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Abstract: The diameter distributions of trees in 50 temporary sample plots (TSPs) established in Pinus
halepensis Mill. stands were recovered from LiDAR metrics by using six probability density functions
(PDFs): the Weibull (2P and 3P), Johnson’s SB, beta, generalized beta and gamma-2P functions. The
parameters were recovered from the first and the second moments of the distributions (mean and
variance, respectively) by using parameter recovery models (PRM). Linear models were used to
predict both moments from LiDAR data. In recovering the functions, the location parameters of the
distributions were predetermined as the minimum diameter inventoried, and scale parameters were
established as the maximum diameters predicted from LiDAR metrics. The Kolmogorov–Smirnov
(KS) statistic (Dn), number of acceptances by the KS test, the Cramér von Misses (W2) statistic, bias
and mean square error (MSE) were used to evaluate the goodness of fits. The fits for the six recovered
functions were compared with the fits to all measured data from 58 TSPs (LiDAR metrics could
only be extracted from 50 of the plots). In the fitting phase, the location parameters were fixed at a
suitable value determined according to the forestry literature (0.75·dmin). The linear models used to
recover the two moments of the distributions and the maximum diameters determined from LiDAR
data were accurate, with R2 values of 0.750, 0.724 and 0.873 for dg, dmed and dmax. Reasonable results
were obtained with all six recovered functions. The goodness-of-fit statistics indicated that the beta
function was the most accurate, followed by the generalized beta function. The Weibull-3P function
provided the poorest fits and the Weibull-2P and Johnson’s SB also yielded poor fits to the data.

Keywords: diameter distributions; parameter recovery models; LiDAR; Aleppo pine

1. Introduction

LiDAR (Laser Imaging Detection and Ranging) technology allows large areas to be
scanned, thus generating continuous information about the entire space. In the last 20 years,
LiDAR has been increasingly used in forest inventories at different scales [1,2], because
of its ability to provide detailed three-dimensional information on the size and structure
of forest cover [3]. The process provides data on the dimensions of the trees and on the
structure of the forest cover, and other parameters such as canopy fuel attributes [4]. The
variables most closely related to LiDAR data are canopy cover and tree height, which
mainly depend on the vertical distribution of the layers forming the tree cover [5,6].

The main advantage of using field data that will then be processed using LiDAR
techniques is that a much smaller sampling effort is required (with a good sampling
design), regarding both the number of plots and the number of tree height measurements
required. LiDAR technology, such as airborne laser scanning (ALS), provides a great
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deal of information about vegetation height and is usually quite accurate, especially in
coniferous plantations. This technology therefore represents the future of forest inventories,
especially on a large scale, greatly reducing the costs associated with inventories, which
are traditionally the most expensive part of forest management projects.

One of the most common approaches used in ALS forest inventories is the area-based
approach (ABA), in which metrics extracted from the normalized height of the LiDAR
data cloud (NHD) are used to predict forest variables [7]. Although the ABA does not
directly detect tree diameters, it determines the forest stand structure indirectly by using
the NHD metrics to estimate probability density functions (PDF) that describe diameter
distributions [6].

The empirical diameter distribution (specified by the DBH measurements within the
stand) described by a cumulative distribution function (CDF) or a PDF enables prediction
of stand growth and planning of various uses and provides data about stand structure. The
diameter distribution of the total number of trees in a stand is important because the model
parameters and stand variables provided in yield tables are closely related [8]. However,
DBH measurements are not always available, and therefore the diameter distribution
must be predicted by using stand attributes as explanatory variables, usually under the
assumption that they can be described by a specified theoretical PDF [6,9].

However, the parameters of the PDFs can also be estimated from LiDAR metrics.
Three approaches have been considered for estimating the diameter distribution from
LiDAR data, within the framework of parametric prediction [6]: (a) use of regression
analysis and parameter recovery models (PRM) to relate LiDAR metrics directly to PDF
parameters or the moments or percentiles of the diameter distribution, (b) modeling the
PDF parameters from stand-level variables predicted using area-based LiDAR metrics
and (c) predicting the diameter distribution on the basis of recognition of individual trees,
which requires high pulse densities. The first approach has recently been used, with good
results [10,11], and is the methodology used in the present study.

Several CDFs or PDFs have been used to describe and predict tree diameter fre-
quency in forest stands, including Gram-Charlier [12], normal [13], Birnbaum–Saunders,
and gamma [14], beta [15], generalized beta [16], Johnson’s SB [17] and the Weibull [18]
functions. To date, the parameters of these distributions have only been recovered from
LiDAR metrics by applying PRM to the Weibull distribution [10,19,20] and Johnson’s SB
distribution [11]. However, this approach has never been used with distributions such as
the beta, generalized beta and gamma-2P functions.

