DESCIFRANDO EL PALIMPSESTO.
ARQUEOLOGÍA DE ALTA RESOLUCIÓN EN EL COMPLEJO ARQUEOLÓGICO DE SHK
(LECHO II, GARGANTA DE OLDUVAI, TANZANIA)

TESIS DOCTORAL

DIRIGIDA POR: FERNANDO DIEZ MARTÍN

2023

UNIVERSIDAD DE VALLADOLID
FACULTAD DE FILOSOFÍA Y LETRAS
DEPARTAMENTO DE PREHISTORIA, ARQUEOLOGÍA, ANTROPOLOGÍA
SOCIAL Y CIENCIAS Y TÉCNICAS HISTORIOGRÁFICAS
PROGRAMA DE DOCTORADO EN

Europa y el Mundo Atlántico: Poder, Cultura y Sociedad

TESIS DOCTORAL:

DESCIFRANDO EL PALIMPSESTO. ARQUEOLOGÍA DE ALTA RESOLUCIÓN EN EL COMPLEJO ARQUEOLÓGICO DE SHK (LECHO II, GARGANTA DE OLDUVAI, TANZANIA)

Presentada por Cristina Fraile Márquez para optar al grado de Doctora por la Universidad de Valladolid

Dirigida por:
Dr. Fernando Diez Martín
Agradecimientos

Durante el largo proceso que ha supuesto la realización de la presente tesis doctoral, plagado de momentos de alegría, entusiasmo y satisfacción intercalados a menudo con otros de confusión, incertidumbre y frustración, he contado con la ayuda desinteresada y el apoyo incondicional de un gran número de personas a las cuales quiero mostrar mi más profundo agradecimiento.

A Fernando Diez, director de este trabajo de investigación, por el afecto que me has demostrado en tantas ocasiones, por tu generosidad e infinita paciencia, en definitiva, por no abandónarme en el camino. Fuiste tú la persona que despertó en mí el interés por el Paleolítico. Muchas gracias por haber compartido parte de tus infinitos conocimientos conmigo.

A Manuel Domínguez, Enrique Baquedano y Audax Mabulla, directores del equipo de investigación TOPPP (The Olduvai Paleoanthropology and Paleoecology Project), por haberte permitido trabajar en unos yacimientos tan especiales. Todas y cada una de las campañas de excavación realizadas en Tanzania están repletas de experiencias únicas y recuerdos inmortales.

A Policarpo Sánchez, Javier Duque y Sara de Francisco, compañeros de aventuras africanas, por aquellas conversaciones tan enriquecedoras, sobre la Prehistoria y sobre la vida.

A Manuel Vaquero, por tu amable acogida durante mi estancia en el Instituto Catalán de Paleocología Humana y Evolución Social (IPHES) así como por tus comentarios, consejos y sugerencias, de los cuales esta tesis doctoral se ha beneficiado sin duda enormemente. Y a Rosa-Ana Obregón, por abrirme las puertas de tu casa para darme aquellas primeras valiosas lecciones sobre el método arqueoestratigráfico.

A las personas que integran el Departamento de Prehistoria, Arqueología, Antropología Social y Ciencias y Técnicas Históriográficas de la Universidad de Valladolid, donde he desarrollado este trabajo, por su calurosa acogida. Gracias, particularmente, a Germán Delibes, Fernando Romero, Francisco Tapias y Elisa Guerra, por vuestras fugaces y desenfadas visitas al despacho de becarios, las cuales constituían la mejor manera de desconectar por un momento de la tesis.

A Olatz Villanueva, por tu cercanía y amistad, por tu inagotable energía y optimismo.

A mis compañeros de esta etapa doctoral y a quienes me acompañan desde los años de licenciatura, por los momentos compartidos dentro y fuera de la facultad. Puedo considerarme afortunada pues entre ellos he llegado a lograr buenos amigos.

Y, en especial, a mi familia, por enseñarme cosas que en ninguna universidad podría aprender y por respetar las decisiones que he tomado en cada momento. Y a Marcos, mi mejor descubrimiento arqueológico, por creer en mí y empujarme a acabar esta tesis.
Índice

1. INTRODUCCIÓN: Presentación del trabajo, objetivos y estructura 9

2. MARCO TEÓRICO 13

2.1. Génesis y evolución de la arqueología microespacial 13
 Primera etapa: La época dorada (finales de la década de 1960 - finales de la década de 1970) 17
 Segunda etapa: La pérdida de la inocencia (principios de la década de 1980 - finales del siglo XX) 19
 Tercera etapa: Hacia una arqueología de alta resolución temporal (siglo XXI) 21

2.2. La arqueología microespacial en el contexto de la Early Stone Age (ESA) africana 23
 Mary Leakey, Glynn Isaac y la clasificación de los yacimientos de Olduvai 23
 Milla Y. Ohel y Dave Douglas Davis, Primeros estudios intrasite en Olduvai 29
 Lewis R. Binford y el debate sobre la integridad y resolución de los primeros yacimientos africanos 31
 Ellen M. Kroll y su estudio microespacial de los yacimientos de Koobi Fora: un hito historiográfico 33
 La misión italiana en Melka Kunture y la introducción de los SIG en los estudios microespaciales 38
 Estudio intrasite de Nadung’ a 4: ¿un área de aprovechamiento de recursos cárnicos? 41
 A vueltas con los procesos de formación de los yacimientos de los Lechos I y II de Olduvai 43

3. METODOLOGÍA 49

3.1. Trabajo de campo 49
 Proceso de excavación 49
 Documentación gráfica: dibujo de campo y fotogrametría 50
 Levantamiento topográfico 51

3.2. Gestión de los datos espaciales recuperados durante la excavación: Creación del soporte SIG 51
 Georreferenciación de los dibujos de campo/ortofotos 51
 Digitalización de los dibujos de campo/ortofotos 52
 Integración de la información alfanumérica 52

3.3. Arqueoestratigrafía 53
 Elaboración de las proyecciones 54
 Lectura de los perfiles 56
 Comprobación de los resultados 56
3.4. Tafonomía
 Análisis de orientaciones 58
 Análisis de rodamientos 59
 Distribución por tamaños y pesos 61

3.5. Análisis tecnolítico de la industria lítica 62

3.6. Remontaje de restos líticos 63

4. ÁREA DE ESTUDIO: El complejo arqueológico de Sam Howard Korongo (SHK)
 (Lecho II, Garganta de Olduvai, Tanzania) 64
 4.1. El Lecho II de La Garganta de Olduvai 65
 4.2. Descubrimiento de SHK y primeras investigaciones 67
 4.4. Descripción geológica y litoestratigráfica 72

5. RESULTADOS 73
 5.1. Artículo 1 74

 5.2. Artículo 2 77

 5.3. Artículo 3 79

6. CONCLUSIONES Y PERSPECTIVAS DE FUTURO 83

Bibliografía 85

Índice de figuras y tablas 87
1. INTRODUCCIÓN

Presentación del trabajo, objetivos y estructura

La presente tesis doctoral se ha concebido como un compendio de publicaciones. El núcleo principal de este trabajo está constituido por tres artículos con unidad temática publicados en revistas científicas con factor de impacto referenciadas en el Journal of Citation Reports. Cada una de estas publicaciones, sin embargo, puede ser considerada al mismo tiempo como un trabajo independiente, puesto que todas ellas cuentan con una introducción, metodología, resultados, discusión y conclusiones propias.

El trabajo de investigación que presentamos a continuación se centra en el análisis, desde una perspectiva espacio-temporal, de SHK Principal y SHK Extensión, dos yacimientos con naturaleza de palimpsesto ubicados en el Lecho II de la Garganta de Olduvai (Tanzania), a partir fundamentalmente del registro lítico recuperado durante las recientes excavaciones realizadas por nuestro equipo en dichos yacimientos. Esta finalidad general conlleva la consecución de varios objetivos específicos:

- Delimitar, a través del método arqueoestratigráfico, los conjuntos de materiales (restos líticos y faunísticos) que emplearemos como marcos analíticos -con la máxima resolución temporal alcanzable en los palimpsestos objeto de estudio- para conocer las conductas humanas del pasado.
- Evaluar el grado de integridad de cada una de las unidades arqueoestratigráficas identificadas para determinar en qué medida las dinámicas postdeposicionales han podido afectar a las asociaciones de artefactos y los patrones generados por la actividad antártica.
- Caracterizar desde un punto de vista tecno-tropológico los distintos conjuntos líticos aislados previamente mediante el estudio arqueoestratigráfico de sendas secuencias.
- Identificar los remontajes líticos y explorar la distribución espacial de las conexiones halladas.

El presente volumen se estructura en seis capítulos. Tras esta breve introducción, correspondiente al capítulo primero, en la que se planTEAMOS los objetivos de la tesis doctoral y se describe la estructura de la misma, a lo largo del capítulo segundo se hace un balance historiográfico sobre el desarrollo y evolución de la arqueología microespacial desde su creación como disciplina hasta nuestros días, con el objetivo de explicar el enfoque teórico y conceptual dentro del cual se contextualiza este trabajo. En este mismo apartado se incluye además una completa revisión de los estudios intrasite de mayor relevancia que se han hecho a lo largo de estas cinco décadas en contextos de la Early Stone Age africana.
El conjunto de metodologías empleadas durante el proceso de investigación se encuentra detallado, de forma minuciosa a la vez que sintética, en el tercer capítulo. Por su parte, en el capítulo cuarto se presentan los yacimientos arqueológicos objeto de estudio. En el quinto capítulo se recogen los tres trabajos en formato de artículo científico que constituyen la aportación empírica de esta Tesis Doctoral. Veamos a continuación la referencia y un breve resumen del contenido de cada uno de ellos.

ARTÍCULO 1 (CAPÍTULO 5.1.)

Estudio dedicado a exponer los principales resultados obtenidos en SHK Principal a raíz de las campañas de excavación realizadas por nuestro equipo en dicho yacimiento entre los años 2009 y 2011, incluyendo una descripción geológica del sitio así como una nueva correlación estratigráfica del mismo dentro de la secuencia del Lecho II, un detallado análisis arqueoestratigráfico de los diferentes niveles litológicos identificados durante las labores de campo, un estudio tafonómico que evalúa la integridad de los diferentes arqueouniveles y un estudio preliminar de las asociaciones arqueológicas identificadas.

ARTÍCULO 2 (CAPÍTULO 5.2.)

En esta segunda publicación se da a conocer SHK Extensión, un nuevo enclave arqueológico excavado por nuestro equipo dentro del complejo fluvial de SHK. Se trata de un trabajo dedicado a los resultados obtenidos en la campaña de 2012 (durante la cual se expuso una superficie de unos 14 m²), entre ellos la descripción de la estratigrafía del yacimiento y su correlación con SHK Principal, un riguroso y exhaustivo estudio arqueoestratigráfico de la secuencia excavada, el análisis tecno-tipológico detallado de la industria lítica contenida en las diferentes arqueounidades identificadas, una evaluación de la integridad de la acumulación principal así como un programa exhaustivo de búsqueda de remontajes líticos.

ARTÍCULO 3 (CAPÍTULO 5.3.)

Trabajo en el que se presentan los resultados derivados del estudio definitivo del enclave arqueológico de SHK Extensión desde una perspectiva espacio-temporal de alta resolución. Con él se pretende profundizar en el concepto de sincronía
de los conjuntos materiales recuperados en yacimientos arqueológicos de la *Early Stone Age africana* como paso previo a su posterior estudio pluridisciplinar.

En el sexto capítulo se presentan unas conclusiones generales del trabajo y las perspectivas de futuro surgidas de esta investigación, dando paso finalmente al listado de referencias bibliográficas mencionadas en el cuerpo de la tesis doctoral (exceptuando, por tanto, aquellas incluidas en los artículos, los cuales cuentan ya con su propia sección bibliográfica) y al índice de figuras y tablas.
2. MARCO TEÓRICO

2.1. GÉNESIS Y EVOLUCIÓN DE LA ARQUEOLOGÍA MICRO-ESPACIAL

Como apunta Collis (2004: 33), la mayoría de los desarrollos en las técnicas de excavación han tenido más que ver con las preguntas que los arqueólogos tenían en la cabeza que con cambios en la tecnología. La arqueología tradicional o histórico-cultural, en vigor por lo menos hasta mediados del siglo XX, tenía por costumbre intervenir en los yacimientos arqueológicos mediante la realización de profundos y angostos sondeos verticales, obteniendo así una visión de la amplitud cronológica de los mismos, pero estrechando el panorama visible de cada unidad arqueológica. Las razones para excavar un nuevo enclave se limitaban por aquel entonces a la recuperación de objetos bonitos y la recogida de información que permitiera la elaboración de secuencias cronoculturales de alcance regional (Ruiz Zapatero, 2013; Trigger, 1992).

Esta inicial preocupación por la dimensión vertical de los yacimientos dio paso a un cada vez mayor interés hacia la dimensión horizontal de los mismos. En otras palabras, el propósito de la arqueología dejó de focalizarse exclusivamente en conocer la seriación temporal y progresiva de las “culturas prehistóricas” para centrarse en desvelar los modos de vida de aquellos grupos humanos, es decir, en la búsqueda de “la cotidianeidad” (Leroi-Gourhan, 1950). El cambio en la manera de entender el registro arqueológico se vio reflejado en las propias estrategias de campo. El horizonte del prehistoriador, largo tiempo confinado en su trinchera, se amplió gracias a la puesta en marcha de intervenciones en área a gran escala de asentamientos que conservaban diferentes tipos de artefactos asociados a restos de estructuras, en las cuales se aseaba una detallada excavación de cada uno de los estratos con un perfecto registro de todo lo hallado (Julien, 2002; Sáenz de Buruaga, 1998). Dicha transformación resultaría decisiva para el inmediato desarrollo de la arqueología microespacial como disciplina con entidad propia dentro de la investigación arqueológica, convirtiéndose ciertamente en su piedra angular.

Aunque reivindicadas por diversas escuelas historiográficas, las primeras intervenciones de este tipo fueron llevadas a cabo a partir de los años veinte del pasado siglo por arqueólogos soviéticos (Trigger, 1992; Vasil’ev, 2004; Villa, 1976), cuyo principal foco de atención estaba puesto en intentar descubrir las formas de vida de la gente común en épocas pasadas (Davis, 1983). Su empeño se vio además favorecido por las excelentes condiciones de conservación que por lo general presentaban los yacimientos intervenidos, situados muchos de ellos en los, tan característicos de esta zona del continente europeo, depósitos de
loess. La conjunción de ambas premisas dio como resultado la identificación, por vez primera en todo el mundo, de suelos de habitación paleolíticos. En este sentido cabe destacar los trabajos ejecutados por G. A. Bontch-Osmolovskii en la cueva musteriense de Kiik-Koba (Crimea) entre 1924 y 1926, los que S. N. Zamiatnine realizara entre 1926 y 1929 en el sitio al aire libre de Gagarino (Valle del Don) y, muy especialmente, las excavaciones de P. P. Efimenko en Kostienki I (1931-1936), célebre yacimiento situado igualmente en la cuenca de este río (Julien, 2002; Vasiliev, 2004) (Figura 2.1). Sin embargo, y por desgracia, los contactos entre la arqueología soviética y la arqueología occidental en estos años fueron aislados y esporádicos, por lo que los citados trabajos no tuvieron (ni tendrán) la misma repercusión que aquellas investigaciones desarrolladas posteriormente en el bloque capitalista.

Uno de esos lazos lo constituyó precisamente el etnólogo y prehistoriador francés André Leroi-Gourhan. Su excelente dominio del ruso le permitió familiarizarse con las pioneras investigaciones (tanto conceptual como metodológicamente hablando) que se estaban desarrollando por aquellos años en los territorios de la Unión Soviética (Vasiliev, 2004). La posterior aplicación en sus propias excavaciones de las prácticas heredadas, primero en la cueva musteriense de Arcy-sur-Cure (1949 - 1963) pero sobre todo en el yacimiento al aire libre de Pincevent a partir del año 1964, convertiría para siempre a Leroi-Gourhan, a ojos de la historiografía occidental, en el indiscutible renovador de los métodos de campo.

Las magníficas condiciones de preservación que ofrecía el célebre enclave magdalenense hicieron de él un lugar excepcional para la puesta en marcha de una extensa excavación horizontal de carácter etnológico a través del método denominado décapage, que consistía en ir descubriendo lentamente y de manera meticulosa, mediante el empleo de instrumental fino, cada uno de los estratos de acuerdo a su microtopografía, como si de las pieles de una cebolla se tratara (Leroi-Gourhan, 1950). Los restos arqueológicos que iban siendo hallados, con independencia de la naturaleza o del tamaño de los mismos, se dejaban in situ hasta que las amplias superficies expuestas eran convenientemente dibujadas y fotografiadas. Cualquier observación de campo era, además, anotada en los diarios de excavación. Toda esta minuciosa documentación tenía como

objetivo paliar la destrucción que, con su excava-
ción, se hacía del yacimiento. Finalmente, la posi-
ción exacta de cada uno de los elementos descu-
biertos era registrada mediante el uso de coordena-
tadas cartesianas (Laplace y Méroc, 1954). La aplica-
ción de este modelo de intervención permitió a Leroi-Gourhan y la escuela paleoetnológica
por él iniciada (Audouze, 2002) indagar en las re-
laciones espaciales que establecen los materiales
arqueológicos en los suelos de ocupación como
resultado del desarrollo de distintas actividades
(Leroi-Gourhan y Brézillon, 1966, 1972) (Figura 2.2).

Figura 2.2. Trabajos de André Leroi-Gourhan en Arcy-sur-Cure y Pincevent. En la imagen superior, plano de una choza
chatelperroniense adosada a la pared de la cueva de Renne (estrato X). Este plano se corresponde con el fondo de suelo
en que aparecieron los agujeros en que debían de estar hincados los colmillos de mamut que servían como armazón de
la choza; en él se indican los hogares y los restos de ceniza, los guijarros utilizados y algunas de las osamentas (extraída
de Leroi-Gourhan, 1961: 7). En la imagen inferior, excavación en área (siguiendo el método denominado décappro) realiza-
zada durante la campaña de 1967 en Pincevent (https://commons.wikimedia.org/wiki/File:Fouilles_de_Pince-
vent_1967.jpg).
Establishidos los cimientos, sería en los años setenta del pasado siglo y por influencia de la Arqueología Procesual o Nueva Arqueología, la corriente teórico-metodológica hegónica por aquel entonces, cuando los estudios sobre el microespacio se configuraran definitivamente como una rama independiente dentro del paradigma genérico de la denominada arqueología espacial (Baena et al., 1997; Diez Martín, 2013; García Sanjuán, 2005; Trigger, 1992). Como hemos tenido ocasión de comprobar en los párrafos anteriores, hasta este momento los arqueólogos habían demostrado cierto interés por registrar en planimetrías la dispersión y distribución de los materiales hallados en excavación. Con todo, será sólo a partir de esta década cuando la dimensión espacial sea abordada como una línea de trabajo con entidad propia dentro de la investigación arqueológica, convirtiéndose desde entonces y hasta nuestros días en un área de conocimiento imprescindible en el estudio de cualquier yacimiento.

La arqueología espacial en su conjunto va a suponer, en palabras de Diez Martín (2013: 220), una nueva aproximación al registro arqueológico que hará posible, a través de la recuperación sistemática y la interpretación de toda aquella información relativa a la dimensión del espacio, el estudio de los distintos procesos de adaptación y cambio socio-cultural, tecnológico y cognitivo de los grupos humanos del pasado. Sus principios básicos serían recogidos por vez primera en dos influyentes y ya clásicas obras: Spatial analysis in Archaeology (Hodder y Orton, 1976) y Spatial Archaeology (Clarke, 1977) (Figura 2.3).

Precisamente fue este último autor quien definió (1977: 11) la arqueología microespacial sensu stricto como uno de los tres niveles de actuación dentro del análisis espacial. Dicha escala de trabajo tiene como objeto de estudio la organización espacial de los elementos arqueológicos registrados en el interior del propio yacimiento. Su pretensión es examinar la distribución de dichos elementos a fin de identificar patrones y diferenciar unidades espaciales. De obtener un resultado positivo, se pasa a analizar la composición de estas unidades espaciales para determinar su funcionalidad en el marco de las estrategias de ocupación del espacio (Vaquero, 2013).

Los estudios microespaciales, a lo largo de estas cinco décadas de vida, han ido enriqueciéndose y progresando a partir de nuevos avances metodológicos y cambios en el paradigma interpretativo. A continuación, se presenta un balance historiográfico sobre el desarrollo y evolución de arqueología del paisaje, estudia las interrelaciones que se establecen entre los restos materiales consecuencia de las actividades humanas en el pasado y las variables espaciales (el territorio) y temporales a escala regional. Esta clásica división tripartita se ha mantenido vigente hasta nuestros días.

1 Junto con este nivel micro, Clarke identificó además un nivel semi-micro y un nivel macro de la investigación espacial en arqueología. El primero de ellos, referido otras veces en la bibliografía como meso-espacial, se interesa por el entorno inmediato de los yacimientos. La escala macro, por su parte, la cual se corresponde a grandes rasgos con la conocida como
esta disciplina con el objetivo de explicar el enfoque teórico y conceptual dentro del cual se contextualiza este trabajo.

Primera etapa: La época dorada (finales de la década de 1960 - finales de la década de 1970)

Tras la sistematización de la arqueología microespacial como disciplina con entidad propia dentro de la investigación arqueológica dio comienzo lo que algunos autores han venido a denominar etapa naïve de los estudios intrasite (Vaquero, 2013). Durante esta primera fase, los arqueólogos sólo van a percibir las posibilidades de este tipo de acercamiento al registro arqueológico, sin ser realmente conscientes de sus verdaderas limitaciones (de ahí el apelativo de “ingenuo” empleado para definir a esta etapa). La enorme repercusión que adquiriría entre el pleno de la comunidad científica la publicación de los trabajos pioneros llevados a cabo en Pincevent tendrá mucho que ver en ello.

Teniendo en mente dicho modelo, a lo largo de estos primeros años se creyó que prácticamente cualquier yacimiento podía ser susceptible de ser analizado e interpretado en términos espaciales. Así, fueron muchos los yacimientos en los que se aplicaron esos mismos métodos de excavación con el propósito de desenterrar los tan anhelados suelos de ocupación: Latamne (Clark, 1967, 1968), Terra Amata (de Lumley, 1967, 1969), Lazaret (de Lumley, 1969a), Ubeidiya (Stekelis, 1966; Stekelis et al., 1969), Olduvai (Leakey, 1971), Swanscombe (Newcomer, 1971; Waechter et al., 1971), Arago (de Lumley y Boone, 1976), Torralba (Freeman, 1978), Etolles (Tabochnik et al., 1979), Gönnersdorf (Bosinski, 1979), Verberie (Audouze et al., 1981), etc (Figura 2.4). En todos ellos se procede a la indiscriminada búsqueda de estructuras cubiertas relacionadas con hogares, zonas de actividad o zonas de acumulación de desechos.

Figura 2.4. Suelo de ocupación en Latamne (Siria) (extraído de Clark, 1966: 208).
El uso del término suelo de habitación (*living floor* o *sol d’habitat*) fue algo recurrente en la literatura arqueológica de estos años. Tomado directamente de las investigaciones llevadas a cabo en el campo de la Etnografía, este concepto hacía referencia a una superficie reconocible dentro de un nivel geológico que se corresponde con una ocupación concreta del yacimiento lo suficientemente limitada en el tiempo como para que se pueda deducir, de la posición de sus vestigios, algo sobre las actividades que tuvieron allí lugar. La noción de suelo de habitación, por tanto, llevaba implícita la idea de contemporaneidad de todos aquellos restos arqueológicos que en él estaban contenidos (Bordes, 1975; Leakey, 1971; Villa, 1976).

En vista de que algunos autores empezaron a hacer un uso masivo y abusivo de dicho concepto y una interpretación demasiado laxa del mismo, llegando incluso a identificar como tal capas de hasta un metro de potencia, el propio Bordes (1975) tuvo que diferenciar el término *suelo de habitación* del de *nivel arqueológico*, definiendo este último como “*resultado del amontonamiento de elementos naturales y restos de la actividad humana en un espesor variable*”. En ese mismo célebre artículo el autor denuncia de manera muy acertada que querer reconstruir un suelo de habitación a partir de un estrato arqueológico “*equivalente, aproximadamente, a realizar el plano de una casa a partir de la proyección, sobre el suelo del sótano, de todo aquello que contiene éste, la planta baja y el primer y segundo piso*”. Así, los criterios para interpretar una superficie como suelo de habitación serían, siguiendo a Villa (1976), un reducido espesor, una densidad media de artefactos³ y una distribución espacial de los vestigios que atestigüe áreas de actividad diferenciadas.

Por influencia de la Nueva Arqueología, siempre propensos a envolver a toda investigación arqueológica de ese carácter intrínseca de científicidad, el recurso a las comparaciones etnográficas y a los análisis estadísticos fue una constante en los trabajos microespaciales realizados en la década de 1970. Dicho nexo de unión entre sendas disciplinas y la arqueología *intrasite*, sin llegar a los niveles alcanzados durante esta “época dorada”, trasciende dicho marco cronológico y llega hasta nuestros días. La observación etnográfica de los modelos de organización de los grupos de cazadores–recolectores actuales o recientemente desaparecidos era considerada por aquel entonces como una herramienta de gran utilidad para el análisis las distribuciones arqueológicas de los yacimientos paleolíticos, puesto que proporcionaba una base interpretativa a la hora de reconocer y explicar determinadas pautas espaciales presentes en los mismos (Binford, 1978, 1983; O’Connell, 1987; Yellen, 1977). Este tipo de estudios documentaba la organización social y las estrategias de ocupación de estas comunidades, interesándose de manera particular por todos aquellos vestigios generados en el desarrollo de sus actividades y su dispersión en la superficie habitada (campamentos residenciales o campamento base –Binford, 1980–), para después construir un modelo a partir del cual realizar inferencias espaciales en enclaves arqueológicos (David y Kramer, 2001; Gamble y Boismier, 1991; Kent, 1987; Kroit y Price, 1991). Por su parte, la aplicación de una significativa panoplia de herramientas cuantitativas y estadísticas procedentes de otras disciplinas en

³ Sin embargo, Villa no especifica en términos cuantitativos ninguno de estos dos criterios. Mary Leakey (1971:258) es la única autora que ofrece un dato concreto en relación al espesor de lo que ella interpreta como un *living floor* (ca. 3 in./7.6 cm.)
los estudios sobre organización del espacio a nivel intrasite estaba principalmente encaminada a resolver tres interrogantes: comprobar si las distribuciones de restos eran o no aleatorias, establecer agrupaciones de elementos arqueológicos y comprobar si existían correlaciones en los patrones de agrupación de distintas categorías de restos (Vaquero, 2013: 261) (Figura 2.5).

Figura 2.5. Reconstrucción de una cabaña excavada en Terra Amata (Niza, Francia) elaborada a partir de aquellas otras estructuras habitacionales documentadas etnográficamente en determinados grupos de cazadores-recolectores actuales (extraída de Lumley, 1969: 43).

Segunda etapa: La pérdida de la inocencia (principios de la década de 1980 - finales del siglo XX)

Durante esa etapa naive, caracterizada por el recurso indiscriminado a las analogías etnográficas y las herramientas estadísticas como métodos únicos para explicar los patrones espaciales observados en los yacimientos, el debate tafonómico no tuvo cabida alguna dentro de la arqueología microespacial. Por aquel entonces se creía que el registro arqueológico era el testimonio fosilizado de las actividades de una sociedad desaparecida, ignorando por completo (o por lo menos subestimando) los procesos destructivos que afectan a los yacimientos desde su formación hasta su descubrimiento. Este extenso pensamiento se ve perfectamente reflejado en unas palabras del propio Leroi-Gourhan:

"Cuando, tras largas semanas de minuciosa disección, se llegó a descubrir en su totalidad el suelo de la habitación 1 de Pincevent, la imagen que se presentaba era similar a la que podría ofrecer un campamento que hubiese sido abandonado hacía apenas unos pocos días. (...) Hasta el visitante menos capacitado podía llegar a manifestar la misma emoción que habíamos sentido nosotros ante este testimonio, intacto, de los momentos vividos, alrededor de estos hogares, por un grupo de cazadores de hacía diez mil o doce mil años" (Leroi-Gourhan y Brézillon, 1966: 322).

Aunque existen trabajos pioneros (Gifford-Gonzalez y Behrensmeyer, 1977; Isaac, 1967; Rick, 1976; Stockton, 1973; Wood y Johnson, 1978), fue a lo largo de la década de la década de 1980 cuando la reflexión en torno a los procesos de formación y alteración que habían experimentado aquellos yacimientos que estaban siendo analizados desde una perspectiva espacial cobró mayor importancia en el seno de la disciplina, dando inicio a una nueva fase, mucho más crítica, de la arqueología intrasite. Durante dicha etapa los investigadores
tomaron verdaderamente conciencia sobre la posibilidad de que otros agentes, más allá del comportamiento humano, fueran los responsables de la disposición espacial presentada por el registro arqueológico en el momento de su recuperación, resultando por tanto necesario emprender primeramente estudios encaminados a entender los procesos que formaron dicho registro antes de proceder a su análisis espacial. La geoarqueología, la tafonomía, la etnoarqueología y la arqueología experimental serán las herramientas fundamentales en la búsqueda de respuestas a este tipo de cuestiones (Bowers et al., 1983; Gifford-González et al., 1985; Petraglia, 1987; Petraglia y Potts, 1994; Schick, 1986, 1992; Villa, 1982; Villa y Courtin, 1983) (Figura 2.6).

Figura 2.6. Esquema resumen de los diferentes agentes que pueden actuar en la configuración de un yacimiento (extraída de Isaac, 1983)

En relación con todo este asunto, destaca sobreamanera dentro la agenda arqueológica de aquellos años la intensa crítica surgida en torno al concepto de “premisa pompeyana” y su consiguiente rechazo. Dicho término hace referencia a la noción errónea de que ciertos yacimientos presentan tales condiciones de preservación que son capaces de proporcionarnos la instantánea de un momento pretérito congelado en el tiempo, como si los años transcurridos no hubieran tenido consecuencia alguna en el registro arqueológico (Dibble et al., 2017; Jiménez, 2007, 2008; de la Torre, 2001; Trigger, 1992). De ahí que tome su nombre de la ilustre ciudad romana enterrada, junto con la vecina Herculano, bajo la lava y las cenizas expulsadas por el Vesubio en el año 79 de nuestra era. Este fatal acontecimiento permitió conservar de manera intacta aquel instante de la Historia, hasta el punto de ser descubiertos durante la excavación arqueológica de la clásica urbe, dieciocho siglos después, los cuerpos petrificados de sus habitantes. Los análisis microespaciales que se basaban en la premisa pompeyana, por tanto, no tenían en cuenta los diversos procesos que podrían transformar los depósitos arqueológicos.
Aunque definido en los años 60 del siglo XX por R. Ascher, uno de los primeros investigadores en llamar la atención sobre la cuestión de la formación del registro arqueológico (Ascher, 1961), fue Michael B. Schiffer (1972) quien realmente comenzó a profundizar en la crítica a este concepto, oponiéndose de manera radical a esa idea preconcebida de un registro arqueológico prístino como reflejo exacto de comportamientos fosilizados. Fundador de la conocida como Arqueología conductual o Arqueología del comportamiento (Schiffer, 1976), una postura teórica surgida como una extensión o, más bien, como una superación de la Nueva Arqueología, y dirigida principalmente al entendimiento de los procesos (tanto culturales como naturales) que forman y transforman los componentes de los contextos arqueológicos (Schiffer, 1987), este autor demostró que “no hay necesariamente una relación directa entre los objetos que la excavación arqueológica documenta en una estructura y las actividades que tuvieron lugar en ese mismo espacio en el pasado” (LaMotta y Schiffer, 1999: 20).

Más allá del cruce de acusaciones, plasma das por escrito de manera vehemente, entre Binford (1981) y el propio Schiffer (1985) a tenor de lo que, para cada uno de ellos, era una utilización errónea del concepto premisa pompeyana por parte del contrario, y a pesar de sus importantes diferencias teórico-metodológicas, ambos autores coincidían en lo más importante, que no es otra cosa que reconocer que la mayor parte de los yacimientos arqueológicos no son, salvo casos muy excepcionales, pequeñas Pompeyas. Los trabajos realizados en aquellos años dejaban claro que cualquier registro arqueológico experimenta, en mayor o menor medida, alteraciones de algún tipo. En palabras de Wood y Johnson (1978: 317), “the term in situ, used to denote undisturbed artifacts, is probably more optimistic than realistic”.

En definitiva, la superación del debate sur-gido en torno a la denominada premisa pompeyana y, de manera más amplia, el entendimiento de la necesidad de evaluar la incidencia de los procesos de formación de un yacimiento de manera previa a cualquier análisis espacial de las distribuciones de restos marcaron un antes y un después en el desarrollo de la arqueología intra-site como disciplina, permitiendo matizar o desmontar por completo ideas preconcebidas compartidas por generaciones de arqueólogos.

