
Numerical Algorithms
https://doi.org/10.1007/s11075-023-01567-0

ORIG INAL PAPER

Non-stationary wave relaxation methods for general linear
systems of Volterra equations: convergence and parallel
GPU implementation

Conte Dajana1 · Cuesta Eduardo2 · Valentino Carmine3

Received: 21 February 2023 / Accepted: 25 April 2023
© The Author(s) 2023

Abstract
In the present paper, a parallel-in-time discretization of linear systems of Volterra
equations of type

ū(t) = ū0 +
∫ t

0
K(t − s)ū(s) ds + f̄ (t), 0 < t ≤ T ,

is addressed. Related to the analytical solution, a general enough functional setting
is firstly stated. Related to the numerical solution, a parallel numerical scheme based
on the Non-Stationary Wave Relaxation (NSWR) method for the time discretization
is proposed, and its convergence is studied as well. A CUDA parallel implementation
of the method is carried out in order to exploit Graphics Processing Units (GPUs),
which are nowadays widely employed for reducing the computational time of several
general purpose applications. The performance of these methods is compared to some
sequential implementation. It is revealed throughout several experiments of special
interest in practical applications the good performance of the parallel approach.

Keywords Parallel-in-time · Volterra equations · GPU · Wave relaxation

B Cuesta Eduardo
eduardo.cuesta@uva.es

Conte Dajana
dajconte@unisa.it

Valentino Carmine
cvalentino@unisa.it

1 DIPMAT, University of Salerno, Via Giovanni Paolo II, Fisciano 84084, Italy

2 Dept. Matematica Aplicada, University of Valladolid, Campus Miguel Delibes,
Valladolid 47011, Spain

3 DIIN, University of Salerno, Via Giovanni Paolo II, Fisciano 84084, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01567-0&domain=pdf

Numerical Algorithms

1 Introduction

Time discretization of convolution equations typically gives rise to discrete convolu-
tions whose practical computation turns out typically to be very costly, in particular if
compared to time discretizations for ordinary differential equations. Moreover, if one
considers a system of convolution equations instead, the problem gets even worse, this
is why in this context, more than ever, efficient and fast algorithms are critical.

This paper is concerned with parallel implementations of time discretization for
D × D linear systems of Volterra equations, D ∈ Z

+, of the form

ū(t) = ū0 +
∫ t

0
K(t − s)ū(s) ds + f̄ (t), 0 < t ≤ T , (1)

where ū0 ∈ X D stands for the initial data, f̄ : [0, T] �→ X D is a given vector-valued
function, X typically stands for R, and {K(t)}t≥0, represents a time-dependent family
of D × D matrix-valued operators.

Besides the computational cost time discretization itself carries out, rather fre-
quently the system (1) turns out to be very large, that is D >> 0 which makes the
practical evaluation even harder. We might mention as a typical example within this
framework those linear systems of equations (1) arising from the spatial discretization
of linear Volterra equations

u(t, x) = u0(x) +
∫ t

0
K (t − s)u(s, x) ds + f (t, x), t > 0, (2)

where x ∈ R
d , d = 1, 2, or 3, and {K (t)}t≥0 stands for a time-dependent family of

linear operators defined in a suitable functional setting. Certainly, related to the spatial
discretization of those equations, the finer the spatial mesh, the larger the system is,
that is the larger the computational cost is.

Consider as a prototype equation arising in the context of (2), might be the simplest
one one may consider, the linear equation whose convolution kernel adopts the form

K (t) = k(t)A, t > 0, (3)

where k(t) stands for a scalar function, and A is a linear operator. Very often in
practical instances the operator A in (3) turns out to be the Laplacian operator A = �

in R
n , n = 1, 2 or 3, or a fractional Laplacian (−�)β , 0 < β < 1 (see [1]), both of

them joint with suitable boundary conditions, or merely A ∈ MD×D(R) (find more
examples in [2]). Related to the scalar functions k(t) let us mention those defining time
fractional integrals/derivatives. Recall for instance and amongmany others definitions
of fractional integrals/derivatives, the Riemann–Liouville time fractional integrals of
order α > 0 whose associated kernel reads

k(t) :=
⎧⎨
⎩

tα−1

�(α)
, if t > 0,

0, if t ≤ 0.
(4)

123

Numerical Algorithms

This kind of equation is nowadays attracting the interest of many researchers (see
[2–4] and references therein, among many others).

To go more in-depth in that definition, its associated definition of fractional deriva-
tive, and other definitions of fractional integrals/derivatives, there is a vast literature
among which we refer the reader to [4–7] and references therein. In this regard let also
mention those definitions extending the non-integer fractional integrals of constant
order α > 0 to the ones whose fractional order depends on time, i.e., α(t) instead of
a constant α [8, 9]. These kinds of integrals/derivatives are discussed more precisely
in Section2.

Let us highlight that prototype equations we are considering show a singular behav-
ior as t tends to 0+ which gives rise to singularities in the solution of the corresponding
equations. Notice that most times singular Volterra equations reflect much more
accurately the memory effect in many practical cases, instead of the regular ones.
Unfortunately their solutions require a more careful study and this fact has to be taken
into account in the numerical analysis.

On the other hand the numerical solution of (1) has been investigated by a large
number of authors. Of particular interest are the discretizations based on convolution
quadratures duemainly to the good stability properties [10–13, 15–17]; the collocation
methods provide also a good balance between stability and accuracy [18–22]; or the
ones based on the numerical inversion Laplace transform [23], among many others.

However, the computational cost these implementations carry out when (1) stands
for a large system of equations represents even today a great difficulty in practical
instances, therefore raising faster and more efficient implementations is nowadays a
great challenge. This issue is usually addressed, at least, in two different ways. On
the one hand faster and more efficient numerical methods have been proposed in the
literature, see, e.g., [22, 24–27] in the framework of convolution quadratures. The
second one consists of performing faster and more efficient implementations in the
context of parallel computing. In the present paper we focus on the last one.

Parallel computing has emerged in last decades as a very helpful tool to speed up
computational processes in particular the ones involved in numerical analysis, all of
them once adapted to this architecture. However, parallel architectures are very expen-
sive even at present, instead modern hardware technologies allow parallel computing
at much lower cost, in fact we are speaking of Graphics Processing Units (GPUs). The
GPUs based hardware was initially designed for graphical purposes; however, over the
last few years it turned into a very useful tool in the framework of scientific computing
due to their low cost, and their computational capabilities [28]. Parallel computing
within GPUs context has allowed to speed up algorithms for systems of Ordinary Dif-
ferential Equations (ODEs) [29–31]; Partial Differential Equations (PDEs) [32–34];
and the ones we are interested in the present paper, that is the systems of Volterra
Integral Equations (VIEs) [35, 36, 36–40]; among others. In this point we have to
highlight most of cites above related to VIEs are concerned with convolution integrals
of fractional type.

The aim of this paper consists of extending some of previous approaches within
parallel computing framework from systems of linear integral equations of fractional
type to a more general class of systems of linear convolution equations. In other words
beyond the systems of fractional integral equations, in the present paper we consider

123

Numerical Algorithms

systems of nonlocal in time equations whose convolution kernels merely satisfy the
existence of its Laplace transform in certain half-complex plane. That includes a large
list of kernels and equations, some of them more precisely described in Section2.
The parallel approach considered in this paper in based on the Non-Stationary Wave
RelaxationMethods (NSWR) introduced in [41]. In this regard since several truncation
errors are involved in the iterative method the study goes accompanied by an accurate
analysis of the convergence which allows one to ensure the well behavior of such
algorithms in practical instances. The performance of these methods is illustrated with
several numerical experiments applied to some of the systems of equations proposed
in Section2.

The paper is organized as follows. Section2 is devoted to state the framework
of the present work, both from the continuous and the discrete point of view. In
Section3 we describe precisely the notation and the raised method, and in Section4
we present our main contributions of this paper, that is the theoretical analysis related
to the convergence of the proposed algorithms. Section5 is devoted to explain the
technical resources involved in the implementation of algorithms, and in Section6
several numerical experiments show the good performance of these. Section7 includes
the most relevant conclusions of the present and future works.

2 Framework statement

2.1 Time continuous setting

First of all we state the notation we will use throughout the following sections. Let
us consider X = R, and the system of linear Volterra equations (1) where ū, f̄ :
[0, T] �→ R

D , D ∈ Z
+ (which is expected to be large), RD is normed by ‖ · ‖ (we set

below what ‖ · ‖ stands for: L2-norm, sup norm,...), {K(t)}t≥0 ⊂ MD×D(R), that is
a time-dependent family of matrices, and ū0 ∈ R

D represents the initial data. In order
to keep the initial data ū0 from apart of the source term f̄ , one may assume without
loss of generality that f̄ (0) = 0̄.

Before going further in the paper we state conditions for the well-posedness of (1).
In this regard consider the wide class of time-dependent operators {K(t)}t≥0 element-
wise of exponential growth, that is those for which there exist b, β > 0 such that if
K(t) = (ki, j (t))1≤i, j≤D , then

|ki, j (t)| ≤ b e−βt , t > 0. (5)

Notice that for the sake of the simplicity of the notation, and without loss of generality,
we assume the same constants b and β > 0 for each entry of K(t). This means that
K(t), for t > 0, admits absolutely convergent element-wise Laplace transform in
DK := {z ∈ C : Re(z) ≥ β}, denoted now and hereafter by K̃(z) = (̃ki, j (z))1≤i, j≤D ,
z ∈ DK, being k̃i j = L(ki j (z)). This fits the time-dependent operators of the form
K(t) = k(t)Awhere k(t) is a function of exponential growth, and A stands for amatrix,
e.g., the one corresponding to some classical spatial discretization of the Laplacian.
If in addition f̄ : (0,+∞) → R is continuous, then (1) is well-posed [2]. Some

123

Numerical Algorithms

assumptions might be lightened; however, this framework is general enough for our
purposes.

