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Abstract: Artificial intelligence has been widely used in the field of dentistry in recent years. The
present study highlights current advances and limitations in integrating artificial intelligence, ma-
chine learning, and deep learning in subfields of dentistry including periodontology, endodontics,
orthodontics, restorative dentistry, and oral pathology. This article aims to provide a systematic review
of current clinical applications of artificial intelligence within different fields of dentistry. The preferred
reporting items for systematic reviews (PRISMA) statement was used as a formal guideline for data
collection. Data was obtained from research studies for 2009–2022. The analysis included a total of
55 papers from Google Scholar, IEEE, PubMed, and Scopus databases. Results show that artificial
intelligence has the potential to improve dental care, disease diagnosis and prognosis, treatment
planning, and risk assessment. Finally, this study highlights the limitations of the analyzed studies
and provides future directions to improve dental care.

Keywords: dentistry; artificial intelligence; deep learning; clinical applications

1. Introduction

Artificial intelligence (AI) has been widely utilized in the field of medicine since its
conception over 60 years ago [1–4]. Although the maturity of AI in the field of dentistry
has lagged in several subfields such as periodontology, endodontics, orthodontics, restora-
tive dentistry, and oral pathology, there has been a large interest in the past few years as
artificial intelligence has become increasingly accessible to researchers. AI has made sub-
stantial progress in the diverse disciplines of dentistry including dental disease diagnosis [5],
localization [6], classification [7], estimation [8], and assessment of dental disease [9].

On a broader level, AI enables the creation of intelligent machines that can achieve
tasks without requiring human intervention. Machine learning (ML) [10] is a subset of AI
that utilizes computational algorithms to analyze datasets to make predictions without the
need for explicit instructions. Towards a more sophisticated and increasingly independent
approach for diagnosis, treatment planning, and risk assessment, there has been increased
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interest in deep learning (DL) applications [11,12]. To provide expert support to healthcare
practitioners, artificial neural networks (ANNs) can be utilized as clinical decision support
systems (CDSS) [13]. Moreover, such systems aid dental clinicians in producing improved
dental health outcomes [14]. Similarly, fuzzy logic (FL)-based CDSS also provides effective
means for dealing with uncertainties in the decision-making process [15,16].

1.1. Background

The related background of ANNs, machine learning, deep learning, CDSS, and Fuzzy
logic is discussed in the below subsections.

1.1.1. Artificial Neural Networks

ANNs evolved after McCulloch and Pitts created a model in 1943 based on many sim-
ple processing units, such as neurons connected using weighted links. In 1958, Rosenbolt
published neurodynamic principles containing research ideas related to brain modeling.
Later, in the 1980s, researchers developed algorithms based on the idea of backpropagation
to be applied in the medical field [1].

ANNs comprise data processing mechanisms inspired by the analytical processes of
the human brain. The ANNs are used extensively to solve complex real-world problems [2].
Due to ANN’s remarkable learning, generalization, inherent contextual information pro-
cessing, and fault and noise tolerance capabilities, they provide exciting alternatives and
have many applications including medicinal science such as disease diagnosis, image and
data analysis, and biomedical identification [3,4].

1.1.2. Machine Learning

ML is the scientific study of algorithms and statistical models [10] used for a vast array
of processing tasks without requiring prior knowledge or hand-crafted rules. Recent years
have witnessed the widespread of ML due to its superior performance for various health-
care applications such as dentistry. ML algorithms fall into two learning types: supervised
and unsupervised. The amount of data generated by healthcare service providers is huge,
making the data analysis process cumbersome. ML helps in effectively analyzing the data
and gaining actionable insights. Additionally, different dentistry applications can benefit
from ML techniques, including disease diagnosis, prognosis, treatment, and automating the
clinical workflow. Moreover, ML for clinical applications has great potential to transform
traditional healthcare service delivery [17].

1.1.3. Deep Learning

Recent years have seen a surge of interest in the DL field, a subfield of ML, as it
allows machines to mimic human intelligence in increasingly independent and sophisticated
ways [11,12]. DL uses multiple layers of non-linear units to analyze and extract useful
knowledge from huge amounts of data. The extracted knowledge is then used to produce
state-of-the-art prediction results. The neural network architectures used in DL provide the
capability to perform automatic and accurate detection in healthcare. Based on the study, DL
has enormous potential to bring genuinely impactful applications to the field of dentistry.

