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Simple Summary: Identifying GBM patients with very short survival could contribute to adapting
the therapeutic approach. According to our results, high-precision models can be elaborated using
basic MRI sequences available at any center, combined with advanced image analysis. Although
there are several previous publications related to this topic, a survival threshold that may be clinically
relevant has not been proposed. The importance of our study lies in selecting patients with total or
near-total resection, the short-term survival end-point applied of six months, and the employment of
user-friendly software that allows clinicians to explore new statistical methodologies and carry out
complex tasks such as the extraction of radiomic features. Promoting the use of these technological
tools will motivate other clinical researchers to get involved and take advantage of radiomics and
artificial intelligence, tools that have come to reinforce our analytical capacity.

Abstract: Radiomics, in combination with artificial intelligence, has emerged as a powerful tool for
the development of predictive models in neuro-oncology. Our study aims to find an answer to a
clinically relevant question: is there a radiomic profile that can identify glioblastoma (GBM) patients
with short-term survival after complete tumor resection? A retrospective study of GBM patients
who underwent surgery was conducted in two institutions between January 2019 and January 2020,
along with cases from public databases. Cases with gross total or near total tumor resection were
included. Preoperative structural multiparametric magnetic resonance imaging (mpMRI) sequences
were pre-processed, and a total of 15,720 radiomic features were extracted. After feature reduction,
machine learning-based classifiers were used to predict early mortality (<6 months). Additionally,
a survival analysis was performed using the random survival forest (RSF) algorithm. A total of
203 patients were enrolled in this study. In the classification task, the naive Bayes classifier obtained
the best results in the test data set, with an area under the curve (AUC) of 0.769 and classification
accuracy of 80%. The RSF model allowed the stratification of patients into low- and high-risk groups.
In the test data set, this model obtained values of C-Index = 0.61, IBS = 0.123 and integrated AUC at
six months of 0.761. In this study, we developed a reliable predictive model of short-term survival in
GBM by applying open-source and user-friendly computational means. These new tools will assist
clinicians in adapting our therapeutic approach considering individual patient characteristics.
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1. Introduction

Glioblastoma (GBM) continues to be the most threatening primary brain neoplasm,
with a median survival of approximately 15 months [1]. Currently, despite the standard
treatment that includes maximum safe surgical resection followed by adjuvant chemoradi-
ation therapy [2,3], its prognosis remains ominous, and our knowledge of this neoplasm is
still limited.

Predicting a patient’s survival is of vital importance for determining the ideal choice
of treatment and management. Currently, several prognostic factors are commonly used
to predict the prognosis of these patients, including age, sex, Karnofsky performance
status (KPS), molecular profile, extent of resection, preoperative tumor volume, volume of
non-enhancing tumor and degree of necrosis [4]. However, some of these features depend
on radiologists’ interpretation, which justifies the increasing need for an unbiased and
quantitative radiological evaluation.

Magnetic resonance imaging (MRI) plays a fundamental role in neuro-oncology for
diagnosing and assessing response to treatment and is being increasingly used as a non-
invasive predictive tool. On the other hand, the term "radiomics" refers to the process of
obtaining quantitative features based on the intensity, volume, shape and texture varia-
tions of the radiological images and creating algorithms that find the association of these
variables with the survival and outcome of the patients [5]. Through radiomics, con-
verting medical images into high-dimensional data allows us to expose the underlying
pathophysiology, especially intratumor heterogeneity [6]. This extraction process captures
tumor characteristics undetectable to the human eye and gives added value to clinical
visual perception. Radiomics incorporate several essential disciplines, including radiology
for image interpretation, computerized vision for extracting quantitative variables, and
machine learning for classification and regression tasks [7]. Such integration has been
demonstrated to exceed expert human abilities in multiple tasks, including diagnosis and
outcome prediction.

Recognizing patients who would not benefit from standard treatment and identifying
those who need a more aggressive approach at the time of diagnosis is essential for
managing GBM through personalized medicine [8]. There are several publications that,
through the integration of radiomics and artificial intelligence, seek to establish survival
prediction models in GBM based on preoperative MRI [8–14]. In the vast majority of studies,
patients are classified according to their survival into two or three categories, depending on
whether they exceed 10 or 15 months of survival. This approach aims to identify medium-
and long-term survivors who could theoretically be subsidiaries of aggressive therapies.
Furthermore, in most studies, the extent of resection is not used as a discriminatory factor,
and biopsies and partial and subtotal resections are included.