Apart from the model commented in Section1 based on the Riemann–Liouville
fractional integral, let us consider other examples fitting this context and whose imple-
mentations will serve to illustrate the performance of our methods.

1. Denote α : [0, T] → R
+ a positive function, α(t) > 0, whose Laplace transform

exists and is denoted by α̃(z), for z ∈ D ⊇ DK. Define k : [0, T] �→ R, the kernel
associated to the fractional integral with order varying in time α(t) > 0, according
to the following definition

∂−α(t) f (t) := (k ∗ f)(t) =
∫ t

0
k(t − s) f (s) ds, t > 0, (6)

where

k(t) := L−1(K)(t) with K (z) := 1

zzα̃(z)
, z ∈ D. (7)

Notice that if α(t) is constant, then definitions (4) and (6)–(7) completely agree.
Consider now the equation (2) where K (t) = k(t)�, and � stands for the 1-
dimensional Laplacian operator in [0, L], with homogenous Newmann boundary
conditions. Given D > 0, and the mesh grid x0 = 0 < x1 < x2 < . . . < xD = L ,
x j = jh, 0 ≤ j ≤ D and h = L/D, the spatial discretization of (2) by means of a
classical second order finite differences scheme gives rise to a finite dimensional
operator A which is nothing but a (D + 1) × (D + 1) three-diagonal matrix.
The Volterra equation (1) arises now with K(t) = k(t)A, and f̄ standing for the
function f : [0, T] → R

D sampled in the spatial grid. Moreover, ū stands for
the approximation to the time continuous solution over the spatial grid, that is
ū(t) = (u j (t))0≤ j≤D where u j (t) ≈ u(x j , t), 0 ≤ j ≤ D.
Other definitions of fractional derivatives/integrals with order depending on time
have been proposed in the literature. Some of these definitions have been discussed
in [9] concluding that (6)–(7) might be considered as the most convenient in many
practical instances. This is why we adopt such a definition in this paper.

2. A kind of generalization of (3)–(4) comes out in the framework image processing
[3]. In fact consider the two-dimensional Laplacian in [0, L] × [0, L], denoted
again (if not confusing) by �, with homogeneous Newmann boundary conditions
again. In [3] the Laplacian applies to u(x, y, t) in the variables x , and y, and
u : [0, L]× [0, L]× [0, T] �→ R represents an original gray scale image u0(x, y)

evolved up to the time level t > 0 to be u(x, y, t). Once one discretizes in space
by a classical second order finite difference scheme with D + 1 nodes along each
coordinate axis, we have the mesh grid {(xi , y j)}0≤i, j≤D = {(ih, jh)}0≤i, j≤D ,
h = L/D, and that u(x, y, t), 0 ≤ x, y ≤ L , becomes into a (D + 1) × (D + 1)
matrix (ui, j (t))0≤i, j≤D where the entries represent the approximations to the exact
solution, that is ui, j (t) ≈ u(xi , x j , t), for t > 0, 0 ≤ i, j ≤ D. Therefore if one
reshapes such amatrix as a vector by stacking columns, then the discrete Laplacian,
denoted again by A, reads as a (D + 1)2 × (D + 1)2 five-diagonal matrix, and
(ui, j (t))0≤i, j≤D as a (D + 1)2 × 1 vector.

123

Numerical Algorithms

One of the novelties of this model is that it relates image processing and fractional
calculus and allows to apply a different diffusion rate over every single pixel
(xi , y j). Such a rates are handled by a particular fractional kernel ki, j (t) of type
(4) with order αi, j > 0, 0 ≤ i, j ≤ D. In [3] the authors also consider the case of
fractional orders depending on time, that is orders αi, j (t), 0 ≤ i, j ≤ D, t > 0,
according to the definition (6)–(7).
Anyhow that approach leads to a system of linear equations of type (1) where
K(t) = I (t)A, I (t) =diag(k j (t))0≤ j≤D2 , t ≥ 0, α j (t) are defined according to
(6)–(7), A stands for the (D + 1)2 × (D + 1)2 five-diagonal matrix mentioned
above, and ū0 stands for the initial data u(x, y, 0) sampled in the spatial mesh,
that is the original image to be restored sampled on the spatial mesh.

2.2 Time discrete setting

In Section1we said that a large variety of numerical schemes for the time discretization
of Volterra equations (1) exists in the literature. However, in this paper we focus on
the convolution quadratures based methods introduced by Ch. Lubich in [15].

In particular a first order numerical scheme is considered here and the reason is
twofold. On the one hand the lack of time regularity observed in the solutions of most
of singular Volterra equations has proved as a barrier to consider higher order time
discretization. In particular, for fractional equations of type (2)–(4)), it is very well
known that the second order of convergence is reachable if 1 < α < 2, but it is not
obvious at all if the equation involves some non-linear term. Even worse if 0 < α < 1
for which the second order is hardly reached [13]. The same applies to the solutions
of the equations with fractional order depending on time (6)–(7), whose regularity is
precisely studied in [9]. Apart from that the choice of a first order numerical scheme
does not yield a loss of generality in our study, on the contrary the study might be
straightforwardly extended to higher order numerical schemes if the regularity of the
corresponding continuous solutions is high enough.

Therefore we adopt the backward Euler based convolution quadrature method as
the time discretization for (1). Since the stability, convergence, as well as some other
properties, has been already studied [14–27], we here merely recall its formulation.
In fact let τ > 0 be the time step of the discretization, τ = T /N , and tn = nτ ,
for 0 ≤ n ≤ N . Moreover, denote by q(z) the quotient of the generating polyno-
mials of the associated multistep linear method, in the case of the backward Euler
method simply q(z) = 1 − z. According to the above the time discretization for (1)
reads

ūn = ū0 +
n∑

j=0

Kn− j ū j + f̄ j , 0 ≤ n ≤ N , (8)

where ūn ∈ R
D stands for the approximation to ū(tn), f̄n := f̄ (tn) ∈ R

D , 0 ≤
n ≤ N , and the convolution weights K j ∈ MD×D(R) are element-wise given by the
expansion

K̃
(

q(z)

τ

)
=

+∞∑
n=0

Knzn . (9)

123

Numerical Algorithms

For example, if K(t) = k(t)A with k(t) = tα−1/�(α), α > 0, and A ∈ MD×D(R),
then the convolution weights take the form

Kn = kn A, (10)

where

kn = τα

(
α − n + 1

n

)
= τα α(α − 1) · · · (α − n + 1)

n! , n ≥ 1 (k0 = 1). (11)

Let us highlight that in spite of the computation of convolution weights (9) may be
directly done by means of the theoretical expression (10) this task requires a very high
computational cost. Instead in practical instances that computation is performed by
means of the Fast Fourier Transform (FFT), not only for the kernels of fractional type
but also for the kernels which Laplace transform is reachable as the ones we consider
in this paper.

For the convenience of readers we recall a result related to the convolution weights
(9) which will be very useful in the proofs of our results (see Corollary 3.2 in [16]).
In fact there exists C > 0 depending on K and T but independent on τ and n, such
that the convolution weights in (9) hold the bound

‖Kn‖ ≤ Cτ, 1 ≤ n ≤ N . (12)

Finally notice that, without loss of generality, now and hereafter we consider
MD×D(R) normed by the matrix sup norm denoted if not confusing merely by ‖ · ‖.

3 Discrete NSWRmethods for linear Volterra equations

The Non-StationaryWave Relaxation (NSWR) methods for integral equations of type

y(t) = y0 +
∫ t

0
k(t, s, y(s)) ds + f (t), t > 0, (13)

have been introduced in [41] and consist of iterative methods that provide a time-
dependent sequence {yη(t)}η≥0, throughout the difference equation

y(η)(t) = y0+
∫ t

0
F (η)(t, s, y(η−1)(s), y(η)(s)) ds + f (t), t > 0, η = 1, 2, . . . ,

(14)
where the set of functions F (η) : R+ × R

+ × R × R → R satisfy the equality

F (η)(t, s, y, y) = k(t, s, y), η = 1, 2, (15)

The following facts have been already noticed in [36]. Firstly it has been observed
that if one applies the iterative process over the whole time interval, then the conver-
gence of the method slows noticeably down as the number of time nodes grows up.

123

Numerical Algorithms

To overcome this problem the solution adopted in [36], and the one we adopt here,
consists of splitting the whole interval [0, T] in sub-intervals/windows of length bτ ,
b ∈ Z

+, so that

[0, T] =
R−1⋃
j=0

[t jb, t(j+1)b] =
R−1⋃
j=0

[jbτ, jbτ + bτ], with Rbτ = T . (16)

The iterative method (14) reads now, for t ∈ (rbτ, rbτ + bτ],

y(η)(t) = y0 +
∫ rbτ

0
k(t, s, y(s)) ds +

∫ t

rbτ

F (η)(t, s, y(η−1)(s), y(η)(s)) ds + f (t),

(17)
η = 1, 2, . . .

