training modes of a lesson. When reaching a score below 60%
in Discrimination, Pronunciation, or Mixed Modes, users are recommended to return to
Exposure mode as a feedback resource and then return to the failed mode. Moreover, the
next lesson is enabled when users reach a minimum score of 60%.

Figure 2. Standard flow to complete a lesson in Japañol.

The first training mode is Theory (step 4). A brief and simple video describing the
target contrast of the lesson is presented to the user as the first contact with feedback. At
the end of the video, the next mode becomes available, but users may choose to review
the material as many times as they want. Exposure (step 5) is the second mode. Users
strengthen the lesson contrast experience previously introduced in Theory mode, in order
to support their assimilation. Three minimal pairs are displayed to the user. In each one
of them, both words are synthetically produced by Google TTS five times (highlighting
the current word), alternately and slowly. After this, users must record themselves at least
one time per word and listen to their own and the system’s sound. Words are represented
with their orthographic and phonemic forms. A replay button allows users to listen to the
specified word again. Synthetic output is produced by Google’s offline Text-To-Speech tool
for Android. After all previous required events per minimal pair (listen-record-compare),
participants are allowed to remain in this mode for as long as they wish, listening, recording,
and comparing at will, before returning to the Modes menu. Step 6 refers to Discrimination
mode, in which ten minimal pairs are presented to the user consecutively. In each one of
them, one of the words is synthetically produced, randomly. The challenge of this mode
consists of identifying which word is produced. As feedback elements, words have their
orthographic and phonetic transcription representations. Users can also request to listen
to the target word again with a replay button. Speed varies alternately between slow
and normal speed rates. Finally, the system changes the word color to green (success)
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or red (failure) with a chime sound. Pronunciation is the fourth mode (step 7), whose
aim is to produce, as well as possible, both words, separately, of the five minimal pairs
presented with their phonetic transcription. gASR determines automatically and in real
time acceptable or non-acceptable inputs. In each production attempt, the tool displays
a text message with the recognized speech, plays a right/wrong sound, and changes the
word’s color to green or red. The maximum number of attempts per word is five in order
not to discourage users. However, after three consecutive failures, the system offers to
the user the possibility of requesting a word synthesis as an explicit feedback as many
times as they want with a replay button. Mixed mode is the last mode of each lesson
(step 8). Nine production and perception tasks alternate at random in order to further
consolidate the obtained skills and knowledge. Regarding listening tasks with the TTS,
mandatory listenings are those which are associated with mandatory activities with the tool
and non-mandatory listenings are those which are freely undertaken by the user whenever
she has doubts about the pronunciation of a given word.

2.4. Native Corpus Preparation

A group of 10 native Spanish speakers from the theater company Pie Izquierdo of
Valladolid (5 women and 5 men) participated in the recording of a total of 41,000 utterances
(7.1 h of speech data) for the training corpus of the kASR system for assessing the students’
utterances gathered during the experimentation.

Each one of the native speakers recorded individually 164 words (https://github.com/
eca-simm/minimal-pairs-japanol-eses-jpjp, accessed on 27 June 2021) 25 times, (41,000
utterances in total) presented randomly in five-hour sessions, for elaborating the training
corpus for the kASR system. The average, minimum, maximum, and standard deviation of
the word lengths were: 4.29, 2, 8, and 1.07, respectively. The phoneme frequency (%) was:
[a]: 16.9, [o]: 11.3, [r]: 9.0, [e]: 7.8, [f]: 5.3, [s]: 5.0, [R]: 4.8, [l]: 4.5, [t]: 3.6, [k]: 3.6, [u]: 3.2, [i]:
3.2, [T]: 3.2, [n]: 2.8, [m]: 2.3, [G]: 1.8, [j]: 1.4, [D]: 1.5, [x]: 1.3, [b]: 1.3, [p]: 1.1, [d]: 1.1, [B]: 0.9,
[w]: 0.9, [N]: 0.7, [g]: 0.3, [Ã]: 0.2, and [z]: 0.1.

The recording sessions were carried out in an anechoic chamber at the University of
Valladolid with the help of a member of the ECA-SIMM research group. The machine
configuration on which the kASR system was installed was CentOS 8 (64-bit operating
system), Intel(R) Core(TM) i7-8700K CPU (12 cores) processor with 3.70 GHz.