1.1.4. ANNs as Clinical Decision Support Systems

AI application technology is progressing remarkably in the field of dentistry; clinical
decision support systems are one example in this context. CDSS provides expert support to
a health practitioner [13]. Moreover, these systems have the capability of solving problems
that are too complex to be solved by using conventional methods [14]. Moreover, CDSS
provides valuable information to dental practitioners that aids in producing faster and
superior dental health outcomes.
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1.1.5. Fuzzy Logic

In the past decade, fuzzy logic has proven to be a powerful tool for decision-making
systems [15]. The fuzzy set theory derives from the fact that the natural classes and con-
cepts are vague. This makes fuzzy logic quite suitable for complex systems as they can
summarize from massive information inputs with increased effectiveness and tolerance to
imprecisions [16]. The study provides brief descriptions of the key contributions made by
fuzzy technology in the field of dentistry.

1.2. Motivation and Contributions

Several surveys addressing the use of AI in dentistry have been published in recent
years. Ossowoska et al. [18] discuss the possibilities of using neural networks in different
fields of dentistry including restorative dentistry, endodontics, orthodontics, dental surgery,
and periodontology. The study indicates that artificial intelligence has developed rapidly
in recent years and has the potential to be applied in routine dentistry. However, the study
lacks discussion related to the limitations of the included studies. This study aims to outline
the clinical support decision systems developed in recent years possess the potential to
be employed in different fields of dentistry. We also discuss the limitations and formulate
future directions of such approaches to contribute to improving the current state of clinical
dental practice. The contributions of this study are provided below

• Identify the development of AI applications that are employed widely in dentistry
for different diagnostic tasks such as disease diagnosis, risk assessment, treatment
planning, and prognosis and evaluate their diagnostic performance,

• Outline the limitations of the neural networks employed for different diagnostic tasks
including disease diagnosis, landmark detection, risk assessment, treatment planning,
and prognosis,

• Provide future directions which may have a positive and stimulating impact on the
future application of artificial intelligence-based techniques in the field of dentistry.

1.3. Article Organization

The rest of this survey is organized as follows. Survey methodology is explained in
Section 2. Applications of AI approaches are discussed in Section 3 while the limitations and
future directions are provided in section 4. In the end, the survey is concluded in Section 5.

2. Methodology

For this article, the preferred reporting items for systematic reviews (PRISMA) guide-
lines are followed. PRISMA provides a standard peer-accepted methodology consisting of
a guideline checklist to ensure the quality assurance of the work’s replicability. This section
defines the article selection criteria, data sources, and the search strategy for data extraction
and analysis procedure.

2.1. Research Questions

Following are the research questions formulated to analyze the relevant studies:

RQ1. What are the main fields in dentistry in which AI is employed?
RQ2. What are data modalities and features used for diagnosing dental diseases?
RQ3. Which AI techniques (including subfields) are utilized for disease diagnosis in different

fields of dentistry?
RQ4. Which outcome measures are used for the performance assessment of models?

Furthermore, the research question was formatted using population, intervention,
comparison, and outcome (PICO):

• Population: Dental imagery related to radiographs (bitewing, periapical, occlusal,
panoramic, cephalograms, cone-beam computed tomography (CBCT)), digital pho-
tographs, high-frequency ultrasound images, 3D CBCT images, domain, near-infrared
light transillumination (NILT) images, extraoral/intraoral mold images, orthodontic
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scans, magnetic resonance imaging, water’s view radiographs, hyperspectral images
and textual data including electronic health records.

• Intervention: Artificial intelligence, machine learning, deep learning-based models for
diagnosis, detection, classification, segmentation, risk assessment, treatment planning,
and prognosis.

• Comparison: Reference standard, expert opinions.
• Outcome: Measurable and predictive outcomes that include accuracy, specificity, sensi-

tivity, F1-score, intersection over union (IoU), dice co-efficient, regression co-efficient
receiver operating characteristic curve (ROC), and area under the curve (AUC), success-
ful detection rate (SDR).