In the case of the system (1), the method (17) reads

ū(η)(t) = ū0+
∫ rbτ

0
K(t − s)ū(s) ds +

∫ t

rbτ

F (η)(t − s, ū(η−1)(s), ū(η)(s)) ds + f̄ (t),

(18)
for η = 1, 2, . . ., where, by the simplicity of the notation, and having in mind that
the equations we are considering in the present paper are of convolution type, we
have replaced F (η)(t, s, ū, v̄) by F (η)(t − s, ū, v̄), that is F (η) is now a function
F (η) : R+ × R

D × R
D → R

D . The condition (15) then reads

F (η)(t − s, ū, ū) = K(t − s)ū, 0 < s < t, η = 1, 2, . . . (19)

Therefore we discretize (17) according to the numerical scheme (8)–(9) in the time
mesh {tn}1≤n≤N , giving rise to the discrete NSWR method

ū(η)
n = ū0 +

rb∑
j=0

Kn− j ū j +
n∑

j=rb+1

F (η)
n− j (ū

(η−1)
j , ū(η)

j) + f̄n, η ≥ 1, (20)

for tn ∈ (rbτ, rbτ + bτ]. Once again for the sake of the simplicity of the notation we
have replaced F (η)(tn − t j , ū(η−1)

j , ū(η)
j) by F (η)

n− j (ū
(η−1)
j , ū(η)

j).
The iterative method (20) provides at every single time step tn = nτ a sequence

of vectors {ū(η)
n }η≥0, for which the number of iterations required to achieve the stated

accuracy at time level tn will depend at every single time level solely on the last
windows but not on the time step tn itself. That is, for the r -th window, 0 ≤ r ≤
R − 1, there will be a threshold mr > 0 so that the iterative method reaches the
required accuracywith atmostmr iterations. Thereforewe adopt ū

(mr)
n as the numerical

approximation to ū(tn), that is ū(mr)
n ≈ ū(tn), for every tn ∈ (t(r−1)b, trb], 1 ≤ n ≤ N ,

and 1 ≤ r ≤ R.
A convenient choice of the operators F (η)

j : RD ×R
D �→ R

D , for 0 ≤ j ≤ N , and
η ≥ 0, will allow the parallelization of the method by decoupling the system at every

123

Numerical Algorithms

single time level tn into two independent systems. These operators will be required to
comply two hypotheses:

[H1] All operators are Lipchitz in both variables, that is there exists L > 0 such
that

‖F (η)
j (ū, ·) − F (η)

j (v̄, ·)‖ ≤ L‖ū − v̄‖, ‖F (η)
j (·, ū) − F (η)

j (·, v̄)‖ ≤ L‖ū − v̄‖,
(21)

∀ū, v̄ ∈ R
D,

for 0 ≤ j ≤ N and η ≥ 0. Without lost of generality, we assume a common
Lipchitz constant L > 0 for both variables.
[H2] For 0 ≤ j ≤ N , and η ≥ 0, there holds the equality

F (η)
j (ū, ū) = K j ū, ∀ū ∈ R

D, 0 ≤ j ≤ N , η ≥ 0, (22)

where {K j } j≥0 stand for the quadrature weights defined in (9).

For instance, the family of linear operators {F (η)
j }1≤ j≤N ,η≥0, defined by

F (η)
j (ū, v̄) = N (η)

j ū + M (η)
j v̄. (23)

is probably the simplest one satisfying [H1], and for a convenient choice of N (η)
j and

M (η)
j also [H2]. In particular, we focus our attention on the discrete NSWR (20) where

F (η)
j (ū, v̄) = N (η)

j ū + M (η)
j v̄, η ≥ 0, (24)

with
M (η)

j = μ
(η)
j I and N (η)

j = K j − M (η)
j , 0 ≤ j ≤ N , η ≥ 0, (25)

for certain values {μ(η)}η≥0 to be determined later, and where I is the identity matrix

in RD . In our approach we avoid the dependence on j of μ
(η)
j so we have μ(η) instead

of μ
(η)
j , and we might write M (η) instead of M (η)

j .
Finally, consider the windows length equal to τ , that is b = 1. In this case the

discrete NSWR method is so-called discrete time-point (or time step) NSWR method
and reads

ū(η)
n = ū0 +

n−1∑
j=0

Kn− j ū j + F (η)(ū(η−1)
n , ū(η)

n) + f̄n, η ≥ 1. (26)

Observe that since F j does not depend in fact on the sub-index j and solely there

appearsF (η)
0 , we denoted this operator simply asF (η). Moreover, in the same manner

123

Numerical Algorithms

N (η)
j and M (η)

j do not depend on j and are denoted by N (η) and M (η) respectively.
The time step NSWR we propose reads as

ū(η)
n = ū0 +

n−1∑
j=0

Kn− j ū j + (K0 − μ(η) I)ū(η−1)
n + μ(η) I ū(η)

n + f̄n, η ≥ 1. (27)

The class of iterativemethods defined by (23)–(26) is known as Richardson discrete
time-point NSWR methods, and they are the subject of our study in this paper.

Before ending this section several comments have to be made. On the one hand,
if μ(η) = 0, for all η, then the iterative method (23)–(26) reduces to the functional
iteration method.

Moreover, in spite of we here consider a time-point NSWRmethod, the results and
the idea of the proofs straightforwardly extends for larger windows, b > 1.

Finally observe that the choice (24) allows decoupling the D × D system (26) into
D linear equations which can be independently solved, or in other words this allows
the parallelization of the algorithm by solving independently D decoupled equations.

4 Main results

The first issue to be observed is that, as typically occurs with iterative methods, the
method (23)–(26) does not allow to reach the exact solution ūn at any single step
tn within a finite number of iterations, even in the case of the exact solution could
be theoretically achieved. It is mainly due to the round-off errors. But not only the
round-off errors are the matter, even if the exact solution can be theoretically achieved
in a finite number of iterations, such a number may be so large that it makes the
computational effort unfordable, in other words the required number of iterations
might be so large as to make the computational advantages of the parallelization
approach negligible. Keeping this in mind assume that, for 1 ≤ n ≤ N , we merely
will have an approximation ū(mn)

n instead of the exact value ūn . The numerical solution
ū(mn)

n will stand for the true numerical approximation to ū(tn), 1 ≤ n ≤ N , under a
previously stated tolerance.

Observe that in the case of the Richardson time step NSWRmethods the number of
iterations in each window obviously coincides with the number of iterations for every
single time level, namely our case.

The first result of this section concerns the form the error takes for the numerical
scheme (23)–(26) so firstly denote the error

ē(η)
n := ūn − ū(η)

n , 1 ≤ n ≤ N , η ≥ 0. (28)

Denote also

Pη(x) =
η∏

r=1

(x − μ(r)), η ≥ 0, (29)

123

Numerical Algorithms

where {μ(r)}r≥0 is the set of values involved in (24). These values are discussed below.
Admit (with abuse of the notation) that the evaluation of Pη(x) may be matrix-wise
done. Therefore we have the following lemma.

Lemma 1 The error (28) yielded by the numerical scheme (23)–(26) writes as

ē(η)
n = A(η)

⎧⎨
⎩B(η)

n−1∑
j=1

Kn− j ē
(m j)

j + ē(0)
n

⎫⎬
⎭ , η ≥ 1, (30)

where

A(η) = Pη(K0)

Pη(1)
, B(η) =

η∑
j=1

Pj−1(1)Pj (K0)
−1, η ≥ 1. (31)

Proof The proof straightforwardly follows by solving some difference equations. We
consider first the case n = 1, for η ≥ 0. From (28) and (24)–(25) we have

ē(η)
1 = {ū0 + K1ū0 + K0ū1

}− {ū0 + K1ū0 + F (η)(ū(η−1)
1 , ū(η)

1)
}

= K0ū1 − {N (η)ū(η−1)
1 + M (η)ū(η)

1

}
.

Definition (25), and adding and subtracting K0ū(η)
1 , lead to

ē(η)
1 = {K0ū1 − μ(η)ū(η)

1

}− (K0 − μ(η) I)ū(η−1)
1

= K0
{
ū1 − ū(η)

1

}+ {K0 − μ(η) I
}
ū(η)
1 − {K0 − μ(η) I

}
ū(η−1)
1 .

Finally, adding and subtracting N (η)ū1 leads to

ē(η)
1 = K0ē(η)

1 − N (η)ē(η)
1 + N (η)ēη−1

1

= M (η)ē(η)
1 + N (η)ē(η−1)

1 .

Therefore, recursively and by definitions (25) it follows that

ē(η)
1 =

(
I − M (η)

)−1
N (η)ē(η−1)

1

= 1

1 − μ(η)

(
K0 − μ(η) I

)
ē(η−1)
1

...

=
⎧⎨
⎩

η∏
j=1

1

1 − μ(j)

(
K0 − μ(j) I

)⎫⎬
⎭ ē(0)

1

= Pη(K0)

Pη(1)
ē(0)
1 .

123

Numerical Algorithms

For n > 1 and η ≥ 0, in a similar manner as for n = 1, we have again from (28)
and (24)–(25)

ē(η)
n = {ū0 + Knū0 + Kn−1ū1 + Kn−2ū2 + · · · + K1ūn−1 + K0ūn

}

−
{

ū0 + Knū0 + Kn−1ū(m1)
1 + Kn−2ū(m2)

2

+ · · · + K1ū(mn−1)

n−1 + F (η)(ū(η−1)
n , ū(η)

n)
}

=
n−1∑
j=1

K j (ūn− j − ū
(mn− j)

n− j) + K0ūn − {N (η)ū(η−1)
n + M (η)ū(η)

n

}

Now, adding and subtracting K0ū(η)
n first, then adding and subtracting N (η)ūn , joint

with Definition (25) lead to

ē(η)
n =

n−1∑
j=1

K j ē
(mn− j)

n− j + K0(ūn − ū(η)
n) + (K0 − μ(η) I)ū(η)

n − (K0 − μ(η) I)ū(η−1)
n

=
n−1∑
j=1

K j ē
(mn− j)

n− j + K0ē(η)
n − N (η)ē(η)

n + N (η)ē(η−1)
n

=
n−1∑
j=1

K j ē
(mn− j)

n− j + M (η)ē(η)
n + N (η)ē(η−1)

n , (32)

where ē
(m j)

j stands for the error of the iterative process afterm j iterations once reached
the threshold, at time step t j , 1 ≤ j ≤ N . Therefore from (32) we have

ē(η)
n =

(
I − M (η)

)−1

⎧⎨
⎩

n−1∑
j=1

K j ē
(mn− j)

n− j + N (η)ē(η−1)
n

⎫⎬
⎭

= 1

1 − μ(η)

⎧⎨
⎩

n−1∑
j=1

K j ē
(mn− j)

n− j +
(
K0 − μ(η) I

)
ē(η−1)

n

⎫⎬
⎭ . (33)

The solution of the difference equation (33) straightforwardly writes

ē(η)
n =

⎧⎨
⎩

η∑
j=1

1

1 − μ(j)

⎛
⎝ η∏

k= j+1

1

1 − μ(k)

(
K0 − μ(k) I

)⎞⎠
⎫⎬
⎭

n−1∑
j=1

K j ē
(mn− j)

n− j

+
⎛
⎝ η∏

j=1

1

1 − μ(j)

(
K0 − μ(j) I

)⎞⎠ ē(0)
n

123

Numerical Algorithms

=
⎧⎨
⎩

η∑
j=1

Pj−1(1)

Pη(1)
Pη(K0)Pj (K0)

−1

⎫⎬
⎭

n−1∑
j=1

K j ē
(mn− j)

n− j + Pη(K0)

Pη(1)
ē(0)

n

= Pη(K0)

Pη(1)

⎧⎨
⎩
⎧⎨
⎩

η∑
j=1

Pj−1(1)Pj (K0)
−1

⎫⎬
⎭

n−1∑
j=1

K j ē
(mn− j)

n− j + ē(0)
n

⎫⎬
⎭ .