Thus, the main objective of this study was to predict and to compare the diameter
distributions in Pinus halepensis Mill. plantations in Aragón (NE Spain) recovered by PRM
in combination with the Weibull (2P and 3P), Johnson’s SB, beta, generalized beta and
gamma-2P functions, and using height and canopy cover LiDAR metrics from low-density
airborne scanning data provided by the Spanish country-wide PNOA (Plan Nacional de
Ortografía Aérea), which covers the whole country, so our study can be scalable to other
species using the same methodology and type of data.

2. Materials and Methods
2.1. Dataset

The data used in this study were obtained from plantations of Aleppo pine
(Pinus halepensis Mill.) in the region of Aragón (NE Spain). P. halepensis is distributed
naturally throughout the Mediterranean area of the southeast of the Iberian Peninsula and
the Balearic Islands [21]. Plantations of the species represent 15% of those established be-
tween 1940 and 1980 in Spain. However, the species is not particularly productive relative
to other pines. Scant attention has therefore been given to Aleppo pine, even though at
local scales it may be the only economic alternative available and may complement other
non-timber harvests [22].

A total of 58 temporary sampling plots (TSPs) of P. halepensis Mill., measured in
October 2017, were used for the present study, and LiDAR metrics were able to be extracted
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from the data corresponding to 50 of these plots (Figure 1). The plot size ranged from 225
to 625 m2, to achieve a minimum number of 30 trees per plot. Diameter at breast height
(DBH at 1.3 m above the ground) of a total of 1685 trees was measured with callipers, to
an accuracy of 0.1 cm. The following field and LiDAR variables were calculated from the
inventory data: quadratic mean diameter, mean diameter, maximum diameter, number of
trees per hectare, dominant height, basal area and total LiDAR return density within the
plots (pulses·m−2). Summary statistics are shown in Table 1.
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2.2. Lidar Metrics 

Figure 1. General location of the study area. Filled dots represent plots with available LiDAR information.

Table 1. Summary of field and LiDAR data for the 50 plots for which LiDAR metrics were available.

Species Variable Mean Max Min SD

Pinus halepensis

dg 17.8 30.6 11.7 5.1

dmed 17.3 29.6 11.4 4.8

dmax 25.7 49.6 18.8 7.4

N 1054 3200 176 588.4

Ho 10.1 19.1 6.2 3.2

G 24.1 58.9 6.3 11.9

LRD 1.070 2.222 0.453 0.421
dg: quadratic mean diameter; dmed: mean diameter; dmax: maximum diameter; N: number of trees per hectare; Ho:
dominant height; G: basal area; LRD: total LiDAR return density within the plots (pulses·m−2).

2.2. Lidar Metrics

The LiDAR data covering 50 plots in Pinus halepensis stands were acquired in a
national survey carried out for the PNOA (Plan Nacional de Ortofotografía de España)
project between 16 October and 16 November 2016, under the direction of the Spanish
Ministerio de Fomento (Dirección General del Instituto Geográfico Nacional and Centro
Nacional de Información Geográfica). The data were obtained with a LEICA ALS80 sensor,
at a pulse repetition rate of 45 kHz, scan frequency of 70 Hz and a maximum scan angle of
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±50◦. A maximum of 4 returns per pulse were registered, reaching an average point density
of 1.070 points·m−2, with a theoretical laser pulse density required for the PNOA project
of 0.5 first returns per square meter. Summary statistics of the LiDAR return density per
square meter within the plots are shown in Table 1. The LiDAR data were also processed
with FUSION software [23]. As reported by the provider (https://pnoa.ign.es/) accessed
on 1 April 2020, the vertical accuracy of the LiDAR metrics, given by the RMSE, is ≤0.20 m.
The set of metrics from the points laid above 2 m was extracted for each plot (Table 2).

Table 2. Potential explanatory variables related to height distribution and canopy closure.

Variables Related to Height Distribution (m) Description

LH_MIN, LH_MAX, LH_MEAN Minimum, maximum and mean height

LH_MODE, LH_MEDIAN, LH_SD, LH_CV Mode, median, standard deviation and height’s coefficient of
variation

LH_SK, LH_KUR Skewness and kurtosis
LH_IQ Interquartile amplitude

LH_AAD Mean absolute deviation

LH_MAD_MEDIAN, LH_MAD_MODE Median of the absolute deviations from the overall height median
(LH_MAD_MEDIAN) and mode (LH_MAD_MODE)

LH_L1, LH_L2 . . . , LH_L4 L moments
INT_L_SK, INT_L_KUR Linear combinations of L moments (skewness and kurtosis)