2.2. Data Sources and Search Strategies

Different electronic databases were systematically searched including Google Scholar,
Institute of Electrical and Electronics Engineers (IEEE) Xplore, PubMed, and Scopus. The
search terms were broadened to identify as many eligible studies as possible. The search
key strategy adopted for each database is given in Table 1.

Table 1. Search strategy conducted in different databases.

Search # Topic Terms

1 Artificial
intelligence

artificial intelligence“[MeSH Terms] OR (“artificial” [All Fields] AND “intelligence”[All Fields]) OR
“artificial intelligence”[All Fields] OR (“machine learning”[MeSH Terms] OR “machine learning”[All
Fields]) OR (“deep learning”[MeSH Terms] OR (“deep”[All Fields] AND “learning”[All Fields]) OR
“deep learning”[All Fields]) OR (“decision support systems, clinical”[MeSH Terms] OR “clinical
decision support systems”[All Fields] OR (“fuzzy logic”[MeSH Terms] OR “fuzzy logic”[All Fields])

2 Dentistry

“periodontics” OR “endodontics” OR pathology OR “dental health services”[All Fields] OR
“dental”[All Fields] OR “dentally”[All Fields] OR “dentals”[All Fields]) AND (“surgery”[MeSH
Subheading] OR “surgery”[All Fields] OR “surgical procedures, operative”[MeSH Terms] OR
(“surgical”[All Fields] AND “procedures”[All Fields] AND “operative”[All Fields]) OR
“maxillofacial”[All Fields] OR (“craniofacial“ [All Fields] OR (“restorative dent”[Journal] OR
(“restorative”[All Fields] AND “dentistry”[All Fields]) OR “restorative dentistry”[All Fields]) OR
(“dental implants”[MeSH Terms] OR (“dental”[All Fields] AND “implants”[All Fields]) OR “dental
implants”[All Fields])

3 Search #1 and #2

2.3. Selection of Studies

After an initial literature search was conducted, the title and abstract were screened
for each study. Potentially relevant studies were further assessed for eligibility. Detailed
information about the selection process is depicted in Figure 1.

For risk assessment of bias for each study, sampling and measurement bias was assessed.
The articles are identified based on the library searches. A total of 298 studies (Google
Scholar, n = 128, PubMed, n = 66, IEEE Xplore, n = 58, and Scopus, n = 46) were identi-
fied via the initial search process. After examining the abstracts and titles of the identified
studies, duplicates (n = 85) were excluded. The remaining 213 studies were screened, out
of which 130 articles without full-text availability were eliminated. The full-text articles
were assessed for eligibility and based on the exclusion criteria 28 articles were excluded.
Following these procedure, 55 eligible studies (periodontology, n = 12, endodontics, n = 10,
orthodontics, n = 17, restorative/prosthetic dentistry, n = 7, oral pathology, n = 9) were
included in this review.
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Figure 1. Relevant data about studies included for synthesis.

2.4. Eligibility Criteria

The following inclusion criteria were used in this study

1. Publications between 2009 and 2022 related to the application of artificial neural
networks, machine learning, deep learning, fuzzy logic, expert systems, and clinical
support decision systems (CDSS) in dentistry.

2. Studies in the English language and with full-text availability.
3. Published in a scholarly peer-reviewed journal.
4. Publications truly implementing AI including subfields in the context of dental topics.

The studies were excluded from the review if

1. Not published in a peer-reviewed journal.
2. Unpublished thesis or dissertation studies.
3. Studies that did not use artificial intelligence, review articles, and letter to the editor.

2.5. Risk Assessment

Each study was evaluated by the reviewers. To further minimize the risk of bias,
studies dealing with AI implementation were included. Initial disagreements among the
reviewers were noted while assessing the selected studies.

3. Applications of Artificial Intelligence in Dentistry

AI has made substantial progress in the diverse disciplines of medicine, specifically
in the field of dentistry for diagnosis [5], localization [6], classification [7], estimation [8],
and assessment of dental disease. With the recent rapid development of AI technologies
designed for dental practitioners, dental clinicians make precise diagnoses and provide
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accurate recommendations. Figure 2 shows the areas within dentistry where AI can be used
followed by a detailed description of AI applications in these fields.

