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Abstract: Meteorological variables have a noticeable impact on pollutant concentrations. Among
these variables, wind speed is typically measured, although research into how pollutants respond to
it can be improved. This study considers nine years of hourly CO2 and CH4 measurements at a rural
site, where wind speed values were calculated by the METEX model. Nine wind speed intervals
are proposed where concentrations, distribution functions, and daily as well as annual cycles are
calculated. Contrasts between local and transported concentrations are around 5 and 0.03 ppm for
CO2 and CH4, respectively. Seven skewed distributions are applied, and five efficiency criteria are
considered to test the goodness of fit, with the modified Nash–Sutcliffe efficiency proving to be the
most sensitive statistic. The Gumbel distribution is seen to be the most suitable for CO2, whereas the
Weibull distribution is chosen for CH4, with the exponential function being the worst. Finally, daily
and annual cycles are analysed, where a gradual decrease in amplitude is observed, particularly for
the daily cycle. Parametric and nonparametric procedures are used to fit both cycles. The latter gave
the best fits, with the agreement being higher for the daily cycle, where evolution is smoother than
for the annual cycle.

Keywords: METEX; skewed distributions; index of agreement; Nash–Sutcliffe efficiency; daily cycle;
annual cycle

1. Introduction

Cities are major sources of air pollution, and a reduction in pollution levels must be
achieved by emission control. Due to its significant environmental impact, the European
Union (EU) is seeking to reduce household energy consumption. However, although
this consumption decreased over the period 2005–2016 and Spain had the fourth low-
est consumption in the EU, this trend might not be maintained, since energy efficiency
improvements may be offset by lifestyle- or weather-related changes [1].

Moreover, meteorological conditions play a key role in the measured concentrations.
Dong et al. [2] analysed air pollution in the Beijing-Tianjin-Hebei region of China, one of
the most populated regions, comparable to the Pearl River Delta or the Yangtze River Delta
regions, and reported that the impact of meteorology on air pollution ranges from 20% to
40%, depending on the type of process, i.e., whether there is local or regional transport.
Mousavinezhad et al. [3] studied the ozone trend at these three sites and concluded that
changes in meteorological variables, such as solar radiation, temperature, and sea level
pressure, were associated with ozone changes of around 32% in the Beijing-Tianjin-Hebei
region. Synoptic types have usually been considered as a suitable procedure to link air
pollution and meteorology [4]. However, other analyses address this relationship by
considering individual meteorological variables [5].

Some studies focus on specific variables. One such case is the analysis by Miao et al. [6],
which investigates the role of the planetary boundary layer on air pollution in Beijing and
Shanghai. Although the influence of wind speed on air pollution is recognised, studies
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exclusively devoted to this variable are scarce. Wind speed is linked with both local and
transboundary pollution episodes. One example is presented by Yoshino et al. [7], who
analysed air quality at Fukuoka, Japan, and established two wind speed groups with a
3 m·s−1 frontier. Wind speeds below this value were associated with varied wind directions,
whereas wind speeds above 3 m·s−1 yielded nearly straight air parcel trajectories. A
slightly more elaborate treatment includes wind speed intervals and even wind direction
intervals [8].

To date, direct relationships between CO2 concentrations and wind speed have been
considered and even parameterised with exponential functions [9]. García et al. [10]
employed such equations for concentrations measured at a rural site and reported results
that agreed with similar studies. The most noticeable inconvenience of these analyses is the
pronounced scatter of measurements where accused outliers highlight and mask the most
frequent concentration pattern. The current research overcomes this drawback by using
statistics calculated in wind speed intervals. This is the aim of the first part of this paper.

The second part of this study focuses on the distribution functions. These functions are
required to provide an easy description of large amounts of observations. One additional
feature is that they may be used to interpolate and extrapolate observations by probability
calculation in certain ranges. Moreover, since the functions used to fit the data are smooth,
irregularities associated with specific observations are avoided [11].

Symmetric distribution functions have occasionally been used for particulate mat-
ter [12,13]. However, skewed distribution functions offer a wider field of application, where
symmetric distributions are particular types. Concentrations of certain air pollutants, such
as ozone, have been described by skewed distributions [14–16].