LH_P05, . . . , LH_P95 Percentiles
LH_P25; LH_P75 First and third quartiles

Variables Related to Canopy Closure (%) Description

LFCC Percentage of first returns above 2 m
LFCC_MEAN Percentage of first returns above LH_MEAN
LFCC_MODE Percentage of first returns above LH_MODE

LFCC_ALL Percentage of all returns above 2 m
LFCC_ALL_MEAN Percentage of all returns above LH_MEAN
LFCC_ALL_MODE Percentage of all returns above LH_MODE
ALL_MEAN_FIRST 100* all returns above LH_MEAN / total first returns

ALL_FIRST 100* all returns above 2 m / total first returns
R2_COUNT Number of first returns above 2 m

CANOPY Canopy relief ratio:
(hmean − hmin)/(hmax − hmin)

2.3. Diameter Distribution Models and Fitting
2.3.1. The Weibull Function

The three-parameter Weibull PDF has the following expression for a continuous
random variable x [24]:

f (x) =
( c

b

)
·
(

x− a
b

)c−1
·e−(

x−a
b )

c
(1)

where f(x) is the probability density of trees with diameter x, a represents the location, b the
scale and c the shape. If a equals zero, the expression corresponds to the two-parameter
Weibull function.

The method of moments was used to fit all six distributions on the basis of the
relationship between the parameters and the first and second moments of the diameter
distribution (arithmetic mean diameter and variance). For the Weibull distribution, it is
computed by the following expressions [10,18]:

b =
d− a

Γ
(

1 + 1
c

) (2)

https://pnoa.ign.es/
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σ2 =

(
d− a

)2

Γ2
(

1 + 1
c

)[Γ
(

1 +
2
c

)
− Γ2

(
1 +

1
c

)]
(3)

where d is the arithmetic mean diameter of the distribution, σ2 is the variance and Γ(·) is
the gamma function. Equation (3) was resolved by a bisection iterative procedure [25].

2.3.2. The Beta Function

The general expression of the beta distribution for a random variable x is given by [26]:

f (x) = c·(x− L)∝·(U − x)γ (4)

with c =
1

(−L+U)1+γ ·Γ(1+α)·Γ(1+γ)

( 1
−L+U )

α ·Γ(2+α+γ)

(5)

for the interval L ≤ x ≤ U, and x = 0 otherwise, where x is the diameter at breast height
and is assumed to be continuous, f(x) is the density associated with diameter x, U and L are
respectively the upper and lower limits of the beta distribution, c is the scaling factor, α
and γ are respectively the first and the second exponents that determine the shape of the
distribution and Γ(·) is the gamma function.

The method of moments for the beta function [9,15,27] is computed by the follow-
ing equations:

γ =

Z
s2

rel ·(Z+1)2 − 1

Z + 1
− 1 (6)

α = Z·(γ + 1)− 1 (7)

Z =
xrel

1− xrel
(8)

xrel =
d− L
U − L

(9)

s2
rel =

s2

(U − L)2 . (10)

where d is the arithmetic mean diameter of the distribution and s2 is the variance.

2.3.3. The Generalized Beta Distribution (GBD)

The general expression of the generalized beta PDF for a random variable x is as
follows [16]:

f (x) = {·β−(β3+β4+1)
2 ·(x− β1)

β3 ·(β1 + β2 − x)β4 (11)

where { =
Γ(β3 + β4 + 2)

Γ(β3 + 1)·Γ(β4 + 1)
(12)

for the interval (β1, β1 + β2), and 0 otherwise, where x is the diameter at breast height and
is assumed to be continuous, f(x) is the density associated with diameter x, β1 and β2 are
respectively the lower and upper limits of the distribution, β3 and β4 are exponents that
determine the shape of the distribution, { is the scaling factor of the function and Γ(·) is
the gamma function.

The method of moments for the GBD function is computed by the following expres-
sions [16,28]:

β1 = xmin β3 =
(α1 − β1)

2(β1 + β2 − α1)− α2(β2 − β1 + α1)

α2β2
(13)
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β2 = xmax − β1 β4 =
β2(β3 + 1)

α1 − β1
− β3 − 2 (14)

where x is the tree diameter, α1 is the arithmetic mean diameter and α2 is the variance.

2.3.4. The Johnson’s SB Function

The model of the Johnson’s SB PDF has the following expression for a continuous
random variable x [29]:

f (x) =
δ√
2π
· λ

(ε + λ− x)(x− ε)
·e−

1
2 [γ+δ·ln( x−ε

ε+λ−x )]
2

(15)

where f(x) is the probability density associated with diameter x, ε < x < ε + λ, −∞ < ε < ∞,
−∞ < γ < ∞, λ > 0, and δ > 0.

