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A B S T R A C T

A new general multiparameter phase-field approach for high-cycle fatigue fracture is proposed.
Fatigue is modelled by adding a new energy dissipation term accounting for fatigue phenomena,
which results in two additional crack driving forces. The current model analysed in the
paper possesses four fatigue parameters, whereby each of the driving forces depends on two
parameters. The crack driving forces are designed so as to enable a more accurate reproduction
of S-N curves and the Paris’ law by a single set of identified parameters, which is not possible by
simpler phase-field models relying on only one or two fatigue parameters. The results indicate
that the presented model is able to capture various macroscopic phenomena, including the mean
stress effect, the evolution of complex crack patterns under cyclic loading and the reproduction
of experimental S-N and Paris curves of realistic materials. Extensive parametric analyses
have revealed that there exists a strong correlation between the model fatigue parameters and
the parameters defining S-N and Paris’ curves, which opens the possibility of straightforward
calibration of each parameter from experimental data.

. Introduction

Fatigue fracture is one of major engineering concerns in designing and maintaining structures and machine parts. The first
ecorded research of those phenomena, performed by Wöhler [1], was of a phenomenological and experimental nature. Later,
aris et al. [2] showed in their phenomenological studies, based on previous findings in fracture mechanics by Griffith [3] and
rwin [4,5], that there exists a certain connection between Griffith’s and Wöhler’s research when it comes to crack growth rates.
ater, all these methods and resulting theories have been extended and improved, and even nowadays represent the basis for practical
ngineering fatigue failure analysis. However, precise tracking of crack initiation and propagation in realistic problems with complex
oading and geometry is still a very challenging task, even when using sophisticated numerical methods [6]. Among them, in the
ast two decades, the Phase-Field (PF) method has proven to be a particularly promising approach. It is based on the variational
pproach to fracture proposed by Francfort and Marigo [7] and on a diffusive description of a crack (i.e., a diffusive description of
geometric discontinuity) inspired by the Ambrosio and Tortorelli approximation [8] of the Mumford-Shah functional [9]. Since

ts first application by Bourdin et al. [10], the method has gained enormous attention of the scientific community and has been
xtended to various fracture phenomena, mainly due to its elegance in resolving complex fracture problems, which follows only

∗ Corresponding author at: School of Industrial Engineering, University of Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain.
E-mail address: tomislav.jarak@uva.es (T. Jarak).
vailable online 22 May 2023
013-7944/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.engfracmech.2023.109341
eceived 19 January 2023; Received in revised form 4 April 2023; Accepted 8 May 2023

https://www.elsevier.com/locate/engfracmech
http://www.elsevier.com/locate/engfracmech
mailto:tomislav.jarak@uva.es
https://doi.org/10.1016/j.engfracmech.2023.109341
https://doi.org/10.1016/j.engfracmech.2023.109341
http://creativecommons.org/licenses/by/4.0/


Engineering Fracture Mechanics 289 (2023) 109341K. Jukić et al.

r
m
a
d
i
v
f
f
m
t
i
e
t
a
i
p
B
m
i
H
h
f
a
f
i
m
g

p
t
e
H
p
f
c
v

f
s
w
c
w
w
e
c

d
P
t
H
t
o
i
c
s
t
g
t

from solving a given set of partial differential equations without the need of any additional ad hoc criteria for crack initiation or
propagation.

The topic of this paper is the modelling of fatigue fracture processes by the PF method, with special attention dedicated to
eproducing classical phenomenological features, such as S-N curves or the Paris law. Some of the first works to address fatigue
odelling problems using the PF method [11,12] were based on extending the standard Ginzburg–Landau equation by appropriate

dditional terms that take into account fatigue effects in crack evolution. In [11,12] fatigue effects were modelled by adding new
issipation terms. On the other hand, in the early work [13] an additional internal fatigue variable was introduced, whose evolution
s defined such that it preserves thermodynamical consistency. Again, an additional dissipation term associated with this independent
ariable appears in the phase-field evolution equation. However, although these formulations are clearly able to capture some fatigue
ailure phenomena, such as the total life dependent on a loading regime, it is not clear if they can realistically reproduce fatigue
eatures such as S-N curves or the Paris law. The first ones to reproduce the Wöhler’s curves successfully were Alessi et al. [14]. They
ade the fracture toughness dependent on a history variable accounting for fatigue. That research was limited to the 1-D case and

he fatigue history variable was defined as a time integral dependent on the strain. This approach was extended to 2D and 3D cases
n Carrara et al. [15], where the fatigue history variable was assumed to be a time integral dependent on the tensile deformation
nergy density. The model naturally reproduced the S-N and Paris’ curves. In [16], Mesgarnejad et al. proposed two variations of
heir fatigue model, where either the entire fracture energy, or just its local term is degraded. As it has been demonstrated that the
pproach introduced in [15] is able to qualitatively reproduce both the crack growth laws and the stress-life approach, this strategy
s at the moment widely adopted. It has also been extended to ductile fatigue by including various plasticity models [17–19]. In [17]
lastic ratcheting was modelled, while in [18] fatigue was for the first time solved using an efficient monolithic solver based on the
royden–Fletcher–Goldfarb–Shanno (BFGS) method. The model of Seleš et al. [19] was later used to study crack propagation at the
icrostructural level in [20]. On the other hand, Seiler et al. [21] utilised the local strain approach based on the Neuber rule to

mplicitly capture the effects of plastic deformation. Later, that model was used in [22] to take residual stresses into consideration.
asan [23] utilised the concept to study the fatigue of brittle materials in a low-cycle regime. Therein, the evolution of the fatigue
istory variable might be affected by the rate of change of the standard history variable in such way that there is no accumulation of
atigue history variable in first cycle at all, leading to a model whose monotonic loading response is not affected by fatigue extension
t all. Golahmar et al. [24] extended the fatigue approach based on the modification of fracture toughness to the hydrogen-assisted
atigue fracture by adding an additional fracture toughness modification function dependent on the hydrogen concentration, while
n [25] an additional function describing martensitic phase transformations was utilised to study the fatigue behaviour of shape
emory alloys. More recently, Alessi [26] extended Griffith’s theory with the fracture toughness degradation concept, bridging the

ap between phase-field fatigue models and Griffith’s theory.
Besides the fracture toughness degradation concept, recently the models that increase the crack driving force have been

roposed [27–30], motivated by early works [11–13]. Schreiber et al. [28] proposed a model with an additional fatigue potential
hat evolves following the Chaboche damage model. Among other fatigue phenomena, it allows the modelling of the mean stress
ffect. The additional fatigue potential leads to a new crack-driving force in the PF evolution equation, accounting for fatigue.
owever, this additional fatigue potential also produces an additional contribution in the definition of stress, whose satisfactory
hysical justification is at the moment still lacking, as it can make the material’s response become (more or less) stiff during the
racture process. On the other hand, Loew et al. [27] studied the fatigue of rubber-like materials and defined an additional potential
ontribution that does not influence the stress definition. Lo et al. [29] utilised the micro-force balance, where they introduced a
iscous term to model fatigue.

Despite the efficiency of the above-mentioned works resulted in models that possess the capability to reproduce basic fatigue
eatures, it is not clear if any of them considers the fact that material degradation during crack initiation and crack propagation
tages unfolds at different rates. As a result, it is unclear if crack initiation and crack propagation phenomena can be captured equally
ell by only one set of model parameters. Typically, in these models the same energetic quantity and parameters drive both fatigue

rack initiation and fatigue crack propagation in the same way. Most models have only one or two material parameters for fatigue,
hich are usually used to describe both the Paris’ law, describing the propagation of a well-defined crack, and the S-N curves,
here the crack initiation is always taken into account. This makes the classical fatigue material parameters strongly coupled in the
xisting PF fatigue models, complicating the model calibration procedure. A possible solution could be in defining more complex
rack driving forces with extra parameters and with an appropriate dependence on the phase-field.

In this paper, a new PF model for brittle fatigue fracture is proposed, that can be calibrated to simultaneously reproduce a
esired S-N curve and a Paris’ law. The model is based on adding an additional dissipative term to the total energy of a standard
F model for brittle fracture. Due to its simplicity, the well-known AT2 model for brittle fracture is considered in combination with
he quadratic energy degradation function and the implicit enforcement of the phase field by the use of a history variable [31].
owever, the proposed fatigue modelling could also be generalised to other similar models for brittle fracture. Newly added energy

erm results in two additional purposefully designed crack driving forces. Two fatigue history variables are introduced. The first
ne, called the fatigue crack initiation driving force, accumulates during the entire lifetime. It is dominantly responsible for the
nitiation of crack, but also slightly affects the crack propagation rate. The second fatigue history variable is called the fatigue
rack propagation driving force. It accumulates only in the damaged state of material, i.e., in the crack propagation regime and
trongly affects only crack propagation. Each history variable depends on two corresponding fatigue model parameters. Thereby,
he parameters of the fatigue crack initiation driving force affect the crack initiation S-N curve and set the lower bound on the crack
rowth rate, while the parameters of the fatigue crack propagation driving force are responsible primarily for the modification of
2

he Paris’ curve. In the limit case of a fast crack growth, when the total life is strongly dominated by crack initiation, the total
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life S-N curve is dominantly determined by the parameters of the fatigue crack initiation driving force. Furthermore, in each pair
of parameters, one has a dominant effect on the empirical exponent of the corresponding experimental curve, while the other one
is strongly associated with the curve coefficient. As a result, the calibration of the model is relatively simple and straightforward,
because an initial guess for the values of model fatigue parameters can be deduced by inspecting either the experimental Paris’ law
or the S-N curve.

The paper is organised as follows. In Section two, the AT2 model for brittle fracture under the assumption of small strains is
described in the most important details in the quasi-static setting and then extended with fatigue capabilities. In Section three, the
most important aspects of the numerical implementation of the model are given. In Section four, the results of numerical studies
are presented, including the investigations of the studies about model parameters. At the end, in Section five the conclusions and
lines for future research are proposed.

2. Phase-field approximation of fracture and fatigue

In this section, a fully calibratable PF model for fatigue fracture, based on an extension of the crack driving force, is proposed.
Firstly, a PF model for quasi-static brittle fracture under small strain assumption, used for the development of the new fatigue model,
is presented. Further, fatigue energetic quantities are defined and governing equations are derived.