This fact precludes the implementation of such predictive models in newly diagnosed
GBM patients. Our study aims to use the radiological characteristics from structural
preoperative multiparametric magnetic resonance imaging (mpMRI) to construct a predic-
tive model of short-term survival in patients in whom total or near-total resection of the
enhancing tumor has been performed followed by standard treatment.

2. Materials and Methods
2.1. Study Population

A retrospective collection of patients who underwent surgery with a diagnosis of
GBM was carried out in two institutions between January 2019 and January 2020. In
addition, a second cohort of patients was selected from available public databases: the
BraTS (Multimodal Brain Tumor Segmentation) Challenge 2020 [15–17], and three other
sources available through The Cancer Image Archive [Ivy Glioblastoma Altas Project (Ivy
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-GAP) [18], the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium
Glioblastoma Multiforme (CPTAC-GBM) and The Cancer Genome Atlas Glioblastoma
Multiforme (TCGA-GBM) [19]]. The inclusion criteria were pathologically confirmed
glioblastomas, availability of preoperative MRI with structural/conventional sequences [T2-
weighted images (T2WI), fluid-attenuated inversion recovery (FLAIR), T1-weighted images
(T1WI) and contrast-enhanced T1-weighted images (T1CE)] with adequate resolution,
known survival status, and clinical information (age and type of surgical resection). Only
those cases in which gross total resection (100% of the enhancing tumor volume) or near-
total resection (>95% of the enhancing tumor volume) were included. Patients were
randomly allocated into training and testing data sets following a proportion of 70/30. The
primary endpoint was overall survival (OS), which was defined as the number of days
from the initial pathological diagnosis to death (censored = 1) or the last date that they were
known to be alive (censored = 0). Public data sets do not have patient identifiers, hence, no
institutional review board approval was required. Nevertheless, the study was approved
by the institutional review boards and ethics committees of the other two participating
centers. Additionally, all institutional patients provided written informed consent. The
study was performed in accordance with the ethical standards as laid down in the 1964
Declaration of Helsinki and its later amendments.

2.2. Image Data Description and Preprocessing

All BraTS scans were acquired with different clinical protocols and various scanners
from multiple (n = 19) institutions. Details of the protocol acquisition of the scans from
TCIA and institutional cases are shown in Table S1.

Image pre-processing consists of several steps. First, mpMRI scans were converted
to Neuroimaging Informatics Technology Initiative (NifTI) format. Then, the scans were
placed in a common orientation [“LPS” (left-posterior-superior) in the radiological conven-
tion or “RAI” (right-anterior-inferior” in the neurological convention)]. Later, the scans for
every subject were registered to SRI24 anatomical atlas space [20]. N4 bias correction [21]
was applied as a temporary step to facilitate optimal registration but was not included at
the end of the process since it might obliterate the MRI signal, particularly on the FLAIR
modality [17].

The T1W1, T2WI and FLAIR scans were registered to the transformed T1CE scan,
resulting in coregistered resampled volumes of 1 × 1 × 1 mm isotropic voxels. The brain
was then extracted from all co-registered scans using a pretrained deep learning-based
model [22]. Finally, intensity Z-scoring normalization was carried out. All pre-processing
pipelines were generated using The Cancer Imaging Phenomics Toolkit (CaPTk) [23].

2.3. Tumor Segmentation and Feature Extraction

The method used to generate the segmentation labels of the different tumor regions is
called GLISTRboost (Boosted GLioma Image SegmenTation and Registration) [24], which is
defined as a hybrid generative-discriminative tumor segmentation method. This segmenta-
tion algorithm comprises a glioma growth model, a discriminative part based on a gradient
boosting multiclass classification scheme and a Bayesian strategy [14]. Segmentation labels
or volumes of interest (VOIs) were as follows: enhancing tumor (ET), non-enhancing
tumur/necrosis (NET), and edema (ED). Segmentations were evaluated by two experts
(S.C., S.G.-G.) and corrected manually if necessary.