The model is characterized by the parameters ε (location), λ (scale), γ (asymmetry)
and δ (kurtosis). The method of moments used in [11,30] is computed as follows:

δ ∼=
µ(1− µ)

Sd(x)
+

Sd(x)
4

[
1

µ(1− µ)
− 8
]

(16)

γ ∼= δln
(

1− µ

µ

)
+

(
0.5− µ

δ

)
(17)

µ =
d− ε

λ
(18)

Sd(x) =
σx

λ
(19)

where d is the arithmetic mean of the plot diameters, Sd(x) is the modified standard (δ)
deviation and σx is the plot diameter standard deviation.

2.3.5. The Gamma Function

The model of the gamma PDF has the following expression for a continuous random
variable x [14,31]:

f (x) =
(x− γ)α−1

βαΓ(α)
·e[−(

x−γ
β )] (20)

with x > γ, α > 0 and β > 0, where α is the shape parameter, β is an inverse scale parameter,
γ is the location parameter (γ = 0 for the two-parameter gamma distribution) and Γ(·) is
the gamma function.

The method of moments for the gamma-2P function is computed by the following
expressions [28]:

α =

(
d
s

)2

(21)

β =
s2

d
(22)

where d is the mean diameter and s is the standard deviation.
For fitting the distributions to the observed data (phase 1), a value of 0.75·dmin was

used for the location parameters, as [32] achieved good results with this value compared to
other constraints. For the Weibull-2P and gamma-2P functions, the value of the location
parameters was zero. Scale parameters and the upper limit of the four-parameter functions
(Johnson’s SB, beta and generalized beta) were established as the maximum diameter
of the distributions (dmax) and the upper limit of the largest diameter class for the beta
function [27,28] to improve parameters’ convergence. The size of the diameter classes was
assumed to equal 1 cm.
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2.4. Goodness of Fit Evaluation

The consistency of the functions was evaluated using the Kolmogorov–Smirnov (KS)
(Dn) and Cramér von Mises (W2) statistics, bias, mean square error (MSE) and num-
ber of acceptances by the KS test. For a given cumulative distribution function, F(x),
Dn = supx|Fn(x)− F0(x)|, where supx is the supremum of the set of distances, calculated
as follows [33]:

Dn = max
{

max1≤i≤ni

[
Fn(xi)− F0

(
xj
)]

, max1≤i≤ni

[
F0
(
xj
)
− Fn(xi−1)

]}
(23)

where the cumulative observed and estimated frequencies, i.e., Fn(xi) and F0(xj), are compared.
The recovered distributions were also assessed using the two-sample Kolmogorov–

Smirnov test (KS) under the null hypothesis that the plot data originate from the recovered
distribution. However, as the parameters were estimated empirically, the theoretical
distribution for each plot is unknown, and the KS test should therefore be conducted using
a Monte Carlo simulation [34]. The procedure is explained in further detail in [10,11].

The Cramér von Mises statistic (W2) is a measure of the square of the distance between
the empirical and the cumulative theoretical distribution [35]:

W2 =
n

∑
i=1

{
F̂(xi)−

(i− 0.5)
n

}2
+

1
12n

(24)

where F̂(xi) is the cumulative theoretical distribution in diameter class i, and n is the
number of diameter classes.

The bias and the mean square error (MSE) were also used as goodness-of-fit measures
and were expressed as follows:

Bias = ∑N
i=1 Yi − Ŷi

N
(25)

MSE =
∑N

i=1
(
Yi − Ŷi

)2

N
(26)

where Yi is the observed relative frequency of trees in each diameter class, Ŷi is the theoreti-
cal value predicted by the model and N is the number of diameter classes. The bias and
MSE were calculated for each fit as the mean relative frequency of trees.

2.5. Recovering the Parameters of the Distributions from LiDAR Metrics

The function parameters were recovered from the first two moments of the distribu-
tions (mean diameter and variance) by using parameter recovery models (PRMs). The
variance

(
σ2

d
)

is related to the quadratic mean diameter (dg) and the mean diameter (dm),
as follows:

σ2
d = d2

g − d2
m (27)

Within the LiDAR data framework, the stand level attributes usually used for the
recovery procedure (e.g., t, N, H, S) can be replaced by LiDAR metrics as explanatory
variables to estimate dg and dm [10]. However, in the four-parameter functions (Johnson’s
SB, beta and generalized beta), the range and the upper limit of the distributions can
also be estimated. In this case, both values were used as the maximum diameter (dmax),
which was then related to LiDAR metrics. Location parameters of the recovered functions
were predetermined as the minimum diameter inventory (7.5 cm) for the Weibull-3P,
Johnson’s SB, beta and generalized beta functions, and as zero for the Weibull-2P and
gamma-2P functions.