CO2 concentration distribution has already been analysed by means of skewed dis-
tributions [17]. However, the influence of wind speed on such distributions remains an
open field of study. This paper expands this research line by including CH4 concentrations.
Moreover, varied efficiency criteria are used to select the most suitable distribution function
and to compare the efficiency criteria themselves.

Finally, the last part of this analysis considers the daily and annual cycles of CO2 and
CH4. Although these cycles have previously been described [18,19], their response to wind
speed merits a detailed study. Two procedures, one parametric and another nonparametric,
are used to smooth and investigate the two cycles. The main advantage of parametric
procedures is the closed form of expressions, which may be easily determined. However,
the response of nonparametric procedures may prove to be better for specific intervals,
although the calculation may be slower than for parametric procedures.

2. Materials and Methods
2.1. CO2 and CH4 Observations

Dry concentrations of both gases were measured with a Picarro G1301 analyser in
the centre of the northern plateau of the Iberian Peninsula (CIBA station, 41◦48′50′′ N,
4◦55′59′′ W, 852 m a.s.l.). The analysis period covered nine years from October 2010.
Although observations were obtained at three levels, only the highest (at 8.25 m a.g.l.) was
used in this paper, and hourly averages were calculated.

The measurement site is nearly flat and has no orographic features in its surround-
ing area. Figure 1 presents the measurement site, which is located in a scrubland area.
Landscape is agricultural, and is mainly formed by rainfed crops, and scattered trees
are also present. The main nearby city is Valladolid, which lies some 25 km from the
measurement site.



Int. J. Environ. Res. Public Health 2021, 18, 8397 3 of 16

Int. J. Environ. Res. Public Health 2021, 18, x  3 of 17 
 

 

 
Figure 1. (a) Location of the measurement site and the main urban site, Valladolid. Bottom left is the 
location of the measurement site in Spain. (b) Surrounding area of the measurement site, formed 
mainly by crops. Images courtesy of © ign.es. 

2.2. Wind Speed 
These data were obtained from the METEX model [20]. A 10 m a.g.l. height was con-

sidered since this level is common in meteorological analyses. Although varied wind 
speed classifications have been suggested following different applications, this paper con-
siders one simple procedure with nine classes. The interval width is 1 m·s−1 until the eighth 
class, with the last corresponding to wind speeds above 8 m·s−1. 

2.3. Theoretical Distributions and Distribution Fitting 
Since outliers make the distribution shape different from the Gaussian, seven skewed 

distributions were used. These are presented in Table 1. Although nonparametric proce-

Figure 1. (a) Location of the measurement site and the main urban site, Valladolid. Bottom left is the location of the
measurement site in Spain. (b) Surrounding area of the measurement site, formed mainly by crops. Images courtesy of
© ign.es.

2.2. Wind Speed

These data were obtained from the METEX model [20]. A 10 m a.g.l. height was
considered since this level is common in meteorological analyses. Although varied wind
speed classifications have been suggested following different applications, this paper
considers one simple procedure with nine classes. The interval width is 1 m·s−1 until the
eighth class, with the last corresponding to wind speeds above 8 m·s−1.

2.3. Theoretical Distributions and Distribution Fitting

Since outliers make the distribution shape different from the Gaussian, seven skewed
distributions were used. These are presented in Table 1. Although nonparametric pro-
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cedures guarantee satisfactory fits of histograms, certain parametric expressions may be
directly fitted and are preferred, since numerical iterations are not required. Moreover,
they are flexible enough to successfully describe the observations, have already been
theoretically developed, and the application to gas concentrations extends their field of use.

Table 1. Skewed distributions used in the current study.