Tercera etapa: Hacia una arqueología de alta resolución temporal (siglo XXI)

En los últimos años los investigadores han venido advirtiendo un segundo obstáculo que, sumado a los procesos de formación y transformación de los yacimientos a los que se ha hecho referencia en el apartado anterior, dificulta la interpretación de la organización espacial de las actividades a partir de la distribución de los restos materiales. Este nuevo desafío no es otro que la dimensión temporal del registro arqueológico (Bailey, 1983; Holdaway y Wandsnider, 2008; Lucas, 2005, 2012; Vaquero, 2008). Así, hoy en día se asume que la práctica totalidad de los yacimientos del Paleolítico inferior y medio, sino todos, han de ser entendidos como palimpsestos formados por la sucesión de un número desconocido de episodios de acumulación de restos, ya sean éstos fruto de la actividad antrópica o por el contrario se deban a la intervención de carnívoros en aquellos momentos en los que el enclave no estaba frecuentado por el hombre, a lo largo de un periodo de tiempo indeterminado pero significativamente amplio (centenares o incluso miles de años) desde la escala temporal de la vida humana (Bailey, 2007).

El efecto palimpsesto condiciona, de manera irremediable, nuestro análisis y interpretación de
los comportamientos humanos del pasado en lo que a su organización espacial se refiere (Henry, 2012; Machado et al., 2015; Malinsky-Buller et al., 2011; Vaquero, 2008). Muy atrás queda ya esa visión de los suelos de ocupación o de las áreas de actividad como algo estático. Por un lado, el propio proceso de superposición de ocupaciones puede alterar, movilizar e incluso destruir en diferente grado los restos antrópicos acumulados a lo largo del tiempo, escondiendo de esta manera los patrones espaciales y dando lugar a acumulaciones de aspecto totalmente aleatorio. Asimismo, los palimpsestos tienden a enmascarar y reducir la variabilidad en los comportamientos humanos del pasado (Perreault, 2018). En otras palabras, el análisis global de los materiales arqueológicos contenidos en el marco de un nivel estratigráfico, es decir, una lectura sincrónica o paleo-etnogrífica del registro, nos va a ofrecer una imagen errónea del sistema de ocupación del espacio, puesto que es posible que durante el periodo de formación de dicho estrato se hayan sucedido tipos de asentamiento muy diferentes desde el punto de vista de la duración, la diversidad de las actividades realizadas o su organización dentro del espacio ocupado. Por último, puede darse el caso de que los impactos ocupacionales que generan un menor componente material queden camuflados por aquellos tipos de asentamiento de mayor intensidad (Vaquero, 1997).

Equiparar los conjuntos materiales sincrónicos desde un punto de vista geológico a los niveles de sincronicidad documentados etnográficamente, considerando los más o menos prolongados lapsos temporales implícitos en un estrato arqueológico, se convierte en un ejercicio por completo iluso (Dibble et al., 2017). Esto es, se da un total desajuste entre la escala del “tiempo arqueológico”, periodo durante el cual se han formado los niveles estratigráficos que se están analizando, y el “tiempo etnográfico” al que corresponden los modelos empleados en la interpretación de dichos conjuntos (Vaquero, 2008). Por ello, convendría desechar la tan habitual utilización del concepto ocupación en este tipo de estudios, ya que ésta es una noción de la cual se tiene testimonio únicamente a través de la antropología cultural, pero de la que difícilmente se puede llegar a obtener una constancia arqueológica. Como bien apunta Vaquero (2013: 268), “el método arqueológico permite identificar episodios de actividad, e incluso proponer la contemporaneidad entre distintos episodios de actividad, pero es poco probable que pueda aislar ocupaciones individuales, más allá de la identificación de un número mínimo de fases de ocupación”.

La mayor dificultad a la que nos enfrentamos al llevar a cabo un trabajo de corte microespacial es, por tanto, la propia definición de aquellas unidades mínimas de análisis o conjuntos que pueden ser susceptibles de interpretación en términos de organización del espacio. Si se pretende que los resultados del estudio tengan una significación conductual, minimizando en la medida de lo posible las implicaciones derivadas de la existencia de esos dos niveles diferentes de temporalidad, se hace absolutamente necesario incrementar al máximo el grado de resolución temporal y superar los tradicionales marcos analíticos, definidos en exclusiva a partir de criterios estratigráficos y sedimentológicos generales (Bargalló et al., 2016; Cascalheira y Picin, 2020; Hovers et al., 2011; Machado et al., 2011, 2013, 2016; Vaquero et al., 2012).

La arqueoestratigráfia, la micromorfología de suelos, así como la identificación de remontajes y Unidades de Materia Prima (Chacón et al., 2015; Machado y Pérez, 2016; Machado et al., 2019; Mallol et al., 2013; Vaquero, 2008) se han revelado como algunas de las herramientas de mayor utilidad de
la denominada arqueología de alta resolución (Audouze y Enloe, 1997; Carbonell, 2012; Pettitt, 1997), cuyo objetivo principal es la disección de palimpsestos arqueológicos.

En definitiva, los estudios microespaciales atraviesan en la actualidad una fase mucho menos optimista, en la cual se observa una creciente y profunda reflexión en torno a los límites y problemas que el registro arqueológico manifiesta a la hora de aportar información acerca del comportamiento espacial de los humanos. Así, hoy en día prevalece un acercamiento más realista a las posibilidades que ofrecen los conjuntos en este sentido, abogándose por que el análisis de la dimensión temporal de un yacimiento sea consustancial a su análisis espacial (Mallol y Hernández, 2016).

2.2. LA ARQUEOLOGÍA MICROESPACIAL EN EL Contexto DE LA EARLY STONE AGE (ESA) AFRICANA

No hay más que echar un rápido vistazo a la bibliografía disponible para darse cuenta de que a lo largo de estas cinco décadas de historia de los estudios intrasite éstos han sido aplicados fundamentalmente en conjuntos del Paleolítico superior y medio situados en Europa y el Próximo Oriente, resultando en contraste todavía hoy bastante escasos este tipo de trabajos en enclaves arqueológicos de mayor antigüedad y/o ubicados en otras partes del planeta. Los motivos principales de esta acusada diferencia cuantitativa son fáciles de intuir. Los conjuntos del Paleolítico superior y medio suelen ser sitios en los que se exponen amplias superficies de excavación, en las cuales se suelen conservar incluso estructuras de hábitat identificables y hogares con indicios de áreas de actividad. En cambio, el notable menor grado de preservación de los restos materiales sumado al hecho de que las estructuras realizadas por los grupos humanos también decrecen en cantidad y variabilidad cuanto mayor sea la antigüedad del yacimiento, hacen, a priori y por lo general, menos atractivos los estudios microespaciales para enclaves arqueológicos del Paleolítico inferior. En el contexto de la Early Stone Age africana este tipo de aproximación al registro ha conocido un desarrollo bastante más limitado, particularmente los más recientes enfoques teóricos de la disciplina. A continuación, se repasan, siguiendo un orden cronológico, las aportaciones más destacadas.

Mary Leakey, Glynn Isaac y la clasificación de los yacimientos de Olduvai

Por su extraordinaria importancia historiográfica y trascendencia, y a pesar de que ninguno de estos trabajos se encuentre claramente enmarcado dentro de lo que entendemos como estudios intrasite, es preciso comenzar la presente revisión haciendo referencia a las sistematizaciones de yacimientos propuestas para Olduvai primero por Mary Leakey y después por Glynn Isaac (Leakey, 1971; Isaac, 1978, 1983; Isaac y Crader, 1981).

El interés mostrado por esta incansable arqueóloga durante aquellos años en que estuvo al frente de las -ya sistemáticas- labores de campo en la Garganta de Olduvai (1960 – 1963) por excavar de manera metódica grandes superficies, sumado al minucioso registro que efectuó de todo el material hallado, hicieron posible la recopilación de una enorme cantidad de información conductual (Clark, 2001; Shipman, 2014). La alta calidad de la misma le ha convertido, como tendremos ocasión de comprobar a lo largo de todo este apartado, en objeto de numerosos trabajos de revisión. En una época en la que el estudio de la dimensión espacial del registro todavía no se había convertido en una línea de trabajo con entidad propia dentro de
la investigación arqueológica, Leakey realizó una clasificación interpretativa de los yacimientos excavados en base al tipo de restos documentados y su connotación funcional, así como a partir del análisis visual de su distribución vertical y horizontal. Teniendo muy presentes igualmente las, por aquel entonces tan socorridas, analogías etnográficas, esta autora diferenció los siguientes tipos de yacimientos:

- **Suelos de ocupación (living floors):** se trataba de horizontes arqueológicos bien definidos (con una distribución vertical en torno a los 9 o 10 centímetros) y localizados sobre paleosuelos, en los que se documentaban grandes acumulaciones de fragmentos óseos y artefactos líticos. Según Leakey, este tipo de yacimientos constituían los restos de zonas habitacionales, puntos específicos en el paisaje ocupados reiteradamente durante un corto pero indeterminado periodo de tiempo, a los cuales los humanos transportaban los animales cazados y donde se focalizaban todas las actividades del grupo, tanto aquellas de tipo económico (preparación de los alimentos o mantenimiento de sus utensilios) como social (reparto de alimentos, intercambio de información y aprendizaje, protección de la prole). En definitiva, dichos lugares serían prácticamente análogos a los campamentos base de los grupos de cazadores-recolectores actuales estudiados a través de la Etnografía.

El nivel 22 de FLK, conocido como FLK Zinj, se convirtió sin lugar a dudas en el paradigma de los suelos de ocupación gracias a factores como la impresionante acumulación de restos líticos y faunísticos documentada en el yacimiento (unos 2.500 artefactos y 60.000 fragmentos óseos, entre los cuales se incluía una enorme cantidad de microfauna) y su evidente yuxtaposición, la acotada distribución vertical de dichos materiales en comparación con su enorme dispersión en área o el excepcional estado de conservación de los mismos, del cual se deducía una escasa alteración tafonómica del sitio. La excavación de este nivel dejó al descubierto una particularmente densa concentración subcircular de materiales en la parte central del área intervenida (al suroeste del lugar donde se halló el cráneo de OH5), de un diámetro aproximado de 6 metros y caracterizada por las dimensiones milimétricas de los fragmentos líticos y óseos en ella documentados (Leakey, 1971: 50). Esta acumulación se difuminaba considerablemente hacia el sur y el este dando paso a una zona en la cual los restos aparecían de forma muy dispersa, tras la que se registraba un nuevo incremento en la densidad de materiales, en esta ocasión generalmente de mayor tamaño. La autora recogía la sugerencia de su colega J. D. Clark según la cual dicha distribución horizontal vendría explicada por la existencia de un paraviento localizado en esa especie de vacío arqueológico y que rodearía la parte central de la ocupación, de tal manera que los restos más pequeños permanecerían en el interior de la estructura y los de mayores dimensiones serían arrojados hacia el exterior (Clark, 2001: 606). Finalmente, los sectores sur y occidental del área excavada presentaban una densidad de piezas muy baja, asemejándose más a los rasgos descritos en conjuntos con materiales dispersos y pudiendo responder, por tanto, a un proceso de formación distinto.

Otro celeberrimo ejemplo de **living floor** lo constituyó el nivel 3 de DK. En dicho enclave, el más antiguo de toda la secuencia de Olduvai (con una datación que ronda los 2 millones de años), se registró, además de la habitual acumulación de artefactos líticos y restos óseos, la presencia de una llamativa concentración de bloques de lava que configuraban una estructura subcircular de
unos 5 metros de diámetro. El considerable tamaño de los nódulos de basalto vesicular hizo a Leakey decantarse por la acción antrópica como única explicación plausible para el curioso círculo de piedras, desechando por completo cualquier causa natural. Así, éste fue interpretado como los restos de una pequeña estructura de habitación, posiblemente un abrigo, levantada por los humanos en una zona del campamento, semejante a las pequeñas cabañas de hierba y paja levantadas sobre un lecho circular de piedra documentadas etnográficamente en ciertas sociedades de cazadores-recolectores africanos (Leakey, 1971: 24) (Figura 2.7).

Además de FLK Zinj y DK3, en la monografía de 1971, Leakey identificaba como suelos de ocupación FLK NN niveles 1 y 3, HWK East nivel 1, EF-HR, FC West Floor, SHK Annex Site y TK Lower Floor y Upper Floor.

Figura 2.7. Suelos de ocupación o living floors excavados por Mary Leakey en Olduvai. En la imagen superior, plano del nivel 22 de FLK. En la imagen inferior, plano de DK3 (extraída de Leakey, 1971).
- Áreas de matadero y descarnado de los recursos cárnicos (butchering or kill sites): conjuntos arqueológicos que se caracterizaban por la asociación de artefactos líticos a una gran carcosa, los cuales fueron interpretados por Leakey como enclaves en los que nuestros antepasados más antiguos habrían desarrollado tareas de procesado y despedazado de un animal de gran tamaño que habría muerto allí mismo, bien abatido por los propios humanos bien por causas naturales, para posteriormente transportar su carne hacia el campamento base. De todos los yacimientos excavados en los Lechos I y II de Olduvai, únicamente los niveles 6 y Deinotherium del FLK North se ajustaban a dicha definición. El primero de ellos, interpretado como una única actividad de carnicearía llevada a cabo en un entorno cenagoso, proporcionó, entre los huesos pertenecientes a otras especies, los restos casi completos de un ejemplar de Elephas recki y 123 objetos líticos asociados (Figura 2.8). Por su parte, FLK North Deinotherium deparó restos de un representante de este género extinto de proboscídeos así como un conjunto lítico compuesto por 23 artefactos y 16 supuestos manuports.

- Niveles con materiales dispersos (sites with diffused material), en los cuales los restos líticos y óseos no se condensaban en un horizonte sedimentario delimitado, sino que, por el contrario, aparecían esparcidos a lo largo de un espesor considerable de paquetes arcillosos o tobáceos. Leakey incluyó dentro de esta categoría los niveles 1 y 2 de DK, FLK NN nivel 2, FLK niveles 7 y 10-21, FLK North niveles 1-5, HWK East nivel 2, MNK Skull y Main Sites, el nivel de toba retrababada en FC West, así como los niveles tobáceos en SHK y TK.

- Niveles de depósito de canal (river or stream channel sites), que contenían colecciones de carácter alóctono. Este sería el caso de los niveles de canal de SHK, TK y el conjunto de BK.

Recogiendo el testigo de Mary Leakey, Glynn Isaac desarrolló con una mayor profundidad esta sistematización de yacimientos, utilizando como criterios clasificatorios el tipo de asociaciones de restos que en ellos se establecían y las características deposicionales de dichos enclaves arqueológicos (Isaac y Crader, 1981). De este modo, el legionario africanista examinó por un lado los conjuntos en los cuales los materiales se encontraban bien delimitados horizontal y verticalmente, es decir, aquellos que presentaban una alta integridad arqueológica (yacimientos tipo A, B y C), y por otro aquellos conjuntos cuyas características deposicionales indicaban una escasa o nula integridad arqueológica de los materiales (yacimientos tipo D y G) así como aquellos otros en los que la intervención antropica no estaba del todo clara (yacimientos tipo O).
- **Yacimientos tipo A**: aquellos lugares en los cuales únicamente se documentaban artefactos líticos (o donde los restos óseos estaban prácticamente ausentes) y que eran interpretados como áreas de talla o enclaves en los que el principal propósito había sido el desarrollo de actividades tecnológicas.

- **Yacimientos tipo B**: conjuntos arqueológicos en los que se registraban acumulaciones de industria lítica y restos óseos con huellas de procesado pertenecientes a un solo animal o a varios de la misma especie y que eran interpretados como áreas de descuartizamiento o de acceso a los recursos animales. Esta categoría se ajustaba pues a los *butchering* o *kill sites* definidos por Leakey (1971) (Figura 2.9).

![Figura 2.9. Recreación de un grupo de humanos procesando un *pelorovis* en Olduvai, Lecho II (ilustración de Mauricio Antón extraída de Domínguez-Rodrigo y Baquedano, 2014).](image)

- **Yacimientos tipo C**: aquellos sitios que contenían un gran número de artefactos líticos y restos de animales de especies distintas, equivalentes a los suelos de ocupación o *living floor* identificados por Leakey (1971), fueron interpretados inicialmente por Isaac como *campamentos base* (1978) en los que los humanos llevaban a cabo el mayor número de actividades y se resguardaban de los peligros. Según este autor, dichos enclaves arqueológicos eran el resultado de complejas estrategias de organización desarrolladas por los grupos humanos del pasado en determinados lugares referenciales dentro del paisaje, que incluirían la división cooperativa del trabajo en función del género, por la cual los hombres conseguirían la mayor parte de la carne mientras que las mujeres se encargarían de la recolección de los alimentos vegetales que completaban la dieta, así como el transporte del
alimento obtenido y su posterior reparto y consumo en el propio campamento, con las implicaciones sociales que ello conllevaba (solidaridad, estrechamiento de vínculos afectivos, etc.) (Figura 2.10).

Las fuertes críticas vertidas sobre este planteamiento, al que se acusó de ser una mera transposición de formas de comportamiento actuales al Pleistoceno (Binford, 1981a, 1983), llevaron al propio Isaac a reformular su modelo de campamentos base y sustituirlo por la hipótesis del *lugar de forrajear central* (1983), la cual desterraba por completo determinadas implicaciones sociales, como el reparto sexual de funciones, al tiempo que prescindía de cualquier tipo de alusión a los asentamientos de las sociedades nómadas documentadas etnográficamente, ofreciendo una terminología más neutral. En lo esencial, sin embargo, este nuevo modelo explicativo mantenía intacto el sentido de las áreas centrales, entendidas como determinados puntos de agregación grupal que actuaban como escenario principal de la mayor parte de las actividades vitales de los humanos, las cuales aparecían reflejadas en el registro arqueológico mediante esta categoría de yacimientos en los que se documentaban grandes acumulaciones de restos líticos y óseos.

- **Yacimientos tipo D**: se correspondían con lo que Leakey denominó niveles con materiales dispersos, es decir, conjuntos que se caracterizaban por la presencia localmente significativa de artefactos líticos, acompañados o no de restos óseos, pero en los cuales los vestigios arqueológicos aparecían esparcidos dentro de un gran espesor sedimentario, sin que fuera posible por tanto detectar horizontes individuales.

- **Yacimientos tipo G**, los cuales contenían materiales arqueológicos que, aun pudiendo aparecer o no concentrados vertical y horizontalmente, habían sido transportados y redepositados en otro contexto geológico.

- **Yacimientos tipo D**: aquellos lugares en los que solo aparecían restos óseos, siendo pues muy difícil justificar la intervención antrópica en el proceso de acumulación. Se trataría, pues, de depósitos de tipo paleontológico.

![Figura 2.10. Representación gráfica de la teoría del "campamento base" desarrollada por Glynn Isaac (modificada de Gallay, 1999: 15).](image-url)
Milla Y. Ohel y Dave Douglas Davis. Primeros estudios intransite en Olduvai

En la misma década de los 70 vieron la luz varios trabajos que, a partir de la información y las planimetrías publicadas por Leakey en su monografía de los Lechos I y II (1971), examinaban y comparaban la distribución espacial de los restos arqueológicos en varios yacimientos de Olduvai (Davis, 1975, 1978; Ohel, 1977).

Por lo que al trabajo de Ohel se refiere, un detallado análisis visual de los citados planos permitió a este autor localizar e individualizar un total de dieciocho concentraciones con restos líticos y óseos ubicadas en catorce de los suelos de ocupación propuestos por Leakey. Dichas acumulaciones de material, once de ellas circulares y las siete restantes con una forma más o menos alargada, tendrían según este autor un significado comportamental (1977: 425). La delimitación de las concentraciones se realizó primeramente en base a tres factores: la densidad de vestigios arqueológicos documentados dentro de los límites propuestos, el contraste existente entre esa densidad y la registrada al exterior de los mismos y la naturaleza de los materiales hallados tanto dentro como fuera, los cuales habían sido englobados previamente en cuatro categorías diferentes (pequeños huesos o fragmentos, huesos o fragmentos cuya longitud máxima superaba los 5 milímetros, débitage y el resto de artefactos líticos) (Figura 2.11).

La hipótesis de partida era que determinadas categorías de vestigios se asociaban a cada tipo de concentración. Así, las acumulaciones circulares estarían caracterizadas por un predominio de huesos o fragmentos de hueso pequeños y una alta proporción de débitage, mientras que las concentraciones con una forma más o menos alargada albergarían en comparación una cantidad mayor de huesos o fragmentos de hueso de grandes dimensiones y muy pocos artefactos líticos. Tras someter a prueba esa sospecha inicial mediante la aplicación de complejos análisis estadísticos, el autor concluyó (1977: 430) que efectivamente existía una asociación estadísticamente significativa entre las concentraciones circulares y los huesos o fragmentos de pequeño tamaño por

![Figura 2.11. Método empleado por Ohel para delimitar las diversas concentraciones de material documentadas en los diferentes suelos de ocupación excavados por Leakey en los Lechos I y II de la Garganta de Olduvai, el cual se basaba en la desigual densidad de vestigios arqueológicos registrada dentro y fuera de cada acumulación (modificada de Ohel, 1977).](image-url)
un lado y las concentraciones alargadas y los huesos o fragmentos de mayores dimensiones por otro, mientras que la pauta débitage/huesos o fragmentos de pequeño tamaño en las acumulaciones circulares era, cuanto menos, reveladora. La asociación entre los huesos de mayor tamaño y la categoría que aúna al resto de artefactos líticos no pudo, sin embargo, ser atestiguada estadísticamente, debido quizás a la escasa cantidad de dichos objetos registrado en las concentraciones definidas. En último término, Ohel especulaba sobre la posibilidad de que las concentraciones alargadas estuvieran ligadas al procesado de los recursos cárnicos al tiempo que las concentraciones circulares se corresponderían con aquellas áreas de consumo del alimento (1977: 432). Se apuntaba, incluso, que la forma elongada de las primeras podría ser una reminiscencia del animal tendido sobre el suelo mientras que el grupo de humanos estaban llevando a cabo las tareas de descarnado, mientras que la estructura circular de las segundas podría estar revelando la distribución que mostraban los comensales a la hora de ingerir el alimento -pese a no haberse encontrado nunca evidencias de fuego en la secuencia de Olduvai para cronologías tan antiguas-.

Por su parte, Davis (1978) analizó los seis suelos de ocupación clasificados por Leakey como olduvayenses con el propósito de establecer agrupaciones espaciales de elementos arqueológicos y comprobar si existían correlaciones en los patrones de agrupación de distintas categorías de restos. Antes que nada, sin embargo, el autor había contemplado la posibilidad de que otros agentes naturales, más allá del comportamiento de los humanos, pudieran ser los responsables de la disposición espacial presentada por el registro arqueológico en el momento de su recuperación, concluyendo que éstos no tuvieron la entidad suficiente como para ser los causantes de las concentraciones detectadas. Sus pesquisas en este sentido, no obstante, significaban más un acto de buena voluntad que una evaluación real de los procesos post-deposicionales que habrían alterado los yacimientos incluidos en este estudio, puesto que, como se ha indicado más arriba, los únicos datos que manejaba Davis eran los publicados en la monografía de los Lechos I y II de Olduvai (Leakey, 1971). Con todo, es justo reconocer que la sola preocupación por comprender los procesos de formación de un depósito antes de proceder a su análisis espacial suponía un avance sustancial con respecto al trabajo de Ohel desgranado previamente.

Mediante la combinación de métodos cuantitativos y mapas de densidad Davis llegó a unas conclusiones en parte similares y en parte diferentes a las expuestas en ese otro trabajo. Identificaba, en primer término, concentraciones con una gran densidad de restos generalmente ubicadas en la periferia del área excavada y caracterizadas por la asociación espacial de huesos o fragmentos de hueso de pequeño tamaño y débitage, que equivaldrían a aquellas zonas en las que los humanos realizaban la ingesta de alimento. Junto a dichas concentraciones Davis reconoció la existencia de un segundo tipo de agrupaciones mucho más dispersas de material, donde se advertía una clara correlación entre choppers y utilized heavy-duty material por un lado y restos de fauna más completos y de mayores dimensiones por otro y que fueron interpretadas como los vestigios de aquellos espacios en los que los humanos habrían llevado a cabo el tratamiento y procesado de las presas animales, así como otras posibles actividades que no habrían dejado huella arqueológica. Por último, las zonas exteriores del yacimiento en las que se registraba una escasa densidad o total ausencia de restos materiales, adyacentes a esas
otras zonas de consumo del alimento a las que ya
nos hemos referido previamente, se corresponde-
rían con las áreas de vivienda, las cuales habrían
sido intencionadamente liberadas de desechos.
Tal y como se recoge en la figura 2.12, estas zonas
de dormitorio estarían distribuidas en torno a un
espacio central, plenamente documentado en gru-
pos de cazadores-recolectores actuales, dedicado
da tareas comunales que apenas originarían un re-
ducido número de restos materiales (Figura 2.12).

![Figura 2.12. Modelo de organización espacial de los sue-
los de ocupación olduayenses propuesto por Davis (ex-

En definitiva, tres son los rasgos distintivos
de estos dos trabajos de arqueología microespa-
cial: la aplicación de métodos cuantitativos con el
propósito de desentrañar posibles pautas espa-
ciales presentes en los yacimientos analizados
(sin haber abortado –prácticamente– ningún exa-
men tafonómico previo de dichos depósitos), así
como el recurso constante a la observación etno-
gráfica de los modelos de organización de los gru-
pos de cazadores-recolectores actuales como
base interpretativa para explicar los patrones ad-
vertidos. Todo ello nos lleva, pues, a encuadrar
ambas investigaciones dentro de esa primera fase
de la que hablamos al principio del capítulo al tra-
tar la evolución general de los estudios intrasite.

**Lewis R. Binford y el debate sobre la integridad y reso-
lución de los primeros yacimientos africanos**

Frente a la tendencia tradicional de identifi-
car cualquier acumulación de restos presente en
el paisaje como evidencia de una existencia pre-
térsta de campamentos (Leakey, 1971; Isaac, 1978),
a principios de la década de 1980 surgieron algu-
unas voces críticas que comenzaron a poner en
duda dicha interpretación y, de manera más gené-
rica, a cuestionar el papel desempeñado por los
humanos en la formación de los yacimientos ar-
quelogólicos de hace unos 2 millones de años. Le-
wis R. Binford fue, sin duda alguna, uno de los ac-
tores principales de aquella controversia (Figura
2.13).

![Figura 2.13. Lewis R. Binford y la portada de su li-
bro *Bones, Ancient men and modern myths*.

El polémico arqueólogo estadounidense se
sumergió en el debate con una reseña titulada
Olorgesailie deserves more than the usual book
review (Binford, 1977), una crítica feroz e injustifi-
cada a la monografía publicada por Glynn Isaac en
eso mismo año sobre sus investigaciones en el
célebre complejo paleoantropológico keniano
(Isaac, 1977) en la cual tachaba a dichos yacimien-
tos de meros “revoltujos hidráulicos” ocasionados
por la acción de las corrientes de agua en antiguos
canales y no como consecuencia de la caza hu-
mana, transporte y reparto de alimentos. Unos
años más tarde el mismo autor llevó a cabo una
revisión tafonómica de los conjuntos óseos de Ol-
duvai publicados en su día por Mary Leakey (Bin-
ford, 1981a) que le sirvió, de acuerdo con la repre-
sentación esquelética y las pautas de fractura de
los huesos observadas, para defender que aque-
llas acumulaciones de fósiles e industria lítica, le-
jos de ser fruto exclusivo (o por lo menos prin-
cipal) de la actividad de nuestros antepasados,
constituirían en esencia el resultado de la actuación
de grandes felinos y otros carroñeros y sólo de
una manera anecdótica, después de que éstos hu-
bieran satisfecho sus necesidades alimentarias
y abandonado los despojos restantes, la intervenció-
ión de los humanos para aprovechar esos últi-
mos recursos disponibles, actuando por tanto
como carroñeros muy marginales y convirtién-
dose en el eslabón final de la cadena trófica.

En resumidas cuentas, Binford estaba dando
un toque de atención a la comunidad científica de
aquellos años e instándole a poner en duda las su-
puestas, y hasta entonces dadas por sentado por
casi todos los autores, asociaciones espaciales de
restos óseos y materiales líticos hallados en un
mismo yacimiento a partir de las cuales se esta-
ban construyendo los diferentes modelos sobre la
conducta humana. A su juicio, dichas acumulacio-
nes no habrían sido generadas únicamente por los
humanos sino también por diversos agentes natu-
rales, tales como los carnívoros o la acción hi-
dráulica, siendo pues el resultado fortuito de epi-
sodios separados en el tiempo (1981a, 1985, 1987,
1988). Abogaba, en otras palabras, por una conjun-
ción lítica-fauna casual y no causal.

Este autor introdujo dos conceptos de
enorme interés para el desarrollo futuro de los
estudios microespaciales en contexto africano: la
integridad de un depósito arqueológico y su reso-
lución (Binford, 1981a: 19). Por integridad entendería
la relativa homogeneidad de los agentes respon-
sables de los elementos materiales contenidos en
un yacimiento. En el caso de que todos ellos deri-
viesen de un solo agente, bien se tratará de los hu-
manos bien de los carnívoros, nos encontraríamos
según Binford ante un conjunto con una integridad
óptima, mientras que cuando la acumulación de
vestigios era la suma de las actividades de ambos
agentes en un mismo espacio estaríamos ha-
blando de un depósito de poca integridad. Por su
parte, el concepto de resolución aludía a la rela-
tiva especificidad de los eventos o acciones cuyos
productos estaban preservados en el depósito.
Así, se podría hablar de una alta resolución
cuando los materiales hallados en el mismo cons-
tituían los restos de una serie de eventos o accio-
nes limitados en el tiempo y especificables, mien-
tras que un conjunto de baja resolución contendría
vestigios arqueológicos acumulados durante
eventos deposicionales independientes. La inclu-
sión de estos dos conceptos en el pensamiento ar-
queológico fue, a mi entender, la aportación más

2 A pesar de ello, el mismo Binford reconocía en dicha publica-
ción (1977: 494) y en otras posteriores (1985: 293) que Glynn
Isaac era un arqueólogo avanzado a su tiempo debido, entre
otras cosas, a su preocupación por analizar los procesos de
formación y alteración que habían experimentado los yaci-
mentos que estudiaba. Le reprochaba, sin embargo, el hecho
de que nunca hubiera cuestionado la posibilidad de que no to-
do los restos presentes en esos depósitos arqueológicos tu-
vieran un origen antrópico.
importante del arqueólogo norteamericano a los estudios *intrasite*.

De acuerdo con todo lo dicho, Binford concluyó que esas concentraciones discretas horizontal y verticalmente, definidas como suelos de ocupación por Leakey (1971) y como campamentos base o lugares de forrajeo central por Isaac (1978, 1983) y cuyo paradigma estaría representado por el nivel 22 de FLK, no serían otra cosa que palimpsestos en los que la relación entre los distintos restos óseos y la industria era en la mayoría de los casos fortuita, perteneciendo todos ellos a distintos episodios históricos y diferentes eventos de formación (1987: 26). Dichos yacimientos responderían según él a los mismos procesos que habrían generado los niveles con materiales dispersos, con la única diferencia de que en los primeros la existencia de una superficie estable impediría la desgregación en la vertical de los restos arqueológicos procedentes de múltiples e independientes episodios de actividad.

Ellen M. Kroll y su estudio microespacial de los yacimientos de Koobi Fora: un hito historiográfico

En el marco del proyecto de investigación puesto en marcha por Glynn Isaac en Koobi Fora (Lago Turkana, Kenia) en la década de 1970, Ellen M. Kroll realizó una pionera y rigurosa labor de estudio de las asociaciones de artefactos y restos faunísticos documentadas en veinte de los yacimientos intervenidos en dicha secuencia arqueológica, a los cuales añadió otros tres de los excavados por Leakey en Olduvai, todos ellos muy diversos en lo que a tamaño, contenido arqueológico y contexto paleo-geográfico se refiere. Por desgracia, este trabajo de investigación, en forma de tesis doctoral (1986), nunca ha sido publicado íntegramente, por lo que tan sólo contamos con aquellos datos ofrecidos en trabajos parciales o de carácter preliminar (Bunn *et al.*, 1980; Kroll, 1994, 1997; Kroll and Isaac, 1984).

El estudio de la distribución espacial de los vestigios en el plano vertical, a partir de detalladas descripciones y numerosas imágenes, constituía una parte esencial del trabajo de Kroll. Éste incluía perfiles de cada uno de los enclaves analizados, en los cuales se proyectaba el material arqueológico bien coordinado en su conjunto, bien dividido en función del tipo de resto (lítico o faunístico) o de alguna característica específica. Dichas secciones (casi siempre en un único sentido —proyecciones transversales—, aunque a veces se añadía también la sección en sentido longitudinal) abarcaban la totalidad de la superficie excavada (Figura 2.14). Los sucesivos niveles diferenciados

directamente en campo en algunos de los yacimientos, no necesariamente coincidentes con las unidades litológicas, si bien eran descritos en el texto, no aparecían sin embargo individualizados de una manera gráfica en los perfiles. Esta manifestación hacia la dimensión vertical del registro, a la que sin duda se podría calificar de innovadora si la comparamos no sólo con lo que por aquel entonces se estaba haciendo en el continente africano sino también con los estudios intrasite desarrollados en Europa, tenía como finalidad, en palabras de la autora, discernir el grado de integridad que presentaban las concentraciones de restos líticos y faunísticos cuya distribución horizontal iba a ser posteriormente analizada (Kroll, 1997: 470).