Using the extraction tool of CaPTk, a total of 15,720 characteristics were computed from
the tumor subregions (i.e., ET, NET and ED) and the four mpMRI modalities following
the Image biomarker standardization initiative (IBSI) [25] definitions. These extracted
features included intensity features or first-order statistics, histogram-based features, and
volumetric, morphologic and textural features, including those based on the gray level
cooccurrence matrix (GLCM), gray level run-length matrix (GLRLM), neighborhood gray-
tone difference matrix (NGTDM), gray level size-zone matrix (GLSZM) and lattice-based
features. A detailed description of these characteristics is shown in Table S2.
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2.4. Data Processing and Feature Selection

After the extraction of the radiomic features, the data were pre-processed by data
cleaning (removing the variables with more than 5% missing values) and imputation (using
the average value method). Afterward, 13,265 features were z-score normalized based
on the mean and standard deviation. Then, a feature selection process was necessary to
reduce these high-dimensional imaging features to avoid overfitting. Feature selection
helps to optimize the generalizability and reproducibility of the models subsequently built.
The feature selection process was performed using the training data set exclusively. A
two-step selection method was used as follows. Spearman’s correlation coefficient was
calculated for each pair of radiomic features. Then, the features with Spearman’s correlation
coefficient > 0.95 with each other were discarded, retaining a single feature in each set.
Later, features were reduced by including only the variables with a significance <0.001
with the OS in days. Thus, the number of features was reduced to a set of 260.

2.5. Statistical Analysis and Machine Learning

Predicting OS was achieved by two different strategies. The first is a binary classifica-
tion task between short and long survival. For this purpose and after feature reduction,
several classification algorithms were assessed for patient stratification. As a previous
step, machine learning (ML)-based filters were used: Gini index (GINI), fast correlation-
based filter (FCBF) and information gain (InfoGain). Hence, the top 10 features were
selected. Then, six different ML classifiers were trained: logistic regression (LR), naive
Bayes, k-nearest neighbors (kNN), random forest (RF), support vector machine (SVM) and
a multilayer perceptron algorithm (neural network -NN). We used the default settings of
the hyperparameters detailed in the Table S3. The target response for each model was the
patient’s OS grouped into two classes to distinguish patients who survived <6 months
(short-term survivors) from others. Then, the results were quantitatively validated on the
testing data set. The performance of the ML classifiers was measured by the area under the
receiver operating characteristic curve (AUC), accuracy, precision, F1 score and recall. All
performance metrics were reported as the average value over classes.

The second statistical strategy was conducted using the random survival forest (RSF)
approach from the R package “randomForestRSC” [26], an ensemble-tree method that
adapts random forests to right-censored data and survival analysis. RSF does not rely on
restrictive assumptions such as proportional hazards and automatically handles nonlinear
effects and interactions of high-dimensional data. Features were ranked by positive im-
portance using a variable hunting algorithm as a feature selector. Model hyperparameters
were as follows: number of trees = 500, node size = 2, number of splits = 10 and log-rank as
the splitting rule. Training predictions were performed using 5-fold cross-validation. We
also evaluated the model’s ability to generalize those predictions on the testing group.

When the primary outcome is survival (time to event), RSF produces a cumulative
hazard function (CHF) from each decision tree that is averaged in an ensemble out-of-bag
CHF (OOB-CHF). The predicted ensemble mortality is the mean OOB-CHF estimated
by the RSF model for each subject, and it was used to calculate each patient’s estimated
mortality risk. We used the results from the RSF model to build a mortality risk score and
split the sample into high- and low-risk groups. The OOB-CHF cut-off values defining the
risk groups were calculated through the “cutp” function of the “survMisc” package [27].
The log-rank test was used to compare the survival Kaplan–Meier curves between the
patients in the high- and low-risk groups.