We used linear models to establish the empirical relationships between dmax, dg and
LiDAR metrics:

dmax = α0 + α1X1 + α2X2 + . . . + αmXm + ε (28)
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dg = β0 + β1X1 + β2X2 + . . . + βmXm + ε (29)

where dmax and dg are the dependent variables, X1, X2, . . . , Xm represents the independent,
potentially explanatory variables related to the LiDAR-derived height distribution and
canopy closure, α0, α1, . . . αn and β0, β1, . . . βn are the parameters to be estimated in the
fitting process and ε is the additive error term, which is assumed to be independent and
normally and identically distributed, with zero mean.

For a given stand, dm is always smaller than or equal to dg, and we therefore used the
following model expression to take this restriction into account [9–11,36]:

dm = dg − exp(δ0 + δ1X1 + δ2X2 + . . . + δmXm) + ε (30)

where X1, X2, . . . , Xm are the potential explanatory variables related to the LiDAR-derived
height distribution and canopy closure, δ0,δ1, . . . δm are the parameters to be estimated in
the fitting process and ε is the additive error term.

Equation (30) was linearized by applying a natural logarithmic transformation to
facilitate selection of the independent variables. Finally, Equation (29) (when dg was the
dependent variable) and Equation (30) were fitted simultaneously with “seemingly unre-
lated regression” (SUR) to prevent cross-correlation between error components. Goodness
of fits were evaluated with the coefficient of determination (R2) and the root mean square
error (RMSE).

3. Results

The mean, standard deviation, minimum and maximum values of the parameters
estimated in step 1 (fitting the distributions to observed data) and step 2 (recovering the
parameters of the distributions from LiDAR metrics) are shown in Table 3.

The mean values of the parameters were reasonable in both cases, with no large
differences in the values produced by each method. Table 4 shows the mean value of
the statistics used to test the goodness-of-fits to the observed distributions: Kolmogorov–
Smirnov (Dn), Cramér von Mises (W2), bias and mean squared error (MSE).

In the fitting phase, the lowest value of Dn was yielded by the beta function (0.138560),
followed by the Weibull-2P function (0.146922) and the Weibull-3P function (0.150761).
The highest value was yielded by the gamma-2P function (0.164750), followed by the
Johnson’s SB function (0.162578) and the generalized beta function (0.153656). Regarding
the Cramér von Mises statistic (W2), the lowest value corresponded to the Johnson’s SB
function (0.043088) and the highest to the Weibull-2P function (0.081863). The order of the
functions in terms of W2 was Johnson’s SB < Weibull-3P < generalized beta < gamma-2P <
beta < Weibull-2P. The smallest MSE value corresponded to the beta function (0.001851),
followed by the generalized beta function (0.001879). The highest MSE value was yielded
by the Weibull-2P function (0.002009). The order for the six distributions studied was beta
< generalized beta < Johnson’s SB < Weibull-3P < gamma-2P < Weibull-2P. The bias may
be less important for comparison of the results because errors with different signs can
compensate each other in the total mean value. Thus, considering the values of Dn, W2 and
MSE for the six distributions studied, the beta function provided the most accurate fits to
the observed data and the Weibull-2P and the Gamma-2P functions yielded the poorest fits.

The parameter estimates and goodness-of-fit statistics (R2, RMSE and % RMSE) of
the simultaneous fitting of Equations (29) and (30) used to estimate the mean diameter
(dm) and the quadratic mean diameter (dg) from LiDAR data and for Equation (28) used to
estimate dmax are shown in Table 5.
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Table 3. Descriptive statistics for the parameters of the functions in the fitting and recovery steps.

Function Step Param Mean SD Min Max

Weibull-2P

Fitting b 18.757 5.072 12.415 32.084
c 4.905 1.125 2.163 8.020

Recovery b 18.918 4.614 13.699 33.740
c 4.873 0.825 2.215 6.577

Weibull-3P

Fitting
a 7.184 1.750 5.625 14.100
b 11.222 4.005 6.312 24.255
c 2.598 0.460 1.535 3.560

Recovery
a 7.500 - 7.500 7.500
b 11.008 4.637 5.513 25.319
c 2.489 0.619 1.245 3.646

beta

Fitting

c 0.006 0.015 1.47 ×
10–6 0.107

L 7.184 1.750 5.625 14.100
U 25.739 7.403 16.700 49.600
α 1.191 0.633 0.250 2.574
γ 1.015 0.720 0.166 3.178

Recovery

c 0.010 0.015 4.34 ×
10–7 0.069

L 7.500 - 7.500 7.500
U 26.100 7.229 18.000 55.000
α 0.972 0.690 0.017 3.023
γ 0.734 0.488 0.046 2.003

Generalized beta

Fitting

{ 471.180 925.744 1.251 5827.044
B1 7.184 1.750 5.625 14.100
B2 25.739 7.403 16.700 49.600
B3 2.253 1.034 0.543 4.885
B4 4.285 1.806 0.358 9.363