2.1. Phase-field approximation of brittle fracture

The basis for most of PF models is the well established variational approach [7] to fracture which describes fracture as the
minimisation of the total potential energy described by:

𝛹 = 𝛹 + 𝛹f −  , (1)

where  =  (𝒖) is the external forces potential defined by:

 = ∫𝛺
𝒃𝒖𝑑𝒙 + ∫𝛺𝐵

𝒕𝒖d𝐴, (2)

ith 𝒃 and 𝒕 as the body forces and surface tractions, respectively. 𝛺 is a 𝑁 computational domain (body) and 𝛺𝐵 is a 𝑁−1

boundary of the computational domain (the outer surface of the body).
The fracture energy is defined by:

𝛹f = ∫𝛺
𝐺c𝛾d𝑉 , (3)

here 𝐺c is the critical energy release rate, and 𝛾 = 𝛾 (𝜙,∇𝜙) is sometimes called the crack surface density function. The phase-
ield 𝜙 is bounded by 0 and 1, where 0 denotes healthy (intact) material and 1 corresponds to fully broken material. In Eq. (1),
 = 𝛹 (𝜺 (𝒖)) is the deformation energy, dependent on the small strain tensor 𝜺 = 1

2 (∇𝒖+ (∇𝒖)𝑇 ), with 𝒖 as the displacement field.
s common in the PF methods, the stored energy is redefined as:

𝛹 = ∫𝛺
𝜓d𝑉 , 𝜓 = 𝜓+

0 𝑔 + 𝜓
−
0 , (4)

here 𝜓 = 𝜓 (𝜺 (𝒖) , 𝜙) is the deformation energy density, 𝜓+
0 = 𝜓+

0 (𝜺 (𝒖)) is the undegraded tensile part of the deformation energy
density, 𝜓−

0 = 𝜓−
0 (𝜺 (𝒖)) is the compressive part of the deformation energy density and 𝑔 = 𝑔(𝜙) is a monotonically decreasing function

called the energy degradation function with the following properties: 𝑔(0) = 1 and 𝑔(1) = 0. The crack surface irreversibility writes:

�̇� ≥ 0. (5)

So far, various crack surface density functions, energy degradation functions and additive energy density decompositions have been
proposed (see e.g., [32,33]). In this work, we limit our study to the well known AT2 model [10], which implies:

𝑔 = (1 − 𝜙)2 , 𝛾 = 1
2

( 1
𝑙
𝜙2 + 𝑙 (∇𝜙)2

)

, 𝜀crit =
√

𝐺c
3𝐸𝑙

, 𝜙crit = 0.25. (6)

Herein, 𝑙 stands for the length-scale parameter, which controls the diffusivity of the phase-field. Herein, 𝜀crit and 𝜙crit denote
the critical deformation and the critical phase-field, respectively, which correspond to the peak stress in the homogeneous
one-dimensional (1-D) problem.

The deformation energy density used in this work is based on the often used spectral decompositions of strain tensor by
3

Miehe [31] and Freddi [34].
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2.2. Extension to fatigue

To adopt our PF model for fatigue analysis, we expand the fracture dissipation by an additional fatigue term, so that it is now
ritten as:

𝛹f = 𝛹f,m + 𝛹f,c = ∫𝛺
𝐺c𝛾d𝑉 + 𝛹f,c, (7)

where 𝛹f,m is the part of fracture energy that is responsible for brittle fracture during monotonic loading, while the added term 𝛹f,c
is the dissipation due to fatigue (fracture caused by cyclic loading). The fatigue dissipation functional is defined as:

𝛹f,c = ∫𝛺 ∫

𝜏

0

d𝑔f,c
d𝑡

(

𝜓init(𝑡) + 𝜓prop(𝑡)
)

d𝑡d𝑉 , (8)

where 𝜓init = 𝜓init (𝑡) is the term in the fatigue dissipation functional that drives fatigue crack initiation, and 𝜓prop = 𝜓prop (𝑡) is the
part of fatigue dissipation potential that usually becomes dominant in fatigue crack propagation. The former contribution will be
addressed as the fatigue crack initiation driving force, and the latter as the fatigue crack propagation driving force. The function 𝑔f,c
efines how the accumulated fatigue driving forces influence the phase-field evolution. In general, different choices of 𝑔f,c can lead
o different physical interpretations and models. In this work 𝑔f,c = 𝑔f,c(𝜙) = 𝑔(𝜙) is proposed, which allows the interpretation of
ariables 𝜓init and 𝜓prop as ‘‘fatigue crack driving forces’’ and 𝑔f,c as the fatigue degradation function. Note that 𝑔f,c = 𝑔f,c(𝜙) = 𝑔(𝜙)
s used in the remainder of the text, including all simulations in Section 4, with the exception of Remark 3, where some other
nteresting choices are briefly discussed. Notion of 𝑔f,c(𝜙) was used in the remainder of this section for sake of generality, except in
emark 3, where or 𝑔f,c = 𝑔f,c(𝜙,∇𝜙) was introduced. The fatigue crack initiation and propagation driving forces are defined as:

𝜓init(𝜏) = 𝜓1−𝑘1
crit ∫

𝜏

0
𝐺s𝑘3𝐻

(

�̇� init (𝑡)
)

�̇� init (𝑡)d𝑡, 𝜓 init =
(

𝑔𝑓𝜓+
0
)𝑘1 , (9)

𝜓prop(𝜏) = 𝜓1−𝑘2
crit ∫

𝜏

0
𝐹s𝑘4𝐻

(

�̇�prop (𝑡)
)

�̇�prop (𝑡)d𝑡, 𝜓prop =
(

𝑔𝑓𝜓+
0
)𝑘2 , (10)

here 𝑘𝑖, 𝑖 = 1, 2, 3, 4 are the parameters of the model, 𝐻 is the Heaviside function and 𝐺s and 𝐹s are the decoupling functions.
he motivation for the definition of 𝜓init is given in Section 4.2, where it is shown that Eq. (9) under some assumptions leads to a
tress-life law that is equivalent to the Basqin’s equation. This leads to simple physical interpretations of 𝑘1 and 𝑘3 parameters, and
heir clear correlation to the S-N curves, consequently leading to a simple calibration of these parameters. The definition of 𝜓prop was

otivated simply by favourable properties of the adopted 𝜓init. It is to note that different definitions of 𝜓 init = 𝜓 init

(

(

𝑔𝑓𝜓+
0
)𝑘1

)

and

𝜓 init = 𝜓 init

(

(

𝑔𝑓𝜓+
0
)𝑘2

)

could be used for fine tuning of S-N curves and Paris’ curves, but only Eqs. (9) and (10) are considered in
his paper for the sake of simplicity. Additionally, it will be seen from the presented numerical results that under certain conditions
he parameter 𝑘1 is responsible for the exponent of crack initiation S-N curve, 𝑘3 mostly affects the S-N curve coefficient, while 𝑘2
nd 𝑘4 are associated with the exponent and coefficient of the Paris’ curve, respectively. The premultiplication of integral terms by
1−𝑘1
crit and 𝜓1−𝑘2

crit makes the dimension of 𝜓init and 𝜓prop identical to the dimension of 𝜓 . In this work, 𝜓crit is defined by 𝜓crit =
𝐸
2 𝜀

2
crit.

he parameter 𝑓 controls the influence of the fatigue crack driving forces on the localisation of phase-field and strains, and 𝑓 = 1
as used in the remainder of the paper, unless explicitly stated otherwise.

Alternatively, 𝜓init and 𝜓prop could be written in a more general form:

𝜓init = 𝜓crit𝐷init

(

𝜓−𝑘1
crit ∫

𝜏

0
𝐺s𝑘3𝐻

(

�̇� init (𝑡)
)

�̇� init (𝑡)d𝑡
)

, (11)

𝜓prop = 𝜓crit𝐷prop

(

𝜓−𝑘2
crit ∫

𝜏

0
𝐹s𝑘4𝐻

(

�̇�prop (𝑡)
)

�̇�prop (𝑡)d𝑡
)

, (12)

where 𝐷init and 𝐷prop are arbitrary dimensionless monotonically increasing functions (with dimensionless arguments), that can be
used to represent various damage accumulation laws. However, in the remainder of the work a simple forms 𝐷init(𝑑1) = 𝑑1 and
𝐷prop(𝑑2) = 𝑑2 are used, with:

𝑑1 = 𝜓−𝑘1
crit ∫

𝜏

0
𝐺s𝑘3𝐻

(

�̇� init (𝑡)
)

�̇� init (𝑡)d𝑡, (13)

𝑑2 = 𝜓−𝑘2
crit ∫

𝜏

0
𝐹s𝑘4𝐻

(

�̇�prop (𝑡)
)

�̇�prop (𝑡)d𝑡. (14)

Such choice corresponds to the definitions given in Eqs. (9) and (10). The notions of 𝐷init and 𝐷prop are not used in the rest of the
ork.

The functions 𝐺s and 𝐹s are used to decouple the crack initiation and the crack propagation behaviour. Setting 𝐹s(0) = 0 reduces
he influence of the fatigue crack propagation driving force on the crack initiation/growth for small phase-field values. In this work,
he study is limited to the family of functions:

𝐹s =

{

0, for 𝜙 < 𝜙thres
𝜙−𝜙thres , for 𝜙 ≥ 𝜙

(15)
4

1−𝜙thres thres
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where 𝜙thres is the threshold value of 𝜙. The fatigue crack propagation driving force is not able to grow if 𝜙 is smaller than 𝜙thres.
Physically justifiable alternative definitions of 𝐹s could be 𝐹s(𝜓init) and 𝐹s(𝜓init, 𝜙), but in this paper the presented study is limited
o 𝐹s(𝜙) only.

When it comes to thr decoupling function 𝐺s, it seems reasonable to define it as 𝐺s = 1−𝐹s, but, 𝐺s = 1 is used in the presented
study for the sake of simplicity. Note that although the function 𝐺s could seemingly be used to achieve the complete decoupling of
the fatigue crack driving forces, the crack initiation driving force could even in that case slightly influence the crack propagation
rate, since it would keep accumulating in regions far away from the crack, where the values of the 𝐹s would still be low. More
ptimal choices of 𝐺s should be addressed in future research.

emark 1. It should be noted that in the PF models based on additional fatigue dissipation contributions the evaluation of stress
epends on the definition of these fatigue dissipation terms. If the stress is defined as the derivative of the total internal energy with
espect to strains, 𝝈 = d𝜓tot

d𝜺 = d𝜓
d𝜺 + d𝜓f,c

d𝜺 , it is clear that the second term is the contribution of fatigue dissipation to the stress. For
example, fatigue dissipation can have a structure similar to that in [28]:

𝛹f,c = ∫𝛺
𝜓f,cd𝑉 , 𝜓f,c = 𝑔f,c𝜓his, (16)

with 𝜓ℎ𝑖𝑠 as an arbitrary history variable defined in terms of strains and possibly some fatigue parameters, but independent of the
phase field. Then it can be seen that:

d𝜓f,c
d𝜺 = 𝑔f,c

d𝜓his
d𝜺 , (17)

is the nonzero contribution of the fatigue dissipation to the stress, which in [28] is attributed to micro-stresses caused by fatigue.
However, in this work, the fatigue dissipation is defined as:

𝛹f,c = ∫𝛺 ∫

𝜏

0

d𝑔f,c
d𝑡 𝜓his (𝑡)d𝑡d𝑉 = ∫𝛺 ∫

𝜙(𝜏)

0

d𝑔f,c
d𝜙 𝜓his (𝜙)d𝜙d𝑉 , (18)

hich is equivalent to the definition in rate form, similar to the one used in [27]:

�̇�f,c = ∫𝛺

d𝑔f,c
d𝑡 𝜓hisd𝑉 = ∫𝛺

d𝑔f,c
d𝜙 𝜓his�̇�d𝑉 . (19)

The rate of the fatigue dissipation is then defined as:

�̇�f,c =
d𝑔f,c
d𝜙 �̇�𝜓his. (20)

Note that according to the definition in Eq. (20), once when the fatigue process starts, 𝜓his > 0. As 𝜓his represents the fatigue driving
forces accumulated in the material up to that moment, it can be regarded as a known constant value at current time step 𝜏. It should
be noted that 𝜓his influences the change of the phase-field through the evolution equation (see Eqs. (29)–(30)). For small changes
of time we can write:

d𝜓f,c =
d𝑔f,c
d𝜙 𝜓hisd𝜙, (21)

meaning that the fatigue dissipation density at some moment 𝜏 changes only due to the change of the phase-field, leading
consequently to d𝜓f,c

d𝜺 = 0. It means that in the present model the stresses are calculated identically as in standard PF models
or monotonous fracture. However, previous conclusion stands in the case of infinitesimal time step. For a finite time step size,
ewly obtained fatigue dissipation can be dependent on current displacement field, leading to possibility of additional stress term
n discretised equations. This is discussed in Section 3.1 in detail.

emark 2. Following the ideas from the previous remark, some comments regarding the models based on the degradation of
racture toughness can be given. The original model of Alessi et al. [14] (followed by [15]) gives the fracture energy by:

𝛹f = ∫𝛺
𝜓fd𝑉 , 𝜓f = ∫

𝜏

0
𝐹 (𝜓his)𝐺c

(

𝜕𝛾
𝜕𝜙
�̇� +

𝜕𝛾
𝜕 (∇𝜙)

̇(∇𝜙)
)

d𝑡, (22)

defining it as a path-dependent value, in contrast to the standard definition (3). Herein, the fatigue toughness degradation function
𝐹 (𝜓his) is the function of some arbitrary variable 𝜓his that is dependent on the strain history and usually takes values between 1 for
𝜓his = 0 and 0 for 𝜓his = ∞. Again, using the argument that 𝛹f and 𝜓f are constant for a fixed phase-field, one can conclude that
d𝜓f
d𝜺 = 0, meaning that the extension to fatigue does not influence the stress definition.

However, most of other authors that use the fracture toughness degradation concept (such as [19,21,23–25]) define the fracture
nergy in the form of:

𝛹f = ∫𝛺
𝐹 (𝜓his)𝐺c𝛾d𝑉 , 𝜓f = 𝐹 (𝜓his)𝐺c𝛾 (23)

which is clearly not equivalent to the original definition from [14,15]. Moreover, by seeking the derivative of 𝜓f with respect to
the strain tensor, one can get:

d𝜓f =
𝜕𝐹 (𝜓his) 𝜕𝜓his𝐺c𝛾. (24)
5
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As the stress is defined for this type of model as 𝝈 = d𝜓𝑡𝑜𝑡
d𝜺 = d𝜓

d𝜺 + d𝜓f
d𝜺 , it is clear that the term 𝜕𝐹 (𝜓his)

𝜕𝜓his

𝜕𝜓his
𝜕𝜺 𝐺c𝛾 is the fatigue

ontribution to stress. In addition, the fracture energy defined by (23) contradicts thermodynamic requirements, as it can be reduced
due to the decreasing nature of 𝐹 (𝜓his)) even if the constraint �̇� ≥ 0 is always satisfied. To prove this claim, it is possible to consider

a simple 1-D case with a homogeneous distribution of stress and phase-field, with the amplitude of stress such that it does not lead
to a growth of phase-field in any moment and with a prescribed phase-field that is different from 0. Then, as loading cycles advance,
the phase-field will remain constant, while the fatigue toughness degradation function will constantly decrease, leading to a decrease
in the value of fracture dissipation potential.

2.3. Governing equations

Seeking the minima of 𝛹 in 𝒖, and by recalling the definitions of  , 𝛹 and 𝝈 = 𝜕𝜓
𝜕 = 𝑔

𝜕𝜓+
0

𝜕 +
𝜕𝜓−

0
𝜕 , one can obtain the natural

boundary condition:

𝒏𝝈 = 𝒕, in𝛺𝑁 , (25)

and the equilibrium equation:

div𝝈 = −𝒃, in𝛺, (26)

as governing equations, where 𝛺𝑁 is the part of 𝛺𝐵 with the prescribed Neumann boundary conditions, while the Dirichlet boundary
conditions are imposed on the rest of boundary 𝛺𝐵 , denoted as 𝛺𝐷. Considering the constrains on 𝜙 (i.e., �̇� ≥ 0), seeking the minima
of 𝛹 in 𝜙 leads to:

𝛿𝜙𝛹 = ∫𝛺
d𝑔
d𝜙𝜓

+
0 𝛿𝜙d𝑉 + ∫𝛺

d𝑔f,c
d𝜙

(

𝜓infit + 𝜓prop
)

𝛿𝜙d𝑉

+∫𝛺

(

𝜕𝛾
𝜕𝜙
𝐺c − ∇ ⋅

(

𝜕𝛾
𝜕 (∇𝜙)

)

𝐺c

)

𝛿𝜙d𝑉 + ∫𝛺𝑏

𝜕𝛾
𝜕 (∇𝜙)

𝒏𝐺c𝛿𝜙d𝐴 ≥ 0
. (27)

As customary, the homogeneous boundary conditions are adopted:
𝜕𝛾

𝜕 (∇𝜙)
𝒏 = 0, i.e. ∇𝜙 ⋅ 𝒏 = 0, on𝛺𝐵 . (28)

Finally, by adopting the special case 𝑔f,c = 𝑔, and introducing (28) into the minimisation condition (27), and recalling the
irreversibility condition of the phase-field and the energy conservation equation (see [33] for more details), we arrive to:

d𝑔
d𝜙

(

𝜓+
0 + 𝜓init + 𝜓prop

)

+
𝜕𝛾
𝜕𝜙
𝐺c − ∇ ⋅

(

𝜕𝛾
𝜕 (∇𝜙)

)

𝐺c = 0, for �̇� > 0, (29)

d𝑔
d𝜙

(

𝜓+
0 + 𝜓init + 𝜓prop

)

+
𝜕𝛾
𝜕𝜙
𝐺c − ∇ ⋅

(

𝜕𝛾
𝜕 (∇𝜙)

)

𝐺c ≥ 0, for �̇� = 0. (30)

Now, note that d𝑔
d𝜙

(

𝜓+
0 + 𝜓init + 𝜓prop

)

≤ 0 because 𝜓+
0 +𝜓init+𝜓prop ≥ 0 and d𝑔

d𝜙 ≤ 0. Then, from Eqs. (29) and (30) and the definition
of energetic quantities, by using the divergence theorem and the boundary conditions (28), one could derive:

�̇�f,m ≥ 0, (31)

where �̇�f,m stands for the density of �̇�f,m, leading to the satisfaction of crack irreversibility (both locally and globally). In an analogous
manner, considering the fact that d𝑔

d𝜙𝜓
+
0 ≤ 0, one could derive:

𝑝 − �̇� = �̇� = �̇�f,m + �̇�f,c ≥ 0, (32)

with 𝑝 being the density of internal power and with �̇� being the density of dissipation rate, showing that the second law of
thermodynamics (dissipation inequality) is satisfied.

However, to simplify the irreversibility enforcement, in this work we use the history field concept by Miehe [31], which modifies
Eqs. (29) and (30) into:

d𝑔
d𝜙

(

 + 𝜓init + 𝜓prop
)

+
𝜕𝛾
𝜕𝜙
𝐺c − ∇ ⋅

(

𝜕𝛾
𝜕 (∇𝜙)

)

𝐺c = 0. (33)

Herein, the history field  is defined as:

 (𝑡) = min
𝜏=[0,𝑡]

(

𝜓+
0 (𝜏)

)

. (34)

Remark 3. The choice of the function 𝑔f,c in the proposed framework leads to different fatigue PF models. Theoretically, different
forms of the function are allowed, including either 𝑔f,c = 𝑔f,c(𝜙) or 𝑔f,c = 𝑔f,c(𝜙,∇𝜙). In general, the function 𝑔f,c should be defined

d𝑔f,c �̇� ≤ 0 stands. As a consequence, fatigue encourages the growth of phase-field and therefore simulates damage due to
6

uch that d𝜙
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fatigue. In the following text, two alternative definitions of 𝑔f,c are considered. An interesting choice for the function depending on
the phase-field gradient is:

𝑔f,c = 𝑔f,c(𝜙,∇𝜙) = −𝛾(𝜙,∇𝜙), (35)

which results in a model based on the fracture toughness degradation concept. By using Eq. (35), and by taking derivative of Eq. (8),
the fatigue dissipation rate is:

�̇�f,c = ∫𝛺

d𝑔f,c
d𝑡

(

𝜓init + 𝜓prop
)

d𝑉 = ∫𝛺
−

d𝛾
d𝑡

(

𝜓init + 𝜓prop
)

d𝑉 = ∫𝛺
−
(

𝜕𝛾
𝜕𝜙
�̇� +

𝜕𝛾
𝜕 (∇𝜙)

̇(∇𝜙)
)

(

𝜓init + 𝜓prop
)

d𝑉 (36)

nd the total dissipation rate obtains the following form:

�̇�f = ∫𝛺
d𝛾
d𝑡 𝐺cd𝑉 + ∫𝛺

d𝑔f,c
d𝑡

(

𝜓init + 𝜓prop
)

d𝑉 = ∫𝛺
d𝛾
d𝑡

(

𝐺c − 𝜓init − 𝜓prop
)

d𝑉 . (37)

The variables 𝜓init and 𝜓prop as proposed by Eqs. (9)–(14) can be regarded as the fatigue history variables, noted here as 𝜓init = 𝛼1
and 𝜓prop = 𝛼2. Then, after some simple manipulation, the dissipation rate (37) can be written as:

�̇�f = ∫𝛺
d𝛾
d𝑡 𝐺c𝐹 1

(

𝛼1, 𝛼2
)

d𝑉 , (38)

here 𝐹 1(𝛼1, 𝛼2) is function of internal variables:

𝐹 1 = 1 −
𝛼1 + 𝛼2
𝐺𝑐

= 1 −
𝜓init + 𝜓prop

𝐺c
, (39)

with 𝜓init and 𝜓prop such that 0 ≤ 𝜓init+𝜓prop ≤ 𝐺𝑐 throughout of the process. The closer inspection reveals that Eq. (38) corresponds
exactly to the definition of the fracture energy proposed in Carrara et al. [15], meaning that this choice yields a PF model based
on the fracture toughness degradation. Note that in the corresponding literature the function 𝐹 1 is called the fatigue degradation
function, rather than 𝑔f,c. This means that this model belongs to the group of fatigue PF models based on the degradation of fracture
oughness, see e.g. [14,15].