Therefore the statement of the lemma follows.

In view of the error expression (30)–(31), it can be observed that operatorK0 plays
a key role, and note also that K0 expresses as

K0 = K̃
(

q(0)

τ

)
= K̃

(
1

τ

)
, (34)

in particular if {K(t)}t≥0 are the operators defined in (10), thenK0 = k̃(1/τ)A = τα A.
This suggests that the choice of the parameters {μ(r)}r≥0 in (29) must be related to

the eigenvalues of K0 as in fact does occur in our approach. In this regard denote the
spectrum of K0 as

σ(K0) := {λr ∈ C : λr is an eigenvalue of K0, 1 ≤ r ≤ D} ⊂ C, (35)

and assume that they are sorted in increasing order of the absolute value. For the
sake of the simplicity of the notation and without loss of generality all of them with
multiplicity one, that is 0 ≤ ‖λ1‖ < ‖λ2‖ < ‖λ3‖ < . . . < ‖λD‖. Therefore let us
consider in (29)

μ(r) = λr , λr ∈ σ(K0), for 1 ≤ r ≤ D. (36)

Notice that in that case the iterative method (26) reaches the exact solution, at least
theoretically, in a finite number of iterations since

Pj (K0) = 0 ∈ MD×D, if j ≥ D. (37)

However, as we have discussed above, in spite of the exact solution may theoretically
be achieved after D iterations, since we are expecting that D is going to be quite
large, that property will be useless from the practical point of view due to the high
computational cost carried out by the large number of iterations required. But even
though the number of iterations is from the computational point of view acceptable,
hardly ever the exact solution will be reached due to the cumulative round-off errors.

That iswhy a compromise solution is typically adopted:Togive up the exact solution
of the iterative method, instead we opt for a strategy to obtain an approximate solution
within an acceptable computational effort. In this regard we fix a threshold expected
to be reached at every time step tn within a number of iterations let say mn expected
to be much smaller than D, and giving rise to the numerical approximation we are
looking for.

123

Numerical Algorithms

Let us highlight that some authors made use of Chebyshev polynomials and the
Minimax property they enjoy [35, 36, 40, 41]. This approach consists of taking the
set {μ(r)}r≥0 as the roots associated with the Chebyshev polynomial re-scaled to the
interval bounded by the eigenvalues of K0 with minimum and maximum absolute
value, let say λ1 and λD , that is

μ(r) := λD − λ1

2
cos

(
(2r − 1)π

2D

)
+ λD + λ1

2
, 1 ≤ r ≤ D. (38)

Our approach does not allow the use of the Minimax property if this choice is made.
Moreover, it has a disadvantage: The choice (36) requires the computation of the
whole spectrum of K0 which for a large D may be highly costly, in spite of this
such a computation is certainly done once for all, or in the particular case of the one-
dimensional Laplacian the spectrum is explicitly known. On the contrary the choice
(38) only requires the eigenvalues λ1 and λD which is much less expensive.

Since the proof of the main result follows the same ideas for both choices, for the
sake of the simplicity of presentation we opted in this paper for (36). Anyhow the
presence of a memory term in (30) makes in both cases new assumptions necessary
in order to reach the error stability. In fact, if the choice (36) is made, then the new
assumption is related to σ(K0) and reads

[H3] The spectrum of K0 is located in C− := {z ∈ C : Re(z) < 0} excepts might
be the eigenvalue 0, and there exists 0 < ρ < 1 such that

‖λ j − λr‖
‖1 − λr‖ ≤ ρ, λ j , λr ∈ σ(K0). (39)

Two comments must be made on the Hypothesis [H3]. First of all the Hypothesis
[H3] is in general not too demanding in view of the form K0 takes in many cases, for
instance in (10) where K0 writes as K0 = τα A, α > 0. In that case [H3] reduces to
take the time step τ small enough.

Moreover, in case of σ(K0) �⊂ C
−, a new family of operators whose spectrum

locates in C
− may be achieved by shifting conveniently the original one. Notice that

in spite of this hypothesis may look strange, it does not since the spectrum of K0
is closely related to the spectrum of K and consequently to the conditions for the
well-posedness of (1).

On the other hand if the choice (38) is made, one simply has to re-formulate the
Hypothesis [H3] in the following form

[H3’] The spectrum ofK0 is located inC− excepts might be the eigenvalue 0, and
there exists 0 < ρ < 1 such that

‖λ j − μ(r)‖
‖1 − μ(r)‖ ≤ ρ, λ j ∈ σ(K0), 1 ≤ r ≤ D, (40)

where μ(r) are defined according to (38).

123

Numerical Algorithms

In that case the proof of the convergence follows the same steps as in Theorem 1 below.
Before stating the following result recall that mn denotes the maximum number of

iterations for the time step tn , which according to the above discussion are expected
to be much less than D.

Theorem 1 Consider the iterative method (24)–(27), joint with (36) under the Hypoth-
esis [H3]. Assume also that bound (12) satisfies

Cτ < 1/D, (41)

for τ small enough.
Therefore, given a tolerance T O L > 0, there exist mn > 0, 1 < n < N, such that

‖ē(mn)
n ‖ ≤ T O L, for 1 ≤ n ≤ N . (42)

Notice that (41) is straightforwardly satisfied merely taking a time step small
enough; however, it can be certainly relaxed if a maximum number of iterations
m << D is previously fixed for each time step tn , that is mn ≤ m, for 1 ≤ n ≤ N . If
so (41) may be replaced by the less demanding one Cτ < 1/m.

Theorem 1 states sufficient conditions to keep the error of the iterative method
proposed under a given tolerance. This results reflects in the numerical experiments
where the results show that reaching accurate numerical solutions is feasible with
much lower computational effort than with classical/sequential approaches.

Proof The proof makes use of the error expression (30), where A(η) and B(η) are given
by (31). According to this we have to prove that

‖A(η)‖ → 0, and

∥∥∥∥∥∥A(η) B(η)
n−1∑
j=1

Kn− j ē
(m j)

j

∥∥∥∥∥∥→ 0, as η → +∞,

at every time level tn .
To prove that ‖A(η)‖ tends to zero as η → +∞, observe that

A(η) = Pη(K0)

Pη(1)
=

η∏
r=1

(K0 − λr I)

1 − λr
, (43)

whose spectrum consists of

σ

(
Pη(K0)

Pη(1)

)
= {0} ∪

{
η∏

r=1

λ j − λr

1 − λr

}D

j=η+1

, 1 ≤ η ≤ m. (44)

Note that 0 turns out to be an eigenvalue of Pη(K0)/Pη(1) of multiplicity η, and by
Hypothesis [H3], there exists 0 < ρ < 1 such that

λ j − λr

1 − λr
≤ ρ, 1 ≤ r ≤ η, 1 ≤ j ≤ D. (45)

123

Numerical Algorithms

Therefore, from (44) we straightforwardly have that

‖A(η)‖ =
∥∥∥∥ Pη(K0)

Pη(1)

∥∥∥∥ ≤ ρη → 0, as η → +∞. (46)

In particular once reached the maximum number of iterations η = mn ,

‖A(mn)‖ =
∥∥∥∥ Pmn (K0)

Pmn (1)

∥∥∥∥ ≤ ρmn , 1 ≤ n ≤ N . (47)

The first part of the proof then follows.

Related to the term A(η) B(η)
n−1∑
j=1

Kn− j ē
(m j)

j , let us show first the boundness of

A(η) B(η). To this end we re-write such a term as follows

A(η) B(η) = Pη(K0)

Pη(1)

η∑
j=1

Pj−1(1)Pj (K0)
−1 =

η∑
j=1

⎧⎨
⎩

1

1 − λ j

η∏
r= j+1

(K0 − λr I)

(1 − λr)

⎫⎬
⎭ ,

(48)
and in the same manner as in (46) we have

∥∥∥∥∥∥
1

1 − λ j

η∏
r= j+1

(K0 − λr I)

(1 − λr)

∥∥∥∥∥∥ ≤ ρη− j

|1 − λ j | < ρη− j+1. (49)

Therefore it easily follows that, for η ≥ 1,

∥∥∥A(η) B(η)
∥∥∥ ≤

η∑
j=1

ρη− j+1 ≤
η∑

j=1

ρ j ≤ ρ
1 − ρη

1 − ρ
, (50)

in fact,

∥∥∥A(mn) B(mn)
∥∥∥ ≤ ρCn, 1 ≤ n ≤ N , where Cn := 1 − ρmn

1 − ρ
. (51)

Recursively and according to (12), (47), and (51) we easily leads to

‖ē(mn)
n ‖ =

∥∥∥∥∥∥A(mn) B(mn)
n−1∑
j=1

Kn− j ē
(m j)

j + A(mn)ē(0)
n

∥∥∥∥∥∥

≤
∥∥∥A(mn) B(mn)

∥∥∥
n−1∑
j=1

‖Kn− j‖ ‖ē
(m j)

j ‖ + ‖A(mn)‖ ‖ē(0)
n ‖

123

Numerical Algorithms

≤ CτCnρ

n−1∑
j=1

⎧⎨
⎩ρm j ‖ē(0)

j ‖
n−1∏

r= j+1

(1 + CτCrρ)

⎫⎬
⎭ + ρmn ‖ē(0)

n ‖,

for 1 ≤ n ≤ N . For the simplicity of the notation we have denoted
n−1∏
r=n

(1+CτCrρ) =
1.