Finally, Cox proportional hazard regression models were fitted to the training data
set using the dichotomized risk score (high- and low-risk groups) from the RSF model as
an explanatory variable, the patient’s age and a combination of both. Then, the models
were validated in the testing data set. The performance assessment of the survival models
was performed by calculating the prediction errors using the integrated Brier score (IBS)
defined as the average squared distances between the observed survival status and the
predicted survival probability by the “pec” package [28]. Additionally, the discriminatory
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capacity of the model was evaluated by calculating the concordance index (CI), which
refers to the probability that, for a pair of randomly allowed samples, the sample with
the highest risk prediction experiences an event before the sample with the smallest
risk. Furthermore, the integrated area under the time-dependent ROC curve (iAUC) was
calculated for all models using the “risksetROC” package [29]. The standard approach of
ROC curve analysis considers event (death) status and predictor value for an individual as
fixed over time. Because the status and explanatory variables change over time, we used
the risksetROC package that estimates the iAUC under incident sensitivity and dynamic
specificity definition and produces accuracy measures for censored data under proportional
or nonproportional hazard assumption of Cox regression estimator [30]. Following the
objective of our study, we also calculated the iAUC at six months for all models.

Statistical and survival analyses were performed with R version 4.0.5 (R Foundation for
Statistical Computing, Vienna, Austria). The differences in age, OS, the proportion of right-
censored cases and short-term (<6 months) survival cases were assessed using Student’s
t-test, Mann–Whitney U test and two-proportions Z-test, respectively. For the binary
classification model, we used Orange version 3.28.0 (University of Ljubljana, Ljubljana,
Slovenia) [31]. The radiomics quality score (RQS) was calculated for this study according
to the recommendations by Lambin et al. [32]. A p value < 0.05 was considered to indicate
a statistically significant difference. The image processing and statistical analysis workflow
are shown in Figure 1.
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Figure 1. Study workflow. GBM = glioblastoma, GTR = gross-total resection, NTR = near-total resection, BraTS = Brain
tumor segmentation challenge 2020, TCIA = The cancer image archive, GLISTRboost = Boosted GLioma Image Seg-
menTation and Registration, ED = edema, NET = nonenhancing tumor, ET = enhancing tumor, OS = overall survival,
InfoGain = Information gain, GINI = Gini Index, FCBF = Fast correlation-based filter, ML = machine learning, AUC = area
under the curve, CA = classification accuracy, IBS = integrated Brier score, iAUC = integrated AUC.
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3. Results
3.1. Patient Population

Two hundred and three patients were enrolled in this study. The mean age was
61.49 ± 11.76 (range 27.81–86.65). The median OS was 407 days [interquartile range
(IQR) = 351.5]. A total of 7.9% (16) of patients were right-censored cases, and 17.24%
(35) registered an OS of less than six months. The patients were randomly assigned to a
training data set of 143 patients and a testing data set of 60 patients. There were no signifi-
cant differences in age, preoperative tumor volume, OS, or proportion of right-censored
and short-term survival cases between the training and test data sets (Table 1).

Table 1. Patient characteristics.

Data Set n Age (SD) Tumor Volume
(cm3) OS (IQR) Censored (%) OS < 6 m (%)

BraTS 119 62 ± 12 30.09 ± 11.77 374 (364) 0 21.8% (26)
TCIA 34 60.3 ± 10 42.55 ± 15.71 414 (482) 5.9% (2) 17.6% (6)

Institution 1 22 65.3 ± 10 40.77 ± 18.12 451 (307) 22.7% (5) 13.6% (3)
Institution 2 28 57.9 ± 13 42.14 ± 17.16 466 (217) 32.1% (9) 0

After random split (70/30)

Training 143 62.1 ± 11 40.62 ± 10.27 409 (311) 7.7% (11) 17.5% (25)
Testing 60 60.1 ± 13 39.27 ± 11.35 404 (392) 8.3% (5) 16.7% (10)

Statistical comparison
between cohorts t = 0.10, p = 0.273 t = 0.12, p = 0.902 U = 0.33, p = 0.743 χ2 = 0.02, p = 0.877 χ2 = 1.17, p = 0.279

BraTS = Brain Tumor Segmentation Challenge 2020, TCIA = The Cancer Image Archive, SD = standard deviation, IQR = interquartile range.

3.2. Classification Task and Survival Groups

The variable selection filters made it possible to determine the top ten radiomic
features (Table 2). Based on these characteristics and using the ML classifiers, patients were
classified into short-term survivors (<6 months).