Recovery

{ 365.657 868.723 1.428 5125.128
B1 7.500 - 7.500 7.500
B2 26.104 7.222 18.286 55.318
B3 2.057 1.100 0.435 4.647
B4 4.116 1.015 0.974 6.354

Johnson’s SB

Fitting

ε 7.184 1.750 5.625 14.100
λ 25.739 7.403 16.700 49.600
γ 0.727 0.344 0.027 1.379
δ 1.327 0.235 0.630 1.879

Recovery

ε 7.500 - 7.500 7.500
λ 26.104 7.222 18.286 55.318
γ 0.801 0.409 −0.152 1.457
δ 1.295 0.190 0.698 1.724

gamma-2P

Fitting α 19.906 8.426 4.636 48.331

β 1.062 0.815 0.382 5.329

Recovery α 18.594 5.410 4.398 31.558
β 1.089 0.802 0.562 5.093

Param: parameter; SD: standard deviation; Min: minimum; Max: maximum.
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Table 4. Mean values of statistics used for comparison of the functions in the fitting step.

Function Dn W2 Bias MSE

Weibull-2P 0.146922 0.081863 0.003424 0.002009
Weibull-3P 0.150761 0.046157 0.002637 0.001904

beta 0.138560 0.062044 0.001643 0.001851
Generalized beta 0.153656 0.048215 0.002563 0.001879

Johnson’s SB 0.162578 0.043088 0.002276 0.001892
gamma-2P 0.164750 0.054360 0.002736 0.001996

Dn: Kolmogorov–Smirnov statistic; W2: Cramér von Mises statistic; MSE: mean squared error.

Table 5. Parameter estimates and goodness-of-fit statistics for the simultaneous fitting of Equations (29) and (30) used to
estimate dmed and dg from LiDAR data and for Equation (28) used to estimate dmax.

Equation Dep var Independent Variable Param Param Estim P>|t| R2 RMSE RMSE%

(28) dmax

Intercept α0 6.733 <0.0001
0.873 2.758 10.56LH_AAD α1 8.143 <0.0001

LH_P95 α2 7.728 <0.0001

(29) dg
Intercept β0 5.329 <0.0001

0.750 2.542 14.24LH_P90 β1 1.335 <0.0001

(30) dmed
Intercept δ0 −1.789 <0.0001

0.724 2.549 14.72LH_MAD_MEDIAN δ1 1.049 <0.0001

LH_AAD: Mean absolute deviation for height; LH_P95: 95% height percentile; LH_P90: 90% height percentile; LH_MAD_MEDIAN:
Median of the absolute deviations from the overall median height.

The maximum diameter of the distributions (dmax) was considered the scale parameter
for the Weibull-3P, Johnson’s SB and generalized beta functions and for establishing the
upper limit of the beta function. The maximum diameter was predicted by the following
independent variables: mean absolute deviation for height (LH_AAD) and 95% height
percentile (LH_P95). The linear model yielded an accuracy of R2 = 0.873 and RMSE = 2.758.
Models [29,30] used for simultaneous fitting of quadratic mean diameter (dg) and the mean
diameter (dmed) yielded R2 values of 0.750 and 0.724 and RMSE values of 2.542 and 2.549,
respectively. Good results were obtained for these key variables in terms of recovering the
diameter distributions with the six functions.

For recovering the distributions from LiDAR data (Table 6), the smallest value of
Dn was obtained by the beta function (0.254078), as in the fitting step, and then by the
generalized beta function (0.264840) and the gamma-2P function (0.272107). The highest
value was yielded by the Weibull-3P function (0.286170), followed by the Weibull-2P
function (0.282500) and the Johnson’s SB function (0.273945).

Table 6. Mean values of statistics used for comparison of functions in the recovery step.

Function Dn W2 Bias MSE KS Acceptance (%)

Weibull-2P 0.282500 0.498277 0.004303 0.002732 28 (56%)
Weibull-3P 0.286170 0.497091 0.003619 0.002746 26 (52%)

beta 0.254078 0.381916 0.003744 0.002649 35 (70%)
Generalized beta 0.264840 0.389917 0.003673 0.002711 33 (66%)

Johnson’s SB 0.273945 0.411657 0.003578 0.002851 32 (64%)
Gamma-2P 0.272107 0.398073 0.004047 0.002792 34 (68%)

Dn: Kolmogorov–Smirnov statistic; W2: Cramer von Mises statistic; MSE: mean squared error.