Finally, since Cn ≤ mn , for 1 ≤ n ≤ N , and applying (41), if at every single time
step tn the initial error of the iterative stage satisfies

ρm j ‖ē(0)
j ‖ ≤ T O L

N (1 + ρ)N
, for 1 ≤ j ≤ N , (52)

for a given tolerance T O L > 0, then

‖ē(mn)
n ‖ ≤ T O L, for 1 ≤ n ≤ N , (53)

and the proof ends.

It is worth noting the following:

• The condition (52) may be slightly relaxed by replacing (1+ρ)N by (1+ρ)n− j−2.
• Moreover, by the convergence of the original numerical solution {ūn}1≤n≤N , ‖ūn −

ūn−1‖ = O(τ). Moreover, the convergence of the iterative method {ū(mn)
n }1≤n≤N ,

and setting a small enough time step τ , ū(0)
n = ū(mn−1)

n−1 seems certainly to be a
suitable candidate for the starting value of the iterative method at time level tn
satisfying (52).

5 CUDA implementation

The implementation of the parallel numerical scheme proposed in Section 3 for the
problem (1), and theoretically analyzed in Section4, is discussed more in-depth in the
present section. In particular details related to the algorithm and technical resources
involved in the practical implementation of the algorithms are shown below.

Instead of a MIMD (Multiple Instruction - Multiple Data) strategy, based on
the cooperation of various Central Processing Units (CPUs), the proposed approach
exploits a SIMD (Single Instruction - Multiple Data) methodology according to Flynn
taxonomy [42]. This methodology takes advantage of Graphics Processing Units
(GPUs) and allows using them for general purpose through CUDA (Compute Unified
Device Architecture), introduced by NVIDIA in 2006. In fact, GPUs were originally
designed for graphical purposes such as the computationof imagegeometrical transfor-
mations (translations, rotations, scaling, projections), rendering operations for image
finishing, or rastering tasks.

Instead, GPUs for General Purpose (GPGPUs) paradigm aim to exploit Arithmetic
Logic Units (ALUs) of GPUs. In this context, CUDA provides a general purpose

123

Numerical Algorithms

architecture based on an instruction set so-called Parallel Thread eXecution (PTX),
and an extension set for various programming languages. In addition, in the CUDA
architecture, the GPU (device) represents a co-processor of the CPU (host) that is able
to invoke kernels, functions that are executed by the device through threads.

Threads are the fundamental elements for the CUDA parallel design, since a thread
executes a set of instructions on a data subset. Moreover, they have not activa-
tion/deactivation cost and a large number of them can be used to achieve the full
efficiency. Threads are organized in blocks, and blocks are divided in a grid. Grid
and blocks can be one-dimensional, two-dimensional or three-dimensional according
to the specific problem (see Fig. 1). This structure based on grid, blocks, and threads
allows to simplify the parallel implementation and takes advantage of a coordinate set
accessible through instructions gridDim, blockDim, blockIdx, and threadIdx.

The proposed method implementation through CUDA is based on a one-
dimensional grid and one-dimensional blocks. Moreover, numerical results are
obtained through Google Colab that made available a Tesla T4 GPU as shown in
Fig. 2. The Tesla T4 Compute Capability (CC) is 7.5, and the CC category describes
the GPU hardware structure and determines limits for the implementation phase.

First of all let us recall the time discretization (27) of the problem (1)

ū(η)
n = Fn +

(
K0 − μ(η) I

)
ū(η−1)

n + μ(η) I ū(η)
n , η ≥ 1 (54)

where Fn stands for

Fn = u0 +
n−1∑
j=0

Kn− j ū j + f̄n, n ≥ 1. (55)

Let 0 = t0 < t1 < · · · < tN = T be a time mesh for the time discretization with
tn = t0 + nh. Therefore Algorithm 1 describes the implementation of the numerical
method (27). The prefix ’h’ expresses that the variables are memorized by the host,
instead the prefix ’d’ precedes the variables memorized by the device. Initially, lines
1 and 2 fix the dimension of blocks and the grid which allow to divide operations
in kernels through the provided structure. Then the weights (9) and the parameters

Fig. 1 Possible organizations of threads, blocks, and grid

123

Numerical Algorithms

Fig. 2 GPU provided by Google Colaboratory

(38) are determined according to line 3. In particular, weights are memorized in a
multidimensional matrix d_K ∈ R

D×D×N that contains N matrices of dimension
D×D. Instead that set of values is stored in the vectormu= (μ(1), . . . , μ(D)

)T ∈ R
D .

Line 4 of the pseudocode summarizes the initialization of the starting term
ū0 + f̄ (t0) memorized into the variable d_unew. Then lines 5 describes the ker-
nel that allows to copy the vector d_unew into the first column of the matrix d_un
= (ū0, . . . , ūN) ∈ R

D×(N+1).
The proposed Richardson time-point NSRW method is based on interactions on

each subinterval between two consecutive discretization points. Then, the term (55)
is computed through the kernel at line 8 and memorized into the vector d_Fn .

The iteration on the subinterval continues while the error is less than the tolerance
and the maximum iterations number is not reached. Into the loop, the method is
applied according to (54), and after its application lines 13–15 allow to calculate the
error estimation in the point tn at iteration η =Niter:

EE(η)
n = ‖ū(η)

n − ū(η−1)
n ‖, 1 ≤ n ≤ N , η ≥ 1. (56)

In particular, at line 13 the kernel error allows to memorize the difference
between components of ū(η)

n and ū(η−1)
n , stored in the vector d_err. The function

thrust::device_ptr allocates the new vector d_unew on the device, then the function
thrust::reduce returns the error estimation (56).

Indeed, the approximated d_unew solution related to the discretization point tn is
copied into d_uold at line 16. Finally, at line 19, the new approximation related to the
last iteration mn is memorized into the matrix d_un.

Table 1 summarizes the variables related to Algorithm 1.

123

Numerical Algorithms

Ta
bl
e
1

V
ar
ia
bl
es

in
vo
lv
ed

in
A
lg
or
ith

m

N
am

e
Ty

pe
D
im

en
si
on

R
ef
er
ri
ng

to
th
e
Pr
op

os
ed

M
et
ho

d

D
sc
al
ar

va
lu
e

1
sy
st
em

di
m
en
si
on

N
sc
al
ar

va
lu
e

1
nu
m
be
r
of

di
sc
re
tiz
at
io
n
in
te
rv
al
s

h
sc
al
ar

va
lu
e

1
st
ep
si
ze

t_
0

sc
al
ar

va
lu
e

1
fir
st
di
sc
re
tiz
at
io
n
po
in
t

m
u

ve
ct
or

D
pa
ra
m
et
er
s
in

(3
8)

d_
K
0

m
at
ri
x

D
×

D
w
ei
gh
ts
m
at
ri
x
re
la
te
d
to

th
e
fir
st
di
sc
re
tiz
at
io
n
po

in
t

d_
K

m
ul
tid

im
en
si
on

al
m
at
ri
x

D
×

D
×

N
w
ei
gh

ts
in

(9
)

d_
F

n
ve
ct
or

D
F

n
de
fin

ed
in

(5
5)

d_
uo

ld
ve
ct
or

D
ū
(η

−1
)

n
in

(5
4)

d_
un

ew
ve
ct
or

D
ū
(η

)
n

in
(5
4)

d_
un

m
at
ri
x

D
×

(N
+

1)
(ū

(m
n
)

n

) n=
0,

..
.,

N
w
ith

m
n
de
fin

ed
in

(4
2)

er
r

sc
al
ar

1
er
ro
r
es
tim

at
io
n
in

(5
6)

123

Numerical Algorithms

Algorithm 1Algorithm related to the CUDA program The times where the numerical
solutions are computed are tn = t0 + nh, n = 0, 1, . . . , N (h=T/N), where t0 = 1 and
tN = T = 1 in all experiments below, and for several values of N (N = 50, and 100).
1: dim3 dimBlock(BLOCK_SIZE);
2: dim3 dimGrid((int)ceil(float(D)/float(dimBlock.x)));
3: Calculation of weights d_K0 ∈ R

D×D and d_K ∈ R
D×D×N , and parameters mu ∈ R

D ;
4: starting<<<dimGrid, dimBlock>>> (d_unew, D,t0);
5: copyvetmat<<<dimGrid, dimBlock>>>(d_un,d_unew,D,N,0);
6: for n = 1, . . . , N do � N # of discrete points
7: t = t0 + nh;
8: lagterm<<<dimGrid, dimBlock>>>(d_un,d_Fn ,h,d_K,t,D,N,n);
9: copiavet<<<dimGrid, dimBlock>>>(d_Fn ,d_uold,D);
10: err=1, Niter = 0;
11: while (err>toll) && (Niter<Nmax) do
12: richardson<<<dimGrid, dimBlock>>> (mu[Niter],d_uold,d_unew,d_Fn ,h, d_K0,D);
13: error<<<dimGrid, dimBlock>>>(d_uold,d_unew,d_err,D);
14: thrust::device_ptr<float> new_d(d_err);
15: err = thrust::reduce(new_d, new_d + D);
16: copiavet<<<dimGrid, dimBlock>>>(d_unew,d_uold,D);
17: Niter++;
18: end while
19: end while
20: copyvetmat<<<dimGrid, dimBlock>>>(d_un,d_unew,D,N,n);
21: end for
22: end for

6 Numerical results

As performance metric related to parallel implementations we considered the Speed-
Up, which consists of the rate of the runtime (in milliseconds) for the sequential and
parallel implementations.