Distribution Probability Density Function Parameter Calculation

Beta [11] f (x) =
[

Γ(α+β)
Γ(α)Γ(β)

]
xα−1(1− x)β−1; 0 ≤

x ≤ 1; α, β > 0

α =
x2(1−x)

s2 − x; β =
α(1−x)

x ; x =
y−a
b−a ;

s2
x =

s2
y

(b−a)2

Exponential [21] f (x) = θ exp(−θ x); x > 0; θ > 0 θ = 1/x

Frechet [22] f (x) = λ
σ

(
σ
x
)λ+1exp

{
−
(

σ
x
)λ
}

; x ≥
0; σ, λ > 0

−ln[−ln{F(x)}] = −λ ln σ + λ ln(x)

Gamma [11] f (x) = (x/β)α−1exp(−x/β)
β Γ(α) ; x, α, β > 0 D = ln(x)− 1

n

n
∑

i=1
ln (xi); α =

1+
√

1+ 4D
3

4D ;
β = x/α

Gumbel [11] f (x) = 1
β exp

{
−exp

[
− (x−ζ)

β

]
− (x−ζ)

β

}
β = x

√
6

π ; ζ = x− γβ; γ = 0.57721

Lindley [21] f (x) = θ2

θ+1 (1 + x)e−θx; x > 0, θ > 0 θ =
−(x−1)+

√
(x−1)2+8x

2x

Weibull [23]
f (x) =(

α
β

)(
x
β

)α−1
exp
[
−
(

x
β

)α]
; x, α, β > 0

ln(−ln(1− F(x))) = α ln(x)− α ln(β)

Additionally, distribution agreement with the observations is compared using certain
statistics presented in Table 2, where O corresponds to the observed values, and C to the
calculated ones, with the two following objectives. The first is to select the distribution that
achieves the best agreement, and the second is to compare the response of the statistics
used in order to choose the most sensitive. One of these statistics, the correlation coefficient,
is frequently used, although satisfactory values of this coefficient are reached with over- or
under-predictions of calculations. However, the rest are statistics that were proposed in
order to overcome the restrictions of the correlation coefficient [24].

Table 2. Efficiency criteria.

Name Equation

Pearson correlation coefficient r = ∑n
i=1(Oi−O)(Ci−C)√

∑n
i=1(Oi−O)

2
√

∑n
i=1(Ci−C)

2

Willmott index of agreement d = 1− ∑n
i=1(Oi−Ci)

2

∑N
i=1(|Ci−O|+|Oi−O|)2

Modified index of agreement dmod = 1− ∑n
i=1|Oi−Ci |

∑N
i=1(|Ci−O|+|Oi−O|)

Nash–Sutcliffe efficiency E = 1− ∑n
i=1(Oi−Ci)

2

∑n
i=1(Oi−O)

2

Modified Nash–Sutcliffe efficiency Emod = 1− ∑n
i=1|Oi−Ci |

∑n
i=1|Oi−O|

2.4. Daily and Annual Cycles

These cycles were described by two statistics each hour and each month. The first
is the mean, which may be affected by outliers, and the second is the median, which is
more robust. Small differences between them reveal a regular distribution of observations
whereas a contrast between the mean and the median indicates irregularly placed outliers
that may skew the distribution. Moreover, the description of the two cycles was modelled
by two procedures. The first is parametric, since it is based on the addition of two harmonic
functions, following the equation

y = a0 + a1cos
(

2π

T
t− θ0

)
+ a2cos

(
4π

T
t− θ1

)
, (1)
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where y is the concentration, t is time, and the period of the second harmonic function
is the half period of the first harmonic function. The difference between the constants θ0
and θ1 allows the symmetry of the first harmonic function to be broken. Both constants,
together with the rest of the coefficients ai, may be calculated by multiple linear regression.

A nonparametric method was also considered, with the following expression be-
ing used:

y(t, h) =
∑n

i=1 K
(

t−ti
h

)
yi

∑n
i=1 K

(
t−ti

h

) , (2)

where the subscript i denotes the values known, h is the window width, and the Gaussian
kernel function was used for the calculations.

K(x) = (2π)−1/2 exp
(
−0.5x2

)
, (3)

The statistics presented in Table 2 were considered in order to establish the goodness
of the fit.

3. Results
3.1. Wind Speed and Concentration Distributions

The wind speed distribution in 1 m·s−1 intervals is given in Figure 2, which may be
satisfactorily described by the Weibull distribution. This figure corresponds to observations
where concentration data were available, i.e., around 78% of the period investigated.
Observations above 8 m·s−1 are merged in a single class to obtain robust results since
outlier analysis lies outside the scope of this paper.
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Figure 2. Wind speed distribution.