The corresponding phase-field evolution equation is:

d𝑔
d𝜙 +

𝜕𝛾
𝜕𝜙
𝐹 1𝐺c − ∇ ⋅

(

𝜕𝛾
𝜕 (∇𝜙)

)

𝐹 1𝐺c −
𝜕𝛾

𝜕 (∇𝜙)
⋅ ∇𝐹 1𝐺c = 0. (40)

hich is again equivalent to one in [15], but with 𝐹 1 as the fatigue degradation function dependent of two fatigue history variables.
If the function 𝑔f,c is chosen to depend only on the phase field, 𝑔f,c = 𝑔f,c(𝜙), then the fatigue dissipation rate becomes:

�̇�f,c = ∫𝛺

d𝑔f,c
d𝑡

(

𝜓init + 𝜓prop
)

d𝑉 = ∫𝛺
d𝑔
d𝑡

(

𝜓init + 𝜓prop
)

d𝑉 (41)

and the corresponding phase-field evolution equations are:

d𝑔
d𝜙 +

d𝑔f,c
d𝜙

(

𝜓init + 𝜓prop
)

+
𝜕𝛾
𝜕𝜙
𝐺c − ∇ ⋅

(

𝜕𝛾
𝜕 (∇𝜙)

)

𝐺c = 0. (42)

For the particular choice used in this article, 𝑔f,c = 𝑔, it has been shown in Section 2.3. that 𝜓init and 𝜓prop can be regarded as
fatigue crack driving forces. Alternatively, choice 𝑔f,c = 𝑔 can be disregarded, and 𝑔f,c can be defined such that:

d𝑔f,c
d𝜙 = −𝑘

𝜕𝑔f,c
𝜕𝜙

(43)

with 𝑘 > 0, where k is introduced for the sake of normisation of 𝑔f,c. By applying the function (43) to define the fatigue dissipation
ate, the phase field evolution (42) can be rewritten as:

d𝑔
d𝜙 +

𝜕𝛾
𝜕𝜙
𝐹 2𝐺c − ∇ ⋅

(

𝜕𝛾
𝜕 (∇𝜙)

)

𝐺c = 0, (44)

with:

𝐹 2 = 1 −
𝛼1 + 𝛼2
𝐺𝑐

= 1 −
𝜓init + 𝜓prop

𝐺c
, (45)

which is to some extent similar to a model that can be found in work of Mesgarnejad et al. [16]. Note that 𝜓init and 𝜓prop should
now be defined such that 𝑘(𝜓init + 𝜓init) ≤ 𝐺c. By using the usual second order form of 𝛾, 𝛾 = 1

𝑐

(

1
𝑙 𝛽(𝜙) + 𝑙(∇𝜙)

2
)

, by introducing

he variables (𝐺c)eff =
√

𝐹 2𝐺c and 𝑙eff =
𝐺𝑐
√

𝐹 2

and utilising them in Eq. (44) we finally obtain:

d𝑔 +
𝜕𝛽 (𝐺c)eff − ∇ ⋅ ∇𝜙

2𝑙eff(𝐺c)eff = 0, (46)
7
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Since (𝐺c)eff ≤ 𝐺c and 𝑙eff ≥ 𝑙, we can conclude with certainty that in this model the fatigue will lead to the widening of the
ocalisation zone. Note the for this state the fatigue dissipation reduces only the local resistance to crack growth (similar to one
odel defined in [16]). Although this analysis and conclusion are not directly applicable to the model with 𝑔f,c = 𝑔 used in the rest

f the paper, it can serve to better understand the widening of the PF profile observed in the results presented in Section 4.

. Numerical implementation

In this section the numerical implementation of the proposed fatigue model is briefly described, including the time integration
f dissipation potentials and the employed cycle skipping procedure. For completeness, some information about the discretisation
nd the staggered solver is also included.

.1. Time integration of 𝜓f,c

To derive discretised equations by using the virtual work principle, which is described in the next subsection, it is necessary
efine all energetic quantities in given time step. As fatigue dissipation is actually a path-dependent, it is necessary to properly
iscretise it in time. Motivated by the definition from Eq. (8) and the discussion from Remark 1, we assume:

𝜓f,c(𝜏 + 𝛥𝜏) = 𝜓f,c(𝜏) + ∫

𝜏+𝛥𝜏

𝜏

d𝑔f,c
d𝑡

(

𝜓init + 𝜓prop
)

d𝑡 = 𝜓f,c(𝜏) + 𝛥𝜓f,c, (47)

here the increment term 𝛥𝜓f,c is approximated by a simple scheme, as:

𝛥𝜓f,c ≈ 𝛥𝑔f,c
(

𝜓init(𝜏) + 𝜓prop(𝜏)
)

=
(

𝑔f,c(𝜏 + 𝛥𝜏) − 𝑔f,c(𝜏)
) (

𝜓init(𝜏) + 𝜓prop(𝜏)
)

, (48)

hich is fully consistent with the governing equations given in Section 2.3 and the definition of stress discussed in Remark 1,
= d𝜓

d𝜺 (i.e., d𝜓f,c(𝜏+𝛥𝜏)
d𝜺(𝜏+𝛥𝜏) = 0). The term 𝛥𝜓f,c manifests only as new crack driving forces in the discretised phase-field equation (see.

q. (53)) that depends on frozen value of the fatigue crack driving forces 𝜓init and 𝜓prop. Consequently, the crack driving force can
be integrated at the end of an increment.

Alternatively, 𝛥𝜓f,c could be defined as:

𝛥𝜓f,c ≈
(

𝑔f,c(𝜏 + 𝛥𝜏) − 𝑔f,c(𝜏)
) (

𝜓init(𝜏 + 𝛥𝜏) + 𝜓prop(𝜏 + 𝛥𝜏)
)

. (49)

However, in this case, 𝜓init(𝜏 + 𝛥𝜏) and 𝜓prop(𝜏 + 𝛥𝜏), are dependent on new strains and PF, and new nonlinear terms that contain
𝛥𝑔f,c

(

d𝜓init
d𝜺 +

d𝜓prop
d𝜺

)

and 𝛥𝑔f,c

(

d𝜓init
d𝜙 +

d𝜓prop
d𝜙

)

would appear in the discretised phase-field equations. In addition, unlike definition
by Eq. (48), definition by Eq. (49) can be nonconvex in 𝜀, which is undesirable. Also, note that for sufficiently small time step or
a small load increment, the value of 𝛥𝑔f,c will be very small, and consequently, new terms can be simply disregarded in most of
situations. As the matter of fact, these conclusions hold for any scheme that use 𝜓init and 𝜓prop values from 𝜏 + 𝛥𝜏 time step.

In this paper, we use the fatigue crack driving forces from new time step 𝜏+𝛥𝜏 (assumption of Eq. (49)). However, we disregarded
the fact that new fatigue crack driving force depends on new values of strains and phase-field. Consequently, all possible new terms
in discretised equations that depend on 𝛥𝑔f,c are disregarded. As result, only new terms that can be found in discretised phase-field
Eq. (53) are d𝑔

d𝜙
(

𝜓init(𝜏 + 𝛥𝜏) + 𝜓prop(𝜏 + 𝛥𝜏)
)

and d2𝑔
d𝜙2

(

𝜓init(𝜏 + 𝛥𝜏) + 𝜓prop(𝜏 + 𝛥𝜏)
)

. Authors are aware that this could be inconsistent
ith previous analysis, and that this could be seen as inaccuracy, but this simplification barely influences the final results. This is

orroborated by fact that fatigue evolves slowly within large number of cycles and load increments. In the presented numerical
nalyses each load cycle is subdivided in 10 uniform load increments, which is by author experience sufficient to properly capture
volution of phase-field and fatigue variables. In addition, convergence issues were not experienced.

Note that the analysis presented above is applicable to the arbitrary choice of 𝑔𝑓,𝑐 including those that lead to model based on
oncept of fracture toughness degradation.

.2. FEM discretisation

The virtual work principle is used to develop the discretised set of equations in the Finite Element Method (FEM) framework.
t the global level, displacement and phase-field are interpolated using nodal values as:

𝒖 = 𝑵𝑇
𝑢 𝒗, 𝜙 = 𝑵𝑇

𝜙𝝓n, (50)

here 𝑵𝑢 and 𝑵𝜙 stand for matrices of shape functions for displacement and phase-field, respectively, while 𝒗 are nodal
isplacements and 𝝓n are nodal phase-field values. Strains and phase-field gradients are written in the matrix form as:

𝜺 = 𝑩𝑇
𝑢 𝒗, ∇𝜙 = 𝑩𝑇

𝜙𝝓n, (51)

here 𝑩𝑢 and 𝑩𝜙 are matrices that at the global level relate nodal displacements to strains, and the nodal phase-field values to
he phase-field gradient, respectively. In this work, both the phase field and displacements are discretised by using the first-order
8

soparametric quadrilateral elements with the bilinear field distribution. The discretised equations are derived by imposing the
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equality variational minimisation condition on the functional, which after employing the approximations of field variables (50)–(51),
and performing linearisation yield the following discretised equations:

(

∫𝛺
𝑩𝑢

𝜕𝝈
𝜕𝝐

𝑩𝑇
𝑢 d𝑉

)

𝛥𝒗 = −∫𝛺
𝑩𝑢𝝈d𝑉 + ∫𝛺

𝑵𝑢𝒃d𝑉 + ∫𝛺𝑁
𝑵𝑢𝒕d𝐴. (52)

nd:
(

∫𝛺

(

𝑵𝜙

(

𝐺c
𝜕2𝛾
𝜕𝜙2

+
d2𝑔
d𝜙2

(

𝜓+
0 + 𝜓init + 𝜓prop

)

)

𝑵𝑇
𝜙 + 𝐺c𝑩𝜙

𝜕2𝛾
𝜕(∇𝜙)2

𝑩𝑇
𝜙

)

d𝑉
)

𝛥𝝓𝑛

= −∫𝛺

(

𝑵𝜙

(

𝐺c
𝜕𝛾
𝜕𝜙

+
d𝑔
d𝜙

(

𝜓+
0 + 𝜓init + 𝜓prop

)

)

+ 𝐺c𝑩𝜙
𝜕𝛾

𝜕(∇𝜙)

)

d𝑉
. (53)

.3. Solver procedure

A multi-pass staggered solver with convergence control is used to solve phase-field fatigue problems. Within one iteration of
staggered algorithm, first the displacement problem is solved using the Newton’s algorithm, and then the phase-field problem

s solved with the newly obtained displacement. Time integration is done after the solving of phase-field problem. At the end of
taggered iteration, the residual is checked, and a new increment starts if the residual is smaller then predefined tolerance. The
esidual is defined as the quadratic norm of residual vector for the displacement problem, and it is calculated after solving phase-
ield problem. Load cycles are divided in uniform increments. After every three load cycles, cycle skipping, described in Section 3.5,
s performed.