El asunto de la resolución temporal de los yacimientos, muy ligado igualmente al análisis de la dimensión vertical del registro, era motivo de reflexión permanente para esta arqueóloga. En todos sus trabajos Kroll asumía que los restos materiales documentados eran casi con toda probabilidad en la mayor parte de los casos el resultado del uso diacrónico de un mismo lugar por parte de los humanos, sin que entre las diferentes visitas mediase sedimentación alguna y, por tanto, enterramiento de los restos desechados anteriormente (Kroll, 1997: 522). Este hecho le llevaba a reconocer la dificultad que suponía el establecimiento de unos marcos analíticos adecuados para llevar a cabo el posterior estudio de la distribución a nivel horizontal (Kroll y Isaac, 1984: 12). Sin embargo, dicha problemática no era abordada en la práctica, sumándose pues los trabajos de esta autora a la larga lista de estudios intrasite en los que, de manera algo frustrante, la condición de palimpsesto de un yacimiento no constituye la premisa de partida de los mismos, sino que forma parte de sus resultados y conclusiones. Basándose en estudios etnoarqueológicos como el llevado a cabo por Yellen (1977), Ellen M. Kroll relacionaba esa realización recurrente de actividades en un mismo espacio por parte de los humanos con la presencia de árboles, los cuales se erigirían sin duda como puntos atractivos en el paisaje por aportar sombra donde poder llevar a cabo sus actividades y refugio ante los posibles ataques de carnívoros (Figura 2.15).

Figura 2.15. Modelo teórico, basado en observaciones etnográficas, desarrollado por Kroll para explicar el uso diacrónico de un mismo lugar por parte de los humanos (modificada de Kroll, 1994: 131).
Por lo que a la dimensión horizontal se refiere, Kroll se valía de la inspección visual de la distribución de puntos, la frecuencia de materiales registrada por metro cuadrado y, siguiendo el trabajo de Whallon (1984), el análisis de los contornos de densidad, para identificar (restos líticos por un lado y óseos por otro) clusters, subclusters o simples dispersions de material dentro de los yacimientos estudiados (Figura 2.16). El examen individualizado del contenido de todas y cada una de dichas agrupaciones (presencia de remontajes, distribución de tamaños de las piezas, frecuencia de cantos naturales, categoría tecnológica, elemento anatómico, tipo de marcas, etc.) y la comparación entre ellas le permitía sacar conclusiones, en primer lugar, acerca del origen natural o antrópico de las mismas. Una vez descartada la opción de los agentes naturales como responsables últimos de la disposición espacial de los vestigios, el objetivo final del estudio microespacial a nivel horizontal era el reconocimiento de algunas de las actividades específicas llevadas a cabo en aquel punto del paisaje, tales como los diversos episodios de talla, el procesado de la carne o las labores de mantenimiento y limpieza del lugar (modelo toss/drop propuesto por Binford) (Kroll, 1997: 464).

Por todo lo dicho hasta aquí, podemos afirmar sin ningún género de duda que el trabajo de Ellen M. Kroll constituyó un buen ejemplo de esa creciente reflexión -a la que ya hicimos referencia al tratar la evolución general de los estudios intransigentes a torno a la necesidad de conocer los procesos de formación de los conjuntos arqueológicos y las posibles consecuencias que las dinámicas postdeposicionales pudieran haber tenido sobre la disposición espacial presentada por el registro en el momento de su recuperación como paso previo a cualquier acercamiento de este tipo. A la hora de intentar reconstruir la historia tafonómica de los yacimientos que analizaba, además de tener en cuenta las cuestiones geológicas y sedimentológicas, esta autora recurrió a criterios como la distribución del material por tamaños y pesos, las orientaciones de los huesos largos o la frecuencia de cantos naturales. Sin embargo, y por encima de todos ellos, los remontajes se convirtieron sin duda en la herramienta metodológica por excelencia a este respecto.

Precisamente, el enorme esfuerzo invertido en esta ardua tarea -para la cual recibió la inestimable ayuda de Kathy Schick, Nick Toth y Henry Bunn, miembros todos ellos del equipo de investigación (Kroll y Isaac: 1984: 21)- y la relevancia de los resultados obxenos fue con total seguridad otro de los motivos por los que destacó el trabajo de Kroll. La información ofrecida por la autora en este sentido, consistente en breves descripciones de muchos de los grupos hallados, acompañadas a su vez de magníficas ilustraciones, plantas y secciones que mostraban la localización espacial de las piezas remontadas y sus respectivas líneas de unión, así como tablas-resumen, era pues muy amplia y variada (Figura 2.17). Algunos de los datos que se incluían en estas últimas eran genéricos (número de grupos descubiertos en cada yacimiento, total de piezas remontadas, distancia media-y antiguo como horizontal- de separación entre piezas, orientación de las líneas de remontaje) mientras que el resto eran específicos y estaban sujetos a la naturaleza lítica o faunística de los restos remontados (tipo de remontaje, materia prima y categoría tecnológica de las piezas implicadas en el primero de los casos; taxón, talla, elemento anatómico y, de haberlas, tipos de marcas en el caso de los remontajes óseos). Como hemos señalado unas líneas más arriba, la autora se valía de los remontajes para resolver cuestiones fundamentalmente de tipo tafonómico. Por ejemplo, los remontajes que relacionaban material coordenado durante la excavación y material recogido en superficie en los alrededores servían para demostrar que éstos últimos vestigios, aunque erosionados, provenían de la misma secuencia arqueológica. De forma paralela, y siguiendo el ejemplo de otros trabajos (Cahen y Moeyersons, 1977; Hofman, 1986; Villa, 1982; Villa y Courtin, 1983), Kroll examinaba las líneas de unión documentadas en el yacimiento y el grado de dispersión vertical existente entre las piezas que integraban un remontaje para vislumbrar posibles movimientos postdeposicionales de los materiales arqueológicos. Por su parte, en lo que a cuestiones de tipo propiamente espacial/antrópico se refiere, los más nutridos grupos de remontajes le permitieron identificar episodios de talla independientes. Al contrario, el carácter fragmentario de muchos otros invitaba a pensar que la importación/exportación de utensilios líticos durante las repetidas pero esporádicas visitas de los humanos a estos lugares fue un comportamiento muy común en los yacimientos analizados (sin descartar obviamente la posibilidad de que fueran los agentes naturales los responsables de dicho resultado) (Kroll y Isaac, 1984: 21; Kroll, 1997: 465).
Figura 2.17. Remontajes hallados por el equipo de Koobi Fora en el yacimiento de Fxj50 (modificada de Bunn et al., 1980).

Una última cuestión a destacar del trabajo llevado a cabo por la arqueóloga estadounidense en Koobi Fora, aunque quizá debería haber sido la primera, es su patente preocupación, manifestada de manera recurrente en todas sus publicaciones, por la necesidad de exponer y delimitar íntegramente un yacimiento de manera previa a emprender su estudio espacial. Como discípula de Glynn Isaac, Kroll entendía por yacimiento una concentración de alta densidad de artefactos y huesos fósiles (las llamadas patches) en medio de un proceso de dispersión de materiales generalizado (las llamadas scatters) (Isaac, 1981). Habitualmente, los márgenes de los yacimientos están marcados bien de manera natural por fenómenos erosivos bien de manera artificial por límites de
las catas realizadas, impuestos por cuestiones logísticas (falta de recursos económicos y/o tiempo). Puesto que esta práctica puede perturbar significativamente el subsiguiente análisis *intrasite* de las distribuciones de materiales, Kroll abogaba por la excavación en extensión de grandes superficies que permitieran identificar los auténticos límites de los yacimientos arqueológicos, es decir, aquellos que venían marcados por un claro contraste entre la alta densidad de materiales característica de las concentraciones y la escasa presencia de los mismos en el paisaje circundante (Figura 2.18). Por desgracia, esta praxis no ha sido la más habitual en la arqueología africana de las últimas décadas.

La misión italiana en Melka Kunture y la introducción de los SIG en los estudios microespaciales

El cambio de centuria en Melka Kunture supuso el reemplazo del equipo francés que había trabajado hasta entonces en dicho enclave, encabezado por Jean Chavaillon, por un nuevo grupo de trabajo - eminentemente italiano - bajo la dirección de Marcello Piperno. Este relevo trajo consigo nuevas metas y líneas de investigación dentro del proyecto, entre ellas la creación de sendos soportes SIG, uno para Garba IVD y otro para Gombore IB, que aúnan la abundantísima información gráfica, espacial y alfanumérica disponible de los citados yacimientos y facilitarán su estudio *intrasite*, disciplina entendida por dicho equipo como una herramienta de gran ayuda fundamentalmente a la hora de reconstruir las distintas fases de formación de un enclave arqueológico y advertir las alteraciones postdeposicionales que éste haya podido experimentar (D’Andrea y Gallotti, 2004: 589; Gallotti y Piperno, 2003: 54).

La amplitud del área expuesta durante los trabajos arqueológicos, así como un óptimo registro del altísimo número de vestigios hallado, convirtieron a Garba IV y Gombore I, yacimientos con una cronología comprendida entre los 1,7 y los 1,4
millones de años, en los candidatos perfectos para protagonizar este tipo de análisis. En el caso del primero de ellos, excavado entre 1972 y 1982, sólo el nivel D, el más rico en material de todo el depósito, proporcionó más de 19,000 restos (2,500 de fauna, casi 10,000 artefactos líticos y algo más de 6,500 cantos sin huellas de haber sido intencionalmente modificados) repartidos por una superficie de 100 metros cuadrados aproximadamente. La parte central de la misma había sido erosionada por un río tributario del Awash, provocando así la partición del espacio en dos sectores diferenciados (este y oeste). Por su parte, en Gombore IB, excavado de manera intermitente en diferentes campañas llevadas a cabo entre 1967 y 1982, se dejó al descubierto un área de unos 250 metros cuadrados, en la cual se registraron más de 20,000 restos arqueológicos (Piperno et al., 2009). Dado que del trabajo espacial realizado en este último yacimiento tan sólo han salido a la luz, por el momento, algunas plantas (Chavaillon y Piperno, 2004), en el presente apartado nos centraremos en lo hecho a este respecto en Garba IVD (D’Andrea et al., 2002; D’Andrea y Gallotti, 2004; Fiore y Tagliacozzo, 2004; Gallotti y Piperno, 2003, 2004).

El estudio de la distribución espacial de los vestigios en el plano vertical se limitaba a la presentación, por un lado, de secciones generales, una en sentido transversal y otra longitudinal, las cuales abarcaban la totalidad de la superficie excavada e incorporaban tanto la lítica como la fauna documentada, y por otro, de perfiles en ambas direcciones de cada uno de los sectores en los que se plasmaba la distribución vertical de los restos en función de sus diferentes categorías (Figura 2.19). Si bien es cierto que en el texto aparecía indicado el hecho de que se habían elaborado secciones cada metro con el objetivo de reducir las inexactitudes provocadas por la pendiente del nivel (Gallotti y Piperno, 2004: 613), éstas no fueron reflejadas de una manera gráfica en las publicaciones.

El trabajo espacial realizado en el nivel D de Garba IV se centraba fundamentalmente, por tanto, en la dimensión horizontal del registro, siendo los mapas temáticos, los de frecuencia de restos arqueológicos registrados en cuadrículas de un metro cuadrado (o de 50 centímetros cuadrados en aquellas áreas de especial interés) y los mapas de densidad Kernel las herramientas principales empleadas en la búsqueda de pautas espaciales significativas (Figura 2.20). En este sentido, y aun reconociendo el destacable papel que la acción hidráulica habría jugado en la formación de dicha unidad estratigráfica, los autores advertían la existencia de evidentes correlaciones espaciales entre diferentes categorías de restos. Tal era el caso, por ejemplo, de la presencia de importantes concentraciones de restos de fauna de considerable tamaño alrededor de grandes bloques de basalto, algunos de los cuales llegaban a superar los 15 kg. de peso, interpretados como elementos que habrían sido aportados por los humanos al yacimiento (Gallotti y Piperno, 2004: 605). Llamaban igualmente la atención sobre las respectivas asociaciones entre fauna e industria lítica de obsidiana o entre núcleos de basalto y desbastados de esa misma materia prima (Gallotti y Piperno, 2003: 65), si bien este último vínculo espacial no era confirmado a través de la búsqueda de remontajes (Gallotti y Piperno, 2003: 71).

Figura 2.20. Herramientas de análisis espacial horizontal empleadas en el estudio del nivel D de Garba IV: A) mapas temáticos; B) análisis de frecuencia de restos arqueológicos registrados por metro cuadrado; C) relación porcentual entre distintas categorías de materiales; D) mapas de densidad Kernel (modificada de Gallotti y Piperno 2004).
En definitiva, la trascendencia de la labor emprendida por el equipo de investigación italiano de Melka Kunture radica principalmente en ser el primer ejemplo dentro de la arqueología africana de manejo sistemático de los Sistemas de Información Geográfica como herramienta básica para el almacenamiento, exploración y visualización de la totalidad de la información gráfica, espacial y alfanumérica documentada en un yacimiento a escala *intrisite*. Sin embargo, los datos publicados hasta la fecha en relación con el análisis microespacial propiamente dicho llevado a cabo parecen tener tan solo un carácter preliminar. En palabras de los propios autores convendría, para obtener mayores resultados, por un lado, examinar en detalle los perfiles arqueológicos con el fin de identificar posibles sub-horizontes dentro del nivel D así como emplear la metodología de los remontajes y, por otro, aplicar todos estos procedimientos de análisis microespacial en otros yacimientos de similares cronologías excavados dentro de este complejo (Gallotti y Piperno, 2003: 71).

Estudio intrisite de Nadung’a 4: ¿Un área de aprovechamiento de recursos cárnico?

El hallazgo en Nadung’a 4 (West Turkana, Kenia) de restos atribuidos a un único elefante asociados espacialmente a artefactos líticos converían en principio a este yacimiento, datado en unos 700.000 años, en un perfecto candidato para ser encasillado bajo esa denominación de *butchering site* (Leakey, 1971) o yacimiento de tipo B (Isaac y Crader, 1981). El elevadísimo número de restos líticos recuperados en dicho enclave, que alcanzaba casi las 7.000 piezas, suponía una singularidad que, sin embargo, le alejaba de esa clásica definición. Con el propósito de confirmar si realmente existió una conexión directa entre el paquidermo desenterrado y los restos líticos hallados en las inmediaciones o, por el contrario, se trataba de una circunstancia fortuita, Delagnes y otros (2006) presentaron un completo estudio del conjunto, el cual incluía algunas cuestiones relacionadas con el análisis microespacial del mismo.

En primer lugar, habría que destacar el interés de los autores por la dimensión vertical del material arqueológico, contenido éste en un único horizonte sedimentológico que superaba el metro de potencia, tal y como puede apreciarse en las secciones incorporadas en el trabajo (Figura 2.21).

Figura 2.21. Distribución espacial de todos los restos hallados en Nadung’a 4: (A) mapa de puntos; (B) mapa de densidad; (C) sección general en sentido longitudinal; (D) proyecciones verticales parciales (bandas 1 y 2) (extraída de Delagnes et al., 2006: 453).

Si bien es cierto que este tipo de software ya había sido aplicado unos años antes en Olorgesailie (Potts et al., 1996), dicho trabajo no se centraba únicamente en datos espaciales a nivel micro sino que aúñaba también información a escala regional.
Semejante dispersión vertical, la cual a primera vista no encajaría con esa interpretación del yacimiento como resultado de un único evento de ocupación destinado al procesado de un elefante, ha sido atribuida a un fenómeno de edafoturbación denominado argiliturbación, un proceso típico de los vertisoles (suelos ricos en arcillas expansivas sometidos a ciclos de humedad y sequedad) que provoca la mezcla de materiales a través de las grietas ocasionadas y, por tanto, la desaparición de los horizontes arqueológicos (Wood y Johnson, 1978).

Por su parte, observando la distribución por tamaños de los restos líticos, el escaso grado de alteración exhibido por los materiales arqueológicos documentados y su disposición espacial horizontal en concentraciones de gran densidad más o menos circulares, claramente diferentes de las acumulaciones alargadas provocadas por corrientes de agua documentadas por Schick (1986), yuxtaponían a su vez a otras áreas con un número muy bajo de vestigios, los autores descartaron por completo la acción hidráulica como responsable de la mencionada asociación. Dicha afirmación venía respaldada, además, por el hallazgo de varias Unidades de Materia Prima y remontajes (cantidad que no aparece especificada en el texto), cuya dispersión espacial era compatible, según los autores de este trabajo, con la de un sitio en el que se ha estado tallando. Sin embargo, en la publicación tan sólo se mostraba una proyección vertical de la distribución de las diferentes Unidades de Materia Prima para que ésta pudiera ser comparada con la localización de los restos de elefante (Figura 2.22). Lamentablemente, no se incluía una planta con las conexiones encontradas ni se presentaban fotos/dibujos de las piezas líticas relacionadas.

En suma, los datos sedimentológicos, tafonómicos y espaciales llevaron a Delagnes y otros a concluir que la ocupación humana documentada en Nadung’a 4 era contemporánea a la deposición de los huesos de elefante, interpretando todo el material arqueológico como producto de un único episodio de ocupación. No toda la industria lítica desenterrada, sin embargo, estaría relacionada directamente con el procesado del elefante, característica que definitivamente le apartaba del modelo clásico de los butchering sites o yacimientos tipo B. Según los autores, una parte muy importante de la misma habría sido probablemente empleada en actividades tales como la transformación de maderas o plantas destinadas al tratamiento y/o el consumo de la carne o la manufactura de utensilios para el transporte de la comida a otro emplazamiento.

Figura 2.22. Proyección vertical de la distribución de las diferentes Unidades de Materia Prima (imagen superior) y de los restos de elefante (imagen inferior) (extraído de Delagnes et al., 2006: 455).
A vueltas con los procesos de formación de los yacimientos de los Lechos I y II de Olduvai

Tras aquel toque de atención de Binford (1981a) sobre la necesidad de realizar un examen tafonómico de esas supuestas asociaciones espaciales de restos líticos y óseos halladas en un mismo yacimiento a partir de las cuales se han construido los diferentes modelos sobre la conducta humana, durante décadas se lleva debatiendo en el seno de la comunidad científica sobre esta trascendental cuestión de los procesos de formación de los yacimientos de los lechos I y II de la Garganta de Olduvai. Hasta hace unos años, sin embargo, la discusión se había centrado en el respectivo papel que humanos y carnívoros habrían desempeñado en la formación de los conjuntos (Binford, 1988; Blumenschine, 1995; Bunn y Kroll, 1986; Capaldo, 1997; Domínguez-Rodrigo et al., 2007; entre otros), dejando un poco de lado la importancia que otros factores naturales, especialmente la acción hidráulica, pudieron haber tenido en dicho proceso. Apoyándose en el frecuente buen estado de conservación del material arqueológico y en los contextos sedimentarios en que éste fue recuperado, mayoritariamente arcillas y limos, los investigadores han venido defendiendo para estos enclaves la condición de escasamente alterados por procesos post-deposicionales.

La publicación en 2011 de un estudio en el que se afirmaba, a partir del análisis de los dibujos de Leakey (1971) mediante técnicas SIG y métodos estadísticos, la existencia de un patrón de orientaciones preferentes muy acusado y similar en varios de los yacimientos del Lecho I de Olduvai, suscitó de nuevo el debate en torno a la formación de los primeros enclaves arqueológicos (Benito-Calvo y de la Torre, 2011). Para los autores, dicho resultado supondría la clara evidencia de que los enclaves arqueológicos incluidos en el citado trabajo son el producto de procesos geológicos y no el resultado principal de la acción de los humanos/carnívoros. En otras palabras, los yacimientos estudiados, tradicionalmente considerados como acumulaciones biológicas originales apenas transformadas por procesos naturales, no serían más que acumulaciones de elementos aportados y redepositados posiblemente por la acción del agua. De ser cierta esta conclusión, los estudios espaciales llevados a cabo para los yacimientos del Lecho I de Olduvai no serían, ni mucho menos, indicadores del comportamiento humano.

El artículo de Benito-Calvo y de la Torre fue, sin embargo, duramente criticado (Domínguez-Rodrigo et al., 2012a), tanto por cuestiones metodológicas como terminológicas. Con el objetivo de contrastar los resultados publicados en el citado trabajo, Domínguez-Rodrigo y otros llevaron a cabo un análisis de orientaciones realizado a partir de los datos recogidos, con ayuda de brújula y clinómetro, durante sus excavaciones llevadas a cabo en FLK North. Un rápido vistazo a los gráficos de rosa de los vientos proporcionados en sus artículos resultaba más que suficiente para advertir la existencia de enormes discrepancias entre los patrones de orientaciones propuestos para un mismo yacimiento (Figura 2.23). Los datos tomados directamente en campo por Domínguez y otros (2012a) reflejan un patrón de orientaciones isotrópico, un resultado por completo opuesto al obtenido por Benito-Calvo y de la Torre (2011) a partir del análisis de los dibujos de Leakey (1971) mediante técnicas SIG.

5 El trabajo de Potts (1988) y, sobre todo, el de Pettaglia y Potts (1994), sendos intentos de evaluar de una manera pormenorizada, aunque teniendo como base los datos publicados por Leakey en su monografía, en qué medida las dinámicas postdeposicionales habrían afectado a los yacimientos de Olduvai, constituyen las únicas excepciones a este respecto.
Figura 2.23. Comparativa de los resultados de los análisis de orientaciones realizados por Benito-Calvo y de la Torre (2011) (diagramas de rosas en blanco y negro de la derecha) y por Domínguez-Rodrigo et al. (2012a) (resto de la figura) (modificada de Domínguez-Rodrigo et al., 2012a: 2119–2120).

Los autores de la réplica achacaron esta equivocada conclusión a dos problemas metodológicos de base presentes en dicho trabajo. Por un lado, las plantas publicadas en la monografía de Leakey de los Lechos I y II (1971), sin duda muy valiosas e informativas a la hora de tratar otros muchos asuntos, no eran lo suficientemente precisas, tal y como se pudo demostrar, como para constituir la fuente de datos a partir de la cual efectuar un estudio sobre los patrones de orientación de los enclaves arqueológicos de Olduvai (2012: 2120).

Mediante la comparación de una foto de detalle realizada durante la intervención en FLK 22 y el correspondiente dibujo en planta de esa misma pequeña porción de yacimiento, Domínguez y otros (2012a) advirtieron la falta de similitud entre ambas imágenes, certificando la existencia de claras distorsiones en las formas y proporciones de los restos arqueológicos, así como en sus ubicaciones y orientaciones (Figura 2.24).

Figura 2.24. Comparación de una foto de detalle de una pequeña porción del suelo de FLK 22 tomada antes de proceder al levantamiento de los restos arqueológicos y la misma zona dibujada por Leakey (1971) (modificada de Domínguez-Rodrigo et al., 2012a: 2121).
Determinar cuál es el eje mayor de los objetos que debe ser tomado a fin de realizar un cálculo de las orientaciones fue la segunda de las importantes objeciones metodológicas hechas al trabajo de Benito-Calvo y de la Torre (2011). Mientras que éstos habían calculado las orientaciones a partir de la longitud máxima de la pieza, Domínguez y otros (2012a: 2118) consideraron, en función de lo observado experimentalmente, que lo correcto es obtener dicha medida a partir del eje longitudinal de los objetos arqueológicos. De lo contrario, tal y como constataban de una manera gráfica, la orientación de dos objetos situados de forma paralela y que presentan idénticos ejes longitudinales será por completo falseada (Figura 2.25).

Figura 2.25. Contraste entre el eje mayor (líneas negras) utilizado por Benito-Calvo y de la Torre (2011) y el empleado por Domínguez et al. (2012a) (flechas azules) para estimar la orientación de los restos arqueológicos (extraído de Domínguez et al., 2012a: 2118).

Por cuanto al tema de la nomenclatura se refiere, es muy común encontrarse en las publicaciones con términos tales como in situ en contraposición a derivado, depósito en posición primaria en contraposición a depósito en posición secundaria o yacimiento autóctono en contraposición a yacimiento alóctono. Todos ellos son habitualmente empleados de manera indistinta, a pesar de no tener exactamente el mismo significado. Así, en el susodicho trabajo se defendía que el patrón de orientaciones preferentes reconocido en los yacimientos del Lecho I de Olduvai no es propio de acumulaciones in situ, ergo, se trataría de materiales arqueológicos derivados (Benito-Calvo y de la Torre, 2011: 58). Domínguez-Rodrigo y otros consideraban, sin embargo, que hasta que no se llegue a un consenso acerca de cuántos milímetros o centímetros deben ser trasladados los restos arqueológicos hallados en un yacimiento para que éste sea calificado de derivado o en posición secundaria, es preferible no utilizar dicha etiqueta (2012a: 2117), apelando a ella exclusivamente cuando estemos hablando de contextos que implican el transporte de los materiales desde su lugar de enterramiento original hasta otro bien diferente. Por su parte, los epítetos de “in situ” o “en posición primaria” suelen implicar esa imagen idealizada de los yacimientos como pequeñas Pompeyas que constituyen el reflejo exacto de comportamientos fosilizados, una posibilidad del todo excepcional ya que prácticamente el cien por cien de los enclaves arqueológicos conocidos muestran algún grado de alteración post-deposicional, incluidos por supuesto los que aquí nos conciernen.

De ahí que Domínguez y otros prefirieran recurrir a los términos de “autóctono” y “alóctono”, procedentes de los campos de la Paleontología y la Tafonomía (Fernández-López, 2000), los cuales hacen referencia a la ubicación original de deposición de los materiales y no a las orientaciones que éstos presentan. Así, la anisotropía (orientaciones preferentes) no tendría por qué entrañar transporte, siendo un rasgo completamente independiente del carácter autóctono o alóctono de los enclaves arqueológicos analizados. Teniendo en cuenta todo lo dicho hasta ahora, y en vista de los
resultados obtenidos, los autores de este trabajo definían a los yacimientos del Lecho I de Olduvai como concentraciones de materiales autóctonos que habrían experimentado cierto grado de reordenamiento espacial a causa de agentes naturales (2012a: 2126). Con todo, insistían en la necesidad de emplear otras variables, más allá de las orientaciones, para reconstruir la historia tafonómica de un depósito arqueológico y determinar su grado de integridad.

La discusión sobre los procesos de formación de los yacimientos de Olduvai, y, en concreto, en torno a la posible existencia de patrones de orientaciones preferentes en dichos enclaves, se extendió todavía algunos años. Sin querer alargarnos mucho más en este punto, a continuación se enumera el resto de publicaciones en las que dicha cuestión fue tratada. Por un lado, se amplió la muestra estudiada, incluyendo a varios de los yacimientos del Lecho II (de la Torre y Benito-Calvo, 2013; Domínguez-Rodrigo et al., 2014a). El primero de los trabajos citados se realizó, nuevamente, a partir del análisis del material gráfico publicado por Leakey mediante técnicas SIG, aunque aplicando esta vez criterios geométricos alternativos para definir el eje de orientación de las piezas (intentando acallar así las críticas recibidas por su anterior artículo), mientras que para el segundo se utilizaron los datos de orientaciones recogidos directamente en campo durante la intervención de TK. Las conclusiones de ambos continuaron siendo totalmente dispares. Se llevaron a cabo, asimismo, estudios neotafonómicos (Cobo et al., 2014) y experimentales (Domínguez-Rodrigo et al., 2014a) al respecto con el objetivo de establecer modelos actualistas que sirvieran de referencia a la hora de analizar el registro arqueológico. Por último, de la Torre y otros pretendieron complementar sus anteriores resultados sobre el grado de integridad de los yacimientos de Olduvai basados, como ya hemos comentado, en el análisis de orientaciones con un estudio estadístico sobre la distribución por tamaños de los artefactos líticos excavados por Leakey en varios enclaves del Lecho I y II (de la Torre et al., 2018a). Los patrones obtenidos fueron comparados con colecciones de talla experimentales, arrojando claras diferencias. En vista de la notable escasez de restos líticos de pequeñas dimensiones, un hecho que no se ajustaba con un patrón de talla in situ, los autores del estudio se reafirmaron en su conclusión de que los conjuntos arqueológicos analizados habrían sido significativamente alterados por procesos post-deposicionales.

Con todo, los últimos resultados publicados por los diversos equipos que actualmente están trabajando en la Garganta de Olduvai a raíz de sus respectivas intervenciones arqueológicas en el célebre complejo paleoantropológico, derivados por tanto de datos obtenidos de primera mano utilizando las técnicas más recientes (Diez-Martín et al., 2014, 2017; Fraile-Márquez et al. 2022; Organista et al., 2017; de la Torre y Wehr, 2018; de la Torre et al., 2018), coinciden en sostener el carácter autóctono de las acumulaciones de material registradas en los yacimientos del Lecho I y II, depósitos que, sin embargo, habrían experimentado cierto grado de reordenamiento espacial a causa de agentes naturales. Dicha conclusión nos empuja a dejar de lado esas interpretaciones globales sobre la incidencia que los procesos post-deposicionales tuvieron en los enclaves arqueológicos de Olduvai y a analizar escrupulosamente caso por caso.
Tras repasar los más destacados trabajos dedicados a estudiar el componente espacial a nivel micro en contextos de la Early Stone Age africana realizados a lo largo de estas cinco décadas de historia de los estudios intrasite podemos concluir el presente apartado afirmando que hasta la fecha las tendencias teórico-metodológicas más actuales dentro de esta disciplina, las cuales abogan por que el análisis de la dimensión temporal de un yacimiento sea consustancial a su análisis espacial, rara vez han sido aplicadas. En otras palabras, apenas se ha alcanzado esa tercera fase en la evolución de la arqueología microespacial de la que hablábamos al principio de este capítulo, la conocida como arqueología de alta resolución temporal, que lleva vigente desde principios del presente siglo en muchas de las investigaciones desarrolladas en yacimientos de Europa y el Próximo Oriente. Sin duda, el frecuente impacto de los procesos post-deposicionales (Schick 1987) sumado a la falta de resolución temporal (Stern 1994) y la condición de palimpsesto de prácticamente todos los enclaves africanos de mayor antigüedad son factores que han dificultado significativamente el progreso de los estudios microespaciales en la arqueología de los orígenes humanos. Los trabajos más recientemente publicados dedicados al estudio del componente espacial de las acumulaciones antropogénicas tienden ya a desenfocarse como parte de un trabajo de investigación mucho más amplio, incluyendo con frecuencia completos y exhaustivos análisis tafonómicos, búsqueda de remontajes, mapas temáticos y de densidad y análisis geoestadísticos de las asociaciones horizontales (Diez-Martín et al. 2021; Méndez-Quintas et al. 2019; Panera et al. 2019). Sin embargo, el empleo del método arqueoestratigráfico como herramienta para disecionar palimpsestos arqueológicos continúa siendo infrecuente en este tipo de estudios (Diez-Martín et al. 2014, 2017; Fraile Márquez et al. 2022; Harichane 2008; Sahnouni et al. 2002, 2017). El camino, en definitiva, es todavía largo y en gran parte está por recorrer.
3. METODOLOGÍA

Con el propósito de profundizar en todas aquellas cuestiones de índole metodológica que no han podido ser lo suficientemente desarrolladas en las publicaciones compendiadas en esta tesis doctoral, a continuación se expone de forma detallada el marco analítico en el que se ha basado dicha investigación, el cual ha supuesto la combinación de una serie de herramientas metodológicas complementarias.

3.1. TRABAJO DE CAMPO

La validez de cualquier tipo de análisis científico va ligada a la calidad de los datos con los que se trabaja. Esta afirmación se convierte casi en dogma para el caso concreto que aquí tratamos: los estudios microespaciales. Puesto que los datos sobre los que se sustenta este tipo de trabajos son resultado directo de una intervención arqueológica, contemplamos la recuperación y documentación del registro arqueológico como una parcela más (y de gran transcendencia) dentro del proceso de investigación, la cual va unida irremediablemente a la interpretación del mismo (Dibble et al., 2005; Mora et al., 2014; de la Torre et al., 2014). Tal consideración nos ha llevado pues a dedicar un breve apartado a presentar el proceso de excavación y registro seguido por nuestro equipo en el complejo arqueológico de SHK.

Proceso de excavación

Nuestra metodología de campo se ha basado en la excavación en extensión de los distintos estratos geológicos mediante sucesivos levantamientos, los cuales han seguido en todo momento la geometría proporcionada por el registro arqueológico, evitando así excavar por tallas o capas arbitrarias. La elección de las herramientas a utilizar ha dependido fundamentalmente de la fase del proceso de excavación en la que nos encontrábamos. Para retirar los sedimentos estériles, los cuales podían llegar a tener una potencia de varios metros, que recubrían tanto en SHK Principal como en SHK Extensión los paquetes arqueológicos, se han usado picos y palañas. Una vez alcanzados los niveles antrópicos, éstos han sido sustituidos, en función de la densidad de material y de la fragilidad del mismo, por piquetas, paluetes, destornilladores, palillos y espátulas de madera, así como cepillos y brochas de diversos tamaños y recogedores. Por norma general, el sedimento extraído no ha sido cribado, un hecho que, sin embargo, no ha impedido la recuperación de hasta los restos de menor tamaño. Cada vez que una superficie con materiales era expuesta íntegramente se iniciaba un exhaustivo y minucioso protocolo de registro gráfico y espacial de toda la información arqueológica.
Documentación gráfica: dibujo de campo y fotogrametría

La técnica de documentación gráfica usada por nuestro equipo hasta el año 2012 ha sido el tradicional dibujo de campo. Establecidos en la cata abierta unos puntos de referencia, señalados mediante clavos e inamovibles durante toda la campaña, se iban situando, con la ayuda de cintas métricas y un flexómetro, cada uno de los restos hallados y trazando de forma manual, en papel milimetrado y a escala 1:10, un boceto realista de su contorno y orientación.