The lowest value of the Cramér von Mises statistic (W2) was also yielded by the beta
function (0.381916) and the highest by the Weibull-2P function (0.498277). The order of the
distributions for the W2 value was beta < generalized beta < gamma-2P < Johnson’s SB <
Weibull-3P < Weibull-2P. As for Dn and W2, the smallest value for the MSE corresponded to
the beta distribution (0.002649), followed by the generalized beta function (0.002711). The
highest value of the MSE corresponded to the gamma-2P function (0.002792). The order in
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terms of MSE for the six distributions recovered was beta < generalized beta < Weibull-2P
< Weibull-3P < gamma-2P < Johnson’s SB. As for the other statistics, bias was also higher
for recovery of the distributions from LiDAR metrics than for fitting to the observed data.
Results for the KS test are also consistent with the other statistics, with the following
order for plots accepted: beta function (35 plots: 70%), gamma-2P function (34 plots: 68%),
generalized beta function (33 plots: 66%), Johnson’s SB function (32 plots: 64%), Weibull-2P
function (28 plots: 56%) and Weibull-3P function (26 plots: 52%). Thus, considering the
values of Dn, W2, MSE and KS test for the six distributions studied, the beta function
was the most accurate for recovering the parameters from LiDAR data, followed by the
generalized beta function. The Weibull-3P, Weibull-2P and the Johnson’s SB functions
yielded poorer results.

The mean values of the MSE in each diameter class for the fits to the observed data
and for recovering from LiDAR data for the best (beta) and the poorest (Johnson’s SB)
functions are shown in Figure 2a, while those for the generalized beta vs. Weibull-3P
and for the gamma-2P vs. Weibull-2P functions are also shown in Figure 2b,c. Figure 2a
shows that the MSE for the fits to the observed data was almost the same for both functions
(beta and Johnson’s SB) over the diameter range studied, decreasing when the diameters
increased. However, significant differences were observed for recovery of the functions.
The recovered distributions yielded much larger values of MSE, up to 25 cm, after which
both values (fitted and recovered) were more similar. The recovered Johnson’s SB yielded
the largest values up to 19 cm, while the beta function was less accurate at between 19
and 24 cm. The difference between fitting and recovery of the smallest diameter classes
increased with the number of data points.
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Figure 2. (a–c) Behavior of the MSE in each diameter class for the fitting and recovery steps: beta vs.
Johnson’ SB; generalized beta vs. Weibull-3P and gamma-2P vs. Weibull-2P.

Figure 2b shows the same trends for the range studied, with similar behavior obtained
for fitting and recovery of both the generalized and Weibull-3P distributions. Figure 2c
shows similar results produced by the gamma-2P and Weibull-3P functions.

Graphical assessment of the observed, described (fitted) and recovered distributions
for six plots fits are shown in Figure 3. Pairwise comparisons of the functions were made:
beta vs. Johnson’s SB (Figure 3a), generalized beta vs. Weibull-3P (Figure 3b) and gamma-
2P vs. Weibull-2P (Figure 3c). The predictions were reasonable and followed the observed
diameter distributions, especially for plots 1, 3, 4 and 6.
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Figure 3. (a–f). Paired comparisons: beta vs. Johnson’s SB (a,b), generalized beta vs. Weibull-3P (c,d) and gamma-2P vs.
Weibull-2P (e,f) for the observed and described (fitted) distributions recovered from LiDAR data.



Remote Sens. 2021, 13, 2307 14 of 17

4. Discussion

We used a total of 58 TSPs from P. halepensis Mill. plantations for the present study,
and LiDAR metrics were able be extracted from 50 of these plots. The number of plots
is greater than in other studies of diameter distributions recovered from LiDAR data in
the Northwest Iberian Peninsula [10,11]. These studies recovered the Weibull-2P and the
Johnson’s SB distributions from LiDAR metrics. The Weibull function (2P and 3P) is the
most commonly used distribution in this type of study [20,37,38]. However, in the present
study, we used, for the first time within the framework of LiDAR-based research, three
functions commonly used to describe and predict diameter distributions in forest stands,
i.e., the beta [26], generalized beta [16] and gamma-2P [14] functions. In some cases, the
results obtained were better than those obtained with the more usual Weibull (2P and
3P) and Johnson’s SB functions, for both fitting to the observed data and recovering with
LiDAR metrics.

For the fitting phase, the results obtained for the main statistics used (Dn, W2 and
MSE) are similar to those obtained in [28] for Eucalyptus globulus stands in NW Spain.
However, more accurate results were obtained in the same study for Pinus radiata stands by
using the same functions. In a previous study, similar results were also obtained for Pinus
sylvestris and better than those reported for Pinus pinaster stands in NW Spain [32].