Following this wind classification, concentration histograms are presented in Figure 3.
A tail on the right is observed for concentrations at low wind speeds for both gases, such as
classes below 5 m·s−1. However, a small tail on the left is also present at high wind speed,
between 6 and 8 m·s−1 for CO2. Figure 4 presents the means and standard deviations
of concentrations and wind speed corresponding to wind speed classes as well as the
skewness of concentrations. Two intervals with a slight decrease in CO2 concentration
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were observed: the first for wind speeds below 4 m·s−1, with a decrease of around 1.3 ppm,
and the second until 8 m·s−1, with a decrease of 2.5 ppm. The mean concentration of the
last wind speed class is around 0.5 ppm higher than that of the preceding one. Additionally,
a gradual decrease in concentration dispersion was observed when wind speed increased.
Moreover, skewness also decreased gradually, and even reached negative values in classes
7 and 8. The CH4 decrease with wind speed was regular. However, its skewness presented
a noticeable contrast since it was high until class 6, with one maximum in class 3, although it
was very low for the three classes with the highest wind speed. The origin of concentrations
of class 1 could be considered local. However, concentrations of class 9 are influenced by
transport and could be taken as background concentrations.
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Figure 4. Means, standard deviations, and skewnesses of the concentrations.

Figure 5 presents the efficiency criteria for the distributions used. These were cal-
culated through a comparison between the experimental and the theoretical cumulative
distribution functions and were ordered from worst, on the left, to best, on the right. Fol-
lowing these values, the Weibull, Gamma, Beta, and Gumbel distributions offer a similar
description for the CO2 concentrations, with comparable ranges and shapes of efficiency
statistics. The range of the statistics decreased gradually from the exponential to the Frechet
distribution. For CH4, the best fits were obtained for the Weibull and Gamma distributions,
and the worst for the exponential and Lindley distributions. The decrease in the range of
statistics is smoother than that of CO2. In general, the modified Nash–Sutcliffe efficiency
is the statistic with the lowest values, followed by the modified index of agreement. Con-
sequently, both should be used rather than the correlation coefficient, which presents a
narrow interval.
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3.2. Daily and Annual Cycles

Figure 6 presents the daily distribution of observations together with the evolution of
the median and mean concentrations; this latter one is fitted by the cylindrical and kernel
models. A window width, h, is required in this last method, although determining it was
not the objective of this paper. Consequently, one hour was fixed following observation
availability, and a satisfactory agreement was observed. For low wind speeds below
2 m·s−1 and for the highest wind speeds above 8 m·s−1, the most frequent values are
reached at midday. However, at intermediate wind speeds between 2 and 8 m·s−1, the
highest frequencies are displaced to late night for low wind speeds, early night for high
wind speeds, or during the night for wind speeds from 4 to 6 m·s−1. Mean, median, and
modelled values are similar for CO2, with the highest amplitude of the daily cycle and
the highest concentrations occurring after midnight for the lowest wind speed. A similar
shape is observed for CH4, although the contrast between the median and the mean is more
noticeable for wind speeds below 3 m·s−1, which may be linked to the frequent outliers of
high concentrations at such wind speeds.
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Figure 6. Daily cycle following the wind speed classification.

Table 3 presents the average efficiency statistics when means and modelled values
are compared. As in the previous case, when distributions are considered, the modified
Nash–Sutcliffe efficiency, followed by the modified index of agreement, achieves the lowest
values, and, for both gases, the kernel model fits better than the cylindrical model.

Table 3. Statistics used to compare mean and modelled daily cycles.