Con el principal objetivo de mejorar el registro y “poder disponer así de una radiografía lo más precisa posible de cómo han operado en el campo los arqueólogos” (Ruiz Zapatero, 2013: 43), en la campaña de 2013 decidimos sustituir esta forma de proceder por un nuevo sistema de documentación del proceso de excavación: la fotogrametría. Dicha técnica nos ha permitido obtener modelos tridimensionales georreferenciados de las superficies excavadas y las secuencias estratigráficas (de la Torre et al., 2014; De Reu et al., 2014), ganando en rapidez, precisión y fiabilidad respecto al dibujo tradicional. De esta manera, hemos reproducido lo más fielmente posible la forma y disposición original de los hallazgos arqueológicos, minimizando al máximo la frecuente acumulación de errores que generaba el método anterior. Para la adquisición de las imágenes se ha utilizado una cámara réflex Nikon D3200 y objetivo AF-SDX 18-55 mm, así como un trípode cuando ha sido necesario, mientras que el postprocesado de las fotografías se ha llevado a cabo con el software comercial Agisoft PhotoScan (professional edition version 1.2.3) (Duque y de Francisco, 2015) (Figura 3.1).

Figura 3.1. Procesado de las fotografías tomadas en campo para la obtención de los modelos tridimensionales: A) Alineación de las imágenes y creación de la nube de puntos inicial; B) Creación de la nube de puntos densa; C) Creación de la malla; y D) Creación de la textura (extraída de Duque et al., 2018: 106).
Levantamiento topográfico

La totalidad del material arqueológico localizado in situ, independientemente de su tamaño, ha sido posicionado tridimensionalmente dentro de un sistema de coordenadas relativo (únicamente los escasos restos de cuya procedencia dudábamos eran introducidos en bolsa de nivel). Además de posicionar los vestigios hallados durante la excavación, también se ha registrado la localización espacial de otros datos de interés como tomas de muestras, contactos entre niveles geológicos en un perfil estratigráfico o topografías.

Con una estación total TOPCON-GPT3105N se tomaba un punto único en el centro de cada pieza, el cual era medido en la base de la misma. Simultáneamente, y sobre las sucesivas ortofotos impresas generadas a partir del modelo tridimensional creado (o en su día sobre los dibujos de campo), se delimitaba el perímetro de las piezas y se anotaba el correspondiente número de referencia asignado por la estación total a cada una de ellas. Asimismo, y mediante el empleo de una brújula y un clinómetro, se recogieron los datos relativos a la orientación y el buzamiento de aquellos restos que presentaban un eje mayor. Por último, cada pieza coordenada era debidamente etiquetada y guardada de manera individualizada en una bolsa de autocierre.

3.2. Gestión de los datos espaciales recopilados durante la excavación: creación del soporte SIG

Por cada uno de los yacimientos incluidos en este trabajo se ha creado un soporte SIG capaz de integrar, visualizar y analizar la totalidad de la información gráfica, espacial y alfanumérica disponible (Wheatley y Gillings 2002; Conolly y Lake 2009). Para realizar dicha tarea se ha escogido ESRI ArcGis® 10.1, software líder en el sector de los Sistemas de Información Geográfica. A continuación se detalla el procedimiento seguido.

Georreferenciación de los dibujos de campo/ortofotos

El primer paso en la construcción de nuestros soportes SIG ha sido la georreferenciación de los dibujos de campo/ortofotos generados durante las sucesivas campañas efectuadas en cada uno de los yacimientos. El objetivo principal de esta herramienta es ubicar una imagen raster que carece de información espacial dentro de un sistema de coordenadas específico para poder así usarla posteriormente como plantilla sobre la que ir dibujando el material arqueológico (Mancebo et al., 2008; Olav, 2016).

Para cumplir con este cometido hemos tenido, en primer lugar, que escanear los dibujos de campo/ortofotos. Se necesita, asimismo, una capa de información geográfica que contenga el sistema de coordenadas deseado y que nos sirva como referencia espacial. En nuestro caso hemos utilizado como base la información espacial contenida en la capa de puntos topográficos recogidos por la estación total en las tareas de campo. Para ello hemos precisado convertir previamente el fichero original.txt, que recoge los datos de sigla, coordenadas XYZ y categoría arqueológica a la que pertenecen los restos arqueológicos, a un formato de tabla .dbf compatible con ArcGIS.

Una vez añadidas en ArcMap la imagen raster que queremos georreferenciar y la capa de datos con información espacial sobre la que nos vamos a basar hemos introducido al menos cuatro puntos de control. Cada uno de ellos conforma un enlace entre ambos archivos, es decir, un punto en común donde las coordenadas pueden ser identificadas. Para obtener un resultado lo más preciso posible, estos puntos han de ser
distribuidos de forma ordenada por el conjunto de la imagen, evitando siempre que se pueda su concentración sobre una misma zona. Por último, y a partir de los puntos de control asignados, hemos procedido a rectificar la imagen a las nuevas coordenadas espaciales. Con ello se está en condiciones de iniciar la tarea de vectorización de los dibujos arqueológicos/ortofotos.

Digitalización de los dibujos de campo/ortofotos

El proceso de digitalización llevado a cabo ha consistido en la creación de nuevas entidades a partir de una imagen georreferenciada sobre la que hemos ido delineando cada uno de los polígonos reproducidos en campo. ArcMap incluye sofisticadas herramientas de edición, herederas de las aplicaciones de diseño asistido por ordenador (CAD), que nos permiten crear y editar las bases de datos espaciales sin mayor necesidad de equipo que el propio ordenador y un dispositivo señalador como el ratón (eludiendo, por tanto, el uso de tableta digitalizadora) (Mancebo et al., 2008, Olaya, 2016). Esta laboriosa tarea ha supuesto una considerable inversión de tiempo, ya que el número de entidades a vectorizar era muy elevado.

Dicho procedimiento ha comenzado con la creación de una nueva capa de polígonos, a la que hemos añadido un campo donde indicar la sigla de cada una de las entidades que hemos ido creando. A continuación se ha iniciado una sesión de edición y hemos empezado a dibujar, como si de un calcio se tratase, cada uno de los elementos que componen el proyecto, indicando además en todos ellos el número identificativo. Seguidamente se ha posicionado el centroide de los polígonos en su punto XY exacto, resolviendo así cualquier ligero error relacionado con la divergencia entre los polígonos de los dibujos y los datos topográficos recogidos por la estación total.

Concluida la labor de digitalización, disponemos por un lado de un fichero de polígonos, el cual incluye la información gráfica y el número de sigla de cada entidad y, por otro, de una capa de puntos que contiene los datos recogidos por la estación total. Debemos, por tanto, efectuar una unión entre tablas a través del campo común “Sigla” para que, de esta manera, los atributos de la capa de puntos (coordenadas XYZ y categoría arqueológica de los restos –lítica, hueso o diente–) sean añadidos a la información gráfica que hemos creado mediante el proceso de vectorización. Por último, y para que estos atributos se agreguen definitivamente a la capa de destino, hemos tenido que exportar los datos y crear un nuevo *shapefile* (Figura 3.2).

Integración de la información alfanumérica

El resultado gráfico final del soporte SIG que estamos construyendo es de gran calidad y precisión. Sin embargo, las posibilidades de visualización no constituyen, ni mucho menos, el propósito principal de todo el trabajo realizado hasta este punto. El verdadero potencial de todo soporte SIG es su capacidad para relacionar la situación espacial de aquellos elementos que lo componen con sus rasgos diagnósticos. Los datos son, por tanto, el elemento clave de un SIG. Sin ellos éste carece por completo de sentido y utilidad.

De esta manera, si en la fase anterior ya incorporamos la información geográfica (en forma de coordenadas espaciales) del material arqueológico, ahora es el momento de hacer lo mismo con la información alfanumérica. La integración del conjunto de datos, tanto de naturaleza cuantitativa como cualitativa, obtenidos del análisis
3.3. ARQUEOESTRATIGRAFÍA

La arqueoestratigrafía, herramienta metodológica que se interesa por la dimensión vertical de la secuencia arqueológica, tiene como principal finalidad la definición y delimitación de conjuntos de materiales que presentan un mayor grado de resolución espacio-temporal dentro del depósito estudiado. Partiendo siempre de las divisiones estratigráficas y sedimentológicas realizadas durante las labores de campo por el equipo de geólogos, el análisis arqueoestratigrá-
fico de un depósito permite, a través de la identi-
ficación de estratos estéreles o hiatos sedimenta-
rios imperceptibles durante la fase de excava-
ción, aislar conjuntos de restos arqueológicos
que presentan una mayor sincronicidad (Canals,
1993; Canals et al., 2003; Harichane, 2008; Macha-
do y Pérez, 2016; Mayor et al. 2020; Obregón, 2012;
Sánchez-Romero et al. 2017; Sañudo et al., 2012,
2016). El método arqueoestratigráfico, desarro-
llado por Canals (1993), se compone de tres fases
diferentes que detallamos a continuación: la ela-
boración de las proyecciones, la lectura de las
mismas y la comprobación de los resultados.

Elaboración de las proyecciones

El punto de partida del estudio arqueoestrati-
gráfico consiste en la elaboración de una red de
perfiles o secciones que cubra la totalidad de la
superficie excavada. Se entiende por perfil ar-
queoestratigráfico el plano de proyección de un
espacio tridimensional sobre el que se plasman
los puntos que representan a los materiales ar-
queológicos coordenados contenidos en el volu-
men escogido (Canals, 1993; Canals y Galobart,
2003; Obregón, 2012). El grosor de la banda de
sedimento proyectado en cada sección deberá ser
determinado en función de dos factores:

- La densidad de restos, ya que tanto un número
 insuficiente como desmesurado de registros
 obstaculiza la correcta lectura de los perfiles
 arqueoestratigráficos. En el caso de que en un
 mismo paquete sedimentario se sucedan unida-
 des con abundante y escaso material se hace
 conveniente trabajar de manera simultánea con
 series de proyecciones de grosor diferentes.

- La pendiente que presentan los niveles, varia-
 ble que puede llegar a convertirse en un impor-
tante elemento de distorsión de los resultados si
 estamos manejando un grosor de sección excesi-

vo. En dicha circunstancia la imagen proyectada
de los objetos puede no equivaler a la realidad
estratigráfica, dividiendo por error unidades ar-
queoestratigráficas o transfiriendo restos de una
unidad a otra. Este efecto es conocido como
transfer geométrico de proyección (Canals, 1993).

Dicho esto, el intervalo más adecuado de las
proyecciones con el que trabajar, y con ello la
cantidad de perfiles arqueoestratigráficos a ela-
boration, depende por tanto de las características
intrínsecas del depósito arqueológico que este-
mos estudiando, pudiendo diferir de manera con-
siderable de uno a otro. Con todo, lo más fre-
cuente es que el grosor de las secciones oscile
entre los 10 y los 50 centímetros (Figura 3.3).

Para llevar a cabo la elaboración de los per-
files ha sido necesario recurrir al listado de pun-
tos topográficos recogido con ayuda de la esta-
ción total en cada uno de los yacimientos inter-
venidos, el cual incluye los datos de sigla, coor-
denadas XYZ y categoría arqueológica a la que
pertenecen los restos. Una vez definida la escala
da a la que vamos a trabajar, hemos ido seleccion-
nando del fichero original aquellos registros
comprendidos en las bandas del grosor elegido,
tanto en sección longitudinal como en transver-
sal, y creando nuevos archivos .xls.

A continuación, vamos abriendo uno a uno
en ArcGis, programa utilizado para realizar las
proyecciones, y a través de la herramienta “Mo-
strar Datos XY”, creamos sucesivas capa de pun-
tos a partir de esos datos tabulares que contie-
nen localizaciones geográficas en forma de coor-
denadas XY. Cada uno de estos *shapefile* que
acabamos de generar contiene los datos necesa-
rios para elaborar el correspondiente perfil ar-
queoestratigráfico.
Para visualizar de manera gráfica dichos datos se ha recurrido al asistente para la creación de gráficos que incluye este software. En concreto, dentro de la infinidad de tipos de gráfico que se nos ofrece y en función de las variables a representar, hemos utilizado los diagramas de dispersión. En ellos, los datos correspondientes a la cota de profundidad (coordenada Z) aparecen en el eje de ordenadas. Éstos se combinan, en el eje de abscisas, con la coordenada X (perfiles transversales) o la coordenada Y (perfiles longitudinales) respectivamente. Establecidos los parámetros y generado el gráfico, las posibilidades de edición del mismo son múltiples, pudiendo retocar la mayoría de los aspectos visuales: agregar un título al gráfico, etiquetar ejes, cambiar el tamaño y el color de los marcadores de gráfico o modificar la leyenda. Finalizada la proyección, guardamos el gráfico y lo exportamos en formato .jpg.

El procedimiento descrito ha de ser repetido con cada uno de los archivos .xls generados a partir del listado de puntos topográficos. Una vez elaborados e impresos todos los perfiles arqueoestratigráficos estamos en condiciones de proceder a su lectura.

Figura 3.3. Doble red de proyecciones aplicada al estudio arqueoestratigráfico de SHK Principal (escala de 50 centímetros en línea continua y de 25 centímetros en línea discontinua).
Lectura de los perfiles

El siguiente paso del estudio arqueoestratigráfico consiste en ir examinando una a una las secciones elaboradas y trazando en todas ellas las líneas que delimitan los sucesivos conjuntos de materiales. Tres son los criterios generales que se han tenido en cuenta a la hora de llevar a cabo un correcto análisis de las mismas: los grupos de densidad de restos arqueológicos, la pendiente y paleotopografía que presentan y los niveles estériles o vacíos verticales (Canals, 1993; Canals et al., 2003; Obregón, 2012).

Estos últimos representan lapsos temporales dentro del proceso de sedimentación durante los cuales no se produce aporte ninguno de material arqueológico. Esta inexistencia de restos pone de manifiesto una ruptura en la continuidad vertical de la ocupación, relacionada con la ausencia de frecuentación del yacimiento por parte de los grupos humanos, que nos permite establecer un límite nítido entre dos niveles y así aislar conjuntos de objetos que presentan una mayor sincronicidad. El principal requisito para aceptar la validez de un vacío es que, en el momento de su formación, éste se extienda por toda la superficie analizada, evitando así que pueda ser confundido con dinámicas locales de acumulación de sedimento estéril. No obstante, ello no implica que, con posterioridad, el nivel estéril, que en origen era continuo, pueda verse alterado e interrumpido por distintos procesos postdeposicionales (presión de los sedimentos, trampling o bioturbación, entre otros) que provoquen el desplazamiento vertical de elementos arqueológicos procedentes de un nivel y su percolación en el vacío subsiguiente. La consistencia del nivel estéril así como su regularidad a lo largo del yacimiento son otros factores importantes a tener en cuenta a la hora de evaluar su calidad. El grosor del vacío, sin embargo, no proporciona información alguna sobre la duración del período de abandono del lugar, puesto que éste depende únicamente del ritmo y características ambientales registradas durante el proceso de sedimentación. Como es de sobra sabido, éste no siempre es constante (puede acelerarse o detenerse) ni lineal (se van alterando episodios de erosión y resedimentación). Así, un amplio vacío no tiene por qué corresponderse necesariamente con un periodo de formación más prolongado que otro nivel estéril de menor entidad (Obregón, 2012: 147).

ArcGis constituye un considerable apoyo en esta segunda fase del estudio arqueoestratigráfico, ya que nos permite identificar cada uno de los puntos que aparecen en la proyección con sólo seleccionarlo en pantalla. Esta herramienta es de gran utilidad a la hora de afrontar el análisis de aquellas zonas especialmente complicadas puesto que no da cabida a ningún tipo de error. Garantiza, por un lado, la correcta asignación de los restos arqueológicos, tanto en la proyección longitudinal como en la transversal, a una misma unidad arqueoestratigráfica, al mismo tiempo que permite dibujar con absoluta precisión las líneas que separan niveles y vacíos (Figura 3.4).

Comprobación de los resultados

Como señala Obregón (2012: 170), la lectura de un perfil es una tarea que empieza siendo por completo subjetiva. El investigador traza, a su juicio, unas líneas con la intención de unir conjuntos de materiales arqueológicos y aislarlos, a su vez, de los espacios vacíos. Es por ello por lo que el propio método ha desarrollado su particular mecanismo para verificar, de manera objetiva, cualquier interpretación arqueoestratigráfica que se plantee. Se trata de la técnica conocida como bucle de control, que consiste en el cruce siste-
Figura 3.4. Ejemplos de lectura de proyecciones de SHK Principal.
mático de los perfiles longitudinales y transversales en su punto de intersección (Canals, 1993; Canals et al., 2003; Obregón, 2012) (Figura 3.5). Éste supone, por tanto, el último paso de cualquier estudio arqueoestratigráfico. Gracias a él, se comprueba que tanto los niveles como los hiatos identificados coinciden (Fig 3.5a), evitando posibles distorsiones que pueden traer consigo factores como la pendiente o la presencia de escasos restos. Cuando, por el contrario, las unidades arqueoestratigráficas identificadas no se corresponden altimétricamente entre sí (Fig 3.5b), aparecen fusionadas (Fig 3.5c) o subdivididas (Fig 3.5d), debe repetirse el paso anterior y marcar una vez más las líneas que delimitan los conjuntos de materiales.

![Diagrama de perfiles arqueoestratigráficos](image)

Figura 3.5. Cruce sistemático de los perfiles longitudinales y transversales en su punto de intersección para verificar que tanto los niveles arqueoestratigráficos como los vacíos identificados coinciden (modificada de Canals et al., 2003: 490).

3.4. TAFONOMÍA

Son muchos los estudios que han subrayado la necesidad de determinar la integridad de un yacimiento como paso previo a la puesta en práctica de cualquier tipo de análisis intra-site (Bertran et al., 2019; Dibble et al., 1997; Enloe, 2006; Giusti y Arzarello, 2016; Mallinsky-Butler et al., 2011; Martínez-Moreno et al., 2016; Petraglia y Potts, 1994; de la Torre y Wehr, 2018). Conocer los procesos de formación del conjunto arqueológico y evaluar en qué medida las dinámicas postdeposicionales afectan a las asociaciones de artefactos y los patrones generados por la actividad antrópica son claves a la hora de realizar inferencias de orden espacio/temporal.

De entre los muchos procesos naturales que pueden intervenir en la configuración de un yacimiento, la acción hidráulica es sin duda el agente de mayor trascendencia, sobre todo en aquellos depósitos correspondientes a los momentos más antiguos del Paleolítico. Esa lógica predilección por ocupar el territorio siguiendo los cuerpos de agua existentes condiciona en gran medida tanto la formación como la posterior alteración del registro arqueológico (Petraglia y Potts, 1994; Schick, 1986; de la Torre, 2001). Un buen ejemplo de ello es precisamente el caso que nos ocupa: la cuenca de Olduvaí y, en concreto, el complejo arqueológico de SHK.

Más allá de los criterios puramente geológicos y sedimentológicos, la colección arqueológica en sí misma puede ofrecernos muchas pistas a la hora de reconstruir la historia tafonómica de un yacimiento y determinar su grado de integridad. De entre las diversas variables potencialmente indicativas de flujos de agua que suelen ser tenidas en cuenta, en este trabajo hemos optado por examinar el material arqueológico en función de
los patrones de orientación, los rodamientos y la distribución por tamaños y pesos\(^2\). Ninguno de estos criterios contemplado por separado, sin embargo, nos va a ofrecer una imagen completa y precisa de los procesos de formación del conjunto arqueológico. Ésta solo podrá ser vislumbrada a partir de la combinación de los resultados obtenidos en los diferentes análisis (Petraglia y Potts, 1994).

Análisis de orientaciones

El análisis de orientaciones se ha revelado como un procedimiento relativamente sencillo y muy eficaz para conocer las dinámicas de formación de un yacimiento y evaluar el impacto que los distintos procesos post-deposicionales han podido tener en el mismo (Bernatchez, 2010; Bertran y Texier, 1995; García-Moreno *et al.*, 2016; Lenoble y Bertran, 2004; McPherron, 2005; Méndez-Quintas *et al.*, 2019 entre otros). Prueba de ello es, sin ir más lejos, el debate historiográfico que se entabló en la pasada década en torno a la integridad de los yacimientos de Olduvai a raíz de la puesta en marcha de este tipo de análisis por parte de diversos investigadores (Benito-Calvo y de la Torre, 2011; Cobo-Sánchez *et al.*, 2014; Domínguez-Rodrigo *et al.*, 2012a, 2014a; de la Torre y Benito-Calvo, 2013).

Generalmente se asume que la presencia de patrones de orientación preferente en un nivel arqueológico indica cierto grado de alteración del mismo. Dejando de lado otros posibles factores responsables, como el *trampling* o la gravedad -cuando se trata de una pendiente-, dicha reorganización en la disposición original de los restos constituye un buen indicador de corrientes de agua. Los múltiples experimentos llevados a cabo sobre dicha cuestión (Domínguez-Rodrigo *et al.*, 2014a; Isaac, 1967; Shick, 1986; Walter y Trauth, 2013) han demostrado que tanto los artefactos líticos como, sobre todo y de manera especial, los restos óseos que presentan un eje mayor tienden a orientarse, en función de la fuerza de la corriente, bien en sentido transversal o paralelo a la dirección del agua. Sin embargo, el reconocimiento de patrones anisotrópicos en un depósito no implica necesariamente la aloctonía de los materiales. El desarrollo de orientaciones preferenciales puede, por tanto, darse también en colecciones arqueológicas autóctonas. En este caso, los restos permanecen *in situ*, es decir, en el mismo lugar en el que fueron depositados, habiendo experimentado únicamente ciertas reorganizaciones en su disposición original (Domínguez-Rodrigo *et al.*, 2012a). En definitiva, este tipo de análisis permite únicamente identificar la presencia de posibles patrones de orientaciones preferentes en un yacimiento. Para determinar si los materiales han sufrido un transporte complejo o simplemente leves reajustes dentro de su localización inicial se necesita recurrir al resto de variables tafonómicas.

Los datos necesarios para realizar los análisis de orientaciones han sido obtenidos, en nuestro caso, de dos maneras distintas. Por una parte, durante la fase de excavación se midió, con ayuda de brújula y siguiendo en todo momento los criterios recogidos en Domínguez-Rodrigo y García-Pérez (2013), la orientación de aquellos restos arqueológicos que presentaban un eje mayor. Sin embargo, para aquellas campañas arqueológicas en que, bien por falta de tiempo o de personal, la recogida de dicho dato no ha podido realizarse en el propio campo, éste ha sido extraído, *a posteriori* y mediante el empleo de software SIG, de los planos digitalizados. En concreto, hemos utilizado la herramienta de geopro-

\(^2\) Los remontajes, considerados como otra herramienta de gran utilidad para abordar cuestiones de este tipo, serán tratados en su correspondiente apartado.
cesamiento “Geometría mínima de delimitación”, contenida en la Caja de Herramientas “Administración de Datos” de ArcGIS, seleccionando la opción “rectángulo por ancho”. Este método calcula el ángulo de orientación del eje mayor de cada uno de los elementos (Boschian y Saccà, 2010; García-Moreno et al., 2016; Sánchez-Romero et al., 2016; de la Torre y Benito-Calvo, 2013).

Figura 3.6. Representación gráfica de los análisis de orientaciones por unidad arqueoes-tratigráfica y categoría arqueológica realizados en SHK Principal.

Con independencia del método de recogida de datos usado, el análisis de orientaciones se ha llevado a cabo exclusivamente sobre aquellos restos mayores de 20 milímetros y que presentan índices de elongación (longitud/anchura) iguales o superiores a 1,6 (Bertran y Lenoble, 2002). Para plasmar gráficamente en diagramas de área polar los resultados obtenidos se ha empleado el programa Oriana 4, el cual también nos permite calcular el ángulo medio y la longitud del vector medio -éste último valor nos informa sobre el grado de concentración de los datos alrededor de algún punto concreto de la circunferencia. Varía de 0 a 1, indicando los valores cercanos a 1 una orientación agrupada en torno al ángulo medio-. El vector medio permite asimismo el cálculo de otras estadísticas circulares como la concentración (cuanto mayor sea k mayor concentración de datos hay alrededor del ángulo medio), la varianza circular y la desviación circular (Figura 3.6).
Para evaluar la importancia estadística de la orientación media hemos realizado un test de Rayleigh para cada uno de los conjuntos analizados a este respecto. Esta prueba de uniformidad calcula la probabilidad de que la distribución observada siga un patrón uniforme. Si dicha probabilidad es inferior al nivel de significación elegido (valor $p < 0.05$) la hipótesis alternativa, que establece la existencia de una direccionalidad de los datos, puede ser pues aceptada con confianza. Sin embargo, el test de Rayleigh da por hecho que, de mostrar un conjunto una orientación preferencial, ésta es exclusivamente unimodal, resultando por tanto ineficaz a la hora de identificar patrones de orientación bimodales o multimodales. Por ello, y con el objetivo de determinar si pudiera existir más de una orientación preferente, se ha realizado asimismo un test de Kuiper. Cabe señalar finalmente que los conjuntos de menos de 50 especímenes han sido tomados con muchísima precaución en el presente trabajo - puesto que dicho tamaño de población ha sido tradicionalmente considerado como no representativo (Fisher, 1995) - (Tabla 3.1).

Tabla 3.1

<table>
<thead>
<tr>
<th>Número de observaciones</th>
<th>Total restos</th>
<th>%</th>
<th>Longitud del vector medio</th>
<th>Varianza circular</th>
<th>Desviación estándar circular</th>
<th>Test de Rayleigh</th>
<th>Test de Kuiper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fauna</td>
<td>27</td>
<td>37</td>
<td>24.97</td>
<td>147.01</td>
<td>0.074</td>
<td>0.167</td>
<td>0.167</td>
</tr>
<tr>
<td>A1 Lítico</td>
<td>53</td>
<td>101</td>
<td>19.67</td>
<td>106.75</td>
<td>0.647</td>
<td>0.797</td>
<td>0.797</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>141</td>
<td>13.66</td>
<td>70.69</td>
<td>0.388</td>
<td>0.416</td>
<td>0.416</td>
</tr>
<tr>
<td>Fauna</td>
<td>213</td>
<td>365</td>
<td>60.06</td>
<td>111.68</td>
<td>0.265</td>
<td>0.538</td>
<td>0.538</td>
</tr>
<tr>
<td>Lítica total</td>
<td>467</td>
<td>367</td>
<td>38.69</td>
<td>114.51</td>
<td>0.341</td>
<td>0.574</td>
<td>0.574</td>
</tr>
<tr>
<td>Cantos no modificados</td>
<td>51</td>
<td>188</td>
<td>28.73</td>
<td>135.19</td>
<td>0.503</td>
<td>0.515</td>
<td>0.515</td>
</tr>
<tr>
<td>A2 Lítico (excepto cantos)</td>
<td>413</td>
<td>1039</td>
<td>27.69</td>
<td>122.07</td>
<td>0.324</td>
<td>0.461</td>
<td>0.461</td>
</tr>
<tr>
<td>Lítica rodada</td>
<td>59</td>
<td>154</td>
<td>33.18</td>
<td>124.257</td>
<td>0.395</td>
<td>0.546</td>
<td>0.546</td>
</tr>
<tr>
<td>Lítica no rodada</td>
<td>403</td>
<td>892</td>
<td>78.79</td>
<td>174.18</td>
<td>0.342</td>
<td>0.526</td>
<td>0.526</td>
</tr>
<tr>
<td>Total</td>
<td>1142</td>
<td>2401</td>
<td>41.54</td>
<td>171.08</td>
<td>0.353</td>
<td>0.526</td>
<td>0.526</td>
</tr>
<tr>
<td>Fauna</td>
<td>209</td>
<td>285</td>
<td>73.30</td>
<td>77.303</td>
<td>0.119</td>
<td>0.241</td>
<td>0.241</td>
</tr>
<tr>
<td>Lítica</td>
<td>110</td>
<td>301</td>
<td>31.81</td>
<td>83.165</td>
<td>0.283</td>
<td>0.591</td>
<td>0.591</td>
</tr>
<tr>
<td>Cantos no modificados</td>
<td>9</td>
<td>40</td>
<td>25.14</td>
<td>62.265</td>
<td>0.641</td>
<td>0.523</td>
<td>0.523</td>
</tr>
<tr>
<td>B1 Lítica (excepto cantos)</td>
<td>101</td>
<td>263</td>
<td>36.55</td>
<td>68.449</td>
<td>0.3</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Lítica rodada</td>
<td>9</td>
<td>28</td>
<td>28.57</td>
<td>62.441</td>
<td>0.13</td>
<td>0.719</td>
<td>0.719</td>
</tr>
<tr>
<td>Lítica no rodada</td>
<td>102</td>
<td>185</td>
<td>54.58</td>
<td>85.2</td>
<td>0.278</td>
<td>0.579</td>
<td>0.579</td>
</tr>
<tr>
<td>Total</td>
<td>312</td>
<td>460</td>
<td>46.16</td>
<td>100.641</td>
<td>0.115</td>
<td>0.596</td>
<td>0.596</td>
</tr>
<tr>
<td>Fauna</td>
<td>30</td>
<td>52</td>
<td>75.00</td>
<td>99.83</td>
<td>0.08</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>O2 Lítica</td>
<td>23</td>
<td>44</td>
<td>26.37</td>
<td>13.609</td>
<td>0.270</td>
<td>0.678</td>
<td>0.678</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>96</td>
<td>62.65</td>
<td>26.852</td>
<td>0.113</td>
<td>0.227</td>
<td>0.227</td>
</tr>
<tr>
<td>Fauna</td>
<td>6</td>
<td>17</td>
<td>75.00</td>
<td>91.568</td>
<td>0.091</td>
<td>0.184</td>
<td>0.184</td>
</tr>
<tr>
<td>Lítica</td>
<td>50</td>
<td>142</td>
<td>29.05</td>
<td>150.728</td>
<td>0.25</td>
<td>0.576</td>
<td>0.576</td>
</tr>
<tr>
<td>Total</td>
<td>145</td>
<td>265</td>
<td>54.73</td>
<td>134.388</td>
<td>0.08</td>
<td>0.181</td>
<td>0.181</td>
</tr>
</tbody>
</table>

Análisis de rodamientos

El análisis de los rodamientos constituye otra manera de determinar la importancia de posibles corrientes de agua en la formación y alteración de un yacimiento (Bustos-Pérez et al. 2019; Harding et al., 1987; Hosfield, 1999; Petraglia and Potts, 1994; Shackley, 1974; Shea, 1999). En nuestro caso hemos distinguido tres grados de incidencia de este tipo de alteración (R0, R1 y R2). Aquellos artefactos en perfectas condiciones, es decir, que no muestran ningún signo de desgaste ni en superficies ni en aristas, han sido clasificados como frescos (R0). Por su parte, la categoría R1 se corresponde con los restos líticos que presentan un ligero/moderado grado de rodamiento. Finalmente, las piezas severamente rodadas, con aristas fuertemente redondeadas y/o superficies que exhiben un intenso pulimento, han sido incluidas en la categoría R2 (Tabla 3.2).

La advertencia de algún tipo de abrasión en las piezas arqueológicas suele ser interpretada como un claro indicativo del transporte intensivo de las mismas. Sin embargo, debemos ser precautos a la hora de emplear este criterio, puesto...
que dista mucho de ser universal (por ejemplo, dicha alteración puede aparecer como resultado de un flujo de agua circulando sobre elementos estacionarios ubicados en niveles de composición arenosa). Además, según Shackley (1974), son varios los factores que influyen en el rodamiento de los artefactos líticos, entre ellos el tipo de materia prima y su dureza, la forma del artefacto, la velocidad del flujo de agua, el tipo de sedimento con el que ha estado en contacto o la modalidad de transporte al que ha sido sometido. Finalmente, otros autores (de la Torre y Mora, 2004) han señalado la posibilidad de que los materiales elaborados sobre rocas volcánicas, las cuales por su composición química están sujetas a fuertes procesos de diagénesis que pueden alterar las aristas, puedan ser interpretados erróneamente. De este modo, la verdadera causa del rodamiento de los bordes de algunas piezas no sería la acción del agua sino la degradación diagénica de su estructura. En definitiva, esta infinidad de particularidades no hace sino prevenirnos de los peligros de utilizar el criterio de los rodamientos de forma aislada.

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>61</td>
<td>86.09</td>
<td>90.52</td>
<td>84.99</td>
<td>100</td>
</tr>
<tr>
<td>R1</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>R2</td>
<td>4</td>
<td>4.35</td>
<td>79</td>
<td>7.85</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUMENTA LA FACILIDAD DE TRANSPORTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESO</td>
</tr>
<tr>
<td>FORMA</td>
</tr>
<tr>
<td>POSICIÓN</td>
</tr>
<tr>
<td>SUSTENTADO GÉELOGICO</td>
</tr>
</tbody>
</table>

Tabla 3.2. Distribución de los restos líticos de SHK Principal por grupo de rodamiento y unidad arqueoes-tratigráfica.