2.5. Developing an ASR System with Kaldi

Until now, in our previous works, we have always used gASR for the automatic
assessment of pre/post-tests as a complement to or replacement for subjective assessment.
Since gASR works as a black-box and does not allow us to obtain details on the quality
of each individual speech fragment, we decided to develop an in-house ASR system of
our own using Kaldi (kASR). In this subsection, we present the ASR pipeline that we
implemented for the kASR system and we provide details about its general architecture
and specific parameters.

Our kASR system uses a standard context-dependent triphone system with a simple
Gaussian Mixture Model–Hidden Markov Model (GMM–HMM) [21], adapted from ex-
isting Kaldi recipes [22]. Although recent studies report excellent outcomes from neural
models with Kaldi [23], we did not find relevant differences in preliminary runs due to,
mainly, the small size of the training corpus (described in Section 2.4). After collecting
and preparing the speech data for training and testing, the first step is to extract acoustic
features from the audio utterances and training monophone models. These features are
Mel frequency cepstral coefficients (MFCCs) with per-speaker cepstral mean and variance
statistics. Since Kaldi is based on a finite-state transducer-based framework to build lan-
guage models from the raw text, we use the SRILM toolkit for building a 2-g language
model [24].

https://github.com/eca-simm/minimal-pairs-japanol-eses-jpjp
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To train a model, monophone GMMs are first iteratively trained and used to generate
a basic alignment. Triphone GMMs are then trained to take the surrounding phonetic
context into account, in addition to clustering of triphones to combat sparsity. The triphone
models are used to generate alignments, which are then used for learning acoustic feature
transforms on a per-speaker basis in order to make them more suited to speakers in other
datasets [25]. In our case, we set 2000 total Gaussian components for the monophone
training. Then, we realigned and retrained these models four times (tri4) with 5 states
per HMM. In particular, in the first triphone pass, we used MFCCs, delta, and delta–
delta features (2500 leaves and 15,000 Gaussian components); in the second triphone
pass, we included linear discriminant analysis (LDA) and Maximum Likelihood Linear
Transform (MLLT) with 3500 leaves and 20,000 Gaussian components; the third triphone
pass combined LDA and MLLT with 4200 leaves and 40,000 Gaussian components, and the
final step (tri4) included LDA, MLLT, and speaker adaptive training (SAT) with 5000 leaves
and 50,000 Gaussian components. The language model was a bigram with 164 unique
words (same probability) for the lexicon, 26 nonsilence phones, and the standard SIL and
UNK phones.

2.6. Instruments and Metrics

We gathered data from five different sources: (1) a registration form with students’
demographic information, (2) pre-test utterances, (3) log files, (4) utterances of users’
interactions with Japañol, and (5) post-test utterances. Personal information included
name, age, gender, L1, academic level, and final consent to analyze all gathered data. Log
files gathered all low-level interaction events with the CAPT tool and monitored all user
activities with timestamps. From these files, we computed a CAPT score per speaker which
refers to the final performance at the end of the experiment. It includes the number of
correct answers in both perception and production (in which we used gASR) tasks while
training with Japañol [19]. Pre/post-test utterances consisted in oral productions of the
minimal pairs lists provided to the students.

A set of experimental variables was computed: (1) WER values of the train/test set
models for the specific-purpose kASR system developed in a [0, 100] scale; (2) the student’s
pronunciation improvement at the segmental level comparing the difference between
the number of correct words at the beginning (pre-test) and at the end (post-test) of the
experiment in a [0, 10] scale. We used this scale for helping teachers to understand the score
as they use it in the course’s exams. This value consists of the mean of correct productions
in relation to the total number of utterances. Finally, we used (3) the correlation values
between gASR and kASR systems of the pre/post-test utterances and between the CAPT
score and both ASR systems at the end of the experiment (post-test) in a [0, 1] scale.

By way of statistical metrics and indexes, Wilcoxon signed-rank tests were used to
compare the differences between the pre/post-test utterances of each group (intra-group),
Mann–Whitney U tests were used to compare the differences between the groups (inter-
group), and Pearson correlations were used to explain the statistical relationship between
the values of the ASR systems and the final CAPT scores.

3. Results
3.1. User Interaction with the CAPT Tool

Table 1 displays the results related to the user interaction with the CAPT system
(experimental group, 18 participants). Columns n, m, and M are the mean, minimum, and
maximum values, respectively. Time (min) row stands for the time spent (minutes) per
learner in each training mode in the three sessions of the experiment. #Tries represents
the number of times a mode was executed by each user. The symbol — stands for ’not
applicable’. Mand. and Req. mean mandatory and requested listenings (see Section 2.3).
The TTS system was used in both listening types, whereas the ASR was only used in the
#Productions row.
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Table 1. User’s training activities with the CAPT system.