CO2 CH4

Cylindrical Kernel Cylindrical Kernel

r 0.984 0.996 0.974 0.988
d 0.992 0.997 0.987 0.993

dmod 0.923 0.957 0.901 0.930
E 0.969 0.989 0.950 0.974

Emod 0.847 0.916 0.803 0.864

Figure 7 presents the frequency of observations together with the annual cycle of
means, medians, and modelled observations. One month was initially suggested for the
window width in the annual cycle with the kernel procedure, and a smooth evolution was
observed. Consequently, a narrower window equal to half a month was used. Since the
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equipment was switched off for most of the months of August, the frequencies observed in
this month were low. For wind speed below 1 m·s−1, observations are regularly distributed
during the year. However, for wind speed from 1 to 3 m·s−1, high frequencies are observed
in the central part of the year. For wind speeds from 3 to 7 m·s−1, high frequencies are
obtained in the first half of the year, and, finally, for wind speeds above 7 m·s−1, high
frequencies are found in the first few months of the year.
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Figure 7. Annual cycle following the wind speed classification.

Although the lowest concentration of both gases is reached in summer, especially in
August, some differences between them are noticeable. Below 5 m·s−1, the interval of low
concentrations for CO2 was narrow, whereas it was prominent in the CH4 annual cycle,
with a gradual decrease in the first half of the year and a gradual increase after summer.

Similar statistics were used to compare the means and modelled values (Table 4). The
pattern of results was similar to that of the daily cycle, with the modified Nash–Sutcliffe
efficiency followed by the modified index of agreement being the estimators with the
lowest values. As with the distribution fitting, both statistics are sufficiently sensitive to
the contrast between the values they evaluate and may be chosen against others that are
more frequent, such as the correlation coefficient.
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Table 4. Statistics used to compare mean and modelled annual cycles.

CO2 CH4

Cylindrical Kernel Cylindrical Kernel

r 0.923 0.990 0.890 0.984
d 0.944 0.982 0.919 0.980

dmod 0.814 0.915 0.802 0.919
E 0.828 0.940 0.774 0.937

Emod 0.646 0.840 0.630 0.848

4. Discussion
4.1. Wind Speed

The region of the measurement site is one of the largest in the EU and has one of the
lowest population densities, a population which is decreasing even further [25]. The popu-
lation is mainly rural, and urbanization is low, with Valladolid (around 300,000 inhabitants
to the SE of the site, Figure 1) being the largest city in the region. Duarte et al. [26] indicated
that CO2 emissions in Spanish households in 1999 were below the country average for
a sparse population density (−12.4%) and for rural sites (−11.2%). Consequently, CO2
emissions linked with the urban development observed in various Chinese cities [27] may
be discarded or considered to have a negligible effect. Even at rural sites in the region, the
population is low [28], and its contribution to atmospheric CO2 may be considered slight
when compared to sites where there is a greater contribution of the rural population [29].

Information about the prevailing wind direction at the site for high wind speed was
available from Pérez et al. [30], where measurements at 100 m revealed no prevailing wind
directions for wind speeds below 4 m·s−1 but two opposite prevailing wind directions
for wind speeds between 4 and 15 m·s−1, ENE and WSW, where transport is regional and
these directions are not affected by nearby pollution sources. Figure 3 indicates that CO2
histograms are right-skewed for low wind speed, since noticeable outliers present a local
origin. However, distributions are nearly symmetrical or even left-skewed for high wind
speeds where prevailing directions are not affected by nearby sources.

The dispersion of values observed in Figure 4 is mainly attributed to the daily evolu-
tion presented in Figure 6, since smooth cycles are obtained with high wind speeds, which
are linked with low dispersion, whereas cycles with large amplitudes are observed for low
wind speeds, which are associated with noticeable dispersion.

The inverse relationship between CO2 and wind speed has been suggested by different
analyses, such as Al-Bayati et al. [31] for satellite observations in Iraq or Dimitriou et al. [32],
who also presented CH4 concentrations in the city of Athens. This latter study considers a
scatterplot with seasonal concentrations. The main drawback of such a representation is
observation overlapping, which makes it difficult to obtain an average concentration for a
wind speed interval. One additional feature is that outliers are prominent, although their
contribution to the average concentration may be only slight.

Duan et al. [33] proposed six intervals, five with a width of 1 m·s−1 and the last
one for the remaining wind speeds. Boxplots for CO2 concentrations ranged from 300
to 550 ppm, i.e., they were higher than those used in this study. Medians frequently
decreased with wind speed, although in spring the initial decrease was followed by a final
increase. Moreover, noticeable interquartile ranges were observed for high wind speeds in
summer. Boxplots were also used by Pathakoti et al. [34], who analysed the influence of
meteorological parameters on CO2 at the Indian Antarctic research station. Under these
extreme conditions, a width of 5 m·s−1 was used and concentrations remained nearly
steady below 20 m·s−1 and only decreased above this wind speed.