The optimal results were obtained by applying the information gain as a feature
selector. Thus, in the training cohort, AUC values were achieved with a range between
0.802 and 0.978, a classification accuracy between 81.8% and 94.4%, and a precision between
82.8% and 94.8% (Table S4).

In the testing data set, the naive Bayes classifier obtained the best results, with an AUC
of 0.769, a classification accuracy of 80%, and a precision of 81% (Table 3 and Figure 2).
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Table 2. Radiomic features ranked by different scoring methods for short-term survival prediction.

Filter

Information Gain Gini Index FCBF

T1CE_ED_Lattice_Histogram_Bins-20_Radius-1_Bins-
20_NinetyFifthPercentile_Skewness T1CE_ET_Lattice_Histogram_Bins-20_Radius-1_Bins-20_Range_Max T1CE_ED_Lattice_Histogram_Bins-20_Radius-1_Bins-

20_NinetyFifthPercentile_Skewness
T1CE_ED_Lattice_Histogram_Bins-20_Radius-1_Bins-

20_NinetyFifthPercentile_Kurtosis
T1CE_ED_Lattice_Histogram_Bins-20_Radius-1_Bins-

20_NinetyFifthPercentile_Kurtosis
T2WI_ED_Lattice_Intensity_Bins-20_Radius-

1_QuartileCoefficientOfVariation_StdDev

T1CE_ET_Lattice_Histogram_Bins-20_Radius-1_Bins-20_Range_Max T1CE_ED_Lattice_Histogram_Bins-20_Radius-1_Bins-
20_NinetyFifthPercentile_Skewness T1CE_ET_Lattice_Histogram_Bins-20_Radius-1_Bins-20_Energy_Skewness

T2WI_ED_Lattice_Intensity_Bins-20_Radius-
1_QuartileCoefficientOfVariation_StdDev FLAIR_ET_Lattice_Morphologic_EquivalentSphericalRadius_Variance T1CE_ED_Lattice_Histogram_Bins-20_Radius-1_Bins-

20_NinetyFifthPercentile_Kurtosis
FLAIR_ET_Lattice_Morphologic_EquivalentSphericalPerimeter_Variance FLAIR_ET_Lattice_Morphologic_EquivalentSphericalPerimeter_Variance T1CE_ET_Lattice_Histogram_Bins-20_Radius-1_Bins-20_Range_Max

FLAIR_ET_Lattice_Morphologic_EquivalentSphericalRadius_Variance FLAIR_NET_Lattice_Histogram_Bins-20_Bins-20_Bin-12_Frequency_Median FLAIR_ET_Lattice_Morphologic_EquivalentSphericalPerimeter_Variance
FLAIR_NET_Lattice_Histogram_Bins-20_Radius-1_Bins-

20_InterQuartileRange_StdDev T2WI_ED_Lattice_Intensity_Bins-20_Radius-1_Mean_Skewness FLAIR_ET_Lattice_Morphologic_EquivalentSphericalRadius_Variance

FLAIR_NET_Lattice_Histogram_Bins-20_Radius-1_Bins-
20_InterQuartileRange_Variance

T2WI_ED_Lattice_Intensity_Bins-20_Radius-
1_QuartileCoefficientOfVariation_StdDev

FLAIR_NET_Lattice_Histogram_Bins-20_Radius-1_Bins-
20_InterQuartileRange_StdDev

FLAIR_NET_Lattice_Histogram_Bins-20_Bins-20_Uniformity_Min FLAIR_NET_Lattice_Histogram_Bins-20_Bins-20_Uniformity_Min FLAIR_NET_Lattice_Histogram_Bins-20_Bins-20_Bin-12_Frequency_Median
A10824

FLAIR_NET_Lattice_Histogram_Bins-20_Bins-20_Bin-12_Frequency_Median
FLAIR_NET_Lattice_Histogram_Bins-20_Radius-1_Bins-

20_InterQuartileRange_Variance
FLAIR_NET_Lattice_Histogram_Bins-20_Radius-1_Bins-

20_InterQuartileRange_Variance

FCBF, fast correlation-based filter, T1CE = contrast-enhanced T1-weighted images, T2WI = T2 weighted images, FLAIR = Fluid-attenuated inversion recovery, ET = enhancing tumor, NET = non-enhancing tumor,
ED = edema.
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Table 3. Model performance grouped by feature selection filter and machine learning classifier on the testing data set.