Figure 2. Applications of AI in different subfields of dentistry.

The progressive development of AI in dentistry will benefit both researchers and
clinicians in integrating different fields of knowledge to improve patient care. There are
different sub-disciplines of AI that are being used to provide precise, cost-effective, and
user-friendly solutions to facilitate dentists and clinicians including ANNs and ANNs as
CDSS, ML, and DL. The diagnostic activities performed using different input features in
dentistry are shown in Table 2.
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Table 2. Summary of input features used for different diagnostic tasks.

AI Technique Diagnostic Tasks Target Problem Input Features

ANN as CDSS

Disease Diagnosis
(Classification,
Segmentation,
Localization)

tooth decay detection [19], vertical root fracture [20], Cervical vertebra
maturation degree [21,22] Intraoral radiographs [19,20], cephalograms [21], orthodontic scans [22]

Risk Assessment Bone loss assessment [23], periodontitis risk assessment [9] Medical records [9,23]

Treatment Planning
and prognosis

Surgery type and extraction decision [24], tooth extraction therapy [25],
occlusal and dental caries [26], temporomandibular joint
disorders [27,28]

cephalograms [24], electronic health records [25,26,28], magnetic
resonance images [27]

Machine Learning

Disease Diagnosis
(Classification,
Segmentation,
Localization)

Plaque segmentation [29], gingivitis identification [30], alveolar bone
loss [6], scoring lesions [31], occlusal caries lesions [32], maxillary
structure assessment [33], sagittal skeletal patterns [34], facial
attractiveness [35], temporomandibular joint disorders [36]

Oral endoscopic images [29], digital photographs [30,35], intraoral
radiographs [6], occlusal images [31,32], CBCT images [33],
cephalograms [34], magnetic resonance images [36]

Treatment Planning
and Prognosis

Facial and skin mould [37], teeth extraction [38], tooth prognosis [39],
dental restorations [40] Mould images [37], electronic records [38,39], panoramic images [40]

Deep Learning

Disease Diagnosis
(Classification,
Segmentation,
Localization)

Bone loss [5,8,41,42], odontogenic cystic lesion [43], periodontal bone
destruction [7,26], bone recession and interradicular radiolucency [44],
alveolar bone delineation [45], bone assessment [46], periapical
lesions [47,48], vertical root fracture [49], apical lesions [50],
interproximal caries [51], distal root assessment [52], proximal and
occlusal caries [53], dental implants [54], preserve tooth boundary [23],
maxillary sinusitis lesions [42,55–57], temporomandibular joint
disorders [58], oral cancer [59]

Periapical radiographs [7,41,44,47], panoramic
radiographs [5,26,42,43,49,50,54,56–58], CBCT images [8,43,48,52,55],
high-frequency ultrasound images [45], intraoral ultrasound images [46],
bitewing radiographs [51], NILT images [53], digital photographs [23],
water’s view radiographs [42], hyperspectral images [59]

Landmark detection Cephalometric landmarks [60,61] cephalograms [60,61]

Treatment Planning Differential orthodontic diagnosis [62] cephalograms [62]
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3.1. AI in Periodontology

In periodontology, AI has been used extensively to explore, understand and develop
periodontal applications including periodontal bone loss detection, diagnosing gingivitis
inflammation, and assessment of connective tissues and other periodontal caries. Table 3
shows different studies that are introduced in periodontology. These studies indicate that
AI-assisted systems can be used in clinical practices to strengthen and improve dental
treatment outcomes in a more sophisticated manner.

Moreover, to minimize errors in diagnosis, authors have proposed methods involving
machine learning techniques. Li et al. proposed a plaque segmentation method based on a
convolutional neural network (CNN) using oral endoscopic images. The results provided
performance superior to that of dentists with an accuracy of 86.42% [29]. An extreme
machine learning method based on contrast limited adaptive histogram and gray-level
covariance matrix was evaluated by Li and fellow authors, using digital photographs. The
model provided an accuracy of 74% for gingivitis identification using a small dataset [30].
For localization of alveolar bone loss, Lin et al. evaluated a level segmentation method based
on a support vector machine (SVM), k nearest neighbor (KNN), and Bayesian classifier. The
model was able to localize alveolar bone loss with high classification effectiveness [6].