.4. Time integration of history variables

Since in this work the fatigue initiation and propagation driving forces are defined as time integrals, one has to integrate them
ithin each increment. The fatigue crack driving forces are integrated as:

𝜓init(𝜏 + 𝛥𝜏) = 𝜓init(𝜏) + 𝜓
(1−𝑘1)
crit 𝑘3H

(

𝑔(𝜙(𝜏 + 𝛥𝜏))𝑓𝜓+
0 (𝜏 + 𝛥𝜏) − 𝑔(𝜙(𝜏))

𝑓𝜓+
0 (𝜏)

)

(

(

𝑔(𝜙(𝜏 + 𝛥𝜏))𝑓𝜓+
0 (𝜏 + 𝛥𝜏)

)𝑘1 −
(

𝑔(𝜙(𝜏))𝑓𝜓+
0 (𝜏)

)𝑘1
)

.
(54)

𝜓prop(𝜏 + 𝛥𝜏) = 𝜓prop(𝜏) + 𝜓
(1−𝑘2)
crit 𝑘4H

(

𝑔(𝜙(𝜏 + 𝛥𝜏))𝑓𝜓+
0 (𝜏 + 𝛥𝜏) − 𝑔(𝜙(𝜏))

𝑓𝜓+
0 (𝜏)

)

𝐹 (𝜙(𝜏 + 𝛥𝜏)) + 𝐹 (𝜙(𝜏))
2

(

(

𝑔(𝜙(𝜏 + 𝛥𝜏))𝑓𝜓+
0 (𝜏 + 𝛥𝜏)

)𝑘2 −
(

𝑔(𝜙(𝜏))𝑓𝜓+
0 (𝜏)

)𝑘2
)

.
(55)

.5. Cycle skipping

In order to speed up the calculations, in this work we apply an adaptation of cycle skipping originally proposed by Cojocaru and
arlsson [35]. Similar cycle skipping was used in phase-field fatigue modelling [19,27]. In contrast to [19,27,35], in the current
daptation the admissible number of skipped cycles is calculated for both extrapolated fields (fatigue driving forces), and the lower
btained number is chosen for extrapolation.

During cycle skipping, the fatigue driving forces are extrapolated in each integration point by using data from previous three
uccessive load cycles as:

𝜓init,ext = 𝜓init + 𝛥2−3𝜓init𝑁skip +
𝛥2−3𝜓init − 𝛥1−2𝜓init

2
𝑁2

skip, (56)

where 𝜓init,ext stands for the extrapolated fatigue crack initiation driving force, 𝛥𝑖−𝑗𝜓init = 𝜓init
(

𝑁𝑘+𝑗−1
)

− 𝜓init
(

𝑁𝑘+𝑖−1
)

stands for
the change of fatigue crack initiation driving force between 𝑖th and 𝑗th cycle in the set of previous three successive cycles, 𝑘 is
the index of the first cycle in set of three cycles that are taken into account for cycle skipping, 𝜓init

(

𝑁𝑙
)

is value of fatigue crack
initiation driving forces at end of 𝑙th loading cycle and 𝑁skip stands for a number of skipped cycles. The extrapolated propagation
driving force is calculated analogously to the extrapolated initiation driving force. The number of skipped cycles is calculated as:

𝑛skip = min
𝑖

(

min

(

|

|

|

|

|

𝛥2−3𝜓init,𝑖
𝛥2−3𝜓init,𝑖 − 𝛥1−2𝜓init,𝑖

|

|

|

|

|

,
|

|

|

|

|

𝛥2−3𝜓prop,𝑖

𝛥2−3𝜓prop,𝑖 − 𝛥1−2𝜓prop,𝑖

|

|

|

|

|

))

, (57)

𝑁skip = min
(

max
(

tol ⋅ 𝑛skip, 𝑁min
)

, 𝑁max
)

, (58)

here 𝑛skip is calculated by considering data from all integration points, and where the index 𝑖 identifies the integration point of
E model, 𝛥𝑗−𝑘𝜓prop,𝑖 stands for the change of propagation dissipation potential density between the 𝑗th and the 𝑘th cycle, 𝑡𝑜𝑙 is a
9

prescribed value, while 𝑁min and 𝑁max are the prescribed minimal and maximal allowed number of skipped cycles.
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Fig. 1. Geometry, loads and boundary conditions for compact tension specimen (a), three point bending test specimen (b), and loading cycle description (c).

4. Results and discussion

4.1. Studied examples and simulation settings

In this subsection, the geometry, loading and boundary conditions of the considered problems are described. In the presented
simulations, a compact tension specimen (CT specimen) or a three point bending specimen (TPB specimen) are used, whose
geometries are shown in Fig. 1a and b, respectively. Additional Dirichlet boundary conditions on the phase-field (𝜙 = 0) are
prescribed around points with applied loads or displacements, with the goal of avoiding initiation of cracks at those points. An
exemplary loading cycle is shown in Fig. 1c, and in most examples cycles with 𝐹min = 0 are used. Therefore, the ordinate in
the shown S-N diagrams will represent both maximal force and force range, and is denoted simply as 𝐹 . The only exception are
xamples where the mean stress or the loading ratio effect is studied (see Section 4.3). The used model parameters are 𝑘1 = 2, 𝑘2 = 1,
3 = 0.001, 𝑘4 = 1 and 𝜙thres = 0.4, unless specified otherwise. These values are also used as default parameters in parametric studies.
uch choice of default parameters will give a reasonable number of cycles for the studied force ranges in both the crack initiation
nd the crack propagation regime, leading to reasonable computational costs. The model parameters are varied in Section 4.2,
here each parameter is varied individually, and its influence is studied. The applied mesh size is ℎ ≈ 𝑙

6 in most simulations, but
the effect of mesh size is demonstrated in Section 4.5.2. Used cycle skipping tolerance is 0.01. Cycles in simulations are divided
in 10 increments. The applied material parameters are 𝐸 = 116000 MPa, 𝑣 = 0.33, 𝐺c = 35.31MPa mm, 𝜎crit = 970 MPa, leading to
𝑙 = 0.4582 mm for the AT2 model. In all considered cases, plane stress state is assumed, and Miehe’s split is used, except for example
in Section 4.5.5, where Freddi’s split and a hybrid approach are used. In most simulations, the observed quantities are the crack
initiation life, the total life and crack growth rates. The crack length is determined by tracking maximum coordinates of nodes with
phase-field values higher than 0.95, and consequently, the crack is considered initiated when the nodal phase-field value reaches
the value of 0.95. d𝑎

d𝑁 is calculated as 𝛥𝑎
𝛥𝑁 at a moment of change of the crack length. A specimen is considered fully fractured when

he total crack length reaches a value close to 45 mm for the CT specimen and 35 mm for the TPB specimen. Stress intensity factors
sed for d𝑎

d𝑁 − 𝛥𝐾 plots are calculated from:
√

𝜋𝑎, (59)
10

𝐾 = 𝜎𝐼
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where 𝐼 stands for the coefficient dependent on crack length and geometry, whose values can be found in [36]. In most results that
include S-N curves, two different types of S-N curves are displayed. The first one has the structural life (given by the number of
ycles N) defined as the total number of cycles to complete failure and is called the total life S-N curve in text. The other type uses
he number of cycles to crack (damage) initiation and is called the initiation S-N curve. Thereby, the crack initiation is defined by
he cycle where the phase-field value of 0.95 is observed for the first time.

.2. Influence of model parameters

In this subsection, we aim to demonstrate the effect of model parameters on the resulting fatigue behaviour. The main goal is
o reproduce the S-N curve and Paris’ curves. Accordingly, the total life in the high-cycle fatigue regime has to be described by:

𝜎 = 𝐴𝑁𝛽 , (60)

and the crack growth rate by:
d𝑎
d𝑁 = 𝐶 (𝛥𝐾)𝑚 , (61)

here 𝐴 and 𝛽 are the coefficient and exponent of the S-N curve, respectively, while 𝐶 and 𝑚 are the Paris’ curve coefficient
nd exponent, respectively. To predict the model behaviour prior to performing expensive numerical experiments, one can assume
simple 1-D ‘crack initiation’ case with homogeneous stress and phase-field distributions. All loading cycles are identical, with

min = 0 and 𝜎max = 𝜎 < 𝜎crit, where 𝜎crit is the peak stress for the 1-D stress state (usually equal to the tensile strength). Accordingly,
he growth of the fatigue initiation driving force during one cycle is given by:

𝜓init,1 = 𝜓1−𝑘1
crit 𝑘3

(

𝑔𝑓𝜓+
0
)𝑘1 = 𝜓1−𝑘1

crit 𝑘3

(

𝑔𝑓 𝜎2

𝑔2𝐸

)𝑘1
. (62)

Further, for simplicity of this discussion, we choose 𝑓 = 2 and we assume that the tensile deformation energy density is much
maller than the accumulated fatigue driving force. Then, we assume that the damage initiation occurs when 𝑁 ⋅ 𝜓init,1 reaches
ome critical value 𝜓crit,init:

𝑁𝜓1−𝑘1
crit

𝑘3
𝐸𝑘1

(𝜎)2𝑘1 = 𝜓crit,init. (63)

By algebraic manipulation, one can get to:

𝜎 =
(

𝑘3𝑁
)− 1

2𝑘1 ⋅ Const = 𝑁𝛽𝐴, (64)

leading to the conclusion that the proposed model reproduces the initiation S-N curve naturally with 𝛽 = − 1
2𝑘1

and 𝐴 = Const ⋅ 𝑘𝛽3 .
The result 𝛽 = − 1

2𝑘1
directly leads to the initial assumption regarding the calibration of the slope of S-N curve. This is confirmed by

umerical simulations and shown in Fig. 2. In addition, by manipulating Eq. (64), one can get:

𝑁 = 1
𝑘3

( 𝜎
Const

)−2𝑘1
, (65)

leading to the conclusion that 𝑘3𝑁 is constant for fixed 𝜎, consequently leading to the conclusion that 𝑘3 scales calculated cycles,
as well as the S-N curve coefficient, in linear manner. This can also by confirmed by numerical simulation, as shown in Fig. 3.

Although in the previous analysis the fatigue crack driving force was neglected, the results in Figs. 2 and 3, demonstrate that
the above conclusions are valid even for numerical simulations with the fatigue crack propagation driving force being included.
When it comes to the influence of 𝑘1 parameter, in case of the crack initiation S-N curve, relation between 𝑘1 and the curve’s slope
indeed can be approximated by term 𝛽 = − 1

2𝑘1
as predicted above and shown in Fig. 2d. The total life S-N curve is influenced by

both the crack initiation and the crack propagation time, and therefore the slope of this curve will also be influenced by the crack
propagation driving force and all 𝑘𝑖 parameters. Nevertheless, the relation between the total life S-N curve’s parameters and the
𝑘1 parameter is still almost linear (see Fig. 2d), which is beneficial for simplicity of calibration process. In addition, it should be
noted that as the 𝑘1 parameter is increased, rate of accumulation of crack initiation driving force in a single cycle decreases for low
values of 𝜓 init, while rate of accumulation of crack initiation driving force increases for values of 𝜓 init that are higher than 𝜓crit (see
Eqs. (9) and (10)), leading to the smaller initiation and total number of cycles in low-cycle fatigue regime and higher number of
cycles in high-cycle fatigue regime (see Fig. 2a and b). Furthermore, it should be noted that with lowering the maximum load the
obtained total-life S-N curves seem to converge to linear curves (in the logarithmic scale). Theoretically, the total life curve could
possibly be bilinear in the high-cycle fatigue regime. This can occur when propagation life is dominant for high loads and initiation
life is dominant for small loads, or vice versa. However, these phenomena have not been captured in any of the presented numerical
analyses. In addition, note that in the present model the cut off due to the endurance limit is not explicitly modelled, and this issue
is outside of the scope of this article.