Alternative graphs have been used by different authors. Mai et al. [35] analysed
CO2 concentrations at the Pearl River Delta region in China with a plot where seven
narrow intervals (width of 0.5 m·s−1) are used and in which the standard deviation of
concentrations is included. The decrease in CO2 concentration reached nearly 20 ppm, with
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similar concentrations below 2 m·s−1 in autumn. Wei et al. [36] analysed CO2 and CH4
concentrations in Shanghai, China, with graphs where box and violin plots were combined.
Five wind speed intervals were used with a 1 m·s−1 width and one additional interval for
wind speeds above 5 m·s−1. The decrease in concentration for both gases was noticeable
for wind speeds below 4 m·s−1, and the increase was slow above this wind speed for CO2,
whereas concentrations remained steady for CH4. In both cases, the relatively high CO2
concentrations for high wind speeds were attributed to transport of polluted air masses.
The response of CO2 concentrations to wind speed was similar in Figure 4, revealing the
slight contribution of the surroundings at the measurement site.

4.2. Distribution Fitting

The presence of outliers determines skewed distributions. Pérez et al. [37] analysed the
skewness of CO2 concentration using a range of statistics. Among them, the Yule coefficient
was selected following the relationship between skewness and the daily evolution of
concentrations. Although global distribution was right-skewed, left-skewed distributions
prevailed at midday. Moreover, the influence of wind speed on skewness revealed low,
and even negative, values for high wind speeds.

Skewed functions expand the field of application of symmetric functions both in
spatial and temporal research. They were used by Pérez et al. [38] in a spatial analysis
of CO2 concentrations to investigate the impact of the Valladolid urban plume at this
rural site by its extension, around 135 degrees, and magnitude, slightly below 10 ppm.
Differences among the functions considered included the place of the tail and the flatness of
the curve. Various statistics were used in the study to select the cubic function, followed by
the gamma and Weibull distributions as the most suitable to fit urban plume concentrations.
Moreover, skewed functions were also used by Pérez et al. [39] to investigate the daily
cycle of CO2 concentrations. In this case, the best fit was obtained with the generalised von
Mises function.

Pérez et al. [17] fitted CO2 concentration histograms to 14 skewed distributions. Pa-
rameter calculation was performed with equations established using analytical procedures
in nine of them. However, the rest were obtained by numerical procedures. These are
iterative methods that slow down the calculation. The current analysis retains typical distri-
butions and considers certain functions, such as the Frechet and Lindley functions, which
have not been used to date. Moreover, parameter calculation is direct, since numerical
procedures are avoided.

Perez et al. [38] used 12 statistics to compare calculated and observed concentrations.
Moreover, since the ranges of these statistics differ substantially and the response of each
equation may be different to each statistic, they were combined into one comprehensive
metric proposed by Zhou et al. [40] where each statistic has the same weight. In the current
analysis, two of these statistics, the correlation coefficient and the index of agreement, were
retained. However, the Nash–Sutcliffe efficiency and the modified forms of the index of
agreement and the Nash–Sutcliffe efficiency are statistics that have scarcely been explored
in the context of this study.

4.3. Fitting of Daily and Annual Cycles

Harmonic functions are usually used to describe the annual evolution of the gases
considered in this study. This is a parametric procedure with substantial flexibility since
the number of harmonics is variable and usually ranges from the simplest method, with
only one harmonic [41], to the most complex one, with four harmonics [42,43].

CO2 and CH4 annual cycles at remote and rural sites frequently present a minimum
in summer attributed to low plant and soil activity [44]. However, the shape of this cycle
depends on the site, since even remote places may be affected by pollution transport. This
is the case of certain high concentration events recorded at some European high-altitude
stations, such as Zugspitze in Germany, attributed to the atmospheric circulation that
carries polluted air from the European plains to the Alpine stations [45,46]. Moreover,
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high CH4 values observed in summer at Mount Waliguan, China, revealed the agricultural
source, rice growing, of CH4 [47].