Speed-Up = CPUtime

GPUtime
(57)

For the Speed-Up assessment, the following subsections present several tests
applied to practical problems. The numerical results aim to evaluate the ability of
parallel computing to improve the velocity of the problem resolution. Moreover, they
also allow for assessing the accuracy of the proposed approach and for empirically
evaluating the convergence order of the method.

Results will be presented through tables that describe, in addition to Speed-Up,
the dimension D of the system (1), sequential (CPU time) and parallel (GPU time)
implementation times measured in milliseconds, and the error E referred to the exact
solution ū (t)

E = max
n=0,...,N

‖ū(mn)
n − ū (tn) ‖, (58)

where mn , defined in (42), represents the iteration that allows to satisfy the tolerance
in the point tn . Finally, tables show the Error Estimation EE, aka, the maximal value

123

Numerical Algorithms

of errors EE(mn)
n defined in (56)

EE = max
1≤n≤N

‖EE(mn)
n ‖ = max

1≤n≤N
‖ū(mn)

n − ū(mn−1)
n ‖. (59)

Notice that E stands for the true error yielded by the numerical method, while E E is
nothing but an estimation of it which is really useful as stoping criteria in cases where
analytical solution is not available at all. In our experiments the analytical solution is
actually known, despite that we show the values of E E .

We will also show the mean of iterations’ number at each time step tn , i.e.,

m = m1 + · · · + m N

N
(60)

Moreover, let us notice that throughout the present section, the error will be mea-
sured in the sup norm.

6.1 Test problem 1

The first test problem consists of the system (1) with T = 1, where

ū0 = 0 ∈ R
D, f̄ (t) =

(
t + 4

√
t3

15� (α)
, t, . . . , t, t − 4

√
t3

15� (α)

)T

∈ R
D, (61)

K (t − s) = (t − s)α−1

� (α)
A, (62)

with 1 < α < 2, and the matrix A is the three-diagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0
1 −2 1 · · · 0
...

. . .
. . .

. . .
...

... 1 −2 1
0 · · · · · · 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ MD×D(R), (63)

representing the one-dimensional Laplacian discretization by means of the classical
second order finite differences scheme (without re-scaling with spatial mesh length).

The exact solution to test problem 1 is

ū (t) = (t, . . . , t)T ∈ R
D. (64)

Tables 2 and 3 present the results provided by sequential and parallel implementa-
tion of the numerical method for N = 50 and N = 100, respectively. Notice that the
values of Speed-Up increase as the system dimension D increases. In particular, the
values of Speed-Up provided by the case N = 100 are better than the ones provided
by the case N = 50.

123

Numerical Algorithms

Table 2 Richardson time-point NSRW method with α = 1.5, T = 1, tol = 1e − 3, and BLOCK_SIZE
= 32, N= 50. The iteration mean in (60) is m = 1.84

D CPU (ms) GPU (ms) E EE Speed-Up

64 27 19 7.397711e−03 8.935034e−04 1.4211

128 112 34 7.397473e−03 8.953214e−04 3.2941

256 448 105 7.397532e−03 8.971691e−04 4.2667

512 1866 230 7.397532e−03 9.009838e−04 8.1130

1024 7849 505 7.397652e−03 8.934736e−04 15.5426

2048 31828 1012 7.397532e−03 8.934438e−04 31.4506

4096 151330 2251 7.397532e−03 8.934438e−04 67.2279

6.2 Test problem 2

The second test problem stands for a more complex problem than the previous one
where, instead of considering a single value of α, there are different values related to
each single integral equation of the system. It, indeed, consists of the system (1) in
which

ū0 = 0 ∈ R
D, (65)

and the vector f̄ (t) has the following elements:

f1 (t) = t + 2
tα1+1

� (α1) α1 (α1 + 1)
− tα2+1

� (α2) α2 (α2 + 1)
, (66)

fi (t) = t − tαi−1+1

� (αi−1) αi−1 (αi−1 + 1)
+ 2

tαi +1

� (αi) αi (αi + 1)
−

− tαi+1+1

� (αi+1) αi+1 (αi+1 + 1)
i = 2, . . . , D − 1,

(67)

fD (t) = t − tαD−1+1

� (αD−1) αD−1 (αD−1 + 1)
+ 2

tαD+1

� (αD) αD (αD + 1)
. (68)

Table 3 Richardson time-point NSRW method with α = 1.5, T = 1, tol = 1e − 3, and BLOCK_SIZE
= 32, N= 100. The iteration mean in (60) is m = 1.5

D CPU (ms) GPU (ms) E EE Speed-Up

64 118 67 3.715694e−03 9.936988e−04 1.7612

128 448 134 3.715575e−03 9.935200e−04 3.3433

256 1764 298 3.715456e−03 9.936690e−04 5.9195

512 7825 577 3.715456e−03 9.936094e−04 13.5615

1024 33322 1738 3.715575e−03 9.935200e−04 19.1726

2048 149889 3705 3.715456e−03 9.935200e−04 40.4559

4096 672455 8643 3.715456e−03 9.962916e−04 77.8034

123

Numerical Algorithms

Table 4 Richardson time-point NSRWmethod with T = 1, tol= 1e −3, and BLOCK_SIZE= 32, N= 50

D CPU (ms) GPU (ms) m E EE Speed-Up

64 32 25 3.22 6.361306e−03 9.817481e−04 1.2800

128 128 50 2.96 7.957757e−03 6.324649e−04 2.5600

256 522 131 2.96 7.530391e−03 8.974820e−04 3.9847

512 2318 239 3.58 7.871866e−03 9.982884e−04 9.6587

1024 10036 546 3.90 7.064283e−03 9.021387e−04 18.3810

2048 44654 1069 3.98 7.480860e−03 7.445198e−04 41.7717

4096 188029 2378 2.94 8.184791e−03 9.403415e−04 79.0702

Then the convolution operator has the form

K (t − s) = A I (t − s) , (69)

where the matrix A is defined in (63), and the matrix I (t − s) represents a diagonal
matrix in which the diagonal elements are

Iii (t − s) = (t − s)αi −1

� (αi)
i = 1, . . . , D. (70)

These hypotheses allow to know that the analytical solution is same as in test problem
1, that is (64).

Tables 4 and 5 summarize the obtained results for N = 50 and N = 100, respec-
tively. We also report in these tables the mean of iteration (60) related to each system
dimension because the selection of α1, . . . , αD through pseudo-casual numbers influ-
ences the total number of iterations.

Tables 4 and 5 show the increase of the Speed-Up as system dimension D growths.
In particular, in the case N= 100 and D= 4096 we obtain a Speed-Up equal to
148.7127. We also notice that the obtained Speed-Ups are better than the ones of the
previous numerical experiment.

Table 5 Richardson time-point NSRWmethodwith T = 1, tol= 1e−3, and BLOCK_SIZE= 32, N= 100

D CPU (ms) GPU (ms) m E EE Speed-Up

64 111 81 2.84 3.215253e−03 9.885132e−04 1.3704

128 470 188 2.78 3.967643e−03 9.888783e−04 2.5000

256 2195 384 2.82 3.755748e−03 9.220243e−04 5.7161

512 9242 606 2.86 3.920734e−03 9.138733e−04 15.2508

1024 43657 1811 2.96 3.520787e−03 7.510614e−04 24.1066

2048 182070 3876 3.62 3.721952e−03 9.990931e−04 46.9737

4096 1330830 8949 2.00 4.073441e−03 6.577969e−04 148.7127

123

Numerical Algorithms

6.3 Test problem 3

The last problem considered to test the proposed approach has the following specifi-
cations

ū0 = 0 ∈ R
D, (71)

K (t − s) = A I (t − s) , (72)

where I (t − s) is diagonal matrix defined in (70), and the matrix A represent now the
approximation matrix obtained by second order finite difference scheme to the two-
dimensional Laplacian operator with Neumann boundary conditions. In particular,
by considering Dx discretization points in the x-axis direction and Dy discretization
points in the y-axis direction, the matrix A belongs to MD×D(R) with D = Dx Dy

and is defined by

(�τ ū)i, j = ūi+1, j + ūi−1, j − 4ūi, j + ūi, j+1 + ūi, j−1

τ 2
, (73)

for i = 1, . . . , Dx , j = 1, . . . , Dy . Once again the spatial mesh length does not
play any role in this approach, this is why it is taken as 1 and number of discretization
points Dx and Dy chosen as in Table 6.

In this problem, in order to derive the same analytical solution of the previous test
problems

ū (t) = (t, . . . , t)T ∈ R
D, (74)

the source term f̄ (t) = (f1(t), f2(t), . . . , fD(t))T , comes defined by

fi (t) = t −
D∑

i=1

ai j
tαi +1

� (αi) αi (αi + 1)
i = 1, . . . , D, (75)

where ai j stand for the entries of the matrix A, and as done in test problem 2, the
values α1, . . . , αD are generated through pseudo-random numbers and are related to
each integral equation of the system.

Tables 7 and 8 present the results related to test problem 3with N= 50 andN= 100,
respectively.