Theory Exposure Discrimination Pronunciation Mixed

n m M n m M n m M n m M n m M

Time (min) 14.80 8.7 20.8 19.7 12.8 21.9 7.1 4.1 13.8 43.6 22.4 72.9 17.0 7.6 30.5
#Tries 7.8 6 10 10.6 7 16 8.5 7 15 10.1 7 14 6.7 3 10
#Mand.List. - - - 287.8 210 390 91.7 70 134 - - - 20.2 9 30
#Req.List. - - - 99.3 53 157 33.0 0 153 54.9 0 127 25.6 6 60
#Discriminations - - - - - - 91.7 70 134 - - - 20.2 9 30
#Productions - - - - - - - - - 208.8 116 356 82.9 38 181
#Recordings - - - 62.4 42 81 - - - - - - - - -

Table 1 shows that there are important differences in the level of use of the tool
depending on the user. For instance, the fastest learner performing pronunciation activities
spent 22.43 min, whereas the slowest one took 72.85 min. This contrast can also be observed
in the time spent on the rest of the training modes and in the number of times that the
learners practiced each one of them (row #Tries). Overall, 85.25% of the time was consumed
by carrying out interactive training modes (Exposure, Discrimination, Pronunciation,
and Mixed Modes). The inter-user differences affected both the number of times the users
made use of the ASR (154 minimum vs. 537 maximum) and the number of times they
requested the use of TTS (59 vs. 497 times), reaching a rate of 9.0 uses of the speech
technologies per minute.

Tables 2 and 3 show the confusion matrices between the sounds of the minimal pairs
in perception and production events, since the sounds were presented in pairs in each
lesson. In both tables, the rows are the phonemes expected by the tool and the columns are
the phonemes selected (discrimination training mode) or produced (production training
mod) by the user. These produced phonemes are derived from the word recognized by
the gASR, not because we look directly at the phoneme recognized, since gASR does not
provide us with phoneme-level segmentation. TPR is the true positive rate or recall. The
symbol—stands for ’not applicable’. #Lis is the number of requested (e.g., non-mandatory)
listenings of the word in the minimal pair including the sound of the phoneme in each row.

Table 2. Confusion matrix of discrimination tasks (diagonal: right discrimination tasks).

Discrimination Tasks

#Lis [fl] [fR] [l] [R] [rr] [s] [T] [f] [fu] [xu] TPR (%)

65 [fl] 123 64 - - - - - - - - 65.8%
52 [fR] 69 115 - - - - - - - - 62.5%
139 [l] - - 239 56 19 - - - - - 76.1%
115 [R] - - 71 217 16 - - - - - 71.4%
51 [rr] - - 15 21 215 - - - - - 85.7%
45 [s] - - - - - 95 32 - - - 74.8%
45 [T] - - - - - 15 214 11 - - 89.2%
16 [f] - - - - - - 4 104 - - 96.3%
89 [fu] - - - - - - - - 115 34 77.2%
103 [xu] - - - - - - - - 39 111 74.0%

As shown in Tables 2 and 3, the most confused pairs in discrimination tasks were
[l]–[R], both individually (56 and 71, 127 times) and preceded by the sound [f] (69 and
64, 133 times). Furthermore, the number of requested listenings related to these sounds
was the highest one (65 and 139, 204 times for [l] and 167 (52 and 115) for [R]). The least
confused pair in discrimination was [T]–[f] (11 and 4, 15 times). The sounds with the
lowest discrimination TPR rate were [fl] and [fR] (both < 66.0%), and those with the highest
discrimination TPR rate were [T] and [f] (both > 89%), corresponding also to the lowest
number of requested listenings (45 and 16, respectively).
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Table 3 shows the results related to production events per word utterance. #Lis is
the number of requested listenings of the corresponding sound row at (first|last) attempt.
A positive improvement from first to last attempt was observed (TPR column), with the
highest ones being the [fl] (33.2%) and [fR] (21.1%) sounds. In particular, these two sounds
constituted the most confused pair in first-attempt production tasks (73 and 79, 152 times),
where the least confused one was [l]–[rr] (37 and 22, 59 times). The sounds with the lowest
production TPR rate were [fl] and [s] (both < 47%), and those with the highest production
TPR rates were [R] and [rr] (both > 73%). On the other hand, the most confused pair in
last-attempt production tasks was [fu]–[xu] (91 and 106, 197 times), reaching the lowest
production TPR rates (56.6% and 60.6%, respectively). Moreover, the number of requested
listenings was the highest in both cases (240 and 186, respectively). The least confused pair
was [l]–[rr] (9 and 14, 23 times), reaching TPR rate values higher than 85%.