Distribución por tamaños y pesos

El último de los criterios utilizados en este trabajo para advertir posibles procesos fluviales en la formación de los depósitos estudiados es la distribución de las dimensiones y pesos de los restos recuperados (Figura 3.7). Una conservación diferencial por tamaños/pesos, que puede ser detectada mediante un simple análisis de la tipometría del material arqueológico y la posterior comparación con los datos procedentes de colecciones líticas experimentales, suele ser interpretada como consecuencia de un sesgo hidráulico (Bertran et al., 2012; Isaac, 1967; Petraglia y Nash, 1987; Petraglia y Potts, 1994; Schick, 1986; de la Torre et al., 2018a).

La acción del agua sobre un conjunto arqueológico ocasiona, por regla general, la desaparición de los elementos de menor tamaño, más proclives al transporte, y la consiguiente sobre-representación de los grandes artefactos. Sin embargo, los trabajos de Schick (1986) demostraron que, aparte de las dimensiones y el peso del objeto, otros factores tales como su morfología, posición o el tipo de sustrato sobre el que reposa, pueden determinar la probabilidad que tiene éste de ser transportado (Figura 3.8). Esta variedad de condicionantes, sumada a la posibilidad de que el sesgo por tamaños/peso pueda estar relacionado también con comportamientos antrópicos (importación/exportación de artefactos), invita a emplear este criterio también con precaución y siempre en combinación con el resto de variables tafonómicas aquí presentadas.
Figura 3.7. Contribución porcentual de los diferentes rangos de tamaño (longitud máxima) de la industria lítica recuperada en las cinco arqueounidades de SHK Principal.

3.5. ANÁLISIS TECNO-TIPOLOGICO DE LA INDUSTRIA LÍTICA

La siguiente tarea ha consistido en el estudio tecno-típologico detallado de la industria lítica contenida en las diferentes unidades arqueoestratigráficas identificadas en ambos yacimientos. Las categorías líticas empleadas se detallan a continuación:

- **Cantos no modificados**: nódulos naturales, enteros o fracturados, que no muestran ningún signo aparente de modificación antrópica. Se trata, por lo general, de cantos de basalto caracterizados por su irregularidad morfológica, su estructura vesicular y su mala calidad.

- **Elementos de percusión**: esta categoría tecnológica abarca una significativa variedad de objetos líticos cuya característica común es la presencia de estigmas de machacado y/o descamaciones en parte de su superficie producidos como consecuencia de haber sido empleados en actividades relacionadas con la percusión. Los percutores propiamente dichos, bien se conserven completos, fracturados (sólo dos de las tres dimensiones originales son reconocibles) o se trate simplemente de fragmentos desprendidos de los mismos (ninguna de sus dimensiones originales puede ser cuantificada), suelen ser cantos fluviales de materias primas de origen volcánico, predominantemente basaltos y fonolitas de alta calidad, que presentan una morfología ergonómica -

63
redondeados u ovalares- y una estructura densa y homogénea, cualidades ambas que les convierten en elementos idóneos para su empleo en la talla lítica. Las lascas de percusión, por su parte, se distinguen fácilmente, como productos accidentales propios de la acción de percutoir que son, por el repiqueado parcial o total del anverso, una cara dorsal totalmente (o casi) cortical, así como por la ausencia de rasgos típicos de la talla como son un talón y un bulbo definidos. Los yunques, cantos o bloques de un tamaño considerable que habrían actuado como elementos pasivos e inmóviles en las actividades de percusión, constituyen otro de los tipos de artefactos relacionados con este mundo. En este caso, los estigmas de machacado suelen concentrarse en las caras más planas de la pieza, ya que son las que presentan una mayor estabilidad para llevar a cabo dicha tarea. Por último, los Modified Battered Blocks (MBB) son, como el propio término indica, artefactos de cuarzo cuya morfología, que va desde lo cúbico hasta lo esférico, sería el resultado final de su empleo en actividades de percusión. M. Leakey fue la primera autora en proponer esta clasificación, indicando así misma la dificultad a la hora de disociar dicha categoría de la de los esferoides y los subesferoides (Leakey, 1971: 6). En este sentido, los trabajos experimentales llevados a cabo por nuestro equipo en Olduvai (Sánchez-Yustos et al., 2015) no hacen sino reafirmar esa idea, ya insinuada anteriormente por otros autores (Jones, 1994; Mora y de la Torre, 2005; Schick y Toth, 1994; Willoughby, 1987), de que MBB, subesferoides y esferoides constituirían simplemente diferentes fases en la modificación de los originales bloques de cuarzo desarrolladas en el transcurso de su empleo en tareas de percusión. Todos ellos han sido, por ende, agrupados bajo esta etiqueta.

- **Núcleos**: los núcleos a mano alzada han sido clasificados en función del número de superficies de talla explotadas o facialidad, el número de plataformas de percusión identificadas o polaridad y la disposición de los levantamientos sobre la superficie de lascado más explotada. Este modelo de clasificación de núcleos, originario del Sistema Lógico Analítico (Carbonell et al., 1983, 1992), ha sido aplicado en las últimas dos décadas al estudio de diversas colecciones arqueológicas de la *Early Stone Age* africana (Diez-Martín et al., 2009, 2010, 2014, 2014a, 2014b, 2015, 2017, 2021; Gallotti, 2013; Gallotti y Mussi, 2018; Sánchez-Yustos et al., 2016, 2017, 2019; Stout et al., 2010; de la Torre, 2006, 2011; de la Torre y Mora, 2018, 2018a; de la Torre et al., 2003). A partir de la combinación de estas tres variables se han identificado los siguientes sistemas de explotación:

- **Tipo test y/o de extracciones aisladas**, los cuales presentan las características de un esquema de talla oportunista; a saber, un limitado aprovechamiento del volumen disponible (que tendría mucho que ver con una materia prima de baja calidad, poco adecuada para la talla) y la ausencia de sistematización en la obtención de los escasos productos de desbaste. Éstos se distribuyen de manera aislada y dispersa por la superficie de la pieza, nunca adyacentes ni relacionados entre sí.

- **Unifaciales**: bajo esta denominación se engloban todos aquellos núcleos que, a partir de una significativa variedad de estrategias de reducción, han sido explotados sólo por una única superficie de talla.

- **Bifaciales simples**: este grupo incluye todos aquellos núcleos que han sido explotados, a partir de una o dos plataformas de percusión, por dos caras. Entre los diferentes sistemas de reducción englobados dentro de este conjunto, sin
duda el más frecuentemente documentado es el bifacial unipolar lineal, que gestiona el volumen a partir de una arista de interacción entre ambos planos.

- **Bifaciales ortogonales**: especímenes en los que al menos una de las dos caras explotadas ha sido gestionada de forma ortogonal a partir de diversas plataformas de percusión no preparadas que ocupan todo el perímetro de la pieza.

- **Bifaciales centrípetos**: en estos núcleos, los cuales vistos de perfil presentan una típica morfología biconvexa, las dos caras explotadas se gestionan a través de extracciones radiales que cubren la totalidad de las superficies de lascado y confluyen en el centro de las mismas. Ambas superficies pueden ser utilizadas indistintamente a lo largo de la misma secuencia de desbastado. Este modelo de gestión suele lograr un gran aprovechamiento de la materia prima.

- **Multifaciales multipolares/poliédricos**: este modelo de gestión consiste en la extracción de un número variable de lascas, en general elevado, en todo el volumen de la pieza a partir de múltiples planos (más de dos en cualquier caso) que se recortan entre sí. Tal y como indica de la Torre (2006: 84), implica una estrategia de talla más bien expeditiva, sin preparación de las plataformas de talla ni reavivado de las aristas y/o superficies de explotación, y en la que cuando se agota un plano de talla éste se abandona y se busca otro más adecuado para continuar con una reducción no predeterminada. Este tipo de núcleos suele mostrar cierta exhaustividad en el aprovechamiento del soporte, llegando incluso en ocasiones al extremo del agotamiento.

- **Indeterminados**: especímenes en los que, aun reconociéndose claramente negativos de extracciones y por tanto su pertenencia a la presente categoría estructural, ha sido imposible identificar la estrategia de reducción llevada a cabo, bien por tratarse de núcleos totalmente agotados o por el alto grado de alteración (diagenética y/o rodamiento) que en ocasiones presentan.

A todos estos núcleos a mano alzada habría que sumar, por último, los núcleos bipolares, identificados como tales a través del reconocimiento de una serie de rasgos técnicos diagnósticos, entre ellos: la existencia de una plataforma (superficie de percusión) y una contraplataforma (superficie que descansa sobre el yunque y que aporta estabilidad al núcleo) así como la presencia de muescas opuestas, de ángulos de percusión cercanos a los 90° o de estigmas de machacado en superficies y aristas (Diez-Martín et al., 2009, 2009a, 2010).

- **Desbastados**: esta categoría aglutina lascas enteras sin retocar, lascas fragmentadas (en las cuales aún se puede reconocer la mayor parte de sus atributos) y lascas bipolares. Con respecto a estas últimas hay que señalar que, si bien el reconocimiento de los núcleos bipolares supone una tarea relativamente sencilla a partir de la observación de los diversos atributos anteriormente señalados, la identificación de las lascas obtenidas a partir de esta técnica de reducción resulta por el contrario mucho más compleja y ambigua, ya que los rasgos bipolares y a mano alzada pueden solaparse en cierta medida en el caso de los desbastados (Jeske y Lurie, 1993: 138). Trabajos experimentales con cuarzo de Naibor Soit (Diez-Martín et al., 2011; Sánchez-Yustos et al., 2012) han ofrecido algo de luz a este respecto, permitiendo definir una serie de rasgos diagnósticos en los positivos producidos por ambos métodos de reducción. En primer lugar, se ha determinado que la talla bipolar tiende a generar lascas más cortas y gruesas, especialmente en
sus extremos distales, con características filos en ángulo semi-abrupto (55 – 75°). El mecanismo de ruptura bipolar es preferentemente en cuña (frente a la característica fractura hertziana de la explotación a mano alzada), lo que conlleva la ausencia de bulbo y ondas de percusión en la cara ventral de estas lascas. Por último, es muy común que conserven restos de la plataforma y la contraplataforma y presenten estigmas de machacado en dichas zonas y/o en su cara dorsal (a consecuencia en este último caso de la rotación del núcleo).

- Retocados: en esta categoría se han incluido todos aquellos positivos que muestran una modificación secundaria de sus filos. Los bautizados como light-duty tools en la clasificación de Leakey (1971) representaban según esta autora porcentajes nada despreciables en los yacimientos de Olduvai. Sin embargo, siguiendo la estela de otros autores (Isaac, 1986; Potts, 1991: 173; de la Torre, 2006), en este trabajo hemos preferido mantener una postura mucho más restrictiva a la hora de adscribir artefactos a esta categoría (Figura 3.9). La propia naturaleza petrográfica del cuarzo, materia prima que predomina claramente entre los productos de desbaste, supone un considerable obstáculo a la hora de reconocer el retoque antropico intencional de un utensilio. Debido a que los cristales que la componen se unen entre sí, al contrario de lo que sucede en el caso de la cuarcita, sin ningún tipo de cemento, esta roca metamórfica tiende a fracturar de una manera irregular (de Lombera-Hermida y Rodríguez-Rellán, 2016; Mourre, 1996). Además, el pseudo-retoque, generado por el propio uso de las lascas o de manera natural por procesos de fricción con el sedimento, es muchas veces el verdadero responsable de la modificación de los filos dada la susceptibilidad de éstos. Es curioso en este sentido el ejemplo que apunta de la Torre en su tesis doctoral (2006: 108). En la revisión que hace de los materiales de FLK Zinj excavados por Leakey, este autor identifica dos fragmentos de lascas que remontan. Precisamente uno de ellos había sido interpretado en su día como un buril. Sin embargo, tal y como demuestra dicho remontaje, este supuesto golpe de buril sería simplemente la parte distal de una lasca fracturada (Figura 3.10). Esta simple anécdota, en definitiva, nos está advirtiendo de que, para evitar atribuir a la acción humana lo que en realidad son procesos puramente mecánicos, únicamente sean admitidos dentro de este grupo aquellos objetos que presentan un retoque claro y evidente.

![Figura 3.10. Ejemplo que nos advierte del peligro de mantener una postura permisiva a la hora de adscribir artefactos a la categoría de retocados. La figura D es parte de una lámina de Leakey (1971:57) y representa un supuesto buril en cuarzo (figura B). Sin embargo, corresponde simplemente a la parte distal de una lasca fracturada (figuras A y C) y, por tanto, no se trata de un golpe de buril (extraído de de la Torre, 2006: 108).](image-url)
Figura 3.9 (continuación). Retocados de SHK Principal. Unidad arqueoestratigráfica B1: raedera (12), denticulado (13), raspador (14) y perforador (15); Unidad arqueoestratigráfica B2: raedera (16); Unidad arqueoestratigráfica C: denticulado (17) y perforador (18). Dibujos de Francisco Tapías.
- **Cantos trabajados**: se trata de objetos nucleiformes que se interpretan como herramientas configuradas de manera intencional —y no, como otros autores han defendido, meros núcleos destinados a la extracción de lascas (por ejemplo, Ashton et al., 1992; Isaac, 1986; Toth, 1982, 1997)— debido a la presencia de un filo distal o lateral rectilíneo, unifacial o bifacial y de ángulo simple o semiabrupto, obtenido a partir de unos pocos levantamientos no muy profundos, el cual suele mostrar además ligeros retoques o incluso pequeños astillamientos provocados por el uso de la pieza. Siendo plenamente conscientes del largo e intenso debate establecido en torno al verdadero sentido de estas piezas, en el presente trabajo se ha preferido mantener una actitud prudente a la hora de adscribir artefactos a esta categoría.

- **Instrumental de gran formato**: dentro de este conjunto hemos incluido todos aquellos especímenes que forman parte de las diferentes fracciones de la secuencia de producción y configuración del instrumental de gran formato, esto es, núcleos de grandes lascas (a partir de los cuales se obtienen los soportes sobre los que posteriormente se configurarán los elementos de gran formato) así como las propias grandes lascas en bruto (con una dimensión máxima siempre superior a los 10 cm) y los *large cutting tools* (LCT) y fragmentos de LCT (bifaces, hendedores, picos tríédricos y cuchillos) (Figura 3.11).

Figura 3.11. LCTs procedentes de la unidad arqueoesтратigráfica C de SHK Principal. Arriba un bifaz y abajo un cuchillo, configurados a partir de sendas grandes lascas de basalto.
- Residuos: bajo esta denominación se han englobado, por último, todos aquellos subproductos del proceso de talla, tales como lascas de rejuvenecimiento de los núcleos, fragmentos no diagnósticos de lascas extraídas a mano alzada, fragmentos informes de materia prima (por ejemplo, fragmentos de núcleo de tipología irreconocible), positivos indeterminados (muy habituales en estos conjuntos debido a que la naturaleza friable del cuarzo y, por tanto, su respuesta ante la talla, genera una gran cantidad de desecho) y debris (cuya longitud máxima no supera los 25 milímetros) (Tabla 3.3).

<table>
<thead>
<tr>
<th>Categorías líticas</th>
<th>Materias primas</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volcánicas</td>
<td>Cuarzo</td>
<td>Otras</td>
</tr>
<tr>
<td>UNIDAD ARQUEOESTRATIGRÁFICA A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantos no modificados</td>
<td>29</td>
<td>21,17</td>
<td></td>
</tr>
<tr>
<td>Cantos completos</td>
<td>27</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Cantos fracturados</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Percusión</td>
<td>18</td>
<td>13,14</td>
<td></td>
</tr>
<tr>
<td>Percutores completos</td>
<td>12</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Percutores rotos</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lascas de percusión</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Yunques</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Machacadores (MBB)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Núcleos</td>
<td>19</td>
<td>13,87</td>
<td></td>
</tr>
<tr>
<td>Mano alzada</td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Bipolar</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Desbastados</td>
<td>43</td>
<td>31,38</td>
<td></td>
</tr>
<tr>
<td>Lascas enteras</td>
<td>5</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Lascas fracturadas</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Retocados</td>
<td>2</td>
<td>2</td>
<td>1,46</td>
</tr>
<tr>
<td>Residuos</td>
<td>26</td>
<td>18,98</td>
<td></td>
</tr>
<tr>
<td>Fragmentos de lasca</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Positivos indeterminados</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Debris</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Fragmentos</td>
<td>7</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Total A1</td>
<td>58</td>
<td>42,34</td>
<td>77</td>
</tr>
<tr>
<td>UNIDAD ARQUEOESTRATIGRÁFICA A2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantos no modificados</td>
<td>188</td>
<td>14,61</td>
<td></td>
</tr>
<tr>
<td>Cantos completos</td>
<td>159</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Cantos fracturados</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Fragmentos de canto</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Percusión</td>
<td>149</td>
<td>11,58</td>
<td></td>
</tr>
<tr>
<td>Percutores completos</td>
<td>47</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Percutores rotos</td>
<td>23</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>Fragmentos de percutor</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Lascas de percusión</td>
<td>17</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Yunques</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Machacadores (MBB)</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Núcleos</td>
<td>141</td>
<td>10,95</td>
<td></td>
</tr>
<tr>
<td>Mano alzada</td>
<td>52</td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>Bipolar</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Desbastados</td>
<td>390</td>
<td>30,3</td>
<td></td>
</tr>
<tr>
<td>Lascas enteras</td>
<td>43</td>
<td>208</td>
<td>4</td>
</tr>
<tr>
<td>Clasificación</td>
<td>Cantidad</td>
<td>32,17</td>
<td>855</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Lascas fracturadas</td>
<td>11</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Lascas bipolares</td>
<td>12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Retocados</td>
<td>4</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>Cantos trabajados</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Configurados de gran formato</td>
<td>4</td>
<td></td>
<td>0,31</td>
</tr>
<tr>
<td>LCTs</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Residuos</td>
<td>378</td>
<td></td>
<td>29,37</td>
</tr>
<tr>
<td>Fragmentos de lasca</td>
<td>3</td>
<td>62</td>
<td>65</td>
</tr>
<tr>
<td>Positivos indeterminados</td>
<td>6</td>
<td>122</td>
<td>128</td>
</tr>
<tr>
<td>Debris</td>
<td>9</td>
<td>98</td>
<td>107</td>
</tr>
<tr>
<td>Fragmentos</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td>Total A2</td>
<td>414</td>
<td>32,17</td>
<td>855</td>
</tr>
</tbody>
</table>

UNIDAD ARQUEOESTRATIGRÁFICA B1

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Cantidad</th>
<th>32,17</th>
<th>855</th>
<th>66,43</th>
<th>18</th>
<th>1,4</th>
<th>1287</th>
<th>67,31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantos no modificados</td>
<td>42</td>
<td></td>
<td>13,82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantos completos</td>
<td>35</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantos fracturados</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragmentos de canto</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percusión</td>
<td>59</td>
<td></td>
<td>19,41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percutores completos</td>
<td>30</td>
<td>2</td>
<td>1</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percutores rotos</td>
<td>10</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragmentos de percutor</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lascas de percusión</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machacadores (MBB)</td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Núcleos</td>
<td>52</td>
<td></td>
<td>17,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mano alzada</td>
<td>26</td>
<td>17</td>
<td>3</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desbastados</td>
<td>75</td>
<td></td>
<td>24,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lascas enteras</td>
<td>10</td>
<td>35</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lascas fracturadas</td>
<td>2</td>
<td>22</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lascas bipolares</td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retocados</td>
<td>11</td>
<td></td>
<td>3,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantos trabajados</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0,66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configurados de gran formato</td>
<td>3</td>
<td></td>
<td>0,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Núcleos de grandes lascas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grandes lascas</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuos</td>
<td>60</td>
<td></td>
<td>19,73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragmentos de lasca</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivos indeterminados</td>
<td>24</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td>2</td>
<td>15</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragmentos</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total B1</td>
<td>136</td>
<td></td>
<td>44,74</td>
<td>159</td>
<td>52,30</td>
<td>9</td>
<td>2,96</td>
<td>304</td>
</tr>
</tbody>
</table>

UNIDAD ARQUEOESTRATIGRÁFICA B2

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Cantidad</th>
<th>32,17</th>
<th>855</th>
<th>66,43</th>
<th>18</th>
<th>1,4</th>
<th>1287</th>
<th>67,31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantos no modificados</td>
<td>6</td>
<td></td>
<td>13,64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantos completos</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragmentos de canto</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percusión</td>
<td>6</td>
<td></td>
<td>13,64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percutores completos</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragmentos de percutor</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yunques</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machacadores (MBB)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Núcleos</td>
<td>2</td>
<td></td>
<td>4,55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mano alzada</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desbastados</td>
<td>16</td>
<td></td>
<td>36,36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lascas enteras</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lascas fracturadas</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retocados</td>
<td>1</td>
<td>2,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuos</td>
<td>13</td>
<td>29,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positivos indeterminados</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragmentos</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total B2</td>
<td>12</td>
<td>27,27</td>
<td>31</td>
<td>70,46</td>
<td>1</td>
<td>2,27</td>
<td>44</td>
<td>2,30</td>
</tr>
</tbody>
</table>

UNIDAD ARQUEOESTRATIGRÁFICA C

Cantos no modificados	26	**18,57**						
Cantos completos	26							
Percusión	**26**	**18,57**						
Percutores completos	9	2	11					
Percutores rotos	2							
Lascas de percusión	1							
Yunques	1							
Machacadores (MBB)	11							
Núcleos	**25**	**17,86**						
Mano alzada	9	9	1	19				
Bipolar	6							
Desbastados	**29**	**20,71**						
Lascas enteras	4	9	1	14				
Lascas fracturadas	11							
Lascas bipolares	4							
Retocados	**7**	**5,00**						
Cantos trabajados	**3**	**1**	**4**	**2,86**				
Configurados de gran formato	**2**	**1,43**						
LCTs	2							
Residuos	**21**	**15,00**						
Positivos indeterminados	8							
Debris	3							
Fragmentos	1	8	1	10				
Total C	**57**	**40,71**	**79**	**56,43**	**4**	**2,86**	**140**	**7,32**
Total	**677**	**35,41**	**1201**	**62,81**	**34**	**1,78**	**1912**	**100**

Tabla 3.3. Número y porcentaje de restos líticos de SHK Principal clasificados por unidad arqueoestratigráfica, categoría lítica y tipo de materia prima.

3.6. REMONTAJE DE RESTOS LÍTICOS

Por último, y una vez completado el análisis tecno-tipológico del material lítico recuperado tanto en SHK Principal como en SHK Extensión, se ha procedido a la búsqueda de remontajes. En Arqueología, el concepto de remontaje hace referencia a la metodología que tiene como propósito encajar, como si de un puzzle se tratara, dos o más elementos localizados por separado pero que proceden de un mismo ente original, ya sea éste lítico u óseo (Hofman, 1992; Schurmans, 2007). Aunque cada vez son más frecuentes los estudios de remontajes sobre material faunístico (Bunn *et al.*, 1980; Enloe y David, 1992; Fernández-Laso, 2010; Fernández-Laso *et al.*, 2020; Gabucio, 2014; Gabucio *et al.*, 2018, 2018a; Marín-Arroyo, 2010; Modolo y Rosell, 2017; Morin *et al.*, 2005; Rosell *et al.*, 2012, 2019; Todd y Frison, 1992), en nuestro caso, por el momento, únicamente hemos aplicado esta metodología a los restos líticos (Figura 3.12).
Dicha técnica constituye una herramienta básica para el análisis espaciotemporal de un depósito arqueológico, puesto que aporta información directa sobre las relaciones espaciales y temporales que existen entre los restos materiales hallados (Bargalló et al., 2016, 2020; Ketterer et al., 2004; López-Ortega, 2019; López-Ortega et al., 2011, 2017; Machado et al., 2016, 2019; Vaquero et al., 2012, 2017, 2019). Por un lado, los remontajes contribuyen a establecer conexiones entre distintas zonas de actividad, un hecho que tradicionalmente se ha usado para afirmar la sincronía de las mismas. Por otro, permiten incrementar la resolución temporal de los conjuntos, depurando los resultados obtenidos previamente gracias al análisis arqueoestratigráfico. Y es que, de igual interés que demostrar la contemporaneidad entre asociaciones de restos puede ser justificar lo contrario, esto es, la diacronía entre las diferentes acumulaciones. Así, en un depósito arqueológico en el que se superpone un número desconocido de episodios deposicionales, los remontajes pueden contribuir a disecionar ese palimpsesto mediante la identificación de fases de actividad que se suceden en el tiempo.

Los remontajes líticos, más allá de su aplicación en los estudios micro-espaciales, pueden proporcionar datos de gran valor que nos ayuden a resolver otras cuestiones arqueológicas. A lo largo de las últimas décadas se han venido configurando, por ejemplo, como una herramienta de gran utilidad a la hora de evaluar la integridad de cualquier depósito arqueológico (Deschamps y Zilhão, 2018; Hofman, 1986; López-Ortega et al., 2019; Petraglia, 1992; Sumner y Kuman, 2014; de la Torre et al., 2004; Villa, 1982). Siempre en combinación con otro tipo de evidencias, el empleo de esta técnica nos facilita un mejor conocimiento de los procesos de formación de los yacimientos y la identificación de posibles desplazamientos.
post-deposicionales, tanto en sentido vertical como horizontal, de los restos arqueológicos a causa de agentes no antrópicos (Figura 3.13). Asimismo, los remontajes han sido empleados de manera frecuente como complemento de los análisis tecnológicos (Almeida, 2007; Ashton, 2007; Barsky et al., 2011; Bleed, 2002; Bodu et al., 1990; Delagnes y Roche, 2005; Hovers, 2009; Van Peer, 2007), puesto que ofrecen una ayuda ines-
timable a la hora de intentar reconstruir los procesos de producción y configuración de las hem-
ramientas, aportando una dimensión dinámica de las secuencias de talla que en muchos casos escapa al simple análisis morfológico de las mismas. De hecho, éste fue el primer aporte, y durante décadas el único, de dicha metodología a la investigación arqueológica.

<table>
<thead>
<tr>
<th>Número de observaciones</th>
<th>Ángulo medio (μ)</th>
<th>Longitud del vector medio (λ)</th>
<th>Concentracion (k)</th>
<th>Varianza circular</th>
<th>Desviación estándar circular (σe)</th>
<th>Test de Rayleigh (V)</th>
<th>Test de Kuiper (V)</th>
<th>Test de Kuiper (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>100,007</td>
<td>0,331</td>
<td>0,512</td>
<td>0,334</td>
<td>42,289</td>
<td>1,045</td>
<td>0,135</td>
<td>1,227</td>
</tr>
</tbody>
</table>

Figura 3.13. Proyección en planta y perfil de los remontajes ítnicos identificados en SHK Principal y resultados del análisis de orientaciones realizado a partir de dichas líneas de conexión.
El proceso de búsqueda de remontajes ha comenzado con la separación del material en función de los diversos tipos de rocas y su despliegue sobre grandes mesas independientes. Lógicamente, la tarea de conectar restos líticos entre sí se verá seriamente obstaculizada cuanto más reducido sea el número de materias primas diferentes presentes en la colección (Cahen et al., 1979; Cattin, 2002). Una vez extendidas todas las piezas se ha procedido a descartar aquellas que, bien por presentar un estado general de conservación deficiente y/o una abundante concreción o, más frecuentemente, debido a su pequeño tamaño, hemos considerado no adecuadas para formar parte de este estudio. A este último respecto, son muchos los investigadores que han coincidido en señalar que los restos líticos de pequeño tamaño no hacen más que dificultar el reconocimiento e identificación de rasgos morfológicos y aumentar sin expectativas de éxito el tiempo a invertir en la tarea de búsqueda de conexiones (de la Torre, 2004; López-Ortega et al., 2011, 2017; Schick, 1986). Por ello, todas aquellas piezas líticas cuya longitud máxima no supera los 20 milímetros han sido eliminadas del estudio de remontajes. A continuación, estos grandes conjuntos han sido divididos a su vez en base a rasgos físicos de carácter macroscópico, tales como el color, el tamaño de grano y la textura, el tipo de córtex o la presencia de inclusiones internas.

Una vez completados estos pasos previos pero esenciales estamos en condiciones de iniciar el proceso de remontaje propiamente dicho. La búsqueda se ha llevado a cabo en primer lugar entre los restos de cada una de las diferentes unidades arqueoestratigráficas de manera individualizada para luego, con el objetivo de asegurarnos de que ninguna conexión quedara oculta, extenderla a toda la secuencia estratigráfica. Los remontajes localizados eran señalizados, pero, dado que existía la posibilidad de encontrar otras piezas que encajasen en dicho conjunto, no eran apartados físicamente del resto de material. La obtención de conexiones requiere, en definitiva, de una observación atenta y reiterada del material, enrañando por tanto un considerable coste de tiempo. Esta es, sin duda, una de las críticas más habituales que suele hacerse al método (Laughtlin y Kelly, 2010).

Siguiendo la propuesta de Sisk y Shea (2008), las conexiones halladas han sido divididas en dos conjuntos. Por un lado, el grupo de los refits comprende todas aquellas uniones de artefactos que han sido separados entre sí mediante fracturas conoidales controladas. Este término incluye tanto los remontajes de secuencias de producción como los remontajes de modificación y reelaboración (Tipos 1 y 3 respectivamente en la clasificación de Cziesla, 1990). Por su parte, el grupo de los conjoins engloba a todas aquellas uniones de fragmentos de artefactos que en algún momento formaron parte de un elemento completo. La presencia de sedimento en las superficies que articulan entre sí y/o el hecho de que los diferentes fragmentos que componen la conexión exhiban una pátina distinta descarta por completo la posibilidad de encontrarlos ante un “accidente” de campo, corroborando la antigüedad de la fractura. El motivo concreto de ésta, sin embargo, es imposible de discernir en la mayoría de las ocasiones. Lo único seguro es que no tiene nada que ver con la talla conoidal. Por lo demás, pudiera tratarse de una fractura accidental ocasionada durante el proceso de talla (Tipo 2 en la clasificación de Cziesla, 1990), debida a otro tipo de acciones antrópicas tales como la percusión (tan frecuente, como veremos, en las colecciones estudiadas) o incluso a procesos naturales (compactación de sedimentos, trampling, etc.)
Una vez concluido el proceso de búsqueda, todos los remontajes encontrados en cada yacimiento han sido fotografiados. Además, sus atributos más relevantes (identificador asignado a cada conjunto, número de piezas que lo componen y sigla de cada una de ellas, unidades arqueoestratigráficas a las que pertenecen los restos, materia prima, tipo de conexión, distancia vertical y horizontal que media entre las piezas remontadas, así como cualquier otro comentario de interés) han sido recogidos en una base de datos en formato .xls (Tabla 3.4). Finalmente, las conexiones halladas son proyectadas en ArcGis, tanto en planta como en sección, junto con la distribución total de los materiales.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>N° de piezas</th>
<th>Arqueo-unidad</th>
<th>Materia prima</th>
<th>Tipo de unión</th>
<th>Distancia Hornt. (cm)</th>
<th>Distancia Vert. (mm)</th>
<th>Eje de orientación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>15</td>
<td>0</td>
<td>10 - 190°</td>
<td>Remontaje de los fragmentos proximales y distal de una base ortal completa fisurada transversalmente. La superficie donde se encontró muestra estigmas de percusión.</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>14</td>
<td>21</td>
<td>29 - 206°</td>
<td>Remontaje de los fragmentos proximales y distal de una base completas fisurada transversalmente. El hallazgo de esta unión se ha visto favorecido en gran medida por la singularidad de la materia prima, de grano fino y gran calidad, utilizada en esta ocasión.</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>18</td>
<td>16</td>
<td>145 - 325°</td>
<td>Remontaje que pone en conexión tres fragmentos de una base incompleta.</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>A2</td>
<td>Fosilina</td>
<td>Raft</td>
<td>186</td>
<td>72</td>
<td>150 - 323°</td>
<td>Remontaje núcleo-producto. Este último ha sido extraído de manera deliberada con el objetivo de lastar la materia prima. Se trata de la línea de conexión de mayor longitud.</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>3</td>
<td>1</td>
<td>18 - 154°</td>
<td>Remontaje de dos fragmentos de una base incompleta que presenta fractura lateral hallados muy próximos el uno del otro.</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>A2</td>
<td>Basalto</td>
<td>Conjoín</td>
<td>108</td>
<td>54</td>
<td>117 - 297°</td>
<td>Remontaje que pone en conexión tres fragmentos -dos de ellos recuperados durante la campaña de 2009 y un tercero hallado en el verano de 2010- de un canto incompleto. Puesto que en su superficie no se aprecian estigmas de machacar dentro interpretamos que la rotura de esta pieza se debe a otros motivos que nada tienen que ver con su empleo en actividades de percusión.</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>0</td>
<td>7</td>
<td>90 - 270°</td>
<td>Remontaje de dos fragmentos de un color particular cuya unión forma a su vez un fragmento de lascas.</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>5</td>
<td>8</td>
<td>157 - 337°</td>
<td>Remontaje de dos fragmentos cuya unión forma a su vez un fragmento de lascas. Ambos elementos fueron hallados muy próximos entre sí por lo que la rotura de la plataforma se debe ver probablemente a algunas de las causas señaladas para el caso anterior.</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>4</td>
<td>2</td>
<td>70 - 250°</td>
<td>Remontaje de dos fragmentos de lascas que presentan fractura tipo V en V y que juntos componen una delgada lascas completa. Ambos elementos fueron hallados muy próximos entre sí por lo que la rotura de la plataforma se debe ver probablemente a algunas de las causas señaladas para el caso anterior.</td>
</tr>
<tr>
<td>J</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>12</td>
<td>43</td>
<td>159 - 339°</td>
<td>Remontaje de los fragmentos mesial y distal de una base incompleta fisurada transversalmente. La rotura coincidía con una inclinación de la materia prima.</td>
</tr>
<tr>
<td>K</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>3</td>
<td>2</td>
<td>146 - 328°</td>
<td>Remontaje de dos fragmentos hallados muy próximos el uno del otro y cuya unión forma a su vez un fragmento de lascas.</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
<td>A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>4</td>
<td>17</td>
<td>174 - 354°</td>
<td>Remontaje de dos fragmentos cuya unión forma a su vez un fragmento de lascas. Su hallazgo se ha visto favorecido en gran medida por la singularidad de la materia prima utilizada en esta ocasión. El útero presenta una característica inclusión de color negro.</td>
</tr>
<tr>
<td>M</td>
<td>2</td>
<td>A1, A2</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>100</td>
<td>159</td>
<td>136 - 316°</td>
<td>Remontaje de dos fragmentos cuya unión forma a su vez un fragmento de lascas. Dicha caracteriza se presenta a la mayor diferencia de profundidad entre piezas, constituyendo el único ejemplo en el que cada una de las dos superficies remontadas corresponde a una arqueo-unidad diferente.</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>C</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>6</td>
<td>21</td>
<td>121 - 301°</td>
<td>Remontaje de dos fragmentos proximales y distal de una base completas con fractura transversal.</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
<td>B1</td>
<td>Cuarzo</td>
<td>Conjoín</td>
<td>6</td>
<td>21</td>
<td>47 - 257°</td>
<td>Remontaje de dos fragmentos cuya unión forma a su vez un fragmento de lascas. Su hallazgo de hallazgo se ha visto favorecido en gran medida por la singularidad de la materia prima utilizada en esta ocasión. El útero presenta una característica inclusión de color negro.</td>
</tr>
</tbody>
</table>

Tabla 3.4. Resumen de la base de datos que recoge los atributos más relevantes de los remontajes líticos identificados en SHK Principal.
4. ÁREA DE ESTUDIO: El complejo arqueológico de Sam Howard Korongo (SHK) (Lecho II, Garganta de Olduvai, Tanzania)

4.1. EL LECHO II DE LA GARGANTA DE OLDUVAI

La Garganta de Olduvai se localiza al norte de la actual Tanzania, en el margen oeste del Valle del Rift Oriental. Está circundada al sur y al este por diversos volcanes, entre los que destacan el Lemagrut, Sadiman, Olmoti o el propio Ngorongoro, y al norte por pequeños montes o *inselbergs* de rocas metamórficas y las extensas llanuras del Parque Nacional del Serengeti (Figura 4.1).