Table 6 Assumptions on the
grid for obtaining the A matrix
for test problem 3

D D_x D_y

32 4 8

64 8 8

128 8 16

256 16 16

512 16 32

1024 32 32

2048 32 64

4096 64 64

123

Numerical Algorithms

Table 7 Richardson time-point NSRWmethod with T = 1, tol= 1e −3, and BLOCK_SIZE= 32, N= 50

D CPU (ms) GPU (ms) m E EE Speed-Up

64 51 31 4.74 2.254719e−02 9.942949e−04 1.6452

128 195 63 4.76 2.192962e−02 9.448826e−04 3.0952

256 779 149 4.52 2.038664e−02 9.826720e−04 5.2282

512 3268 272 4.72 2.128011e−02 9.753406e−04 12.0147

1024 13317 588 4.92 2.158207e−02 8.717850e−04 22.6480

2048 59041 1148 4.94 2.006114e−02 7.664412e−04 51.4294

4096 262844 2557 3.90 2.280349e−02 9.278730e−04 102.7939

Also in this case, the increase of the Speed-Up as system dimension growths con-
firms the benefits of the parallelization. In fact, for D= 4096, the sequential times are
more than a hundred times slower than their respective parallels with both N= 50 and
N= 100.

6.4 Numerical results assessments

As mentioned above, another aim of numerical tests consists of the experimental
assessment of the convergence order. The analysis related to the results arising from
the three test problems is shown in Table 9 which presents the results obtained to a
system of dimension D= 32 as the step size of the time discretization decreases of a
factor equal to 2. The increase of the discretization points N gives rise to the decrease
of the error. The error in logarithmic scale, showed in Fig. 3, follows the slope of order
1 with the exception of the case N= 3200 where there is a little deviation.

Then the assessment of the convergence, theoretically analyzed in Section4, is
experimentally confirmed. Moreover, Fig. 3 represents the errors in logarithmic scale
and allows deducing that the slope related to error points in Table 9 follows the slope of
order 1. The only exception consists of the second test problem at the case N = 3200.

According to the results presented in previous subsections and summarized in Fig. 4,
the three test problems provide a considerable improvement in performance from

Table 8 Richardson time-point NSRWmethodwith T = 1, tol= 1e−3, and BLOCK_SIZE= 32, N= 100

D CPU (ms) GPU (ms) m E EE Speed-Up

64 127 78 2.40 1.106864e−02 9.861588e−04 1.6282

128 488 200 2.51 1.069969e−02 9.885132e−04 2.4400

256 2203 391 2.62 1.010352e−02 9.793937e−04 5.6342

512 9274 597 2.80 1.047248e−02 9.895116e−04 15.5084

1024 41374 1787 2.86 1.053202e−02 9.916872e−04 23.1528

2048 178755 3821 2.91 1.028883e−02 9.425953e−04 46.7823

4096 1190617 9022 2.96 1.112318e−02 8.166134e−04 131.9682

123

Numerical Algorithms

Ta
bl
e
9

E
rr
or
,a
nd

ite
ra
tio

n
av
er
ag
e
fo
rt
es
tp
ro
bl
em

s
1,
2
an
d
3
(r
es
pe
ct
iv
el
y
T
P1

,T
P2

,a
nd

T
P3

)b
as
ed

on
th
e
in
cr
ea
se

of
th
e
di
sc
re
tiz
at
io
n
po
in
ts
w
ith

D
=

32
,t
ol

=
1e

−6
,

T
=

1,
an
d
B
L
O
C
K
_S

IZ
E

=
32

.I
n
te
st
pr
ob

le
m

1,
th
e
pa
ra
m
et
er

α
as
su
m
es

th
e
va
lu
e
1.
5

N
50

10
0

20
0

40
0

80
0

16
00

32
00

T
P
1

E
7.
39

8e
−0

3
3.
72

e−
03

1.
87

e−
03

9.
33

e−
04

4.
67

e−
04

2.
36

e−
04

1.
21

e−
04

m
3.
64

3.
55

4.
09

2.
52

2.
62

2.
60

2.
26

T
P
2

E
5.
79

e−
03

2.
88

e−
03

1.
44

e−
03

7.
25

e−
04

3.
61

e−
04

1.
87

e−
04

1.
20

e−
04

m
5.
04

4.
49

4.
30

3.
82

3.
59

3.
44

3.
27

T
P
3

E
2.
20

e−
02

1.
09

e−
02

5.
39

e−
03

2.
67

e−
03

1.
30

e−
03

6.
56

e−
04

3.
60

e−
04

m
6.
56

4.
49

3.
78

3.
25

3.
02

2.
73

2.
10

123

Numerical Algorithms

Fig. 3 Empirical evaluation of the convergence order related to test problems

sequential to parallel executions. The runtime saved allows the application of the
proposed method to fields in which the response time represents a key point.

In fact, nowadays a widespread application field of the analyzed problem is image
or video processing. Systems of type (1) rather frequently appear in problems related
to image and video processing (image filtering, clustering, video restoration). In this
framework one of the main drawbacks is the size of images and/or frames to be
processed which give rise to computations with very large system of equations (linear

Fig. 4 Graphical representations of Speed-Up results

123

Numerical Algorithms

or even non-linear). What is harder, in many instances results are required to get ready
in real time: restoration of damaged patches, dis-occluding hidden parts of frames
in video. In this regard see for instance the recent paper [43] where linear Volterra
equations of type (1) are proposed for video restoration. In this context, the response
time is crucial and for related algorithms the possibility of reducing the run time
represents a great challenge and any advantage iswelcome.Moreover, the convergence
analysis confirms the goodness of the proposed approach.

7 Conclusions and future works

NSWR methods and their parallel implementation by means of GPUs have shown a
very good performance, particularly if compared to sequential implementation. The
good performance extends further classical fractional integral equations but for more
general linear systems of Volterra equations as the ones shown in Section6.

What is more the numerical results reached in Section6 are perfectly in line with
the theoretical results in Section4 related to the convergence

The statement of Theorem 1 may be extended without no significant differences
to a wider class of equations of type (1). In fact one may assume that K(t) admits an
element-wise Laplace transform K̃(z) = (k̃i, j (z))1≤i, j≤D whose entries turn out to
be analytic in the complex sector Sϕ := {z ∈ C : ‖ arg(−z)‖ < ϕ}, 0 < ϕ < π/2,
and for which there exist M, ν > 0 such that

∥∥∥k̃i, j (z)
∥∥∥ ≤ M

‖z‖ν
, 1 ≤ i, j ≤ D, z /∈ Sϕ.

In that case Corollary 3.2 in [16] extends (12) and says that there exists C > 0 such
that

‖Kn‖ ≤ Ctν−1
n τ, 1 ≤ n ≤ N , and ‖K0‖ ≤ Cτ ν−1.

Under this hypothesis Theorem 1 follows in similar fashion.
We finally highlight that this paper focuses on the accuracy and Speed-Up analysis

of the proposed parallelized approach for general purposes, that is for linear systems
of general Volterra equations but not for particular applications. The application of
this approach in the field of images processing represents a future development of the
present work.

Acknowledgements The author E. Cuesta would like to thank GIR (Research Recognized Group) of the
University of Valladolid, and IMUVa (Mathematic Institute of the University of Valladolid).

Author contribution D.Conte,V.Carmine, andE.Cuesta sharedwriting, and preparing themainmanuscript
text. V. Carmine took mostly over the codes performance. All authors reviewed the manuscript.

Funding The authors D. Conte and C. Valentino are members of the GNCS group. This work has been par-
tially supported by GNCS-INDAM project and by the Italian Ministry of University and Research (MUR),
through the PRIN 2017 project (No. 2017JYCLSF) “Structure preserving approximation of evolutionary
problems”. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Availability of supporting data Not applicable

123

Numerical Algorithms

Declarations

Ethical approval Not applicable

Competing interests Not applicable

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Stinga, P.R.: User’s guide to the fractional Laplacian and the method of semigroups. Fractional Differ-
ential Equations, vol. 2, pp. 235–266. De Gruyter. Anatoly Kochubei and Yuri Luchko Edts., (2019).
10.1515/9783110571660-012

2. Prüss, J.: Evolutionary Integral Equations and Applications, 1st edn. Modern Birkhäuser Classics.
Birkhäuser, Basel, (2012). 10.1007/978-3-0348-0499-8

3. Cuesta, E., Durán, A., Kirane,M.: On evolutionary integral models for image restoration. In: Tavares J.,
Natal Jorge R. (Edts) Developments in Medical Image Processing and Computational Vision. Lecture
Notes inComputationalVision andBiomechanics, vol. 19, pp. 241–260. Springer, (2015). 10.1007/978-
3-319-13407-9 15

4. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, (2000). https://
doi.org/10.1142/3779

5. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering. Academic
Press, (1999)

6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equa-
tions. North Holland Mathematics Studies 204. Elsevier B. V., (2006). https://doi.org/10.1016/S0304-
0208(06)80001-0

7. Das, S.: Functional Fractional Calculus, 2nd edition Springer, (2011). https://doi.org/10.1007/978-3-
642-20545-3

8. Cuesta, E., Kirane, M., Alsaedi, A., Ahmad, B.: On the sub–diffusion fractional initial value problem
with time variable order. Adv. Nonlinear Anal. 10(1), 1301–1315 (2021). anona-2020-0182

9. Cuesta, E., Ponce, R.: Well-posedness, regularity, and asymptotic behavior of continuous and discrete
solutions of linear fractional integro-differential equations with time-dependent order. Electron. J.
Differential Equations 2018(173), 1–27 (2018)

10. Banjai, L., Lubich, Ch.: An error analysis of Runge-Kutta convolution quadrature. BIT 51(3), 483–496
(2011). https://doi.org/10.1007/s10543-011-0311-y

11. Banjai, L., Lubich, Ch., Melenk, J.M.: Runge-Kutta convolution quadrature for operators arising in
wave propagation. Numer. Math. 119(1), 1–20 (2011). https://doi.org/10.1007/s00211-011-0378-z

12. Calvo, M.P., Cuesta, E., Palencia, C.: Runge-Kutta convolution quadrature methods for well-posed
equations with memory. Numer. Math. 107, 589–614 (2007). https://doi.org/10.1007/s00211-007-
0107-9