Parameterisation of these cycles should be adapted to each measurement station.
However, even for the simplest cycles, the one harmonic evolution may be considered as an
initial approximation, since a six-month period between the maximum and the minimum
is difficult to achieve [48,49]. Pérez et al. [19] tried different combinations of four harmonics
and recommended using the first and second harmonics as a simple enough and complete
enough equation to accurately describe CO2 and CH4 annual evolution. Moreover, the
CO2 cycle was already fitted by a two-harmonic function and kernel calculations by
Pérez et al. [50].

Fernández-Duque et al. [51] considered six kernel functions to fit both the trend and
the annual evolution of CO2 and CH4. Although the Gaussian kernel provided low fits
for the trend, agreement increased for the annual cycle. In this study, the relationship
between observed and calculated values was satisfactory for both daily and annual cycles,
as presented in Figures 6 and 7 and in Tables 3 and 4.

Pérez et al. [52] analysed the influence of four meteorological variables, boundary
layer height, recirculation factor, wind direction, and wind speed, on the CO2 and CH4
annual cycle. Varied wind speed thresholds were used, and concentrations were analysed
at night. Differences between average concentrations for observations above the highest
threshold, 9 m·s−1, and all observations at night were around −1% for CO2 and CH4.
However, when observations below the lowest threshold, 2 m·s−1, are selected, these
differences are around 0.9 and 0.7%, for CO2 and CH4, respectively. The current analysis
does not consider thresholds but rather wind speed intervals. The contrast between the
average values calculated for the extreme intervals is around 2% for both gases.

5. Conclusions

The current study focuses on the relationship between CO2 and CH4 concentrations
measured at a rural site and wind speed during nine years of observations.

Nine wind speed intervals were suggested, and the response of the mean CO2 concen-
trations revealed three groups: the first, below 4 m·s−1 with a slow decrease; the second, of
wind speeds up to below 8 m·s−1, with a greater influence of wind speed; and the third,
for wind speeds above 9 m·s−1, with concentrations that are only slightly greater than
those of the interval 7–8 m·s−1, which could be attributed to background concentrations
transported by wind. The concentration decrease with the increase in wind speed was
more gradual for CH4 than for CO2.

Although concentration skewness was mainly positive due to outliers linked to stable
stratification, close to zero or even negative skewness was observed in wind speed intervals
above 6 m·s−1. These distributions may be only slightly affected by outliers owing to
prevailing transport by wind, with the skewness contrast being noticeable for CH4.

Seven skewed distributions were used to fit the concentrations. Moreover, five effi-
ciency criteria were considered. The most sensitive statistic was the modified Nash–Sutcliffe
efficiency, with the correlation coefficient being the least sensitive. The Gumbel was the
most suitable distribution function for CO2, followed by very similar fits for the gamma
and beta distributions. The Weibull distribution presented the best fit for CH4. In contrast,
the worst fit was for the exponential distribution.

Analysis of the daily cycle revealed the most frequent observations at midday for
low wind speeds. Moreover, the daily cycle amplitude gradually decreased following the
increase in wind speed, with the daily cycle being fairly slight for winds above 9 m·s−1.

Noticeable minima were observed in summer for both gases, with the drop in con-
centration being more marked for CO2. The contrast between the mean and median
concentrations was noticeable for low wind speeds and could be attributed to the distri-
bution shape and outlier influence. Although the mean concentration decreased with the
increase in wind speed, the change in the annual cycle amplitude was less pronounced
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than that of the daily cycle. Moreover, CO2 amplitude was greater above 9 m·s−1 than
below 2 m·s−1.

This research improves current knowledge of the relationship between wind speed
and CO2 and CH4, although a more detailed analysis, such as the seasonal response of
this relationship or directional studies, may be the subject of future research. In addition,
combining observed and modelled measurements has proved successful and may be used
when there is a sufficient number of observations, although its application with isolated
measurements should be explored. Finally, these are promising research lines vis à vis
obtaining better insights into the influence of meteorological variables on the concentrations
of the two greenhouse gases studied.
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