![Mapa de la Garganta de Olduvai y sus alrededores.](image)

Figura 4.1. Localización de la Garganta de Olduvai dentro del área del Ngorongoro.
La cuenca de Olduvai se formó hace 2 millones de años como resultado del levantamiento que experimentaron las tierras volcánicas situadas al sur y al este de la misma y el consiguiente surgimiento de un sistema endorreico. A partir de entonces esta gran depresión, de unos 25 kilómetros de diámetro, comenzó a ser rellenada progresivamente por sedimentos lacustres, fluviatile, volcánicos y eólicos, encerrando en sus casi 100 metros de potencia una asombrosa e inigualable riqueza paleoantropológica, paleontológica y cultural.

Sin embargo, el impresionante barranco que observamos en la actualidad y que corta a modo de brecha la gran llanura del Serengeti (Figura 4.2), no empezó a moldearse hasta fechas muy recientes, hace apenas 200.000 años. Fue en este momento cuando las corrientes de agua iniciaron la excavación de esos sedimentos que se habían ido depositando durante los últimos 2 millones de años de nuestra historia geológica, haciendo visible la enorme riqueza fósil del lugar (Hay, 1976).

La Garganta de Olduvai se subdivide en dos ramales diferentes (Figura 4.3). La Garganta Principal, horadada por el río Olduvai, se origina en los lagos Masek y Nduyu y fluye en dirección este alrededor de unos 50 kilómetros hasta vaciarse en la depresión del Olbalbal. Por su parte, la Garganta Secundaria, creada por el río Kelogi, que drena la ladera noroeste del volcán Lemagrut hasta la Garganta Principal, a 9 kilómetros aguas arriba de Olbalbal.

Richard Hay, geólogo que trabajó durante décadas en Olduvai junto con los Leakey y al que debemos prácticamente toda su descripción geológica, compartimentó esta compleja secuencia sedimentaria en siete grandes unidades denominadas, de muro a techo, los Lechos I, II, III, IV, Masek, Nduyu y Naisiusiu (Hay, 1976). De todos ellos, los dos primeros, de los cuales tenemos un mejor y
más preciso control cronológico, han sido los que históricamente han recibido mayor atención por parte de los investigadores, una tendencia que continúa hasta la actualidad, debido a que concentran no solo la mayor cantidad de yacimientos sino también los más antiguos y los mejor preservados (Figura 4.4).

Figura 4.3. Plano general de la Garganta de Olduvai y localización del complejo arqueológico de SHK (modificada de Leakey, 1971).

Precisamente los enclaves arqueológicos objeto de estudio en la presente tesis doctoral (SHK Principal y SHK Extensión) se localizan en la parte superior del miembro medio del Lecho II. Este lecho contiene una secuencia de entre 20 y 30 metros de espesor en la que aparecen representados seis tipos de ambiente de depósito diferentes: abanicos aluviales, llanura aluvial, lago, margen de lago, complejos eólicos y fluvialacustres. Dentro de esta unidad se han identificado cuatro marcadores tobáceos principales (I, IIB, IIC y IID) (Hay, 1976). Las fechas radiométricas de la parte inferior y superior, obtenidas mediante el método Argón/Argón, sugieren un rango de edad para el Lecho II de entre 1,78 y 1,33 millones de años (Domínguez-Rodrigo et al., 2013; Manega, 1993; Stanistreet, 2012). Durante dicho periodo el paisaje de la Garganta de Olduvai cambió drásticamente, haciéndose cada vez más árido y pasándose de un sistema lacustre a otro fluvial (el lago se fragmentó en pequeños humedales y los recursos hídricos se concentraron en torno a los ríos) (Hay, 1976).

4.2. DESCUBRIMIENTO DE SHK Y PRIMERAS INVESTIGACIONES

El complejo arqueológico de SHK (Sam Howard Korongo) se ubica en una cárcava que desemboca en la margen derecha de la Garganta Secundaria de Olduvai, a unos 2 kilómetros de su confluencia con la Garganta Principal (Leakey, 1971). Este enclave fue hallado en 1935 en el marco de la tercera expedición encabezada por Louis Leakey a Olduvai, siendo bautizado en honor a su descubridor Sam Howard e inventariado con el nº 68 de las localidades arqueológicas y el nº 92 de las geológicas (Leakey, 1971, 1974). En dicha ocasión, así como en las sucesivas visitas que el ma- trimonio Leakey realizara al lugar en años posteriores, tan sólo se efectuó una recogida selectiva del material arqueológico que aparecía en superficie como consecuencia de la erosión. Las primeras excavaciones en SHK se llevaron a cabo ya entrada la década de los cincuenta, en concreto en los años 1953, 1955 y, de forma más exhaustiva, en 1957 (Leakey, 1971).

Dos áreas distintas dentro del afloramiento, ricas en restos líticos y óseos, fueron identificadas durante estos trabajos de campo: SHK Main Site, el cual se emplazaba en la orilla oeste de la cárcava justo en el punto donde ésta se abre a la Garganta Secundaria, y SHK Annex, situado en esa misma margen a unos 90 metros hacia el interior del barranco. La secuencia estratigráfica combinada reconocida y descrita por Mary Leakey en la monografía original (1971: 165 - 166) estaba constituida, de muro a techo, por: 1) un grueso nivel de arcillas marrones, que aparecía tanto en SHK Main Site como en SHK Annex y que no contenía restos arqueológicos ni paleontológicos; 2) niveles de ocupación humana, compuestos casi en su totalidad de artefactos líticos y fragmentos de hueso; 3) un nivel de toba con un espesor de unos 75 centímetros en SHK Annex que se relacionaba lateralmente con los 2,4 metros de tobas arcillosas presentes en SHK Main Site, las cuales recubrían tanto el canal como el banco. Puesto que el nivel de arcillas marrones que afloraba bajo sendos horizontes arqueológicos era el mismo en los dos sitios, el complejo de SHK fue interpretado originalmente (Leakey, 1971) como dos fracciones coetáneas de un mismo paleopaisaje fluvial. Por un lado, SHK Main Site reflejaría una porción de un canal y su respectivo banco, mientras que SHK Annex estaría mostrando parte de la llanura aluvial cercana a dicho canal.
Si bien, en un principio, la toba que cerraba la columna estratigráfica de SHK Annex fue identificada como la IID, los posteriores análisis minera- lógicos efectuados permitieron desechar tal correlación y deducir que dicho demarcador estaba situado más arriba en la secuencia. De esta manera, el complejo arqueológico de SHK fue finalmente colocado en la parte superior del miembro medio del Lecho II, justo por debajo de la toba IIC (si bien ésta nunca ha sido reconocida en esa zona de la Garganta) (Leakey, 1971) (Tabla 4.1).

<table>
<thead>
<tr>
<th>Marker tufts</th>
<th>Hominid remains</th>
<th>Sites</th>
<th>Cultural facies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper II<sup>b</sup></td>
<td>H. 3 BK (66)</td>
<td>Developed Oldowan B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. 9 TK (19)</td>
<td>Developed Oldowan B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHK (68)</td>
<td>Developed Oldowan B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNK Main Site (71)</td>
<td>Probably Early Acheulean</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC West (62)</td>
<td>Early Acheulean</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK (27a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elephant K (55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EF–1R (23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle II<sup>b</sup></td>
<td>H. 13, 14, 15</td>
<td>Oldowan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNK Skull Site (71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLK North, Sandy Conglomerate (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HWK East, Sandy Conglomerate (48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower I<sup>a</sup></td>
<td>H. 16 (Maako Gully)</td>
<td>Developed Oldowan A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLK North, Deinothereum Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLK North, clay with root casts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HWK East, Level 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower I<sup>b</sup></td>
<td>H. 10 FLK North, Levels 1–6</td>
<td>Oldowan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLK, upper Levels (41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLK, the Zinjanthropus Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLK NN, Levels 1, 2, 3 (38)</td>
<td>Indeterminate</td>
<td></td>
</tr>
<tr>
<td>Upper I<sup>b</sup></td>
<td>H. 4 FLK, Levels 1, 2, 3 (22)</td>
<td>Oldowan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. 4 FLK NN, Level 4</td>
<td>Indeterminate</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.1. Posición estratigráfica y adscripción cultural del complejo arqueológico de SHK dentro de los yacimientos de los Lechos I y II (extraído de Leakey, 1971: 3).

Sumando el material recuperado en SHK Main Site y SHK Annex, Mary Leakey presentó en su monografía el estudio de 1064 artefactos líticos (915 útiles, 26 yunque s y 123 rotados de pequeño formato), los cuales fueron adscritos dentro de su clasificación cultural al complejo olдуvayense evolucionado B. Otros 3755 restos líticos, incluidos núcleos, lascas y restos de talla, fueron sin embargo englobados en la categoría genérica de débitage (1971: 166 – 171). Por lo que al material faunístico hallado en el complejo de SHK se refiere, más allá de una breve mención a la recogida en superficie de un cráneo completo de *Hippopotamus gorgops*, algunos restos de pequeños antílopes (Antidorcas recki) y una defensa de *Elephas recki* (1971: 165), éste no aparece quantificado ni descrito en dicha publicación.

¹ El concepto del “olduvayense evolucionado” se construyó para identificar el fenómeno transicional entre los tecno-complejos olduvayense y achelense en la Garganta de Olduvai. En concreto, el olduvayense evolucionado B se caracterizaba por una disminución significativa de los cantos trabajados respecto al estadio clásico, un descenso en la cantidad de políedros y discoídes, un aumento significativo de los esferoides, un incremento de objetos rotados de pequeño formato y la presencia de bifaces –poco elaborados– en reducidas proporciones (6% de media) (Diez Martín, 2005: 207; Diez-Martín y Sánchez Yus- tos, 2012).
De todos modos, ambos conjuntos, lítico y faunístico, representan tan solo una porción del material arqueológico desenterrado durante aquellas intervenciones en SHK. En ese mismo trabajo, la propia Leakey señaló, por un lado, que una cantidad considerable de restos no fueron recogidos sino inmediatamente desechados en el propio yacimiento. Además, a causa de los escasos recursos económicos de los que disponía el matrimonio por aquellos años previos al descubrimiento del *Zinjanthropus boisei* (OH5) en el nivel 22 de FLK, los cuales únicamente alcanzaban para contratar a unos pocos trabajadores, no siempre se acometió el cribado del sedimento extraído (1971: 166–167). Dichos procederes explican por qué la colección recuperada por los Leakey en SHK, depositada en su día en Nairobi en el Museo Nacional de Kenia y almacenada actualmente en el Museo Nacional de Dar es Salaam (Tanzania), muestra un marcado sesgo hacia los especímenes más grandes y representativos (Egeland y Domínguez-Rodrigo, 2008; de la Torre y Mora, 2014, 2020).

En el año 2009 nuestro equipo emprendió un programa de prospección de la Garganta Secundaria de Olduvai enfocado por un lado a localizar algunos de los enclaves arqueológicos excavados en su día por Mary Leakey y por otro a documentar posibles nuevos yacimientos no descubiertos hasta el momento. En el marco de dichos trabajos se realizó una visita al complejo arqueológico de SHK, donde la intensa erosión producida por la corriente de agua que fluye por dicha cárcava había prácticamente destruido cualquier indicio que atestiguara las labores de campo allí efectuadas medio siglo antes. Con todo, aún era posible en SHK Annex identificar los perfiles de la cata abierta por los Leakey. En SHK Main Site, por su parte, tan sólo se apreciaban algunos vestigios del nivel de conglomerado de relleno del canal. En esa misma cota pero a unos 40 metros en dirección este, muy cerca ya por tanto del lugar donde el barranco de SHK conecta con la Garganta Secundaria, se localizó una concentración intacta y muy significativa de restos óseos y artefactos líticos que estaban poco a poco siendo erosionados. La relevancia de dicho horizonte arqueológico, el cual ya de por sí anunciaba el gran potencial de este enclave, sumado a las ventajas que el lugar ofrecía (habiendo en términos logísticos) de cara a exponer una amplia superficie de excavación, fueron los dos criterios determinantes a la hora de plantear una nueva ronda de trabajos en este punto bautizado como SHK Principal (Diez-Martín et al., 2014).

Entre 2009 y 2011 se efectuaron en SHK Principal tres campañas arqueológicas de poco más o menos un mes de duración cada una de ellas (Diez-Martín et al., 2014; Domínguez-Rodrigo et al., 2012, 2014). Las dos primeras, realizadas en los años 2009 y 2010, se destinaron a la excavación íntegra del nivel de relleno del canal, así como a la intersección de éste con el nivel del banco, en tanto que durante la campaña de 2011 los trabajos se centraron en la zona de la pared del fondo, descubriendo el nivel del banco y el nivel superior. La cata abierta en el transcurso de dichas intervenciones posee una longitud máxima hacia el interior de la pared de 6,93 metros y una anchura máxima en la zona del canal de 6,98 metros, exponiéndose un área total de 38,58 metros cuadrados. La parte inferior de este espacio, de trazado irregular y contorneado con línea discontinua, representa precisamente ese frente de material arqueológico que estaba siendo erosionado por la acción del
agua cuando fue localizado durante la visita al ya-
cimiento en 2009 y que se corresponde con el nivel
depositado dentro del canal. La secuencia arqueo-
lógica completa, la cual ha deparado un total de
2763 restos arqueológicos (1911 efectivos líticos y
852 elementos faunísticos), presenta una potencia
de 1,25 metros. Esta cantidad de material equivale,
por tanto, a un promedio de densidad de 45,70 res-
tos por metro cúbico.

En 2012 comenzó una segunda etapa en las
investigaciones que TOPPP estaba desarrollando
en el complejo arqueológico de SHK, que se ex-
tendió hasta el año 2016. En dicho período de
tiempo se abordó la excavación de una segunda
cata a unos 35 metros aproximadamente al sur de
la primera. Este nuevo enclave, ubicado entre SHK
Principal y SHK Annex fue denominado SHK Ex-
tensión (Diez-Martín et al., 2017) (Figura 4.5.).

En la primera campaña arqueológica llevada
cabo en SHK Extensión se intervino una super-
ficie de unos 14 metros cuadrados en la que se do-
cumentó un nivel de banco coetáneo –hablando en
términos geológicos– del que había sido ya reco-
nocido en SHK Principal, circunstancia que fue
confirmada gracias a la apertura de una geotrin-
chera que conectaba ambas ventanas precisa-
mente con el objetivo de establecer un estricto
control de la relación paleopaisajística y paleoambien-
tal que se establecía entre ellas. Estos traba-
jos nos permitieron, por tanto, cerciorarnos de
que nos encontrábamos ante dos fracciones de un
mismo paleopaisaje fluvial (isócrono), posibili-
tando dicha complementariedad de zonas la oportu-
unidad de abordar el complejo asunto de la varia-
bilidad espacial de los procesos técnicos y econó-
micos a nivel local (Diez-Martín et al., 2017).

Las tareas acometidas en SHK Extensión en
2015, año de ejecución de la segunda de las cam-
pañas arqueológicas realizadas en dicho enclave,
consistieron en la excavación en área de una su-
perficie de unos 16 metros cuadrados, adyacente a
la cata abierta en 2012 y en la que se registraron
niveles geológicos diferentes a los reconocidos
hasta ese momento. Finalmente, la campaña de
2016 en este yacimiento fue bastante breve debido
to que el objetivo de la misma era simplemente ter-
minar de excavar en toda la cata los escasos cen-
tímetros que aún quedaban de los niveles arqueo-
lógicamente fértiles –hasta llegar al nivel de arcil-
llas marrones que constituye la base de la se-
cuencia–.
La superficie total expuesta en SHK Extensión en el transcurso de dichas intervenciones es de 30 metros cuadrados aproximadamente. La cata abierta cuenta con una anchura máxima hacia el interior de la pared de 4,59 metros y una longitud máxima de 9,55 metros. La parte inferior de este espacio, de trazado irregular y contorneado con línea discontinua, se corresponde con el frente de material arqueológico que estaba siendo erosionado por la acción del agua cuando nuestro equipo inició los trabajos en este lugar. La secuencia arqueológica completa presenta una potencia de 0,70 metros y ha proporcionado una abultada colección de materiales, la cual asciende a un total de 4055 restos (3086 efectivos líticos y 969 elementos faunísticos). Dicha cantidad de material equivale, por tanto, a un promedio de densidad de 132,17 restos por metro cúbico.

4.4. DESCRIPCIÓN GÉOLOGICA Y LITOESTRATIGRÁFICA

El complejo arqueológico de SHK se sitúa, como ya se ha apuntado, en la parte superior del miembro medio del Lecho II, concretamente entre las tobas IIB y IIC. En esta zona de la cuenca de Olduvai, por entonces, el margen de lago estaba representado por amplias llanuras aluviales de geometría plana, de carácter arcilloso y con signos de exposición subaérea (como por ejemplo pequeñas costras de carbonato). En dicho entorno discurrirán pequeños sistemas fluviales, representados por pequeños canales –de aproximadamente 1 metro de profundidad–, encajados en un lecho arcilloso cohesivo. Se trataba de canales efímeros que enlazaban los grandes abanicos aluviales que arrancaban de la falda de los volcanes con el lago central de la cuenca. En general, la dirección de estos canales era sur-norte. Tenían una competencia relativamente alta, con capacidad para transportar carga de fondo de arenas y gravas, contrastando de manera notable con los depósitos de arcilla de las llanuras por las que discurrían. Es precisamente en las márgenes o bancos y dentro de los mismos canales donde se sitúan los yacimientos arqueológicos objeto de esta tesis doctoral (SHK Principal y SHK Extensión). Posteriormente, el avance de los abanicos aluviales hacia el centro de la cuenca acabará cubriendo todo este sistema de canales y llanura aluvial con limos tobáceos depositados a baja velocidad (Diez-Martín et al., 2014, 2017).

La secuencia litoestratigráfica de SHK Principal (Diez-Martín et al., 2014) comienza con una gruesa toba, de 1,2 metros de espesor, compuesta de limolitas y areniscas tobáceas de aspecto masivo y compacto. De acuerdo con la tabla de color Munsell, tiene un color gris oliva claro (5Y 6/2). En comparación con otras tobas del Lecho II, ésta no parece demasiado contaminada con materiales terrígenos y siliciclásticos, siendo por tanto una toba poco retraída. Sobre esta toba se documenta una llanura lutítica o de fango (mud flat) representada por una unidad de arcilla de hasta 2 metros de potencia cuya composición es 92% de arcilla, 8% de limo y menos del 0,5% de arena. Esta unidad geológica está formada por láminas de arcilla de 2-5 milímetros, con escasa bioturbación pero con abundantes nódulos y restos vegetales fosilizados en carbonato cálcico. Algunas de estas láminas contienen una baja proporción de limo tobáceo, dispuesto en granoselección positiva. De color marrón oliva oscuro (2,5Y 3/2), dicho nivel muestra una apariencia homogénea y cohesiva. Genéricamente se puede interpretar como una amplia llanura arcillosa, inundada periódicamente, donde el principal proceso de sedimentación es la decantación de arcilla. Está ligeramente inclinada (<1%) hacia el norte, en dirección al lago central. Dicha facies es similar a los términos más arcillosos de una llanura de inundación de un río.
meandrinforme, los cuales son interpretados habitualmente como depósitos de decantación en arroyada difusa sobre la llanura durante eventos de inundación, como lagunas de llanura de inundación o facies de tipo palustre (Miall, 2006; Nanson y Croke, 1992). Hay (1976) subraya la dificultad de caracterizar con precisión este sector de la Garganta como facies de borde de lago o llanura de inundación, dado que ambos medios son muy similares. En el caso de las muestras descritas en SHK Principal, este mud flat presenta rasgos característicos de los dos ambientes (por un lado, la geometría del depósito, las estructuras de estratificación o la presencia de estructuras sedimentarias biogénicas, distintivos de sedimentos fluviógenos, y por otro, la textura, propia de aquellos sedimentos de margen de lago).

Bien sea por un pequeño descenso del nivel de base o por una mayor disponibilidad de agua en los sistemas aluviales, sobre este mud flat se forman varios canales fluviógenos (dos en cada margen de la Garganta actual). Los situados más al norte, en la orilla izquierda, son de mayores dimensiones, alcanzando los 4 o 5 metros de anchura y hasta 1 metro de profundidad. Por su parte, aquellos localizados en la margen derecha presentan una anchura de entre 2 y 2,5 metros y hasta 0,8 metros de profundidad. La dirección aparente de todos ellos es hacia el norte, siguiendo la inclinación general del mud flat. Dichos canales debieron formarse cuando la arcilla estaba consolidada, ya que los bancos están bien definidos y además no se han identificado tapones de lodo, vueltos en los márgenes erosivos o depósitos por deslizamiento. Teniendo en cuenta la escasa pendiente del mud flat, la incisión del flujo en la arcilla cohesiva y la presencia de carga de fondo (arenas, gravas y bloques) indican un proceso de formación relativamente enérgico para este medio de sedimentación. Precisamente debido a la presencia de carga de fondo, estos canales han sido interpretados como vías de drenaje de una amplia llanura de inundación, alimentadas aguas arriba por un sistema de abanicos aluviales (que son los que tienen mayor pendiente y disponibilidad de sedimentos gruesos). También podrían ser catalogados como canales de desbordamiento (crevasse channels), similares a aquellos descritos en grandes ríos aluviales (Miall y Smith, 1989), aunque debemos señalar que ríos de tales dimensiones no han sido localizados en la Garganta Secundaria en una posición estratigráfica similar. Una vez que los canales están formados, éstos concentran el drenaje de la escorrentía superficial del mud flat, bien la generada por eventos de precipitación bien por subida del nivel del lago. En tales eventos, el flujo es puntualmente elevado y puede transportar la carga del lecho aguas abajo. Desde un punto de vista geo-arqueológico, el resultado final de estos procesos es una zona con disponibilidad de gran cantidad de material lítico en una amplia llanura arcillosa y, sobre todo, presencia temporal de agua dulce.

El yacimiento SHK Principal consta de tres unidades geológicas con material arqueológico (de base a techo: A, B y C) (Diez-Martín et al., 2014). Dos de ellas (A y B) están ubicadas precisamente en el relleno y la margen de uno de estos canales, situado en la orilla derecha de la Garganta Secundaria. Dada su cercanía a la superficie de la ladera, tan solo se ha conservado una de las márgenes del mismo (presumiblemente el lado izquierdo considerando la dirección e inclinación del canal).

El canal descubierto en SHK Principal tiene un tamaño mínimo de 1,5 metros de anchura y 70 centímetros de profundidad. En el fondo plano hay un surco de 40 centímetros de anchura y 20 centímetros de profundidad que constituye la vaguada (thalweg) del canal. Este surco y los primeros 30
centímetros del canal están rellenados por un conglomerado clasto-soportado, cementado con carbonato. La matriz está formada por arena, limo y arcilla, y el esqueleto por cantos redondeados, restos óseos y efectivos líticos. Desde un punto de vista litoíógico, las arenas están compuestas de cuarzo, feldespato y minerales máficos. Por su parte, la mayoría de los cantos rodados son de origen máfico y, en menor medida, granítico y metamórfico. Los primeros corresponden a las lavas volcánicas originadas en el Lemagrut, mientras que los segundos provienen de inselbergs como el Kelogi. El aspecto general del conglomerado es masivo, con ausencia de estructuras internas (estratificación, imbricación y/o selección de clastos). Los restos arqueológicos se han encontrado casi exclusivamente en la parte superior de éste y constituyen lo que se ha denominado el nivel arqueológico A.

La segunda unidad geológica (B) se encuentra en el borde del canal, apoyándose directamente sobre el mud flat. Contiene cantos rodados similares a los encontrados en el canal, mezclados igualmente con abundante industria lítica y restos de fauna. La concentración de material arqueológico resulta más densa hacia el borde del canal. Desde una perspectiva geológica, ambas unidades pueden ser consideradas contemporáneas debido al hecho de que su distribución está relacionada con la misma paleosuperficie. La unidad geológica A fue enterrada en primer lugar, siendo cubierta por una capa de 9 centímetros de espesor de arena media tobácea (57% de arena y 42% de limo + arcilla), estéril desde un punto de vista arqueológico. Se trata de un estrato delgado, masivo, sin restos arqueológicos y únicamente presente dentro del canal, el cual se correspondería con un evento menor de caudal que no llegó a desbordar el banco. Por encima del mud flat y del canal, finalmente, se deposita una toba (presumiblemente la IID) de 30 centímetros de espesor. Se trata de una toba volcánica que, dado que conserva en la matriz cristales angulosos de todos los tamaños, apenas está retrabajada. No obstante, aparece parcialmente cementada y meteorizada. Siguiendo la clasificación textural USDA, este nivel se define como un loam arcilloso (39% de arcilla, 29% de limo y 27% de arena). Las unidades geológicas A y B coinciden con aquellos niveles definidos por Leakey (1971) como 68b y 68c en SHK Main Site. Hay (1976) los describe como “abundantes artefactos y restos de fauna que rellenan un canal labrado en la llanura arcillosa, el cual está cubierto a su vez por la Toba IIC” y “artefactos y restos de fauna dispersos en unas arenas y tobas contaminadas con materiales silíceos y terrígenos, que probablemente representan la Toba IIC”, respectivamente. Ambos autores asumen que la Toba IIC entierra los dos niveles al mismo tiempo, sin distinguir la arena media tobácea sobre la unidad inferior (A).

Por encima de la Toba IIC se registra una capa discontinua de arcilla, que muestra un contacto muy irregular y progresivo con ésta. Parece haber sido objeto de procesos edáficos, aunque asimismo es posible que hubiera habido un aporte de arcilla externo. La unidad geológica C se forma sobre dicha capa y es enterrada por una arcilla limosa tobácea, con nódulos de carbonato, de color amarillo pálido (2.5Y 7/3). El tipo de facies cambia sustancialmente a un medio más aluvial, dominado por cuerpos sedimentarios de mayor espesor y granulometría (limos). Este estrato erosiona la unidad C y el techo de la Toba IIC manteniendo, al parecer, la misma posición que el antiguo canal. Sin embargo, el afloramiento es muy limitado para afirmar esto último con rotundidad. La parte superior de la secuencia estratigráfica, finalmente, está compuesta por facies aluviales. La Toba IID
se reconoce a 7 metros por encima de la unidad geológica C, prácticamente en el contacto con el Lecho III. En BK esta toba ha arrojado una nueva fecha, obtenida por 40Ar/39Ar, de 1,353 ± 0,035 millones de años (Domínguez-Rodrigo et al., 2013).

Por su parte, SHK Extensión consta de 9 unidades geológicas de carácter fluvial y aluvial que, superpuestas entre sí, forman un conjunto geométricamente complejo. El tipo de sedimento predominante es el limo y la arena fina, lo que denota un medio de baja energía, si bien localmente hay hileras de cantos (lages) correspondientes al inicio de eventos con caudales mayores. Todo el conjunto presenta deformación postsedimentaria por diferencia de carga, generando contactos ondulados. La secuencia litoestratigráfica de este enclave comienza con la incisión de un canal fluvial, de 4 metros de anchura y hasta 1 metro de profundidad máxima, labrado en arcillas cohesivas (Unidad Geológica 1). Dicha unidad es lateralmente muy continua y se puede localizar en los alrededores del yacimiento en un radio de hasta 300 metros de distancia (se trata de la misma llanura arcillosa que se documenta en SHK Principal, en la cual se excava el correspondiente canal). La arcilla tiene un color marrón oliva oscuro (2.5Y 3/2) y contiene pequeñas láminas de carbonato que denotan procesos de exposición subaérea. La acumulación de restos antrópicos que componen lo que hemos denominado Nivel B sobre el banco izquierdo de dicho canal se produce en este momento, es decir, cuando el pequeño afluentes es activo. El relleno del canal (Unidad Geológica 2) se produce en al menos dos episodios, formando dos cuerpos sedimentarios de arenas y limos -con un lag en la base-. Este depósito colmata por completo el canal y enrasa prácticamente con la base del Nivel B.

A continuación, la progradación de un sistema aluvial deja un depósito de limos tobáceo, de hasta 20 centímetros de espesor y de muro y techo planos, que se apoya sobre el relleno del canal y la llanura arcillosa (Unidad Geológica 3), conservando el Nivel B. Se trata de lomo dejado por un flujo no canalizado, aluvial y de tipo masivo. La ausencia de estructuras de corriente, así como de cualquier variación de la granulometría -junto con el reducido tamaño del sedimento- nos llevan a identificar esta unidad con un medio de sedimentación de baja energía. Este estrato de limo tobáceo tiene una gran continuidad lateral, siendo el mismo que cubre al nivel B de SHK Principal -depositado igualmente sobre el banco de un canal-. Dicha circunstancia demuestra, pues, la contemporaneidad de ambas unidades geológicas en el paleopaisaje del complejo arqueológico de SHK (Diez-Martín et al., 2017, 2022). Otro evento de carácter aluvial, pero de mayor energía, configura la Unidad Geológica 4 (erosión-relleno). La erosión actúa sobre parte del techo de la Unidad 3, llegando incluso en un punto de la zona del canal principal a la Unidad 2. El Nivel B, sin embargo, no se llega a ver afectado. El relleno de esta unidad está compuesto de limos arenosos.

La reactivación del sistema fluvial genera hasta tres pequeños canales que son rellenados con arenas medias y gruesas, localmente lamína-
das (Unidad Geológica 5). El nivel de base ha ascendido unos 50 centímetros, por lo que, a pesar de que estos canales son erosivos, no provocan la incisión de aquellos de la Unidad 2. En la parte norte (derecha) del yacimiento, justo por encima del canal principal, se sitúan dos de estos tres ca-
nales fluviales -los de menor tamaño-. Uno de ellos llega a erosionar el limo tobáceo de la Uni-
dad Geológica 3, llegándose a apoyar sobre la Uni-
dad 2. En el lado opuesto, al sur, se desarrolla un canal más potente y de mayores dimensiones que
cruza de manera oblicua el yacimiento, casi con dirección sur-norte (340°), y erosiona también parcialmente la Unidad 3. Tiene en la base y en el medio sendos lag o hileras de cantos (el basal corresponde al inicio de la formación del canal, mientras que el intermedio indica una parada y reactivación del relleno). Tras este evento fluvial se genera una paleosuperficie plana sobre la que se acumulan los vestigios arqueológicos que integran el que hemos llamado Nivel C, ubicado por tanto unos pocos centímetros por encima del Nivel B aunque desplazado hacia el sur.