Table 3. Confusion matrix of production tasks at first and last attempt per word sequence (diagonal: right production tasks
at first and last attempt per word sequence).

Production Tasks (First Attempt|Last Attempt)

#Lis [fl] [fR] [l] [R] [rr] [s] [T] [f] [fu] [xu] TPR (%)

13|128 [fl] 65|170 79|47 - - - - - - - - 45.1%|78.3%
3|125 [fR] 73|64 65|137 - - - - - - - - 47.1%|68.2%
9|105 [l] - - 177|253 45|31 37|14 - - - - - 68.3%|84.9%
8|103 [R] - - 33|21 209|289 42|14 - - - - - 73.6%|89.2%
3|70 [rr] - - 22|9 44|22 189|252 - - - - - 74.1%|89.0%
6|146 [s] - - - - - 58|134 66|67 - - - 46.8%|66.7%
2|202 [T] - - - - - 79|96 142|226 38|12 - - 54.8%|67.7%
0|29 [f] - - - - - - 38|19 97|116 - - 71.9%|85.9%
4|240 [fu] - - - - - - - - 62|138 62|106 50.0%|56.6%
5|186 [xu] - - - - - - - - 59|91 63|140 51.6%|60.6%

3.2. ASR Performance

We tested the speech utterances of the pre/post-tests with two different ASR systems,
i.e., the general-purpose gASR and a specific-purpose ASR created from scratch with
Kaldi (kASR), to validate that the results using kASR were not casual. We considered a
comparison with other Spanish ASR systems [26] not to be informative or fair to carry out,
since our kASR system is not a general-purpose one, but a tailored ASR with a closed set
of words related to minimal pairs. Table 4 shows the WER values obtained by both ASR
systems used in the experimentation with two different sources of speech data (native and
non-native).

Table 4. WER values (%) of the experiment’s ASR systems.

Train Model

gASR kASR

All Female Male Best1 Best2 Best3

Native 5.0 0.0024 3.10 1.55 0.14 0.14 0.23

Non-native 30.0 44.22 55.91 64.12 46.40 46.98 48.08

Regarding the native models (Table 4), the All model included 41,000 utterances of
the native speakers in the train set. The Female model included 20,500 utterances of the
five female native speakers in the train set. The Male model included 20,500 utterances of
the five male native speakers in the train set. The Best1, Best2, and Best3 models included
32,800 utterances (80%) of the total native speakers (4 females and 4 males) in the train
set. These last three models were obtained by comparing the WER values of all possible
80%/20% combinations (train/test sets) of the native speakers (e.g., 4 female and 4 male
native speakers for training: 80%, and 1 female and 1 male for testing: 20%), and choosing
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the best three WER values (the lowest ones). On the other hand, the non-native test model
consisted of 3696 utterances (33 participants × 28 minimal pairs × 2 words per minimal
pair × 2 tests).

The 5.0% WER value reported by Google for their English ASR system for native
speech [10] corresponds to our WER value for native speech data. Google training tech-
niques are applied also for their ASR in other majority languages, such as Spanish. Re-
garding our kASR system, we achieved values lower than 5.0% for native speech for the
specific battery of minimal pairs introduced in Section 2 (e.g., All model: 0.0024%). On the
other hand, we tested the non-native minimal pairs utterances with gASR, obtaining a
30.0% WER (16.0% non-recognized words). In the case of the kASR, as expected, the All
model reported the best test results (44.22%) for the non-native speech. The Female train
model yielded a better WER value for the non-native test model (55.91%) than the Male
one (64.12%) since 30 out of 33 participants were female speakers.