Prior to discussion on 𝑘1 influence on Paris’ curve, it should be noted that the crack initiation driving force, unlike the crack
propagation driving force, accumulates through whole lifetime. Therefore, it influences both crack initiation and propagation, and
actually sets the lower bound on the crack growth rate. However, the intensity of influence during the crack initiation and the crack
propagation stage can be discussed. Clearly, as the crack propagation driving force starts to accumulate only when the phase-field
11
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Fig. 2. Influence of 𝑘1 parameter. Initiation S-N curves (a), total life S-N curves (b), Paris’ curves for 𝐹 = 1000 N (c) and relation between 𝑘1 and − 1
𝛽

(d) for
different values of 𝑘1. Parameter 𝛽 is calculated as slope of S-N curve between points with 𝐹 = 1500 N and 𝐹 = 1000 N.

Fig. 3. Influence of 𝑘3 parameter. Initiation S-N curves (1), total life S-N curves (b), Paris’ curves for 𝐹 = 1000 N (c) and cycle counts for 𝐹 = 1000 N (d) for
ifferent values of 𝑘3.
12
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Fig. 4. Influence of 𝑘2 parameter. Initiation S-N curves (1), total life S-N curves (b), Paris’ curves for 𝐹 = 1000 N (c) and calculated Paris’ curve slope (d) for
ifferent values of 𝑘2. Paris’ curve slope is calculated by fitting data from 𝛥𝐾 ≈ 20 MPa

√

m to 𝛥𝐾 ≈ 40 MPa
√

m.

value reaches some threshold value, the crack initiation driving force will always dominate crack initiation. When it comes to a
crack propagation regime, it can be seen from Figs. 2 and 3 that crack propagation rate does not change significantly for wide
range of values of 𝑘1 and 𝑘3 parameters, leading to the conclusion that the crack propagation rate is driven dominantly by the crack
propagation driving force. However, the crack initiation driving force tends to change overall crack propagation rate if 𝑘1 < 𝑘2, as
observed on Fig. 2c. A reason for such behaviour could be found in the fact that by lowering the 𝑘1 parameter the accumulation
rate of crack initiation driving force tends to increase for small values of 𝜓 init. As the crack initiation driving force sets the lower
imit for the crack growth rate, in such cases the influence of this force may become significant for very low values of 𝑘1. However,
or most engineering metallic materials − 1

𝛽 > 𝑚 (e.g., 𝑚 for the most of metallic materials ranges from 2 to 4, while −𝛽 ranges from
0.05 to 0.12, see. [37]), meaning that for such material 𝑘1 > 𝑘2.

From Fig. 3a and b it can be concluded that by changing the value of 𝑘3 the S-N curves are simply shifted, while Fig. 3c implies
that 𝑘3 practically does not influence crack propagation. This is further corroborated by Fig. 3d, which clearly shows that 𝑁init and
𝑁total change in the same way with respect to the value of 𝑘3. In addition, it can be seen from Fig. 3d that the number of cycles
to crack initiation at a fixed load strongly follows the analytically predicted term 𝑘3𝑁 = Const. Also, the influence of 𝑘3 on the
crack propagation rate for a particular set of 𝑘𝑖 parameters is insignificant. However, as the fatigue crack initiation driving force
sets the lower bound on the crack propagation rate, it is expected that 𝑘3 would influence the crack propagation rate only in case
of extremely slow crack propagation (very small 𝑘4). In that case, the calibration of Paris’ and S-N curve coefficients would be
somewhat more complex, as its calibration would not be independent anymore.

As already mentioned, the influence of the fatigue crack propagation driving force is much more complex than the influence of
the fatigue crack initiation driving force due to its evolution being dependent on the decoupling function 𝐹s. As a result, performing
a simplified semi-analytic analysis of the influence of model parameters 𝑘2 and 𝑘4 is not possible. However, the numerical results
of parametric simulations are shown in Fig. 4. It can be seen that the fatigue crack propagation parameters barely influence crack
initiation S-N curves, shown in Fig. 4a. This can be attributed to the fact that the fatigue crack propagation driving force does not
accumulate for the small values of phase-field (due to the decoupling function 𝐹s). Further, note that a crack is considered initiated
at 𝜙 = 0.95. Since the fatigue crack propagation force starts to accumulate at 𝜙 = 𝜙thres, the life span from 𝜙thres to 𝜙 = 0.95 is
influenced by the crack propagation driving force. However, as the fatigue crack propagation driving force usually accumulates
faster than the fatigue crack initiation driving force (due to 𝑘4 > 𝑘3), a life span from 𝜙thres to 𝜙 = 0.95 is usually very short and
does not influence the crack initiation time significantly. Consequently, the influence of the fatigue crack propagation driving force
on crack initiation could be modified by changing the value of 𝜙thres. It is clear from Fig. 4c and d, that the Paris’ curve slope (the
13

exponent of Paris’ curve) depends almost linearly on the parameter 𝑘2. Also from Fig. 5c and d, it can be seen that the Paris’ curve
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Fig. 5. Influence of 𝑘4 parameter. Initiation S-N curves (1), total life S-N curves (b), Paris’ curves for 𝐹 = 1000 N (c) and calculated rates of crack growth for
𝐾 ≈ 35 MPa

√

m (d) for different values of 𝑘4.

oefficient depends linearly on the parameter 𝑘4, i.e., the parameter 𝑘4 scales the crack growth rate linearly. However, since the
lower bound of the crack growth rate is set by the fatigue initiation driving force, this might not be valid any more if the fatigue
crack initiation driving force is dominant over the fatigue crack propagation driving force.

The influence of 𝜙thres is investigated next and the results, obtained for all other parameters fixed at their default values (see
Section 4.1), are shown in Fig. 6. It can be seen that 𝜙thres delays crack initiation slightly, and reduces the crack propagation rate
more significantly. This is both expected because higher 𝜙thres delays the accumulation of the fatigue crack propagation driving force,
but also reduces the region where the fatigue crack propagation driving force can be accumulated. Consequently, it is expected that
higher 𝜙thres would lead to less phase-field smearing due to a smaller width of the zone where the fatigue crack propagation driving
force achieves high values.

Further, the influence of 𝐺c and 𝑙 is examined, while holding all other parameters fixed. Default parameters given in Section 4.1
are used, with 𝐺c,0 = 35.31 MPa mm and 𝑙0 = 0.4582 mm. From 7a and b it can be observed that the increase in 𝐺c increases
the fatigue life for constant applied forces. By recalling fact that 𝐹 ∝

√

𝜓 and 𝐹crit ∝
√

𝐺c ∝
√

𝜓crit, and by noticing that the
accumulation of the crack driving forces is proportional to 𝜓crit(𝜓+

0 ∕𝜓crit)𝑘1 and 𝜓crit(𝜓+
0 ∕𝜓crit)𝑘2 and that the accumulated fatigue

riving forces that lead to the failure are proportional to 𝜓crit, it could be deduced that the applied forces 𝐹 that lead to the equal
umber of cycles to failure are proportional to 𝐹crit. This is clearly depicted in Fig. 7b, where the plot F

𝐹crit
− 𝑁 is insensitive to

c. Note that the proportionality of critical forces and critical energy release rates can be attributed to proportionality/similarity of
isplacement fields, which can be derived by means of dimensional analysis.

The same does not hold for the influence of the length-scale parameter, which is visible in Fig. 7c and d. Here the plots F
𝐹crit

−𝑁
btained for different 𝑙 are not completely overlapping, because a change in 𝑙 modifies not only the value of 𝜎crit, but also leads to
issimilar distributions of displacement and strain fields. Additionally, the loss of overlap can be attributed to the fact that, unlike
he change of 𝜎crit, the change of 𝐹crit is usually not proportional to 1

√

𝑙
.

The results presented in this chapter suggest that the proposed model could be relatively easily calibrated from experimentally
obtained S-N and Paris’ curves. To facilitate the calibration procedure, the following observations should be taken into account:

• The parameters 𝑘2 and 𝑘4 have minimal influence on the initiation S-N curves. Consequently, if available, these curves could be
used to identify the parameters 𝑘1 and 𝑘3, defining the crack initiation driving force. Alternatively, the fact that the parameters
𝑘1 and 𝑘3 do not have a significant influence on the Paris’ crack growth curve if 𝑘1 > 𝑘2 and 𝑘3 ≪ 𝑘4 can be exploited. In that
case first the Paris’ curve could be used to identify the parameters 𝑘2 and 𝑘4, whereupon the parameters 𝑘1 and 𝑘3 could be
characterised from the total life S-N curve (the life up to complete failure).
14
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Fig. 6. Influence of 𝜙thres parameter. Total life S-N curves (1), initiation S-N curves (b), Paris’ curves for 𝐹 = 1500 N case (c) and decoupling functions 𝐹s (d)
for different values of 𝜙thres.

Fig. 7. F
𝐹crit

−𝑁 plots: for different 𝐺c (a–b), for different 𝑙 (c–d).
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• The model response could be further tuned up by choosing appropriate values of parameters 𝜙thres (or by choosing a coupling
function 𝐹s different from Eq. (15)) and 𝑓 in Eqs. (9)–(10). In general, 𝜙thres controls the activation of the crack propagation
driving force, while 𝑓 controls the localisation of damage and the accumulation rate of fatigue crack driving forces.

From the above considerations, it could be concluded that the proposed model could enable better simultaneous reproduction
nd prediction of S-N curves and crack growth curves in comparison to the majority of PF fatigue models containing only 1 or 2
atigue parameters, which typically depend on at least two classical fatigue parameters. This coupling of classical parameters might
everely hamper accurate reproduction of fatigue phenomena by such models.

.3. Mean stress effect

In this subsection, the effect of mean stress is considered. It should be emphasised that, since the fatigue driving forces are based
n 𝜓+

0 , compressive stress states should not affect fatigue life. Therefore, only pure tensile cases are considered. For the purpose of
reliminary analysis, the following quantities are introduced,

𝐹mean =
𝐹max + 𝐹min

2
, 𝐹a =

𝐹max − 𝐹min
2

, 𝐹r = 𝐹max − 𝐹min, 𝑅 =
𝐹min
𝐹max

, (66)

where 𝐹mean stands for the mean force, 𝐹a is the force amplitude, 𝐹r is the force range, 𝐹max and 𝐹min are the maximal and the
minimal force, respectively, and 𝑅 denotes the load ratio.