Este Nivel C es cubierto por la Unidad Geológica 6, consistente en un cuerpo de arenas gruesas blancas y laminadas, de techo y muros planos, que cubre toda la extensión del yacimiento y que se corresponde con un evento de arroyada difusa probablemente de origen aluvial, es decir, no canalizado. Sobre estas arenas se genera una nueva acumulación de material arqueológico: el Nivel D. Después, un nuevo evento aluvial de muy baja energía deposita un grueso estrato de limos massivos (Unidad Geológica 7), tapando al Nivel D. Por su parte, la Unidad Geológica 8, un canal somero que erosiona parcialmente la Unidad 7 en la parte sur del yacimiento, está compuesta por arenas finas y medias. Sobre el techo de las unidades 7 y 8 se forma una última paleosuperficie plana, sobre la que se depositan los restos arqueológicos que integran el que hemos llamado Nivel E. Finalmente, la Unidad Geológica 9, de origen aluvial y compuesta de limos arcillosos, entierra y conserva dicho nivel, suponiendo el techo de la secuencia.
5. RESULTADOS
5.1. ARTICULO 1

5.2. ARTICULO 2

5. 3. ARTICULO 3

6. CONCLUSIONES Y
PERSPECTIVAS DE FUTURO

El principal empeño de esta tesis doctoral ha consistido en profundizar en el concepto de sincronía de los conjuntos materiales recuperados en yacimientos arqueológicos de la Early Stone Age africana como paso previo a su posterior estudio pluridisciplinar. A fin de lograr establecer las unidades mínimas de análisis -con el mayor grado posible de resolución temporal- que permitan reconstruir de forma fiable los comportamientos humanos del pasado, entre ellos los de tipo tecnológico, económico y microespacial a escala local, se han aplicado una serie de principios teórico-metodológicos basados en la llamada "arqueología de alta resolución" al estudio de las dos secuencias recientemente excavadas por nuestro equipo -SHK Principal y SHK Extensión- en el complejo arqueológico de Sam Howard Korongo (Lecho II, Garganta de Olduvai, Tanzania). Dicho enfoque, por desgracia, apenas se ha visto reflejado en los trabajos dedicados a estudiar el componente espacial a nivel micro realizados hasta la fecha en contextos del Paleolítico africano (Bunn et al., 1980; Conard et al., 2022; Gallotti y Piperno 2004; Kroll 1994, 1997; Kroll y Isaac 1984; Yellen 1996), los cuales se han basado (y continúan haciéndolo) en los tradicionales marcos analíticos definidos en exclusiva a partir de criterios sedimentológicos -a pesar de constituir dichos estratos geológicos el resultado de un número indeterminado de actividades humanas llevadas a cabo en un mismo espacio pero correspondientes a ocupaciones distintas acontecidas durante largos periodos de tiempo-.

El riguroso y exhaustivo estudio arqueoesтратigráfico de sendas secuencias ha constituido pues la primera fase de este trabajo. En el caso de SHK Principal, la identificación de cuatro lechos estériles, dos de tipo estrictamente arqueoestratigráfico (puesto que han sido identificados dentro de paquetes de sedimento homogéneo) y otros dos coincidentes con rupturas estratigráficas, algunos de mayor envergadura y regularidad que otros, pero todos ellos continuos a lo largo de la superficie excavada, ha permitido aislar un total de cinco unidades arqueoestratigráficas, denominadas de muro a techo A1, A2, B1, B2 y C. Por su parte, el control de todos los puntos de intersección derivados del cruce de perfiles longitudinales y transversales en el área analizada ha dado lugar al reconocimiento de seis hiatos sedimentarios en la secuencia arqueológica de SHK Extensión, los cuales delimitan e individualizan un total de siete arqueounidades, designadas en este caso de muro a techo B1, B2, C1, C2, D1, D2 y E. Características tales como la pendiente que presenta cada una de ellas, su extensión en superficie, la potencia media
o la densidad de materiales difieren de manera significativa de unas a otras.

La aplicación del método arqueoestratigráfico ha posibilitado, por tanto, una identificación más precisa de los eventos antropogénicos que tuvieron lugar en el complejo arqueológico de SHK, puesto que cinco de los siete niveles litoestratigráficos con material arqueológico documentados han podido ser subdivididos en dos unidades arqueoestratigráficas cada uno (A1-A2 y B1-B2 en SHK Principal y B1-B2, C1-C2 y D1-D2 en SHK Extensión). Dicha herramienta metodológica es, a la vista de los satisfactorios resultados obtenidos, la más eficaz a la hora de diseccionar palimpsestos arqueológicos y estudiar las relaciones espaciotemporales del registro de manera previa a la realización de cualquier otro tipo de análisis de tipo conductual o espacial, ya que permite diferenciar conjuntos de objetos que presentan una mayor sincronicidad –reduciendo considerablemente con ello el riesgo de estar mezclando restos arqueológicos pertenecientes a momentos ocupacionales distintos–. En palabras de Obregnón (2012: 26), “evidentemente no se puede aislar cada momento pero sí acercarnos lo suficiente como para eliminar muchos de los errores de interpretación en los que se incurre cuando se analiza todo el paquete sedimentario en su conjunto”.

La necesidad de comprender no solo el tiempo de depósito del registro arqueológico sino también la historia tafonómica de los distintos conjuntos aislados arqueoestratigráficamente es otra de las cuestiones que ha sido advertida de manera reiterada a lo largo de esta tesis doctoral, ya que conocer los procesos de formación de los diferentes arqueoneiveles y evaluar en qué medida las dinámicas postdeposicionales han podido afectar a las asociaciones de artefactos y los patrones generados por la actividad antrópica son claves a la hora de realizar posteriores inferencias de tipo microespacial. De entre las diversas variables potencialmente indicativas de flujos de agua (sin duda el agente natural de mayor trascendencia en la configuración y alteración de los yacimientos objeto de estudio) que suelen ser tenidas en cuenta para llevar a cabo dicha empresa, y más allá de los criterios puramente geológicos y sedimentológicos, en este trabajo hemos optado por examinar el material arqueológico (lítica y fauna) en función de su distribución por tamaños y pesos, los rodamientos y los patrones de orientación.

La combinación de los resultados obtenidos en los diferentes análisis tafonómicos llevados a cabo ha revelado que el grado de integridad varía considerablemente de unos conjuntos a otros, siendo los arqueoneiveles B2 y C aquellos que exhiben un mayor nivel de preservación en SHK Principal, mientras que A2, seguida de A1 y B1, son las unidades arqueoestratigráficas que presentan mayor grado de modificación debido a la acción hidráulica. Por su parte, en el caso de SHK Extensión, las arqueounidades E, B2 y D1 son las mejor conservadas, mientras que los arqueoneiveles C1, C2, B1 y D2 se encuentran en el lado opuesto. El escrupuloso examen del estado de integridad estructural de cada uno de los depósitos aislados previamente a partir del método arqueoestratigráfico realizado ha permitido pues documentar en ambos yacimientos diversos grados de alteración dentro de un mismo contexto deposicional o, dicho con otras palabras, distintas historias tafonómicas dentro de un mismo estrato geológico.

El análisis tecno-tipológico del material lítico que compone cada una de las unidades arqueoestratigráficas identificadas a lo largo de las dos secuencias estudiadas, tarea que ha conformado la tercera fase de este trabajo de investigación, ha
permitido establecer muchas similitudes y también algunas diferencias entre los diferentes arqueoniveles de SHK Principal y SHK Extensión. Respecto al uso y selección de materias primas, en todos los casos destaca cuantitativamente el cuarzo, seguido a gran distancia del basalto. Cuando reparamos, por el contrario, en el peso total de los diferentes tipos de rocas presentes en cada arqueounidad en vez de en las frecuencias absolutas, el conjunto de rocas volcánicas suele ser mucho más relevante que el cuarzo. Se advierte, además, un uso diferencial de las principales materias primas documentadas (cuarzo vs. rocas volcánicas) cuando atendemos a su distribución en función de las categorías y subcategorías tecnológicas consideradas. Por lo general, mientras que los efectivos en cuarzo predominan entre los MBB, los núcleos bipolares, los productos de desbaste o los residuos de talla (precisamente la elevada proporción que estas dos últimas categorías alcanzan dentro de todas las arqueounidades explica dicha preponderancia –en términos numéricos– del cuarzo), las rocas volcánicas prevalecen de forma clara entre los cantos no modificados, los percutores convencionales o los cantos trabajados.

En el complejo arqueológico de SHK hemos reconocido tres tipos de secuencias operativas: las actividades de percusión y machacado (percutores –completos y fracturados–, lascas y fragmentos de percusión, yunques y MBB), la producción de lascas de pequeño y mediano tamaño (núcleos –bipolares y a mano alzada–, desbastados, lascas retocadas y residuos de talla) y la producción/configuración de herramientas de gran formato (núcleos de grandes lascas, grandes lascas y LCTs). En todos los arqueoniveles identificados tanto en SHK Principal como en SHK Extensión se ha registrado un claro predominio de aquellas ca-

tegorías tecnológicas relacionadas con las secuencias de talla encaminadas a la producción de lascas de pequeño y mediano tamaño. Los porcentajes más elevados de efectivos líticos implicados en dichos procesos (superiores al 80%) se alcanzan en ciertas unidades arqueoestratigráficas de SHK Extensión, en concreto en B2, E y D1. En el lado opuesto se sitúan los arqueoniveles A1, B1 y C de SHK Principal y C1, C2 y D2 de SHK Extensión, en los cuales la combinación de cantos rodados no modificados y elementos de percusión sobresale especialmente.

Finalmente, todas las colecciones analizadas en este trabajo, excepto las arqueounidades A1 y B2 de SHK Principal y B1 de SHK Extensión, incluyen especímenes líticos directamente relacionados con los procesos de producción/configuración de grandes herramientas, variando el porcentaje que esta categoría tecnológica alcanza dentro de cada conjunto lítico desde un mínimo del 0,35% en el arqueonivel A2 de SHK Principal a un máximo del 1,6% en el arqueonivel C1 de SHK Extensión. Dichas proporciones son pues similares a las observadas en otros conjuntos recientemente estudiados del Lecho II de Olduvai. La unidad arqueoestratigráfica B2 de SHK Extensión, que engloba un núcleo de grandes lascas, cuatro grandes lascas en bruto y diez LCTs, destaca por ser la única de todas las colecciones líticas estudiadas tanto en SHK Principal como en SHK Extensión en la que se han podido documentar la mayoría de las etapas de la cadena operativa de producción de grandes soportes en cuarzo. Si bien es cierto que en esta arqueounidad no se han encontrado LCTs elaborados en rocas volcánicas, la identificación de dos pequeñas lascas, una de basalto y otra de fonolita, procedentes del acondicionamiento o reavivado de los filos de un LCT apunta a que las tareas de mantenimiento de estos efectivos po-
drían haber igualmente tenido lugar. La excepcionalidad en este sentido del arqueonivel B2 de SHK Extensión está pues en consonancia con la significativa fragmentación espacial y/o temporal de las secuencias operativas de producción de grandes formatos que se viene advirtiendo en otros yacimientos achelenses africanos (Diez-Martín et al., 2012; de la Torre, 2016).

Una vez caracterizados desde un punto de vista tecno-tipológico los distintos conjuntos líticos aislados previamente mediante el estudio arqueoeestratigráfico de sendos yacimientos se ha procedido, por último, a la búsqueda de remontajes líticos. El reducido número de materias primas diferentes presentes en las colecciones estudiadas y sobre todo el alto grado de homogeneidad dentro de cada uno de los tipos de roca han condicionado por completo la tarea de conectar restos líticos entre sí. Especialmente complejo ha resultado el caso del cuarzo (precisamente la materia prima más abundante tanto en SHK Principal como en SHK Extensión), ya que a la habitual ausencia de rasgos físicos diagnósticos entre los diferentes bloques se le suma la naturaleza friable de esta roca.

En SHK Principal un total de 32 efectivos distribuidos en 15 grupos han sido ensamblados con éxito, mientras que en SHK Extensión las horas invertidas en la búsqueda de remontajes líticos han tenido como resultado la identificación de 7 conexiones directas, las cuales engloban un total de 22 efectivos. En ambos casos la mayor parte de las uniones están constituidas únicamente por dos efectivos. Por lo que a las materias primas se refiere, en SHK Principal prevalecen las uniones en cuarzo sobre aquellas en rocas volcánicas mientras que en SHK Extensión sucede lo contrario. En cuanto al tipo de conexión, casi todos los remontajes encontrados consisten en uniones de fragmentos de artefactos que en algún momento formaron parte de un elemento completo, correspondiéndose por tanto al grupo de los conjoin. Tan solo tres de los remontajes hallados (grupo D en SHK Principal y grupos B y D en SHK Extensión) se corresponden con la categoría de los refits en el sentido estricto del término —se trata en todos estos casos de remontajes de Tipo 1 (Cziesla, 1990), es decir, de secuencias de producción, no habiéndose documentado, sin embargo, ningún remontaje de modificación y reelaboración (Tipo 3 de Cziesla, 1990)—.

Lamentablemente, esta reducida cantidad de remontajes de secuencias de talla (Tipo 1) en los dos depósitos arqueológicos analizados ha impedido que se puedan extraer conclusiones de tipo tecnológico o espacio-temporal. En cambio, la distribución en planta y en sección de las conexiones identificadas sí ha aportado datos esenciales en relación a los procesos de formación de estos yacimientos y la integridad del registro arqueológico, al igual que ha respaldado los resultados de los análisis arqueoeestratigráficos realizados. El rotundo predominio de las líneas de conexión cortas, tanto en el plano horizontal como en el vertical, en unos conjuntos en los que precisamente prevalecen los remontajes de tipo fractura, es un claro reflejo de que los desplazamientos post-depositionales han tenido una escasa incidencia sobre la ubicación espacial de los restos líticos, una afirmación que se ha visto además corroborada por los resultados obtenidos en los análisis de orientaciones realizados.

En definitiva, la presente tesis doctoral ha permitido alcanzar una serie de conclusiones relevantes para entender, desde una perspectiva espacio-temporal y a partir fundamentalmente del registro lítico recuperado, los dos yacimientos con
naturaleza de palimpsesto objeto de estudio, dando respuesta a los objetivos inicialmente planteados. Ahora bien, este trabajo no constituye ni mucho menos el punto y final en nuestra investigación, sino que más bien debe ser el germen de nuevos estudios que supondrán la continuidad de algunas de las líneas de trabajo aquí iniciadas y el surgimiento de otras complementarias. Por este motivo, se plantean finalmente las siguientes perspectivas de futuro para exponer algunos de los caminos que aún quedan por recorrer en este sentido:

- Extender la búsqueda de remontajes líticos en SHK Extensión al resto de unidades arqueoestratigráficas con la expectativa de poder hallar, sobre todo, más conexiones de secuencias de talla que permitan extraer conclusiones no sólo tafonómicas sino también de tipo tecnológico, tales como la reconstrucción de los procesos de producción y configuración llevados a cabo en el lugar, o espacio-temporal, tales como el reconocimiento de la direccionalidad de las líneas de unión o el establecimiento de relaciones de sincronía o diacronía entre diferentes zonas del yacimiento.

- Analizar los restos faunísticos recuperados en SHK Principal y SHK Extensión igualmente desde una perspectiva espacio-temporal, aplicando para ello las divisiones arqueoestratigráficas establecidas en esta tesis doctoral y realizando además estudios de remontajes óseos, con el objetivo de advertir similitudes y/o diferencias en las estrategias de subsistencia de los sucesivos grupos humanos que frecuentaron dichos enclaves. La integración de los resultados derivados de ambas investigaciones (a partir del registro lítico por un lado y del faunístico por otro) sin duda permitirá una mejor comprensión de las dinámicas ocupacionales desarrolladas en el complejo arqueológico de SHK.

- Incorporar herramientas de estadística espacial al estudio intra-site horizontal de cada una de las arqueounidades identificadas tanto en SHK Principal como en SHK Extensión, las cuales permitan conocer la naturaleza agrupada, dispersa o aleatoriamente distribuida de los materiales (líticos y óseos) en ellas contenidos, así como establecer agrupaciones de elementos arqueológicos y comprobar si existen correlaciones en los patrones de agrupación de distintas categorías de restos.

- Profundizar en la cuestión de las variaciones a nivel local de los procesos técnicos y económicos documentados, aprovechando la doble ventana abierta en el paleopaisaje fluvial del complejo arqueológico de SHK –precisamente uno de los enclaves que han protagonizado durante décadas el intenso debate en torno a la dicotomía oduvayense evolucionado B/achelense (Diez-Martín y Eren, 2012; Sánchez-Yustos et al., 2019; de la Torre y Mora, 2020)– y la contemporaneidad –habiendo en esta ocasión en términos de escala de tiempo geológico– de los niveles litoestratigráficos B documentados tanto en SHK Principal como en SHK Extensión.

- Por último, estudiar otras secuencias arqueológicas ya excavadas o en proceso de excavación por el equipo TOPPP en la Garganta de Olduvai, aplicando los mismos procedimientos teórico-metodológicos empleados en esta tesis doctoral. Uno de los mejores candidatos para protagonizar dicho trabajo es, sin duda, FLK West, yacimiento clave en el estudio del origen del tecnon complejo Achelense, en el cual se ha expuesto un área total de 100 metros cuadrados (Diez Martín, 2018; Diez-Martín et al., 2015, 2019; Sánchez-Yustos et al., 2017a, 2018; Uribeiarrea et al., 2017, 2019; Yravedra et al., 2017) (Figura 6.1).
Figura 6.1. Intervención arqueológica en FLK West. En la imagen superior, vista panorámica del área donde se ubica el yacimiento, localizado a escasos 100 metros del famoso FLK Zinj. En la imagen inferior, finalización de las labores de ampliación de la superficie de excavación llevadas a cabo durante las campañas de 2016 y 2017 (fotografías de Fernando Diez Martín).
BIBLIOGRAFÍA

A

ALMEIDA, F.

ASCHER, R.

ASHTON, N.

ASHTON, N., MCNABB, J., PARFITT, S.

AUDOUZE, F.

AUDOUZE, F., ENLOE, J. G.

AUDOUZE, F., CAHEN, D., KEELEY, L., SCHMIDER, B.

B

BAENA, J., BLASCO, C., QUESADA, F. (Eds.)
1997 Los SIG y el análisis espacial en Arqueología. Universidad Autónoma de Madrid, Madrid.
BAILEY, G.

BARGALLÓ, A., GABUCIO, M. J., RIVALS, F.

BARGALLÓ, A., GABUCIO, M. J., GOMEZ DESOLER, B., CHACON, M. G., VAQUERO, M.

BERNATCHEZ, J. A.

BENITO-CALVO, A., TORRE, I. DE LA

BERTRAN, P., TEXIER, J. P.

BERTRAN, P., LENOBLE, A.

BERTRAN, P., LENOBLE, A., TODISCO, D., DESROSIERS, P. M., SORENSEN, M.

BERTRAN, P., TODISCO, D., BORDES, J.G., DISCAMPS, E., VALLIN, L.

2019 Perturbation assessment in archaeological sites as part of the taphonomic study: a review of methods used to document the impact of natural processes on site formation and archaeological interpretations. *Paléo: revue d’archéologie préhistorique*, 30: 52 – 75.
BINFORD, L. R.

1983 *In Pursuit of the Past: Decoding the Archaeological Record*. Thames and Hudson, Nueva York.

BLEED, P.

BLUMENSCHINE, R.J.

BODU, P., KARLIN, C., PLOUX, S.

BORDES, F.

BOSCHIAN, G., SACCA, D.

BOSINSKI, G.

BOWERS, P. M., BONNICHSEN, R., HOCH, D. M.

BUNN, H. T., KROLL, E. M.

BUSTOS-PEREZ, G., DIAZ, S., BAENA, J.

CAHEN, D., MOEYERSONS, J.

CAHEN, D., KEELEY, L., VAN NOTEN, F.

CANALS, A.

CANALS, A., GALOBART, A.
2003 Arqueoestratigrafía y reconstrucción de la dinámica sedimentaria en los yacimientos del Pleistoceno inferior de Incarcal I e Incarcal V. *Paleontología i evolució*, 34: 221 – 232.

CANALS, A., VALLVERDÚ, J., CARBONELL, E.

CAPALDO, S. D.

CARBONELL, E. (Ed.)
2012 *High resolution archaeology and Neanderthal behavior: Time and space in Level J of Abric Romani (Capellades, Spain)*. Springer, Nueva York.
CARBONELL, E., GUJILBAUD, M., MORA, R.

CARBONELL, E., RODRIGUEZ, X.P., SALA, R., VAQUERO, M.

CASCALHEIRA, J., PICIN, A. (Eds.)

CATIN, M. I.

CHACON, M. G., BARGALLO, A., GABUCIO, M. J., RIVALS, F., VAQUERO, M.

CHAVAILLON, J., PIPERNO, M.

CLARK, J. D.

CLARKE, D. L.

COBO-SANCHEZ, L., ARAMENDI, J., DOMINGUEZ-RODRIGO, M.
2014 Orientation patterns of wildebeest bones on the lake Masek floodplain (Serengeti, Tanzania) and their relevance to interpret anisotropy in the Olduvai lacustrine floodplain. *Quaternary International*, 322-323: 271–284.

COLLIS, J.
CONARD, N. J., BRENNER, M., BRETZKE, K., WILL, M.

2022 What do spatial data from Sibhudo tell us about life in the Middle Stone Age? Archaeological and Anthropological Sciences, 14: 148.

CONOLLY, J., LAKE, M.

CZIESLA, E.

D

D’ANDREA, A., GALLOTTI, R.

D’ANDREA, A., GALLOTTI, R., PIPERNO, M.

DAVID, N., KRAMER, C.

DAVIS, D. D.

1975 Spatial organization and subsistence technology of Lower and Middle Pleistocene hominid sites at Olduvai Gorge, Tanzania. Tesis doctoral inédita, Yale University.

DAVIS, R. S.

DELAGNES, A., ROCHE, H.

DESCHAMPS, M., ZILHÃO, J.

DIBBLE, H. L., CHASE, P. G., MCPHERSON, S., TUFEAUX, A.

DIBBLE, H. L., RACZEK, T. P., MCPHERSON, S. P.

DIEZ-MARTIN, F.
2013 La arqueología del paisaje: análisis macro y meso-espacial. En GARCIA, M. y ZAPATA, L. (Eds): Métodos y técnicas de análisis y estudio en arqueología prehistórica: De lo técnico a la reconstrucción de los grupos humanos. Universidad de País Vasco, pp. 219 – 244.
2018 (Coord) En África hace 1,7 millones de años. El origen del achelense. Museo Arqueológico Regional de Madrid, Madrid.

DIEZ MARTIN, F., EREN, M.

DIEZ MARTIN, F., SANCHEZ YUSTOS, P.

DIEZ-MARTIN, F., SANCHEZ, P., DOMINGUEZ-RODRIGO, M., MABULLA, A., BARBA, R.

DIEZ-MARTIN, F., DOMINGUEZ-RODRIGO, M., SANCHEZ, P., MABULLA, A., TARRIÑO, A., BARBA, R., PRENDERGAST, M., LUQUE, L.
DIEZ-MARTIN, F., SANCHEZ, P., DOMINGUEZ-RODRIGO, M., MABULLA, A., BUNN, H. T., ASHLEY, G., BARBA, R., BAQUEDANO, E.

DIEZ-MARTIN, F., SANCHEZ, P., DOMINGUEZ-RODRIGO, M., PRENDERGAST, M. E.

DIEZ-MARTIN, F., CUARTERO, F., SANCHEZ, P., BAENA, J., DOMINGUEZ-RODRIGO, M., RUBIO, D.

2015 The origin of the Acheulean: The 1.7 Million-year-old site of FLK West (Olduvai Gorge, Tanzania). *Scientific Reports, 5*: 17839.

DOMINGUEZ-RODRIGO, M., GARCIA-PEREZ, A.

DOMINGUEZ-RODRIGO, M., BARBA, R., EGELAND, C. P.

DOMINGUEZ-RODRIGO, M., BAQUEDANO, E., MABULLA, A., MERCADER, J., EGELAND, C.P.

DUQUE, J., DE FRANCISCO, S.

269
EGELAND, C.P., DOMÍNGUEZ-RODRIGO, M.

ENLOE, J. G.

ENLOE, J. G., DAVID, F.

FERNÁNDEZ LASO, M. C.
2010 *Remontajes de restos faunísticos y relaciones entre áreas domésticas en los niveles K, L y M del Abric Romaní (Capellades, Barcelona, España)*. Tesis doctoral inédita. Universidad Rovira i Virgili, Tarragona.

FERNÁNDEZ-LASO, M. C., ROSELL, J., BLASCO, R., VAQUERO, M.

FERNÁNDEZ-LÓPEZ, S.

FIORE, I., TAGLIAZZO, A.

FISHER, N.I.

Facing the palimpsest conundrum: an archaeo-stratigraphic approach to the intra-site analysis of SHK Extension (Bed II, Olduvai Gorge, Tanzania).

FREEMAN, L.

G

GABUCIO, M. J.

GABUCIO, M. J., FERNÁNDEZ-LASO, M. C., ROSELL, J.

GABUCIO, M. J., CÁCERES, I., RIVALS, F., BARGALLO, A., ROSELL, J., SALADIÉ, P., VALLVERDÚ, J., VAQUERO, M., CARBONELL, E.

2018a Unraveling a Neanderthal palimpsest from a zooarchaeological and taphonomic perspective. Archaeological and Anthropological Sciences, 10: 197 – 222.

GALLAY, A.

GALLOTTI, R.

GALLOTTI, R., MUSSI, M.

GALLOTTI, R., PIPERNO, M.

GARCÍA-MORENO, A., SMITH, G. M., KINDLER, L., POP, E., ROEBROEKS, W., GAUDZINSKI-WINDHEUSER, S., KLINKENBERG, V.

GARCÍA SANJUÁN, L.

GIFFORD-GONZALEZ, D. P., BEHRENSMEYER, A. K.
1977 Observed formation and burial of a recent human occupation site in Kenya. Quaternary Research, 8: 245 – 266.

GIUSTI, D., ARZARELLO, M.
2016 The need for a taphonomic perspective in spatial analysis: Formation processes at the Early Pleistocene site of Pirro Nord (P13), Apricena, Italy. Journal of Archaeological Science: Reports, 8: 235 – 249.

HARDING, P., GIBBARD, P. L., LEWIN, J., MACKLIN, M. G., MOSS, E. H.

HARICHANE, Z.

HAY, R. L.

HENRY, D.
2012 The palimpsest problem, hearth pattern analysis, and Middle Paleolithic site structure. Quaternary International, 247: 246 – 266.
HODDER, I., ORTON, C.

HOFMAN, J. L.

HOLDAWAY, S., WANDSNIDER, L.
2008 Time in Archaeology: Time Perspectivism revisited. The University of Utah Press, Salt Lake City.

HOSFIELD, R. T.

HOVERS, E.

HOVERS, E., MALINSKY-BULLER, A., GODER-GOLDBERGER, M., EKSHTAIN, R.

ISAAC, G. L.

ISAAC, G. L., CRADER, D. C.

J

JESKE, R, LURIE, R.

JIMÉNEZ, V.

JONES, P. R.

JULIEN, M.

K

KENT, S.

KETTERER, I., PIGEOT, N., SERRA, S.

KROLL, E. M.
1986 The anthropological meaning of spatial configurations at Plio-Pleistocene archaeological sites in East Africa. Tesis doctoral inédita, University of California.
KROLL, E. M., ISAAC, G. L.

KROLL, E. M., PRICE, T. D.

LAMOTTA, V. M., SCHIFFER, M. B.

LAPLACE, G., MÉROC, L.

LAUGHLIN, J. P., KELLY, R. L.

LEAKEY, L. S. B.

LEAKEY, M. D.

LENOBLE, A., BERTRAN, P.

LEROI-GOURHAN, A.

LEROI-GOURHAN, A., BREZILLON, M.
LOMERA-HERMIDA, A. DE., RODRÍGUEZ-RELLÁN, C.

LÓPEZ-ORTEGA, E.

2019 *Identificación de áreas de actividad e interacciones intra-site a través del estudio de remontajes líticos en el Pleistoceno Medio en el nivel TD10.1 de Gran Dolina (Sierra de Atapuerca, Burgos).* Tesis doctoral, inédita, Universiad Rovira i Virgili, Tarragona.

LÓPEZ-ORTEGA, E., RODRÍGUEZ, X. P., VAQUERO, M.

2011 Lithic refitting and movement connections: the NW area of level TD10-1 at the Gran Dolina site (Sierra de Atapuerca, Burgos, Spain). *Journal of Archaeological Science*, 38: 3112 - 3121.

LÓPEZ-ORTEGA, E., BARGALLÓ, A., LOMERA-HERMIDA, A. DE., MOSQUERA, M., OLLÉ, A., RODRÍGUEZ-ÁLVAREZ, X. P.

LÓPEZ-ORTEGA, E., RODRÍGUEZ-ÁLVAREZ, X. P., OLLÉ, A., LOZANO, S.

LUCAS, G.

2005 *The archaeology of time.* Routledge, Londres.

LUMLEY, H. DE

LUMLEY, H. DE, BOONE, Y.

MACHADO, J., PÉREZ, L.

2016 Temporal frameworks to approach human behavior concealed in Middle Palaeolithic palimpsests: A high-resolution example from El Salt Stratigraphic Unit X (Alicante, Spain). *Quaternary International*, 417: 66 - 81.
MACHADO, J., HERNÁNDEZ, C. M., GALVÁN, B.

MACHADO, J., HERNÁNDEZ, C. M., MALLOL, C., GALVÁN, B.

MACHADO, J., MALLOL, C., HERNÁNDEZ, C. M.

MACHADO, J., MOLINA, F. J., HERNÁNDEZ, C. M., TARRIÑO, A., GALVÁN, B.

MACHADO, J., MAYOR, A., HERNÁNDEZ, C.M., GALVÁN, B.

MALINSKY-BULLER, A., HOVERS, E, MARDER, O.

MALLOL, C., HERNÁNDEZ, C. (Ed.)

MALLOL, C., HERNÁNDEZ, C. M., CABANES, D., SISTIAGA, A., MACHADO, J., RODRÍGUEZ, Á., PÉREZ, L., GALVÁN, B.

MANCEBO, S., ORTEGA, E., VALENTÍN, A. C., MARTÍN, B., MARTÍN, L.

MANEGA, P. C.
1993 Geochronology, Geochemistry and Isotopic Study of the Plio-Pleistocene Hominid Sites and the Ngorongoro Volcanic Highland in Northern Tanzania. Tesis doctoral inédita, University of Chicago.
MARIN ARROYO, A. B.

MARTINEZ-MORENO, J., MORA, R., ROY, M., BENITO-CALVO, A.

MAYOR, A., HERNANDEZ, C.M., MACHADO, J., MALLOL, C., GALVAN, B.

MCPHERRON, S.

MENDEZ–QUINTAS, E., PANERA, J., ALTAMURA, F., DI BIANCO, L., MELIS, R.T., PIARULLI, F., RUTA, G., MUSSI, M.

MIALL, A.D.

MIALL, A.D., SMITH, N.D.

MODOLO, M., ROSELL, J.

MORA, R., TORRE, I. DE LA.

MORA, R., MARTÍNEZ, J., RODA, X., ROY, M., VEGA, S.

MORIN, E., TSANOVA, T., SIRAKOV, N., RENDU, W., MALLYE, J. B., LÉVÊQUE, F.

278
MOURRE, V.

N

NANSON, G.C., CROKE, J.C.

NEWCOMER, M.

O

O’CONNELL, J. F.

OBREGÓN, R. A.
2012 *Estratigrafía cultural en el nivel TD10-1 de Gran Dolina, Sierra de Atapuerca, (Burgos): Secuencia arqueoestratigráfica de los asentamientos contenidos en sedimento homogéneo*. Tesis doctoral inédita. Universidad de Burgos, Burgos.

OHEL, M. Y.

OLAYA, V.

ORGANISTA, E., DOMÍNGUEZ-RODRIGO, M., YRAVEDRA, J., URIBELARRA, D., ARRIAZA, M. C., ORTEGA, M. C., MABULLA, A., GIDNA, A., BAQUEDANO, E.
2017 Biotic and abiotic processes affecting the formation of BK Level 4c (Bed II, Olduvai Gorge) and their bearing on hominin behavior at the site. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 488: 59 – 75.

P

PERREAULT, C.

PETRAGLIA, M. D.

PETRAGLIA, M. D., NASH, D. T.

PETRAGLIA, M. D., POTTS, R.

PETTIIT, P. B.

POTTS, R.

POTTS, R., JORSTAD, T., COLE, D.

REU, J. DE, SMEDT, P. DE, HERREMONS, D., VAN MEIRVENNE, M., LAILOO, P., CLERQ, W. DE
RICK, J. W.

ROSELL, J., BLASCO, R., FERNÁNDEZ-LASO, M. C., VAQUERO, M., CARBONELL, E.

ROSELL, J., MODESTO-MATA, M., FERNÁNDEZ-LASO, M. C., MODOLO, M., BLASCO, R.

RUIZ ZAPATERO, G.

SÁENZ DE BURUAGA, A.