Table 5 displays the average scores assigned by the gASR and kASR systems to the
3696 utterances of the pre/post-tests classified by the three groups of participants, in a
[0, 10] scale. Symbols n, N, and ∆ refer to the mean score of the correct pre/post-test
utterances, the number of utterances, and the difference between the post-test and pre-test
average scores, respectively. The students who trained with the tool (experimental group)
achieved the best pronunciation improvement values in both gASR (0.7) and kASR (1.1)
systems. Nevertheless, the in-classroom group achieved better results in both tests and
with both ASR systems (4.1 and 6.1 in the post-test; and 3.5 and 5.2 in the pre-test, gASR
and kASR, respectively). The placebo group achieved the worst post-test values (3.2 and
3.5) and pronunciation improvement (∆) values (0.2 and 0.4).

Table 5. Pre/post-test scores assigned by both ASR systems.

Pre-Test Post-Test ∆ (Post-Test–Pre-Test)

Group gASR kASR gASR kASR gASR kASR

n N n N n N n N ∆ ∆

Experimental 3.0 560 4.1 560 3.7 560 5.2 560 0.7 1.1
In-classroom 3.5 448 5.2 448 4.1 448 6.1 448 0.6 0.9

Placebo 3.0 392 3.1 392 3.2 392 3.5 392 0.2 0.4

Table 6 shows the cases in which there are statistically significant inter- and intra-group
differences between the pre/post-test values. A Mann–Whitney U test found statistically
significant differences between all groups and with both ASR systems in the post-test.
Although there were significant differences between the pre-test scores of the in-classroom
group and the experimental group, and the placebo group, such differences were minimal
since the effect size values were small (r = 0.10 and r = 0.20, respectively). Regarding
intra-group differences, a Wilcoxon signed-rank test (right part of Table 6) found statis-
tically significant differences between the pre/post-test values of the experimental and
in-classroom groups with both ASR systems. In the case of the placebo group, there were
differences only in the gASR values.

Table 6. Inter and intra-group statistically significant differences between the scores of the pre/post-tests.

Inter-Group (Mann–Whitney U) Intra-Group (Wilcoxon Signed-Rank)

Pre-Test Post-Test Post-Test–Pre-Test

Groups gASR kASR gASR kASR gASR kASR

p-Value Z p-Value Z p-Value Z p-Value Z Group p-Value Z p-Value Z

EXP-INC <0.001 −8.892 <0.001 −3.645 <0.001 −2.773 <0.001 −2.886 EXP <0.001 −13.784 <0.001 −5.448
EXP-PLA - - - - <0.001 −5.324 <0.001 −3.527 INC <0.001 −2.888 <0.001 −3.992
INC-PLA <0.001 −8.050 <0.001 −3.431 <0.001 −6.32 <0.001 −7.651 PLA 0.002 −3.154 - -

EXP = Experimental group; INC = In-classroom group; PLA = Placebo group; - = No differences.
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This learning difference at the end of the experiment was supported by the time spent
by the speakers on carrying out the pre-test and post-test. Each participant took an average
of 83.77 s to complete the pre-test (63.85 s min. and 129 s max.) and an average of 94.10 s to
complete the post-test (52.45 and 138.87 s min. and max.).

Finally, we analyzed the correlations between (1) the pre/post-test scores of both ASR
systems (three groups) and (2) the Japañol CAPT tool scores with the experimental group’s
post-test scores of both ASR systems (since the experimental group was the only group
with a CAPT score) in order to compare the three sources of objective scoring (Table 7).

Table 7. Regression coefficients of the CAPT, gASR, and kASR systems.

x y a b S.E. r p-Value

pre-kASR pre-gASR 0.927 1.919 0.333 0.51 0.005
post-kASR post-gASR 0.934 1.897 0.283 0.57 0.002
post-gASR CAPT score 0.575 −0.553 0.148 0.81 0.002
post-kASR CAPT score 0.982 −1.713 0.314 0.74 0.007

The columns x, y, a, b, S.E., and r of Table 7 refer to the dependent variable, indepen-
dent variable, slope of the line, intercept of the line, standard error, and Pearson coefficient,
respectively. The first row of Table 7 and the left graph of Figure 3 represent the moderate
positive Pearson correlation found between the gASR and kASR pre-test scores (r = 0.51,
p = 0.005), whereas the second row of Table 7 and the right graph of Figure 3 show the
moderate positive Pearson correlation found between the gASR and kASR post-test scores
(r = 0.57, p = 0.002).

Figure 3. Correlation between the gASR and kASR scores of the pre-test (left graph) and post-test (right graph).