13. Cuesta, E., Lubich,Ch., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-
wave equations. Math. Comput. 75(254), 673–696 (2006). https://doi.org/10.1090/S0025-5718-06-
01788-1

14. Cuesta, E., Palencia, C.: A numerical method for an integro-differential equation with memory in
Banach spaces: Qualitative properties. SIAM J. Numer. Anal. 41(4), 1232–1241 (2003). https://doi.
org/10.1137/S0036142902402481

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/3779
https://doi.org/10.1142/3779
https://doi.org/10.1016/S0304-0208(06)80001-0
https://doi.org/10.1016/S0304-0208(06)80001-0
https://doi.org/10.1007/978-3-642-20545-3
https://doi.org/10.1007/978-3-642-20545-3
https://doi.org/10.1007/s10543-011-0311-y
https://doi.org/10.1007/s00211-011-0378-z
https://doi.org/10.1007/s00211-007-0107-9
https://doi.org/10.1007/s00211-007-0107-9
https://doi.org/10.1090/S0025-5718-06-01788-1
https://doi.org/10.1090/S0025-5718-06-01788-1
https://doi.org/10.1137/S0036142902402481
https://doi.org/10.1137/S0036142902402481

Numerical Algorithms

15. Lubich, Ch.: Fractional linear multistep methods for Abel-Volterra integral equations of the second
kind. Math. Comput. 45(172), 463–469 (1985). https://doi.org/10.2307/2008136

16. Lubich, Ch.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145
(1988). https://doi.org/10.1007/BF01398686

17. Lubich, Ch.: On the multistep time discretization of linear initial-boundary value problems and
their boundary integral equations. Numer. Math. 67, 365–389 (1994). https://doi.org/10.1007/
s002110050033

18. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations.
Cambridge Monographs on Applied and Computational Mathematics (15). Cambridge University
Press, (2004). https://doi.org/10.1017/CBO9780511543234

19. Cardone, A., Conte, D., D’Ambrosio, R., Paternoster, B.: Collocation methods for Volterra integral
and integro–differential equations: A review. Axioms 7(45), 1–19 (2018). Angelamaria Cardone 1,*
ID , Dajana Conte 1 ID , Raffaele D’Ambrosio 2 ID and Beatrice Paternoster 1 I

20. Cardone, A., Conte, D., Paternoster, B.: Stability of two-step spline collocation methods for initial
value problems for fractional differential equations. Commun. Nonlinear Sci. 115, 106726 (2022).
https://doi.org/10.1016/j.cnsns.2022.106726

21. Conte, D., D’Ambrosio, R., Paternoster, B.: Two-step diagonally-implicit collocation based methods
for Volterra integral equations. Appl. Numer. Math. 62(10), 1312–1324 (2012). https://doi.org/10.
1016/j.apnum.2012.06.007

22. Conte, D., Prete, I.D.: Fast collocation methods for Volterra integral equations of convolution type. J.
Comput. Appl. Math. 196, 652–663 (2006). https://doi.org/10.1016/j.cam.2005.10.018

23. López-Fernández,M., Palencia, C.:On the numerical inversion of theLaplace transformof certain holo-
morphic mappings. Appl. Numer. Math. 51(2–3), 289–303 (2004). https://doi.org/10.1016/j.apnum.
2004.06.015

24. Capobianco, G., Conte, D., del Prete, I., Russo, E.: Stability analysis of fast numerical methods for
Volterra integral equations. Electron. Trans. Numer. Anal. 30, 305–322 (2008)

25. Hairer, E., Lubich, Ch., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equa-
tions. SIAM J. Numer. Anal. 6(3), 532–541 (1985). https://doi.org/10.1137/0906037

26. López-Fernández, M., Lubich, Ch., Schädle, A.: Adaptive, fast, and oblivious convolution in evolu-
tion equations with memory. SIAM J. Sci. Comp. 30(2), 1015–1037 (2008). https://doi.org/10.1137/
060674168

27. Schädle, A., López-Fernández, M., Lubich, Ch.: Fast and oblivious convolution quadrature. SIAM J.
Scient. Comput. 28(2), 621–639 (2006). https://doi.org/10.1137/050623139

28. Oancea,B.,Andrei, T.,Dragoescu,R.M.:GPGPUComputing. In: Proceedings of theCKS International
Conference, 2012. http://arxiv.org/abs/1408.6923arXiv:1408.6923, (2014)

29. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Numerical Analysis
and Scientific Computation. Oxford University Press, New York (1995)

30. Burrage, K., Dyke, C., Pohl, B.: On the performance of parallel weveform relaxations for differential
systems. Appl. Numer. Math. 20(1–2), 39–55 (1996). https://doi.org/10.1016/0168-9274(95)00116-6

31. Sand, J., Burrage, K.: A Jacobi waveform relaxation method for ODEs. SIAM J. Sci. Comp. 20(2),
534–552 (1998). https://doi.org/10.1137/S1064827596306562

32. Courvoisier, Y., Gander, M.J.: Optimization of Schwarz waveform relaxation over short time windows.
Numer. Algorithms 64, 221–243 (2013). https://doi.org/10.1007/s11075-012-9662-y

33. Lent, J.V., Vandewalle, S.: Multigrid waveform relaxation for anisotropic partial differential equations.
Numer. Algorithms 31(1), 361–380 (2002). https://doi.org/10.1023/A:1021191719400

34. Zhang,H., Jiang,Y.-L.:Anote on the H1-convergence of the overlappingSchwarzwaveform relaxation
method for the heat equation. Numer. Algorithms 66, 299–307 (2014). https://doi.org/10.1007/s11075-
013-9734-7

35. Capobianco, G., Conte, D.: An efficient and fast parallel method for Volterra integral equations of Abel
type. J. Comput. Appl. Math. 189(1–2), 481–493 (2006). https://doi.org/10.1016/j.cam.2005.03.056

36. Capobianco, G., Conte, D., del Prete, I.: High performance parallel numerical methods for Volterra
equations with weakly singular kernels. J. Comput. Appl. Math. 228(2), 571–579 (2009). https://doi.
org/10.1016/j.cam.2008.03.027

37. Cardone, A., Messina, E., Russo, E.: A fast iterative method for discretized Volterra-Fredholm integral
equations. J. Comput. Appl. Math. 189(1–2), 568–579 (2006). https://doi.org/10.1016/j.cam.2005.05.
018

123

https://doi.org/10.2307/2008136
https://doi.org/10.1007/BF01398686
https://doi.org/10.1007/s002110050033
https://doi.org/10.1007/s002110050033
https://doi.org/10.1017/CBO9780511543234
https://doi.org/10.1016/j.cnsns.2022.106726
https://doi.org/10.1016/j.apnum.2012.06.007
https://doi.org/10.1016/j.apnum.2012.06.007
https://doi.org/10.1016/j.cam.2005.10.018
https://doi.org/10.1016/j.apnum.2004.06.015
https://doi.org/10.1016/j.apnum.2004.06.015
https://doi.org/10.1137/0906037
https://doi.org/10.1137/060674168
https://doi.org/10.1137/060674168
https://doi.org/10.1137/050623139
http://arxiv.org/abs/1408.6923
https://doi.org/10.1016/0168-9274(95)00116-6
https://doi.org/10.1137/S1064827596306562
https://doi.org/10.1007/s11075-012-9662-y
https://doi.org/10.1023/A:1021191719400
https://doi.org/10.1007/s11075-013-9734-7
https://doi.org/10.1007/s11075-013-9734-7
https://doi.org/10.1016/j.cam.2005.03.056
https://doi.org/10.1016/j.cam.2008.03.027
https://doi.org/10.1016/j.cam.2008.03.027
https://doi.org/10.1016/j.cam.2005.05.018
https://doi.org/10.1016/j.cam.2005.05.018

Numerical Algorithms

38. Conte, D., D’Ambrosio, R., Beatrice, P.: GPU-acceleration of waveform relaxation methods for large
differential systems. Numer. Algorithms 71(2), 293–310 (2016). https://doi.org/10.1007/s11075-015-
9993-6

39. Califano, G., Conte, D.: Optimal Schwarzwaveform relaxation for fractional diffusion-wave equations.
Appl. Numer. Math. 127, 125–141 (2018). https://doi.org/10.1016/j.apnum.2018.01.002

40. Conte, D., Paternoster, B.: Parallel methods for weakly singular Volterra integral equations on GPUs.
Appl. Numer. Math. 114, 30–37 (2017). https://doi.org/10.1016/j.apnum.2016.04.006

41. Capobianco, G., Crisci, M.R., Russo, E.: Nonstationary waveform relaxationmethods for Abel integral
equations. J. Integral Equations Appl. 16(1), 53–65 (2004). https://doi.org/10.1216/jiea/1181075258

42. Mishr, I., Karakaya, Z.: Teaching parallel computing concepts using real-life applications. Int. J. Engi-
neer. Edu. 32(2), 772–781 (2016)

43. Cuesta, E., Finat, J., Sánchez, J.: Grey-level intensity measurements processing by means of Volterra
equations and Least Squares Method for video restoration. Phys. Scr. In press, 1–25 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s11075-015-9993-6
https://doi.org/10.1007/s11075-015-9993-6
https://doi.org/10.1016/j.apnum.2018.01.002
https://doi.org/10.1016/j.apnum.2016.04.006
https://doi.org/10.1216/jiea/1181075258

	Non-stationary wave relaxation methods for general linear systems of Volterra equations: convergence and parallel GPU implementation
	Abstract
	1 Introduction
	2 Framework statement
	2.1 Time continuous setting
	2.2 Time discrete setting

	3 Discrete NSWR methods for linear Volterra equations
	4 Main results
	5 CUDA implementation
	6 Numerical results
	6.1 Test problem 1
	6.2 Test problem 2
	6.3 Test problem 3
	6.4 Numerical results assessments

	7 Conclusions and future works
	Acknowledgements
	References