SAHNOUNI, M., HADJOUIS, D., VAN DER MADE, J., DERRADJI, A., CANALS, A., MEDIG, M., BELAHRECH, H., HARICHANE, Z., RABHI, M.

SAHNOUNI, M., EVERET, M., VAN DER MADE, J., HARICHANE, Z.
2017 Mise en évidence d’un changement climatique dans le site pléistocène inférieur d’El Kherba (Algérie), et son possible impact sur les activités des hominidés, il y a 1,7 Ma. L’Anthropologie, 121: 146 – 162.

SÁNCHEZ-ROMERO, L., BENITO-CALVO, A., PÉREZ-GONZÁLEZ, A., SANTONJA, M.
2016 Assessment of accumulation processes at the Middle Pleistocene site of Ambrona (Soria, Spain). Density and orientation patterns in spatial datasets derived from excavations conducted from the 1960s to the present. PLoS ONE, 11: e0167595.

2017 Breaking the palimpsest: an approach to the cultural sequence of Neanderthal occupation at the Navalmaílo rockshelter, Pinilla del Valle (Spain). Trabajos de Prehistoria, 74: 225 – 237.

SÁNCHEZ-YUSTOS, P., DIEZ-MARTÍN, F., DOMÍNGUEZ-RODRIGO, M., TARRIÑO-VINAGRE, A.
SÁNCHEZ-YUSTOS, P., DIEZ-MARTÍN, F., DÍAZ, I. M., DUQUE, J., FRAILE, C., DOMÍNGUEZ, M.

SÁNCHEZ-YUSTOS, P., DIEZ-MARTÍN, F., DÍAZ, I., FRAILE, C., URIBELARREA, D., MABULLA, A., BAQUEDANO, E., DOMÍNGUEZ-RODRIGO, M.

SAÑUDO, P., VALLVERDÚ, J., CANALS, A.

SAÑUDO, P., BLASCO, R., FERNÁNDEZ-PERIS, J.

SCHICK, K. D.

SCHICK, K. D., TOTH, N.

SCHIFFER, M. B.

SCHURMANS, U.

SHACKLEY, M. L.

SHEA, J. J.

SHIPMAN, P.

SISK, M. L., SHEA, J. J.

STANISTREET, I.G.

STEKELIS, M.

STEKELIS, M., BAR-YOSEF, O., SCHICK, T.
STERN, N.

STOCKTON, E. D.

STOUT, D., SEMAW, S., ROGERS, M. J., CAUCHE, D.

SUMNER, T. A., KUMAN, K.
2014 Refitting evidence for the stratigraphic integrity of the Kudu Koppie Early to Middle Stone Age site, northern Limpopo Province, South Africa. *Quaternary International*, 343: 169 – 178.

TABORIN, Y., OLIVE M., PIGEOT, N.

TODD, L. C., FRISON, G. C.

TORRE, I. DE LA
2006 *Estrategias tecnológicas en el Pleistoceno inferior de África oriental (Olduvai y Peninj, norte de Tanzania)*. Servicio de Publicaciones Universidad Complutense de Madrid, Madrid.
2011 The Early Stone Age lithic assemblages of Gadeb (Ethiopia) and the Developed Oldowan/early Acheulean in East Africa. *Journal of Human Evolution*, 60: 768 – 812.

TORRE, I. DE LA, BENITO-CALVO, A.

TORRE, I. DE LA, MORA, R.
2004 *El Olduvayense de la Sección Tipo de Peninj (Lago Natrón, Tanzania)*. CEPAP, Barcelona.

284

TORRE, I. DE LA, WEHR, K.

TORRE, I. DE LA, MORA, R., DOMÍNGUEZ-RODRIGO, M., LUQUE, L., ALCALÁ, L.

TORRE, I. DE LA, MARTÍNEZ-MORENO, J., MORA, R., PIZARRO, J.

TORRE, I. DE LA, ARROYO, A., PROFFITT, T., MARTÍN, C., THEODOROPOULOU, A.

TORRE, I. DE LA, BENITO-CALVO, A., PROFFITT, T.

TOTH, N.

1982 *The Stone Technologies of Early Hominids at Koobi Fora, Kenya; An Experimental Approach*. Tesis doctoral inédita, University of California, Berkeley.

TRIGGER, B. G.

URIBELARREA, D., MARTÍN PEREA, D, DIEZ MARTÍN, F., SÁNCHEZ YUSTOS, P., DOMÍNGUEZ RODRIGO, M., BAQUEDANO, E., MABULLA, A.

2017 A reconstruction of the paleolandscape during the earliest Acheulian of FLK West: The co-existence of Oldowan and Acheulian industries during lowermost Bed II (Olduvai Gorge, Tanzania). *Paleogeography, Paleoclimatology, Palaeocology*, 488: 50 – 58.

URIBELARREA, D., MARTÍN PEREA, D, DIEZ MARTÍN, F., BAQUEDANO, E., MABULLA, A., BARBA, R., GIONA, A., DOMÍNGUEZ RODRIGO, M.

2019 A geoarchaeological reassessment of the co-occurrence of the oldest Acheulian and Oldowan in a fluvial ecotone from lower middle Bed II (1.7 Ma) at Olduvai Gorge (Tanzania). *Quaternary International*, 526: 39 – 48.

VAN PEER, P.

VAQUERO, M.

VAQUERO, M., CHACÓN, M. G., GARCÍA-ANTÓN, M. D., GÓMEZ DE SOLER, B., MARTÍNEZ, K., CUARTERO, F.

VAQUERO, M., FERNÁNDEZ-LASO, M. C., CHACÓN, M. G., ROMAGNOLI, F., ROSELL, J., SAÑUIDO, P.

VAQUERO, M., ROMAGNOLI, F., BARGALLÓ, A., CHACÓN, M. G., GÓMEZ DE SOLER, B., PICIN, A., CARBONELL, E.

VASIL'EV, S.

VILLA, P.

VILLA, P., COURTIN, J.

W

WAECHTER, J., NEWCOMER, M., CONWAY, B.

WALTER, M. J., TRAUTH, M. H.

WILLOUGHBY, P. R.

WHALLON, R.

WHEATLEY, D., GILLINGS, M.

2002 Spatial technology and archaeology: the archaeological applications of GIS. Taylor & Francis, Londres.

WOOD, W. R., JOHNSON, D. L.

Y

YELLEN, J. E.

ÍNDICE DE FIGURAS Y TABLAS

FIGURAS

Figura 2.2. Trabajos de André Leroi-Gourhan en Arct–sur–Cure y Pincevent. En la imagen superior, plano de una choza chatelperroniense adosada a la pared de la cueva de Renne (estrato X). Este plano se corresponde con el fondo de suelo en que aparecieron los agujeros en que debían de estar hincados los colmillos de mamut que servían como armazón de la choza; en él se indican los hogares y los restos de ceniza, los guijarros utilizados y algunas de las osamentas (extraída de Leroi-Gourhan, 1961: 7). En la imagen inferior, excavación en área (siguiendo el método denominado décupage) realizada durante la campaña de 1967 en Pincevent (https://commons.wikimedia.org/wiki/File:Fouilles_de_Pincevent_1967.jpg). ... 15

Figura 2.3. Portadas de los libros Spatial analysis in Archaeology (Hodder y Orton, 1976) y Spatial Archaeology (Clarke, 1977). .. 16

Figura 2.4. Suelo de ocupación en Latamne (Siria) (extraída de Clark, 1966: 208). ... 17

Figura 2.5. Reconstrucción de una cabaña excavada en Terra Amata (Niza, Francia) elaborada a partir de aquellas otras estructuras habitacionales documentadas etnográficamente en determinados grupos de cazado-res-recolectores actuales (extraída de Lumley, 1969: 43). .. 19

Figura 2.6. Esquema resumen de los diferentes agentes que pueden actuar en la configuración de un yacimiento (extraída de Isaac, 1983). .. 20

Figura 2.7. Suelos de ocupación o living floors excavados por Mary Leakey en Olduvai. En la imagen superior, plano del nivel 22 de FLK. En la imagen inferior, plano de DK3 (extraída de Leakey, 1971). .. 25

Figura 2.9. Recreación de un grupo de homínidos procesando un pelorovis en Olduvai, Lecho II (ilustración de Mauricio Antón extraída de Domínguez-Rodrigo y Baquedano, 2014). ... 27
Figura 2.10. Representación gráfica de la teoría del "campamento base" desarrollada por Glynn Isaac (modificada de Gallay, 1999: 15). ... 28

Figura 2.11. Método empleado por Ohel para delimitar las diversas concentraciones de material documentadas en los diferentes suelos de ocupación excavados por Leakey en los Lechos I y II de la Garganta de Olduvai, el cual se basaba en la desigual densidad de vestigios arqueológicos registrada dentro y fuera de cada acumulación (modificada de Ohel, 1977). ... 29

Figura 2.12. Modelo de organización espacial de los suelos de ocupación olduvayenses propuesto por Davis (extraída de Davis, 1978: 80). .. 31

Figura 2.13. Lewis R. Binford y la portada de su libro *Bones. Ancient men and modern myths*. .. 31

Figura 2.15. Modelo teórico, basado en observaciones etnográficas, desarrollado por Kroll para explicar el uso diacrónico de un mismo lugar por parte de los humanos (modificada de Kroll, 1994: 131). ... 34

Figura 2.17. Remontajes hallados por el equipo de Koobi Fora en el yacimiento de FxJj50 (modificada de Bunn et al., 1980). .. 37

Figura 2.18. Estrategias de muestreo en Koobi Fora. El sombreado 1 indica las catas excavadas para exponer las áreas de máxima densidad, mientras que el sombreado 2 marca las catas excavadas para determinar los bordes de cada concentración (modificada de Kroll y Isaac, 1984: 18). .. 38

Figura 2.20. Herramientas de análisis espacial horizontal empleadas en el estudio del nivel D de Garba IV: A) mapas temáticos; B) análisis de frecuencia de restos arqueológicos registrados por metro cuadrado; C) relación porcentual entre distintas categorías de materiales; D) mapas de densidad Kernel (modificada de Gallotti y Piperno 2004). .. 40

Figura 2.21. Distribución espacial de todos los restos hallados en Nadung’a 4: (A) mapa de puntos; (B) mapa de densidad; (C) sección general en sentido longitudinal; (D) proyecciones verticales parciales (bandas 1 y 2) (extraída de Delagnes et al., 2006: 453). .. 41
Figura 2.22. Proyección vertical de la distribución de las diferentes Unidades de Materia Prima (imagen superior) y de los restos de elefante (imagen inferior) (extraída de Delagnes et al., 2006: 455). .. 42

Figura 2.23. Comparativa de los resultados de los análisis de orientaciones realizados por Benito-Calvo y de la Torre (2011) (diagramas de rosas en blanco y negro de la derecha) y por Domínguez-Rodrigo et al. (2012a) (resto de la figura) (modificada de Domínguez-Rodrigo et al., 2012a: 2119-2120). ... 44

Figura 2.24. Comparación de una foto de detalle de una pequeña porción del suelo de FLK 22 tomada antes de proceder al levantamiento de los restos arqueológicos y la misma zona dibujada por Leakey (1971) (modificada de Domínguez-Rodrigo et al., 2012a: 2121). ... 44

Figura 2.25. Contraste entre el eje mayor (líneas negras) utilizado por Benito-Calvo y de la Torre (2011) y el empleado por Domínguez et al. (2012a) (flechas azules) para estimar la orientación de los restos arqueológicos (extraída de Domínguez et al., 2012a: 2118). ... 45

Figura 3.1. Procesado de las fotografías tomadas en campo para la obtención de los modelos tridimensionales: A) Alineación de las imágenes y creación de la nube de puntos inicial; B) Creación de la nube de puntos densa; C) Creación de la malla; y D) Creación de la textura (extraída de Duque et al., 2018: 106). ... 50

Figura 3.2. Proceso de creación del soporte SIG: A) Levantamiento topográfico del material arqueológico. En el transcurso del mismo procedemos a delimitar el perímetro de las piezas sobre las ortofotos impresas, apuntando el correspondiente número de referencia asignado por la estación total a cada una de ellas; B) Ejemplo de una de estas ortofotos tras finalizar dicha tarea; C) Misma orto foto después de haber sido digitalizada. ... 53

Figura 3.3. Doble red de proyecciones aplicada al estudio arqueoestratigráfico de SHK Principal (escala de 50 centímetros en línea continua y de 25 centímetros en línea discontinua). ... 55

Figura 3.4. Ejemplos de lectura de proyecciones de SHK Principal. ... 57

Figura 3.5. Cruce sistemático de los perfiles longitudinales y transversales en su punto de intersección para verificar que tanto los niveles arqueoestratigráficos como los vacíos identificados coinciden (modificada de Canals et al., 2003: 490). ... 58

Figura 3.6. Representación gráfica de los análisis de orientaciones por unidad arqueoestratigráfica y categoría arqueológica realizados en SHK Principal. ... 60

Figura 3.7. Contribución porcentual de los diferentes rangos de tamaño (longitud máxima) de la industria lítica recuperada en las cinco arqueounidades de SHK Principal. ... 63
Figura 3.8. Factores que pueden determinar la probabilidad que tiene un resto arqueológico de ser transportado por corrientes de agua (modificada de Schick, 1997: 250). .. 62

Figura 3.9. Retocados de SHK Principal. Unidad arqueoestratigráfica A1: denticulado (1); Unidad arqueoestratigráfica A2: perforadores (2 y 3), raederas (4 - 7 y 9), denticulados (8 y 11) y muesca (10). Dibujos de Francisco Tapia. .. 67

Figura 3.9 (continuación). Retocados de SHK Principal. Unidad arqueoestratigráfica B1: raedera (12), denticulado (13), raspador (14) y perforador (15); Unidad arqueoestratigráfica B2: raedera (16); Unidad arqueoestratigráfica C: denticulado (17) y perforador (18). Dibujos de Francisco Tapia. .. 68

Figura 3.10. Ejemplo que nos advierte del peligro de mantener una postura permisiva a la hora de adscribir artefactos a la categoría de retocados. La figura D es parte de una lámina de Leakey (1971:57) y representa un supuesto buril en cuarzo (figura B). Sin embargo, corresponde simplemente a la parte distal de una lascas fracturada (figuras A y C) y, por tanto, no se trata de un golpe de buril (extraída de de la Torre, 2006: 108).....66

Figura 3.11. LCTs procedentes de la unidad arqueoestratigráfica C de SHK Principal. Arriba un bifaz y abajo un cuchillo, configurados a partir de sendas grandes lascas de basalto. .. 69

Figura 3.12. Reconstrucción de varios remontajes líticos identificados en SHK Principal. .. 73

Figura 3.13. Proyección en planta y perfil de los remontajes líticos identificados en SHK Principal y resultados del análisis de orientaciones realizado a partir de dichas líneas de conexión. .. 74

Figura 4.1. Localización de la Garganta de Olduvai dentro del área del Ngorongoro. .. 77

Figura 4.2. Vistas panorámicas de la Garganta de Olduvai (fotografías de Fernando Díez Martín). 78

Figura 4.3. Plano general de la Garganta de Olduvai y localización del complejo arqueológico de SHK (modificada de Leakey, 1971). .. 79

Figura 4.4. Columna estratigráfica de la secuencia sedimentaria de la Garganta de Olduvai (extraída de Domínguez Rodríguez et al., 2017: 5). .. 79

Figura 4.5. Plano del complejo arqueológico de SHK. .. 83

Figure 5.1.1. General view of the trench excavated at SHK main site between 2009 and 2011. 94

Figure 5.1.2. Stratigraphic column of Bed II at SHK (locality 91). Stratigraphic sections and archeological levels a, b and c, projected in 3D. Note the palaeosurface of levels a and b. .. 96

294
Figure 5.1.3. Detail of the clay laminations of the mudflat facies. White dots correspond to small carbonate nodules and plant seeds. ... 97

Figure 5.1.4. Sketch distribution of the three main archaeological levels (A, B, and C) in the stratigraphic sequence. Levels are numbered from bottom (1) to top (6). .. 97

Figure 5.1.5. Excavation area opened in SHK between 2009 and 2011. .. 98

Figure 5.1.6. XZ vertical projection of the archaeological materials excavated at SHK main site. 99

Figure 5.1.7. Grid used for archaeo-stratigraphic analysis and example of longitudinal (N-S) and transversal (E-W) projections. ... 99

Figure 5.1.8. XZ and YZ projection of the archaeological materials showing the archaeo-unit subdivision of the archaeological levels. ... 100

Figure 5.1.9. Examples of detailed longitudinal and transversal archaeo-stratigraphic projections, showing depositional gaps between different archaeo-units. ... 101

Figure 5.1.10. Horizontal association of archaeological remains at SHK: 1. All remains, 2. Fossil bones, 3. Lithics. .. 102

Figure 5.1.11. Horizontal association of archaeological remains at SHK sorted by level: 1. All remains; 2. Level A; 3. Level B.; 4. Level C. ... 103

Figure 5.1.12. 1. Woodcock’s diagram shows a slight tendency to “girdle” (no significant orientation below 95% of the confidence interval); 2. Stereogram showing the azimuth orientation of all specimens; 3. Rose diagrams showing uniform orientation patterns for all items and lithics and a tendency to a bimodal pattern in the case of bones. ... 104

Figure 5.1.13. Horizontal association of lithic artifacts (cores, flakes, and retouched specimens) in the channel and the overbank sorted by degree of roundness. 1. The whole collection; 2. Quartz specimens; 3. Basalt specimens. .. 105

Figure 5.1.14. Horizontal association of lithic artifacts ≤25 mm in the channel and the overbank and density map of ≤25 mm specimens. ... 106

Figure 5.1.15. Lithic artifact percentage in the channel and the overbank sorted by weight class (Petraglia and Potts, 1994). .. 107

Figure 5.1.16. Distribution map of artifact weight classes in the channel and the overbank. 108

Figure 5.1.17. Rattle boxplot showing distribution of ≤25 mm specimens in the channel and the overbank sorted by size (length, breadth and thickness) and weight. .. 109
Figure 5.1.18. Distribution map of natural cobbles and percussion elements in the channel and the overbank. .. 109

Figure 5.1.19. PCA analysis of natural cobbles, percussion elements and cores using numerical variables (length, breadth, and thickness) and categorical variables (location, raw material): 1. Natural cobbles; 2. Percussion elements; 3. Cores; 4. Whole analytical set. .. 110

Figure 5.1.20. Distribution map of cores and detached products sorted by raw material type: 1. Basalt; 2. Quartz; 3. Phonolite. ... 111

Figure 5.1.21. Percentage contribution of core types sorted by location (in or channel/out or overbank) and reduction model (1. Test cores/unorganized pattern; 2. Unifacial; 3. Bifacial simple (lineal, bipolar); 4. Bifacial orthogonal; 5. Bifacial centripetal; 6. Multifacial/polyhedral; 7. Subspherical; 8. Bipolar; 9. Large flake production). ... 112

Figure 5.1.22. Rattle boxplot showing distribution of complete flakes in the channel and the overbank sorted by size (length, breadth and thickness) and weight. ... 112

Figure 5.1.23. Percentage contribution of plain flakes sorted by location (in or channel/out or overbank) and dorsal pattern (1. Lineal; 2. Orthogonal; 3. Centripetal; 4. Unorganized). ... 112

Figure 5.1.24. Rattle boxplot showing distribution of retouched flake types in the channel and the overbank sorted by size (length, breadth and thickness) and weight. ... 113

Figure 5.2.1. Site map of Olдуval Gorge and the location of SHK Main and SHK Extension within the Side Gorge. Source: Digital Globe Foundation and orthomosaic using Unmanned Aerial Vehicle and photogrammetric techniques (2016), with 5-cm resolution. ... 118

Figure 5.2.2. Stratigraphy and geometry of SHKE. A. Transversal section of the site, with the stratigraphical position of archaeological occurrences within the sequence. B. General stratigraphical column of the site. C. Chrono-stratigraphical sketch (numbers correspond to the geological units, also shown in the stratigraphical column). ... 119

Figure 5.2.3. A. Panoramic view of the geotrench connecting SHKM and SHKE. B. Stratigraphical correlation of geological deposits between SHKM and SHKE, with the description of five columns and the relative location of the archaeological horizons within the sequence in both sites. ... 120

Figure 5.2.4. Horizontal distribution of faunal remains and lithic artefacts at SHKE within the 2012 excavation grid. ... 120

Figure 5.2.5. Grid used for archaeo-stratigraphical analysis and examples of the longitudinal and transversal projection strips. ... 123

296
Figure 5.2.6. General XZ projection of the archaeological materials sorted by archaeo-unit.

Figure 5.2.7. Horizontal distribution of faunal remains and lithic artefacts at SHKE sorted by archaeo-unit.

Figure 5.2.8. Examples of longitudinal and transversal projections (scale 25 cm) and their position within the grid. Black dots represent archaeological remains, while red lines delimit archaeo-stratigraphical units and related disruptions. In projection Trans 3B, objects percolated and located in a hiatus are identified with a discontinuous green circle.

Figure 5.2.9. 3D scans and negative scar organization of quartz cores from SHKE. LB2: A. Bifacial unipolar showing cortex (C) and battering (CB). LB1: B. Multifacial–multipolar with signs of intense battering on cortical areas (CB).

Figure 5.2.10. Lithic artefacts from SHKE. LB2: A. Bifacial chopper on basalt. C. Medium-sized quartz flake (75 x 58 x 21 mm and 90 g). Type 6 and orthogonal dorsal pattern. D. Retouched specimen on quartz, lateral concave retouch determines a distal transversal edge. LB1: B. Side-transversal scraper on basalt. Drawings by Francisco Tapias.

Figure 5.2.11. Lithic artefacts on quartz from SHKE: B2: A. Bipolar circular core with no rotation. B. Cuboid fragment with intense frosting concentrated on the proximal area (encircled). C. Multifacial/multipolar core showing frosting concentrated on the proximal area. Arrows indicate direction of detachments.

Figure 5.2.12. Lithic artefacts from SHKE B2: A. Anvil on cubic piece of gneiss, showing evident pitting marks (encircled areas). B. Quartz block showing signs of initial bipolar reduction and ridges flattened by battering (arrows indicate direction of detachments).

Figure 5.2.13. 3D scans and negative scar organization of cores from SHKE LB2: A. Bifacial multipolar orthogonal on quartz. B. Bifacial multipolar centripetal on basalt. C = cortical area.

Figure 5.2.14. 3D scans and negative scar organization of volcanic cores from SHKE LB2: A. Bifacial multipolar orthogonal on basalt. B. Bifacial multipolar orthogonal on phonolite. C = cortical area.

Figure 5.2.15. A. Percentage contribution of detached specimens from SHKE B2 sorted by maximum length classes (PQ = plain quartz flakes; PV = plain volcanic flakes; RET = retouched flakes). B. Percentage contribution of detached waste from SHKE B2 sorted by maximum length classes (D = debris; FF = flake fragments; UP = undetermined positives).

Figure 5.2.16. Lithic artefacts from SHKE. LB2: A. Quartz flake showing side and distal retouch. B. Unifacial chopper. Small quartz pebble showing side and transversal abrupt retouch. C. Borer on a broken quartz flake (the arrow indicates the position of the trihedral point). D. Quartz flake showing removals that determine a pointed edge (the arrow indicates the position of the trihedral point). E. Lateral scraper with continuous simple retouch and proximal area reduced with abrupt retouch. F. Quartz flake with lateral inverse and continuous retouch. G. Basalt flake with circular bifacial retouch. Drawings by Francisco Tapias.
Figure 5.2.17. Rose diagram showing the orientation of the archaeological specimens analysed using MBG. .. 135

Figure 5.2.18. Percentage contribution of the lithic collection retrieved from SHKE B2, distributed by the maximum length classes established by Kroll (1997). .. 135

Figure 5.2.19. Horizontal distribution and density of ≤20 mm lithic specimens in SHKE B2. .. 136

Figure 5.2.20. Percentage contribution of the faunal collection retrieved from SHKE B2, distributed by the maximum length classes established by Kroll (1997). .. 136

Figure 5.2.21. Percentage contribution of the lithic collection retrieved from SHKE B2, distributed by mass classes. .. 137

Figure 5.2.22. Horizontal distribution of artefact mass classes in SHK B2. .. 137

Figure 5.2.23. Reconstruction of various refitting sets identified in SHKE. .. 139

Figure 5.2.24. Horizontal distribution of the articulating pieces in each refitting set. .. 140

Figure 5.2.25. Vertical distribution of the articulating pieces in each refitting set. .. 140

Figure 5.3.1. Location of SHK M and SHKE in the Secondary Gorge of Olduvai. .. 156

Figure 5.3.2. Horizontal distribution of archaeological remains in the excavation area opened in SHKE between 2012 and 2016. .. 157

Figure 5.3.3. Stratigraphy at SHKE: A. Stratigraphic section of the opened front (X axis); B. Schematic identification of geological units, GUs, (numbers) and field archaeological levels (letters); C. Stratigraphic columns in the excavation front showing the location of geological units and field archaeological levels. 161

Figure 5.3.4. 3D projection of GUs and field archaeological levels in the excavated area at SHKE. 162

Figure 5.3.5. Graphic representation of the consecutive formation process of each GU at SHKE. 163

Figure 5.3.6. Grid used for archaeo-stratigraphic analysis and examples of the longitudinal and transversal projection strips documented. .. 166

Figure 5.3.7. Examples of longitudinal and transversal projections (at 20, 25 and 50 cm intervals) and their location within the SHKE grid. Dots represent archaeological remains and red lines delimit archaeo-stratigraphic units within depositional hiatuses. .. 167
Figure 5.3.8. General XZ projections of archaeological remains showing: A. Field and geological identification of archaeological units; B. Archaeo-unit identification by means of the archaeo-stratigraphic methodology.

Figure 5.3.9. Horizontal associations of archaeological materials in SHKE by archaeo-unit.

Figure 5.3.10. Horizontal distribution of artifact mass classes in AUs B2 and C2.

Figure 5.3.11. Percentage contribution of lithic mass classes (in g) in AUs sorted by raw materials (grey=quartz; black=volcanic).

Figure 5.3.12. Schematic representation of the spatial subdivision of AUs B2 and C2 for the spatial orientation analysis of archaeological remains.

Figure 5.3.13. Cores from SHKE. AU B1: 1. Exhausted bifacial centripetal core on quartz; AU C2: 2. Basalt bifacial orthogonal (with possible signs of preferential detachment); 4. Bipolar core on a quartz slab; 6. Bifacial centripetal on basalt; AU D2: 1. Quartz bifacial unipolar core; 3. Multifacial/multipolar core on basalt.

Figure 5.3.14. Retouched specimens from SHKE. AU B1: 1. Quartz fragment with deep and continuous retouch on both convergent sides, shaping a pointed specimen; AU B2: 2. Quartz side-transverse scraper; 3. Sidescraper with continuous simple retouch and proximal area reduced with abrupt retouch; 4. Basalt scraper with circular bifacial retouch; 5. Retouched specimen on quartz, lateral concave retouch determines a distal transversal edge; 6. Borer on a broken quartz flake; AU C1: 7. Quartz borer on a Type III flake; AU C2: 8. Side-transverse scraper on a quartz flake, showing abrupt and semi-abrupt retouch; 9. Double scraper (left side direct and right side inverse retouch) on a Type VI quartz flake; 10. Double-side and transversal scraper on a Type 4 basalt flake; 11. Borer on a quartz flake, showing side and transversal removals creating a pointed area; 12. Scraper on a quartz fragment; 13. Transverse scraper on a Type II quartz flake, showing deep and continuous retouch. Dorsal cortical area shows crushing.

Figure 5.3.15. Spatial distribution of lithic specimens by raw material type in AU B2 (1=volcanic; 2=quartz; 3=other).

Figure 5.3.16. Spatial distribution of main lithic categories in AU B2. (1=unmodified cobbles; 2=percussion; 3=cores; 4=detached material; 5=waste; 6=diagnostic Acheulean).

Figure 5.3.17. Spatial distribution of lithic specimens by raw material type in AU C2. (1=volcanic; 2=quartz; 3=other).

Figure 5.3.18. Spatial distribution of main lithic categories in C2. (1=unmodified cobbles; 2=percussion; 3=cores; 4=detached material; 5=waste; 6=diagnostic Acheulean).
Figure 5.3.19. Retouched flakes from SHKE. AU C2: 1. Endscraper on a Type II quartz flake. Semi-abrupt/abrupt, deep, distal and convex retouch; 2. Pointed bifacial retouch on a Type 5 quartz flake; 3. Bifacial denticulate on a Type 6 quartz flake; 4. Quartz borer showing side retouch converging on a pointed area; 5. Bifacially retouched quartz flake fragment; 6. Diverse on a quartz flake. Left side shows a sinuous retouched area opposed to abrupt retouch on the right side; 7. Type 5 basalt flake showing two side notches plus ventral trimming; 8. Trimmed Type VI quartz flake; 10. Trimmed Type VI phonolite flake showing alternate retouch on the right side and inverse on the left side; AU D1: 9. Side-transversal scraper on basalt; AU D2: 11. Trimmed Type II basalt flake showing percussion damage on the dorsal area.

Figure 5.3.20. LCTs from SHKE. 1. C2: Pointed handaxe on a quartz slab showing invasive transformation of volumes; 2. D2: Knife on a quartz slab with the tip broken and signs of battering on one surface.

Figure 5.3.21. Lithic refittings in AU B2. 1 Rose diagram of line orientations; 2. Horizontal line connection of refit sets; 3. Vertical connection of refits; 4. Percentage contribution of horizontal and vertical distance intervals.

Figure 5.3.22. Correspondence Analysis between AUs and lithic categories.

Figure 5.3.23. Kernel density maps of percussion/pounding activities (left) and production of small and medium-sized flakes (right) in AUs B1, B2, C1, and C2.

Figure 5.3.24. Kernel density maps of percussion/pounding activities (left) and production of small and medium-sized flakes (right) in AUs D1, D2, and E.

Figura 6.1. Intervención arqueológica en FLK West. En la imagen superior, vista panorámica del área donde se ubica el yacimiento, localizado a escasos 100 metros del famoso FLK Zinj. En la imagen inferior, finalización de las labores de ampliación de la superficie de excavación llevadas a cabo durante las campañas de 2016 y 2017 (fotografías de Fernando Díez Martín).
TABLAS

Tabla 3.1. Parámetros de dispersión y resultados de los test estadísticos realizados por cada uno de los diferentes conjuntos de restos arqueológicos analizados en SHK Principal. ... 61

Tabla 3.2. Distribución de los restos líticos de SHK Principal por grupo de rodamiento y unidad arqueoestratigráfica. ... 62

Tabla 3.3. Número y porcentaje de restos líticos de SHK Principal clasificados por unidad arqueoestratigráfica, categoría lítica y tipo de materia prima. .. 70

Tabla 3.4. Resumen de la base de datos que recoge los atributos más relevantes de los remontajes líticos identificados en SHK Principal. .. 76

Tabla 4.1. Posición estratigráfica y adscripción cultural del complejo arqueológico de SHK dentro de los yacimientos de los Lechos I y II (extraída de Leakey, 1971: 3). .. 81

Table 5.1.1. Distribution of lithic specimens sorted by level and general category. ... 100

Table 5.1.2. Results of the statistical analysis undertaken for the study of orientation and tilting in the archaeological sample studied: lithics, bones, and whole sample. .. 104

Table 5.1.3. Correlation values of the variables for each factor according to nodular rock type (natural cobbles, hammerstones and cores). All correlations show p values < 0.05. .. 107

Table 5.2.1. Number and percentage of lithic artefacts sorted by archaeo-unit, lithic category and raw material type (B = basalt; P = phonolite; Q = quartz; O = other, gneiss and hyaline quartz). .. 121

Table 5.2.2. Mean size (mm) and mass (g) of unmodified cobbles and hammerstones retrieved from SHKE B2. .. 128

Table 5.2.3. Mean size (mm) and mass (g) of freehand cores retrieved from SHKE B2 and sorted by reduction model. .. 130

Table 5.2.4. Mean size (mm) and mass (g) of complete plain and retouched flakes from SHKE B2. 132

Table 5.2.5. Number and percentage distribution of lithic specimens from SHKE B2, sorted by archaeo–unit and abrasion category. .. 138

Table 5.2.6. Summary of main information related to the connection sets identified in the lithic assemblage from SHKE: set code, number of pieces involved per set, catalogue numbers, archaeo–stratigraphical units.
involved in the connection, raw material, type of connection (1 = refit; 2 = conjoin), maximum horizontal and vertical distances (in cm) between pieces involved in each connection, and descriptive observations. 138

Table 5.3.1. Number and percentage of lithic artifacts sorted by AU, lithic category and raw material type. 177

Table 5.3.2. Number of handheld cores sorted by AU and reduction strategy. 181

Table 5.3.3. Contribution of taphonomic parameters (+ = optimal; -- = poor) to the evaluation of the integrity of the archaeological patches documented in the SHKE AUs: 1 = Nature of depositional context; 2 = Frequency of the small fraction in the lithic sample; 3 = Large to small artifact ratio; 4 = Frequency of the small fraction in the bone sample; 5 = Frequency of mint-fresh lithic implements; 6 = Frequency of fresh fossil bones; 7 = Isotopic distribution of lithic implements; 8 = Isotopic distribution of fossil bones (Criteria based on Domínguez-Rodrigo et al. 2014a: 45, and references therein). 198