Classifier Filter AUC CA Precision F1

Naive Bayes
Information Gain 0.769 0.800 0.812 0.805

Gini Index 0.784 0.767 0.810 0.781
FCBF 0.743 0.783 0.803 0.791

k-Nearest Neighbor
Information Gain 0.600 0.817 0.806 0.776

Gini Index 0.639 0.800 0.771 0.763
FCBF 0.670 0.767 0.713 0.724

Neural Network
Information Gain 0.691 0.800 0.771 0.763

Gini Index 0.682 0.767 0.691 0.705
FCBF 0.722 0.817 0.806 0.776

Random Forest
Information Gain 0.574 0.733 0.683 0.701

Gini Index 0.666 0.750 0.696 0.713
FCBF 0.700 0.783 0.738 0.735

Support Vector Machine
Information Gain 0.709 0.750 0.608 0.671

Gini Index 0.630 0.750 0.608 0.671
FCBF 0.730 0.800 0.777 0.747

Logistic Regression
Information Gain 0.648 0.783 0.614 0.688

Gini Index 0.643 0.783 0.614 0.688
FCBF 0.656 0.783 0.614 0.688

AUC: area under the curve; CA: classification accuracy; FCBC: fast correlation-based filter.
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operating characteristic (ROC) curve and right: calibration plot. kNN = k-nearest neighbor, SVM = support vector machine,
TP = true positives, FP = false positives, P = positives.
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3.3. Random Survival Forest to Predict OS

In the radiomic model based on RSF, the variable-hunting algorithm selected
17 radiomic features to predict OS in the training data set (Table 4).

Table 4. Radiomic features selected by the variable hunting algorithm for Random Forest Survival prediction.

Nº Feature

1 T1CE_NET_Lattice_GLSZM_Bins-20_Radius-1_LargeZoneHighGreyLevelEmphasis_Mean
2 FLAIR_ED_Lattice_NGTDM_Busyness_Max
3 T1CE_NET_Lattice_GLSZM_Bins-20_Radius-1_LargeZoneHighGreyLevelEmphasis_Median
4 FLAIR_NET_Lattice_Histogram_Bins-20_Radius-1_Bins-20_Bin-14_Frequency_Max
5 FLAIR_NET_Lattice_Intensity_Bins-20_Radius-1_NinetiethPercentile_Mean
6 T1CE_ET_Lattice_Intensity_Bins-20_Radius-1_StandardDeviation_StdDev
7 FLAIR_NET_Lattice_Morphologic_PixelsOnBorder_Variance
8 T1CE_ET_Lattice_Histogram_Bins-20_Radius-1_Bins-20_Bin-0_Probability_Kurtosis
9 T1CE_ET_Lattice_Histogram_Bins-20_Radius-1_Bins-20_Bin-9_Probability_Median
10 T1CE_ET_Lattice_GLSZM_Bins-20_Radius-1_ZoneSizeMean_Variance
11 T2WI_ED_Lattice_Intensity_Bins-20_Radius-1_Mean_Skewness
12 FLAIR_ET_Lattice_Morphologic_Perimeter_Skewness
13 FLAIR_NET_Lattice_Histogram_Bins-20_Radius-1_Bins-20_FifthPercentileMean_Max
14 FLAIR_ET_Lattice_Morphologic_EquivalentSphericalRadius_Variance
15 T1CE_ET_Lattice_GLRLM_Bins-20_Radius-1_RunLengthNonuniformity_Kurtosis
16 FLAIR_ED_Lattice_Intensity_Bins-20_Radius-1_InterQuartileRange_Median
17 FLAIR_ED_Lattice_Histogram_Bins-20_Radius-1_Bins-20_Sum_Max

T1CE = contrast-enhanced T1-weighted images, T2WI = T2 weighted images, FLAIR = Fluid-attenuated inversion recovery, ET = enhancing
tumor, NET = non-enhancing tumor, ED = edema, GLSZM = Gray Level Size-Zone Matrix, NGTDM = Neighborhood Gray-Tone Difference
Matrix, GLRLM = Gray Level Run-Length Matrix.