Now, we again consider crack initiation for simple homogeneous stress and phase-field distributions with a constant loading cycle.
As before, the fatigue crack propagation driving force is neglected for simplicity. Nevertheless, as suggested by the presented results,
the following analysis is still valid for all cases with the crack initiation time much larger than the crack propagation time. Starting
from the expression (9), it can be assumed that the accumulation of fatigue initiation driving force in one cycle is proportional to
𝑘3

(

𝜎2𝑘1max − 𝜎
2𝑘1
min

)

. Further assuming that 𝜎 is proportional to 𝐹 , the accumulation of fatigue crack initiation driving force during one
cycle is now

𝜓init,1 ∝ 𝑘3
(

(

𝐹max
)2𝑘1 −

(

𝐹min
)2𝑘1

)

. (67)

Next, we introduce a force that leads to the same damage for 𝑅 = 0, denoted here as 𝐹eqv. Since 𝐹min(𝑅 = 0) = 0, it means that
eqv = 𝐹max(𝑅 = 0) should induce the fatigue initiation crack driving force identical to the one caused by the real load, defined by
q. (67), leading to:

𝐹eqv =
(

(

𝐹max
)2𝑘1 −

(

𝐹min
)2𝑘1

)
1

2𝑘1 . (68)

Norming it in terms of 𝐹max, it can be written as:

𝐹eqv = 𝐹max
(

1 − (𝑅)2𝑘1
)

1
2𝑘1 . (69)

lternatively, using 𝐹r = 𝐹max (1 − 𝑅) and 𝐹mean = 𝐹max
2 (1 + 𝑅), 𝐹eqv could be alternatively expressed in terms of 𝐹r and 𝐹mean. Using

he fact that according to Eq. (66) 𝐹max = 𝐹mean +
𝐹r
2 and 𝐹min = 𝐹mean −

𝐹r
2 Eq. (67) can be rewritten as a family of Haigh’s curves:

𝜓init,1 ∝
(

𝐹mean + 1
2
𝐹r

)2𝑘1
−
(

𝐹mean − 1
2
𝐹r

)2𝑘1
= Const

𝑘3
. (70)

In general, it is not possible to find an explicit dependence of 𝐹r on 𝐹mean from a Haigh curve. However, one can analyse simple
cases with 𝑘1 = 0.5 and 𝑘1 = 1 for a known 𝑘3. By inserting 𝑘1 = 0.5 into (70), one obtains 𝐹r = Const, implying that there would not
be any mean stress effect. In case of 𝑘1 = 1, Eq. (70) delivers term 𝐹mean𝐹r = Const, which is the only Haigh’s curve with an explicit
dependence of 𝐹mean and 𝐹r. In addition, it can be seen that 𝑘3 does not influence the shape of a Haigh’s curve, but rather scales it
by simultaneously changing 𝐹mean and 𝐹r necessary to guarantee a requested initiation, i.e., the total life. It can be concluded that
by ignoring the fatigue crack propagation driving force, the mean stress effect could be efficiently controled by 𝑘1, as visible from
Fig. 8b, since this parameter governs the shape of Haigh’s curves. From Eqs. (69)–(70) and Fig. 8a it follows that 𝑘1 = 1∕2 leads to
𝐹eqv = 𝐹max(1−𝑅) = 𝐹r, i.e., there is no mean stress effect, while by increasing 𝑘1, the value of 𝐹eqv tends toward the value of 𝐹max,
implying a more pronounced mean stress effect.

Fig. 8b shows different possible shapes of Haigh’s curves. If the crack propagation time takes a significant part of the total life,
and the fatigue crack propagation driving force is included, the mean stress phenomenon is much more complex to analyse. In that
case, a numerical parametric study is necessary to identify the effect of each parameter on the mean stress effect, which is outside
the scope of this paper.

In the following, the potential of the proposed model to capture the mean stress is demonstrated for the cases when the crack
initiation time is significantly larger than the crack propagation time. Note that this is typical for relatively smooth notched structural
components subjected to relatively low stresses (see e.g. [38] and references therein). The crack initiation time can sometimes be
dominant in the HCF regime, and is crucial in the Ultra-High Cycle Fatige (UHCF) of commercial materials. (see e.g. [39]). Such
scenarios can be described by the proposed model if the fatigue parameter values are set up so that 𝑘4 > 𝑘3 (see Section 4.2). As
explained by the previous analytical analysis, it is expected that in this case the parameter 𝑘1 is to play a dominant role in describing
16

the mean stress effect. The results of the study are presented in Fig. 9, obtained by setting up 𝑘1 = 2, 𝑘2 = 1, 𝑘3 = 0.001 and 𝑘4 = 1.
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Fig. 8. Plot of (69) (a) and Haigh’s curves predicted by (70) (b) for different values of 𝑘1.

Fig. 9. Influence of mean stress. Total life S-N curves (1), Haigh’s curves (b), Paris’ curves for 𝐹 = 1000 N, numerically obtained and approximation by Eq. (71)
c) and d𝑎

d𝑁 −𝐾max curves for 𝐹 = 1000 N (d) for different values of 𝑅.

The load ratio 𝑅 is varied so that for each 𝑅 the maximal forces 𝐹max = {3000, 2500, 2000, 1500, 1000} are used. The total life S-N
curve (the life up to complete failure) for various 𝑅, with 𝐹r on the ordinate, are depicted in Fig. 9a, and the influence of the mean
stress is clearly visible. However, it can be observed from Eq. (69) and Fig. 8a that for 𝑘1 = 2 and the considered values of 𝑅
the statement 𝐹eqv ≈ 𝐹max is valid. This implies that the obtained numerical results are consistent with the previous observation,
obtained by completely ignoring crack propagation, that for relatively large 𝑘1 the model should demonstrate the sensitivity towards
the mean stress effect. Additionally, the numerically obtained Haigh diagrams shown in Fig. 9b do agree well with the analytical
curves defined by the right-hand side of Eq. (70), once more confirming the validity of previous theoretical predictions. Interestingly,
the obtained Haigh’s curves are convex, same as the Smith’s curve, that is according to [40] representative for brittle materials.
17



Engineering Fracture Mechanics 289 (2023) 109341K. Jukić et al.

4

h
p
p
c
f

s
e
s
F
2
s
b
s

p
(

4

b

4

a
f

Fig. 10. Stress-life data from experiment [44] and numerical simulations (a) and Paris’ curves from experiment [43] and numerical simulations (b).

Additionally, it can be shown that the influence of 𝑅 on the crack growth rate for the results shown in Fig. 9c could be fitted
well with equation:

d𝑎
d𝑁 = 𝐶

(

𝛥𝐾
(1 − 𝑅)1−𝛾

)𝑛
1

1 − 𝐾max
𝐾c

, (71)

where 𝐶
(

𝛥𝐾
(1−𝑅)1−𝛾

)𝑛
is the term in Walker’s equation [41], while 1

1− 𝐾max
𝐾c

is borrowed from NASGRO equation [42] to obtain an

accurate fit in final stages of crack growth. The parameters used for the fit are 𝐶 = 3.5 ⋅ 10−7 mm
cycle⋅(MPa

√

m)𝑛
, 𝑛 = 2.066, 𝛾 = 0.3 and

𝐾c = 64 MPa
√

m.

.4. Calibration example

In this subsection, a characterisation of the fatigue model parameters is performed on titanium Ti-6Al-4V. As it is extremely
ard to find complete data, for this demonstrative example the material parameters and fatigue data are combined from multiple
apers. Although material parameters can vary from batch to batch and combining data could be inappropriate in solving practical
roblems, here this is done only for the purpose of demonstration of calibration capabilities of the proposed model. A more precise
alibration from the experimental data obtained in a systematic manner should be ideally performed and will be the subject of
uture work on the matter. In addition, here plasticity is neglected and the material is assumed to be brittle.

Material parameters are defined as follows: the Young modulus is 𝐸 = 116000MPa (from [43]), the Poisson ratio is 𝑣 = 0.33,
𝐾𝑐 = 64MPa

√

m (data in the available literature range from 50MPa
√

m to 100MPa
√

m), i.e., 𝐺c = 35.31MPa mm and the critical
tress is 𝜎crit = 970 MPa (from [43]). Experimental stress-life data (taken from [44]) for R = 0.5 is shown in Fig. 10a and the
xperimental Paris’ curve (taken from [43]) for the R = 0.5 case is shown in Fig. 10b. Although some other models would be more
uitable, for sake of simplicity the AT2 model is used, leading to 𝑙 = 0.4582 mm. The numerically calculated Paris’ curve shown in
ig. 10b was calculated on CT specimen with 𝛥𝐹 = 500 N, while the smooth rounded bar was simplified to 1-D bar with a length of
0mm and discretised with 200 elements. In the case of the CT specimen, a force range lower than 500 was not considered for the
ake of computational costs. During the simulation of the smooth rounded bar, the tensile part of energy density was assumed to
e the total energy density (as in the isotropic energy split), because critical stress (i.e., length-scale parameter) was derived with
uch assumption. The 𝑘𝑖 parameters were fitted, while 𝜙thres = 0.4 and 𝑓 = 1 were assumed.

The results obtained after calibration are shown in Fig. 10. A good fit of both the 𝑆 −𝑁 and Paris’ curve has been obtained with
arameters 𝑘1 = 5, 𝑘2 = 1.6, 𝑘3 = 0.000135 and 𝑘4 = 0.4. This confirms that the proposed model is suitable for the calibration of
high-cyclic) fatigue behaviour of realistic materials.

.5. Other observations

In this subsection, some secondary features of model that are not directly related to fatigue behaviour are addressed. This includes
oth advantageous and disadvantageous features.

.5.1. Geometry dependence
It is demonstrated that the fatigue crack growth rate is not influenced by geometry. The Paris’ curve for the CT and TPB specimens

re compared and the obtained results are shown in Fig. 11. As visible from the curves, equal crack growth rates have been obtained
or all considered setups, leading to the conclusion that the model is not geometry dependent.
18
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Fig. 11. Obtained Paris’ curves for CT and TPB specimens with same fatigue parameters.

Fig. 12. Mesh sensitivity, total life including initiation and propagation cycles (a), crack propagation cycles (b).