The models used to recover the parameters of the distributions from moments of
the distributions were accurate. Explanatory variables were LH_P90 (height percentile of
90%) for dg, and LH_MAD_MEDIAN (median of the absolute deviations from the overall
height median) for dmed. In other studies, height percentiles were also used as independent
variables for estimating dg (75% percentile and number of LiDAR last returns above a
height of 1 m) and for dmed (1% percentile) in the models obtained in [10] for recovering the
Weibull-2P distribution in 25 plantation plots of Pinus radiata in Northwest Spain, with R2

for the dg and dmed models of 0.80 and 0.77, respectively. For Pinus halepensis, we obtained
similar R2 values (0.75 and 0.72 for dg and dmed, respectively). The RMSE values (2.54 cm
for dg and 2.55 cm for dmed) are consistent with the values reported in international forestry
literature. For example, for German forests dominated by Picea abies (L.) Karst., the authors
of [39] used data from a 0.44 pulse m−2 LiDAR flight and reported an RMSE of 2.44 cm
for dmed, while the authors of [40] studied a broad range of forest types (coniferous and
hardwoods) and conditions across Ontario by using an artificially reduced LiDAR database
of 0.5 pulses m−2, reporting RMSE values ranging from 0.76 to 4.3 cm for dg. The authors
of [10] reported RMSE values of 3.42 for dg and 3.63 for dmed, while the authors of [11] used
exponential models instead of linear models to estimate the moments of the Johnson’s
SB and the Weibull-2P functions, obtaining an R2 of 0.82 and 0.86 for the dmed of Pinus
radiata and Eucalyptus globulus respectively, and 0.84 and 0.89 for dg of the same species. We
compared the use of linear and exponential models for obtaining both variables and found
that the results were similar, with the exponential model even including more independent
variables. Thus, the linear models were considered more suitable.

Use of the four-parameter Johnson’s SB, beta and generalized beta distributions
requires knowledge about the location parameter of the three distributions, the scale for
the Johnson’s SB and the upper limit of the distributions for the beta and generalized
beta functions. The three-parameter Weibull-3P requires knowledge about the location
parameter, while in the Weibull-2P and gamma-2P functions, the value of the location
parameter is zero. In functions with a location parameter, the value considered in the
recovery phase with LiDAR metrics was the minimum diameter inventory (7.5 cm). This
avoided having to model this parameter with LiDAR metrics, which can produce inaccurate
results if stand variables are used in the model [9]. Thus, in all cases, the location parameter
was considered equal to 7.5 cm for recovering the distributions from LiDAR data, while
for fitting to the observed data, it was assumed to be 0.75·dmin, producing a similar mean
value considering all plots of 7.18 cm (Table 3). The authors of [11] considered the location
parameter for the Johnson’s SB to equal zero, thus avoiding modeling it with LiDAR
metrics, while the scale parameter considered was also the maximum diameter (dmax).
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The model obtained for dmax included, as LiDAR explanatory variables, LH_AAD
(mean absolute deviation for height) and LH_P95 (95% height percentile), with R2 = 0.87
and % RMSE = 10.56. The authors of [11] obtained similar values for Pinus radiata (R2 = 0.93
and % RMSE = 8%) and Eucalyptus globulus (R2 = 0.83 and % RMSE = 12%). The results
for this variable modeled from LiDAR data are more accurate than those obtained in [27]
and [9] with stand variables. The statistics obtained for recovery of the six functions
were also reasonable. For example, the authors of [32] reported Dn values of 0.1924
for the Weibull-2P fitted by Maximum Likelihood, 0.2285 for the Johnson’s SB fitted by
conditional maximum likelihood (CML) and 0.1812 for the beta fitted by moments to
observed distributions of Pinus pinaster in Northwest Spain. The authors of [33] obtained a
Dn value of 0.193 in the fits by maximum likelihood of the Weibull-3P to observed data of
Pinus taeda plantations in the USA. The value obtained for the recovered beta from LiDAR
metrics (0.2541) is close to these values. The number of KS acceptances are consistent with
those found in previous studies. The percentage of acceptance (between 52% and 70%) was
similar for Eucalyptus globulus in northwest Portugal [11] and higher than in Pinus radiata
stands in northwest Spain [10,11].

5. Conclusions

Scant attention has been given to Aleppo pine plantations in Spain. However, we
recovered the parameters of six probability density functions, i.e., the Weibull (2P and 3P),
Johnson’s SB, beta, generalized beta and gamma-2P functions, from LiDAR metrics in 50
Pinus halepensis stands in Aragón (northeast Spain). The beta, generalized beta and gamma-
2P functions are of novel application in the field of LiDAR-based research. The results
obtained were reasonable compared with previous studies and they showed that the beta
and generalized beta functions were more accurate than the Johnson’s SB and Weibull
(2P and 3P) functions, which are more commonly used in this type of study. None of the
distributions predicted anomalous results.
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