Based on these characteristics, the mortality risk score was calculated using the OOB-
CHF. The cut-off point used was 0.684 (Table S5). This cut-off point allowed patients
to be stratified into low-risk and high-risk groups [HR = 2.19, (95% CI: 1.54–3.12), log-
rank p = < 0.001, C-Index = 0.61, IBS = 0.096]. In the testing data set, patients were also
stratified using the same cut-off point [HR 2.16, (95% CI: 1.21–3.89), log-rank p = 0.008,
C-Index = 0.61, IBS = 0.123] (Figure 3). The multivariate Cox regression models in which
age was incorporated as an explanatory variable are shown in Table 5.

Table 5. Univariate and Multivariate Cox regression analysis.

Univariate Cox Regression Analysis

Variable β HR 95% CI p C-Index IBS iAUC 6m-iAUC

Training data set
Age 0.03 1.03 1.02–1.05 <0.001 0.61 0.089 0.604 0.599

Radiomic RSF Score (High risk) 0.78 2.19 1.54–3.12 <0.001 0.61 0.096 0.591 0.712

Testing data set
Age 0.03 1.03 1–1.06 0.023 0.60 0.128 0.592 0.643

Radiomic RSF Score (High risk) 0.77 2.16 1.21–3.89 0.009 0.61 0.123 0.568 0.761

Multivariate Cox Regression Model

Model
Likelihood Ratio Test

C-Index IBS iAUC 6m-AUC
χ2 df p

Training data set
Age + Radiomic RSF Score

(High risk) 36.93 2 <0.001 0.66 0.084 0.650 0.730

Testing data set
Age + Radiomic RSF Score

(High risk) 11.35 2 0.003 0.68 0.118 0.6278 0.769
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Figure 3. Kaplan–Meier plots showing differences in overall survival for patients in training (A) and testing (B) data sets
stratified into low- or high-risk groups by random survival forest (RSF)-based ensemble mortality. Prediction error curves
show Cox regression model performance in the training (C) and testing (D) groups. HR= Hazard Ratio, RSF = Random
Survival Forest, IBS = Integrated Brier Score, iAUC = Integrated area under the curve, 6m – AUC = six months - area under
the curve.

The iAUC of the radiomic model was 0.591 in the training data set and 0.568 in the
test data set. By incorporating age as a variable in the model, the iAUC increased to 0.650
in the training data set and 0.627 in the testing data set.

After setting the survival time to 6 months, the predictive accuracy of the radiomic
model improved to an iAUC of 0.712 in the training data set and 0.761 in the testing data
set (Figure S1).

The RQS was used to evaluate the methodological quality of our study. We obtained a
score of 19/36 (53%). A detailed report of RQS items is shown in Table S6.

4. Discussion

In the present study, we elaborated a prediction model of short-term survival with high
predictive capacity using the radiomic features of structural preoperative multiparametric
MRI of GBM patients.

We believe that the main strength of our study is based on a selection of patients
who underwent total or near-total resection of the enhancing tumor. We considered this
methodologic aspect due to the undeniable link between the extent of resection and survival
in these patients [33]. In most previous studies, the extent of resection was not used as a
selection criterion, including partial resections and biopsies in their series, without making
any adjustment during the analysis phase. The exception is the studies by Bakas et al. [14]
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and Fathi et al. [34], in which the entire cohort of patients underwent complete resection
and standard chemoradiotherapy treatment.

Another crucial point of our work is to set our objective to identify short-term survival
patients, in contrast to previously published studies where 10 and 12–15 months were used
as cut-off points for defining short- and long-term survival, respectively [9,10,12,35–39].
The only reference we found is in the work of Prasanna et al. [40], who classified patients
in long (>18 months) versus short-term (<7 months) survival, based on peritumoral region
radiomic features. The rationale of our approach lies in the desire to predict the survival
of patients diagnosed with GBM by non-invasive methods and to identify those with
very short survival. In these patients, the futility of our treatments would lead us to offer
patients and their families the option of not taking aggressive measures or, on the contrary,
opening new lines of research since those cases would be poor responders to the standard
therapies applied currently.