The third row of Table 7 and the left graph of Figure 4 represent the fairly strong
positive Pearson correlation found between the CAPT scores and the post-test scores of
gASR (r = 0.81, p = 0.002), whereas the final row of Table 7 and the right graph of Figure 4
show the fairly strong positive Pearson correlation found between the CAPT scores and
the post-test scores of the kASR system (r = 0.74, p = 0.007).
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Figure 4. Correlation between the gASR (left graph) and kASR (right graph) ASR scores of the post-test with the CAPT score.

4. Discussion

Results showed that the Japañol CAPT tool led experimental group users to carry
out a significantly large number of listening, perception, and pronunciation exercises
(Table 1). With an effective and objectively registered 57% of the total time, per participant,
devoted to training (102.2 min out of 180), high training intensity was confirmed in the
experimental group. Each one of the subjects in the CAPT group listened to an average of
612.5 synthesized utterances and produced an average of 291.4 word utterances, which
were immediately identified, triggering, when needed, automatic feedback. This intensity
of training (hardly obtainable within a conventional classroom) implied a significant level
of time investment in tasks, which might establish a relevant factor in explaining the larger
gain mediated by Japañol.

Results also suggested that discrimination and production skills were asymmetrically
interrelated. Subjects were usually better at discrimination than production (8.5 vs. 10.1 tries
per user, see Table 1, #Tries row). Participants consistently resorted to the TTS when faced
with difficulties both in perception and production modes (Table 1, #Req.List. row; and
Tables 2 and 3, #Lis column). While a good production level seemed to be preceded by a good
performance in discrimination, a good perception attempt did not guarantee an equally good
production. Thus, the system was sensitive to the expected difficulty of each type of task.

Tables 2 and 3 identified the most difficult phonemes for users while training with
Japañol. Users encountered more difficulties in activities related to production. In particu-
lar, Japanese learners of Spanish have difficulty with [f] in the onset cluster position in both
perception (Table 2) and production (Table 3) [27]. [s]–[T] present similar results: speakers
tended to substitute [T] by [s], but this pronunciation is accepted in Latin American Span-
ish [28]. Japanese speakers are also more successful at phonetically producing [l] and [R]
than discriminating these phonemes [29]. Japanese speakers have already acquired these
sounds since they are allophones of the same liquid phoneme in Japanese. For this reason,
it does not seem to be necessary to distinguish them in Japanese (unlike in Spanish).

Regarding the pre/post-test results, we have reported on empirical evidence about
the significant pronunciation improvement at the segmental level of the native Japanese
beginner-level speakers of Spanish after training with the Japañol CAPT tool (Table 5).
In particular, we used two state-of-the-art ASR systems to assess the pre/post-test values.
The experimental and in-classroom group speakers improved 0.7|1.1 and 0.6|0.9 points
out of 10, assessed by gASR|kASR systems, respectively, after just three one-hour training
sessions. These results agreed with previous works which follow a similar methodol-
ogy [8,30]. Thus, the training protocol and the technology included, such as the CAPT
tool and the ASR systems, provided a very useful and didactic instrument that can be
used complementary with other forms of second language acquisition in larger and more
ambitious language learning projects.
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Our specific-purpose kASR system allowed us to reliably measure the pronunciation
quality of the substantial quantity of utterances recorded after testing different training
models (Table 4). In particular, this ASR system proved to be useful for working at
the segmental (phone) level for non-native speakers. We followed standard preparation
procedures for the models, restricted to closed small vocabulary tasks, where the words
were selected according to minimal pairs trained with our tool. In this way, what is novel
is the fact that we started from a native pronunciation model and transferred it directly to
Japanese speakers. Developing an in-house ASR system allowed us not only to customize
the post-analysis of the speech without the black-box and pricing limitations of the general-
purpose gASR system, but also to neither pre-discard specific words (e.g., out-of-context,
infrequent, and very short words) nor worry about the data privacy and preparation
costs. Moreover, future research studies might follow the same procedure to develop a
similar ASR system for minimal pairs focusing on specific sounds. Despite the positive
results reported about the kASR, the training corpus was limited in both quantity and
variety of words and the experiment was carried out under a controlled environment.
Data augmentation, noise reduction, and a systematic study of the non-native speech data
gathered to find pronunciation mistakes associated with key features of proficiency-level
characterization with the help of experts for its automatic characterization [4,17] must be
considered in the future to expand the project.