.5.2. Mesh influence

The influence of mesh size is studied next. The CT specimen was considered with forces 𝐹max = 1500 N and 𝐹min = 0 N. Different
eshes with the element sizes ℎ

𝑙 =
{

1
2 ,

1
6 ,

1
10

}

were applied in the region where the crack propagation was expected. Here, ℎ denotes

he edge length of elements in the refined zone. From the results presented in Fig. 12, it can be seen that, although a small difference
xist between the results obtained with ℎ = 𝑙

6 and ℎ = 𝑙
10 , a convergence tendency can be observed, and the results for ℎ = 𝑙

6 are
considered valid. Therefore, since computation costs are much smaller for ℎ = 𝑙

6 , the meshes with ℎ = 𝑙
6 in the regions where

fracturing is expected are used in all other simulations. Also, one can see from Fig. 12 that the mesh ℎ = 𝑙
2 produces a considerably

ifferent prediction of the crack initiation life than denser meshes, while difference in the total propagation cycles is much smaller.
his is probably due to the fact that the mesh ℎ = 𝑙

2 is not sufficiently dense to resolve the displacement field correctly around the
notch on CT specimen, leading to smaller stresses and strains, and consequently a slower rate of the growth of the fatigue crack
initiation driving force. In addition, ℎ = 𝑙

2 mesh is insufficient to resolve phase-field profile properly in case of monotonic loading
failure, leading to overestimation of fracture energy, and therefore it is expectable that such mesh will also lead to wrong fatigue
19

life predictions.
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Fig. 13. Phase-field profile obtained for monotonic loading (a), for fatigue case with 𝑘2 = 1 and 𝜙thres = 0.4 (b), for fatigue case with 𝑘2 = 1 and 𝜙thres = 0.6
(c) and for fatigue case with 𝑘2 = 1.5 and 𝜙thres = 0.4 (d). In all cases the value of length-scale is 𝑙 = 0.4582 mm. For compactness, the section of CT specimen’s
geometry is shown.

4.5.3. Phase-field profile widening
In Fig. 13, the phenomenon of phase-field profile widening during fatigue fracture is illustrated. It can be observed that during

the stable phase of fatigue crack growth the phase-field profile widens, resulting in a profile that is very different from the analytical
one (and one that is characteristic to unstable propagation). Obviously, the phase-field profile widens due to the fact that the fatigue
crack driving forces slowly accumulate through whole domain, leading to a smeared distribution of fatigue crack driving forces,
while during brutal crack propagation crack driving force is localised in a thin band. The extent of such widening is influenced by
𝜙thres, 𝑓 and 𝑘2 parameters, and each is discussed in following paragraphs.

By comparing Fig. 13b and d, it can be shown that the extent of the phase-field profile widening depends on the 𝑘2 parameter.
It can also be argued that it also depends on 𝑘1, but it is harder to quantify its influence, since the fatigue crack propagation driving
forces are usually dominant during crack propagation. For the smaller values of parameters, the widening is larger. This can be
easily explained, since for strain energy densities that are smaller than the critical value, the accumulation rates of fatigue crack
driving forces will be higher as 𝑘1 and 𝑘2 decrease, leading to higher crack driving forces in zones with small strain energy density.
The smallest recommended 𝑘1 and 𝑘2 are around 0.75, and by authors experience, anything less than 0.75 will lead to excessive
widening.

The phase-field widening can be reduced by increasing 𝜙thres, since that enforces a narrower area capable of producing the
fatigue propagation driving force. Some small reduction can be seen by comparing Fig. 13b and c, where 𝜙thres was increased from
0.4 to 0.6.

Another parameter that affects the widening of phase-field profile is 𝑓 . To analyse it, we consider how the fatigue crack driving
forces accumulate in the limit cases when 𝑓 = 0 and 𝑓 = 2, in a simple 1-D homogeneous setup. In case of 𝑓 = 0 (from Eqs. (9)
and (10)) it is obvious that the undegraded tensile strain energy density drives the accumulation of crack driving forces. As the
strain energy is usually higher in damaged zones, the accumulation rate of fatigue crack driving forces will also be higher, leading
to the increased localisation of the phase-field distribution. However, for 𝑓 = 2, the accumulation rate of crack driving forces will
be proportional to the square of degraded tensile stress. As in the considered 1-D setting the stress distribution is constant, it can be
concluded that the accumulation of crack driving forces will tend to be uniform for 𝑓 = 2, leading to phase-field distribution with
highest extent of smearing.

4.5.4. Monotonic loading
It is shown here that the proposed model is also suitable for monotonic loading. In Fig. 14 the influence of the fatigue parameters

is shown for the monotonically loaded CT specimen, with 𝑘1 = 2 and 𝑘2 = 1. It can be seen that a very small change in the critical
force (by order of magnitude of 0.1%) is obtained for the wide range of 𝑘3 and 𝑘4 parameters. However, very high values of 𝑘3 and
𝑘4 would drastically change monotonic loading behaviour. Theoretically, this effect could be quantified for some simple 1-D cases.

For simplicity, assume a special 1-D case with homogeneous stress and phase field distributions, caused by monotonic loading,
with 𝑘1 = 1, 𝑘4 = 0 and arbitrary 𝑘3. Now, for 𝑓 = 0 the phase-field evolution equations can be rewritten as:

d𝑔
𝜓+ (

1 + 𝑘3
)

+
𝜕𝛾
𝐺c = 0. (72)
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Fig. 14. Influence of fatigue parameters on response under monotonic loading.

It is clear that for this special case the introduction of fatigue crack initiation driving force increases the total crack driving force
by factor of 1 + 𝑘3 and accordingly reduces the critical stress and strain, as well as the critical deformation energy.

The parameter 𝑓 can also influence monotonic behaviour. For example, for 𝑓 = 2 accumulation of fatigue crack driving force
stops at peak the stress, while for 𝑓 = 0 accumulation continues through whole loading process, leading to a conclusion that a lower
𝑓 exhibits a higher influence on behaviour during monotonic loading.

When it comes to the influence of fatigue crack propagation force, it is much harder to quantify it, as it depends on the decoupling
function 𝐹s (see Eqs. (9) and (10)). It should be noticed that if the threshold value of phase-field 𝜙thres is higher than the critical value
of phase-field in monotonic loading 𝜙crit (the value of phase-field at the peak stress for homogeneous 1-D case), than the fatigue
crack propagation driving force will not influence pre-critical behaviour even for the high value of 𝑘4. However this assumption
is limited to simple 1-D cases with the homogeneous distributions of phase-field and stress. From Fig. 14 it can be seen that the
load–displacement curve for the considered example is not influenced significantly even by high values of 𝑘4. If the influence of
the fatigue crack driving force on monotonic loading is to high, the approach of [23] can be used, where the evolution of fatigue
history variable additionally depends on a (standard) history variable in a way that prevents fatigue crack driving forces do not
accumulate during monotonic loading.

4.5.5. Complex case and influence of energy split
Further, a problem involving multiple cracks is analysed. The goal is to show that the proposed model is capable of reproducing

meaningful crack patterns even for complex geometry. In addition, the definition of the degrading strain energy is shortly discussed.
The model should be able to yield a complex crack patterns with cracks aligned with the load direction for compressive cases and
crack patterns with cracks aligned with the direction perpendicular to the applied load for tensile cases. A plate with 17 holes with
random distribution and size is considered. The geometry and boundary conditions from Fig. 15a are adopted. Tensile loading with
the load ratio 𝑅 = 0 with 𝑢max = 0.1 mm and compressive loading with the load ratio 𝑅 = −∞ with 𝑢min = −0.36 mm are imposed.
The used material parameters are 𝑘1 = 2, 𝑘1 = 1, 𝑘3 = 0.02, 𝑘4 = 1 and 𝑙 = 0.2 mm. Here two models are used:

• the anisotropic model, with the Freddi’s split used for both the stresses and crack driving forces,
• the hybrid model, where the isotropic degradation (the degradation of entire deformation energy) is used for the stress

calculation, and the Freddy’s energy split is applied for the definition of crack driving forces.

In Fig. 16, it can be seen that, as hypothesised, we obtain cracks dominantly oriented in the direction of the applied load for
compressive cases, and cracks dominantly oriented perpendicularly to the applied load in case of tensile loading, thus confirming
that the proposed model can handle complex geometries and crack patterns.

Motivation for introducing the hybrid model can be seen in Fig. 16a and b. It can be seen that the results for the anisotropic
model (Fig. 16a and b) lead to a considerable widening of the phase-field profile. On the other hand, this issue is less pronounced
in case of the hybrid model. It could be assumed that this phase-field widening in the anisotropic model is caused by the shear
transmission, induced by the applied spectral split. This is a common deficiency of the spectral energy splits, and can be alleviated
21

by applying directional splits. However, this is still an open topic of active research and only few papers are available on that
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Fig. 15. Geometry (a) and load cycle (b).

Fig. 16. Plate with multiple holes: anisotropic model for 𝑅 = −∞ after 1500 loading cycles (a), anisotropic model for 𝑅 = 0 after 3000 loading cycles (b),
hybrid model for 𝑅 = −∞ after 1500 loading cycles (c), hybrid model for 𝑅 = 0 after 3000 loading cycles (d).
22
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subject (including [45–48]). Alternatively, splits with the degradation of deviatoric strain energy could also be used. However,
further research and discussion is out of scope of this paper.

5. Conclusion

In this work a new multi-parameter PF model for fatigue fracture is presented, based on the concept of adding new crack driving
orces accounting for fatigue phenomena. In this work, only the high-cyclic fatigue has been considered, and the standard AT2
odel for brittle fracture have been extended to deal with fatigue. The influence of each model fatigue parameter is explored and

nalysed in detail, focusing on the ability of the model to describe S-N and Paris’ curves. In addition, the obtained crack patterns
are inspected, to reveal more aspects of the model. The main advantage of the proposed model is the potential of the model to be
calibrated from experimental data to reproduce accurately both the S-N curve or the Paris law. This is due to the fact that the model
s equipped with 2 pairs of parameters, which are to a large degree mutually independent and describe well either the S-N curve
r the Paris law. In addition, each of the model parameters dominantly influences only one classical material fatigue parameter in
n almost linear fashion, potentially enabling relatively easy calibration of the model. Certain restrictions which might affect the
alibration process, have been identified, like the influence of the fatigue initiation crack driving force on crack propagation, which
ets the lower bound on the rate crack propagation in some cases.

In addition, the model exhibits some other desirable characteristics. For reasonably small values of the Paris’ and the S-N curve
coefficients, the fatigue extension (additional dissipation term) practically does not influence the behaviour of the PF model under
monotonic loading. Furthermore, the results suggest that the proposed model correctly predicts the Paris’ curves independently of
geometry.

The model is able to capture complex fatigue crack patterns, but in some cases unnatural widening of the PF profile induced by
cyclic loading can be observed. It seems that this widening is significantly influenced by the choice of parameters 𝑘2, 𝑓 and 𝜙thres.
However, this unwanted phenomenon could also be significantly dependent on the choice of the energy decomposition, and this
hypothesis should be explored in more detail in further research.

The future lines of research will be dedicated to the more detailed experimental calibration of the presented model. Other
existing issues should also be considered, like fully controlling the mean stress effect, explicitly modelling other fatigue features like
the endurance limit and the crack growth threshold, or addressing problem of artificial widening of PF profile. A successful solution
of these problems could lead to a fully calibratable PF model for fatigue fracture, ready to be implemented for modelling realistic
engineering materials.
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