As another strength of our work, we can mention the use of open-source software.
The CapTk and Orange programs have a very intuitive yet robust user interface, thanks
to which clinicians can access advanced image processing technics and data mining tools.
Thanks to these programs, we have performed complex tasks such as automatic tumor
segmentation, image processing, radiomic feature extraction, and exploring different ML-
based algorithms.

Concerning statistical analysis, we used a dual approach. On the one hand, we have
used a binary classification system using different ML-based algorithms. Additionally,
we used state-of-the-art survival analysis techniques such as random survival forest and
time-dependent ROC curve analysis focused on short-term survival that contribute to
corroborating the stability of the models produced here.

We also highlight that the results of our predictive models have been achieved using
only structural MRI [14]. These results could even be improved after the inclusion of
studies based on diffusion and perfusion sequences [41]. However, basic MRI is available
in most centers, and according to our results, the lack of special sequences is not a limitation
in the search for useful radiological patterns in clinical practice.

An important aspect to discuss is the biological correspondence of the variables
employed by the prediction models. There is notable variability concerning the radiomic
characteristics used by previous studies, which is one of the most significant obstacles
in reproducing and validating their results. In our study, most of the selected variables
came from the T1CE sequence followed by FLAIR and T2WI, while the different tumor
subregions (i.e., ET, NET and ED) were represented in the models in a balanced way. In
our series, first-order features and morphological characteristics appeared to be important
for OS prediction.

We are aware of the limitations of our work, such as the lack of clinical and molecular
data that can be incorporated into predictive models. Even so, age as an explanatory
variable was incorporated into our models due to its significant association with the
OS of these patients, proving that its mere incorporation into the analysis improved
the performance of the models. Despite having a relatively small sample size, various
statistical techniques have been applied to overcome the "curse of dimensionality". Taking
into consideration that MRI studies come from numerous sources, the processing method
for image standardization that we have chosen aims to be simple and reliable and has been
used by several studies [23,34,42].

Another limitation of predictive models based on radiomic features is the lack of
assessment of the repeatability and reproducibility of the features calculated from the
magnetic resonance images. We have included a detailed description of the feature extrac-
tion software, digital image manipulation, and image acquisition parameters to improve
reporting quality. However, it is necessary to carry out new studies specifically designed to
solve this problem.

Unquestionably, the combination of texture analysis and artificial intelligence is start-
ing to facilitate knowledge about the biological behaviour of GBMs through the study of
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their patient-dependent heterogeneity. However, the rapid development of big data tools
and the tremendous complexity of advanced medical image analysis dangerously threaten
widening the gap between data experts and clinicians. Then, it is a paradox that radiomics,
defined by Lambin et al. [32] as “the bridge between medical imaging and personalized
medicine”, is now out of reach of those who treat real patients every day. Therefore, our
study arises from a real need and aims to find a solution to a clinically relevant problem:
identifying GBM patients with short survival after complete resection. Although our results
can be improved, we show that there are currently computer tools and public data sets
available to everyone to develop reliable predictive models. Hence, our duty as clinicians
is to become immersed in developing these models, since our pragmatism can never be
replaced, even by the most complex algorithm.

Indeed, our results are encouraging, and the precision achieved is similar to the
previous literature. However, this article represents an early age of a promising future in
which the ultimate link between image, diagnosis and prognosis could finally be decoded to
provide instant, useful and precise information to individual patients based on their specific
features. Multi-institutional studies [43] would allow the generalization of predictive
models, or even adapt the mechanisms of data pre-processing, extraction, and analysis to
the MRI from each center, since the standardization of acquisition protocols is not feasible.
Finally, we believe that in this catastrophic disease, the quality of life of our patients should
be our first consideration, and maximum exploitation of available neuroimaging techniques
should be pursued to optimize management strategies, avoiding unnecessarily aggressive
therapies in those patients who will not benefit from them.

5. Conclusions

In the present study, we evaluated the capability of the radiomic features of preopera-
tive mpMRI and machine learning-based classification and regression analysis to predict
short-term survival in GBM patients. Our model shows a classification accuracy of 80%
and an iAUC of 0.76 to predict OS < 6 months in the test data set. We believe that these
new tools will serve clinicians to understand the biological behaviour of individual GBMs,
and we must take advantage of them.
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