Finally, we compared the scores provided by kASR to the gASR ones, obtaining
moderate positive correlations between them (Table 7 and Figure 3). The post-test values
of both gASR and kASR systems also strongly correlated with the final scores provided by
the CAPT tool of the experimental group speakers (Table 7 and Figure 4). In other words,
although the training words in Japañol were not the same as the pre/post-test ones, the
phonemes trained were actually the same and the speakers were able to assimilate the
lessons learned from the training sessions to the final post-test. Therefore, we were able
to ensure that both scoring alternatives are valid and can be used for assessing Spanish
minimal pairs for certain phonemes and contexts (e.g., availability of resources, learning,
place, data privacy, or costs), even though our specific-purpose ASR system is not as
accurate as gASR (30.0% vs. 44.22% WER values, Table 4). Future work will consist of
fine-tuning our kASR system with more speech data and retraining techniques, such as
deep or recurrent neural networks, combining both native and non-native speech in order
to improve the current results and to obtain a better customization of the ASR system to the
specific phoneme-level tasks. Thus, researchers, scholars, and developers can decide which
one to integrate into their CAPT tools depending on the tasks and resources available.

5. Conclusions

The Japañol CAPT tool allows L1 Japanese students to practice Spanish pronunciation
of certain pairs of phonemes, achieving improvements comparable with the ones obtained
in in-classroom activities. The use of minimal pairs permits us to objectively identify the
most difficult phonemes to be pronounced by initial-level students of Spanish. Thus, we be-
lieve it is worth taking into account when thinking about possible teaching complements
since it promotes a high level of training intensity and a corresponding increase in learning.

We have presented the development of a specific-purpose ASR system that is special-
ized in the recognition of single words of Spanish minimal pairs. Results show that the
performance of this new ASR system is comparable with that obtained with the general
ASR gASR system. The advantage is not only that the new ASR permits substitution of
the commercial system, but also that it will permit us in future applications to obtain
information about the pronunciation quality at the level of phoneme.

We have seen that ASR systems can help in the costly intervention of human teachers
in the evaluation of L2 learners’ pronunciation in pre/post-tests. It is our future challenge
to provide information about the personal and recurrent mistakes of speakers that occur at
the phoneme level while training.
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Appendix A. Word List for Pre-Test and Post-Test

Table A1. Pre-test and post-test word list.

Spanish

1 caza /‘kaTa/ casa /‘kasa/
2 cocer /ko‘Ter/ coser /ko‘ser/
3 cenado /Te‘naðo/ senado /se‘naðo/
4 vez /beT/ ves /bes/
5 zumo /‘Tumo/ fumo /‘fumo/
6 moza /‘moTa/ mofa /‘mofa/
7 cinta /‘TiNta/ finta /‘finta/
8 concesión /koNTe‘sioN/ confesión /koNfe‘sioN/
9 fugo /‘fuÈo/ jugo /‘xuÈo/

10 fuego /‘fweÈo/ juego /‘xweÈo/
11 fugar /fu‘Èar/ jugar /xu‘Èar/
12 afuste /a‘fuùte / ajuste /a‘xuùte/
13 pelo /‘pelo/ pero /‘peRo/
14 hola /‘ola/ hora /‘oRa/
15 mal /mal/ mar /maR/
16 animal /ani‘mal/ animar /ani‘maR/
17 hielo /‘Ãelo/ hierro /‘Ãerro/
18 leal /le‘al/ real /rre‘al/
19 loca /‘loka/ roca /‘rroka/
20 celada /Te‘laða/ cerrada /Te‘rraða/
21 pero /‘peRo/ perro /‘perro/
22 ahora /a‘oRa/ ahorra /a‘orra/
23 enteró /ẽn

›
te‘Ro/ enterró /ẽn

›
te‘rro/

24 para /‘paRa/ parra /‘parra/
25 flotar /flo‘taR/ frotar /fRo‘taR/
26 flanco /‘flaNko/ franco /‘fRaNko/
27 afletar /afle‘taR/ afretar /afRe‘taR/
28 flotado /flota‘ðo/ frotado /fRota‘ðo/

The instructions given to the students in the pre-test and post-test are the following:

• Please read carefully the following list of word pairs (Table A1). Read them from top
to bottom and from left to right.

• You can read the word again if you think you have mispronounced it.
• All words are accompanied by their phonetic transcription, in case you find it useful.
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• You may read looking at the orthographic expression—cat—or at the transcription—
/kæt/—but read the orthographic text at least one time.
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