DL-based methods have gained immense popularity in recent years. Several authors
have evaluated methods for bone loss detection in intraoral radiographs, Lee et al. proposed
a VGG-based neural network for diagnosing periodontal bone loss using 1740 periapical
radiographs. The model achieves an accuracy of 99% and AUC of 98% outperforming
the performance of three dentists [41]. Another model using deep-feed forward CNN was
evaluated by Krois and fellow authors using panoramic radiographs. The model showed
discrimination ability similar to that of three examiners [5]. Kim et al. and Lee et al. suggested
the use of transfer learning to improve the performance of bone loss and odontogenic cyst
lesion detection using panoramic radiographs. The model was useful in tooth numbering
with performance superior to that of dental clinicians [44,63]. For the classification of regions
based on periodontal bone destruction, Moran et al. demonstrated a ResNet model achieving
an accuracy of 82% using 467 periapical radiographs [7]. To automate the process of detecting
bone lesions and detecting correct shapes, Khan et al. presented a disease segmentation
method based on U-Net architecture. The model was able to detect the presence and shape
of caries with performance higher than three experts [44]. Another anatomically constrained
dense U-Net method was proposed by Zheng et al. for bone lesion identification. Using cone
beam computed tomography (CBCT) images, the model was able to detect the correct shape
of the bone and lesion [8]. Duong et al. proposed a U-Net-based network for alveolar bone
delineation using high-frequency ultrasound images yielding performance higher than three
experts [45]. Using ResNet34 as an encoder with U-Net, Nguyen et al. assessed 1100 intraoral
images for alveolar bone segmentation. The model was able to identify alveolar bone with a
dice coefficient of 85.3% [46]. For periodontitis detection, Li et al. utilized Mask R-CNN with
a novel calibration method. Using panoramic radiographs, the model diagnosed the severity
degree of periodontitis with an accuracy of 82% outperforming that of a junior dentist [64].

In dentistry, the interpretation of data and carrying out proper diagnosis are crucial.
However, medical decision-making is cumbersome for doctors in a time-compressed environ-
ment. Thus, an intelligent tool is required to assist doctors in making accurate decisions. These
systems come under the category of CDSS. ANNs have been used as CDSS for diagnosis,
classification, and assessment. Several ANN architectures have been employed to assist
doctors in making accurate decisions in periodontology. Recently, Geetha et al. proposed a
back propagation neural network for tooth decay detection. The model achieved an accuracy
of 97.1% and a false positive rate of 2.8% using intraoral radiographs. The study indicates
that ANNs can be employed for precise decay detection compared to traditional dental
examination methods [19]. Papantonopoulos et al. evaluated multilayer perceptron ANN for
bone loss assessment on medical health records. The model provided effective periodontitis
classification with an accuracy of 98.1% [23]. Using 230 textual subjects, Shankarapillai et al.
proposed a multilayer feed-forward propagation network for effective periodontitis risk
prediction [9].
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Table 3. Summary of related studies for AI application in periodontology.

AI Application Author, Year (Ref) Architecture Data Modality Dataset Size Split
(Train/Val/Test or Train/Test) Study Factor Reference Standard

(Ground Truth)
Validation
Scheme

Results
(Performance Metrics/Values) Conclusion

Disease segmentation

Li et al., 2022 [29] CNN Oral endoscope
images

607 images Train: 320 images
Test: 287 images 320/287

Plaque
segmentation Dentist NA Acc: 0.864 IoU: 0.859 The model is helpful in plaque segmentation on

small dataset

Li et al., 2019 [30]

A method based on contrast limited
adaptive histogram (CLAHE), gray-level
co-occurrence matrix (GLCM), and
extreme machine learning

Digital
photographs

93 images Train: 73 images
Test: 20 images 73/20

Gingivitis
identification NA NA Accuracy: 0.74, Sensitivity: 0.75,

Specificity: 0.73, Precision: 0.74 The method is helpful for gingivitis identification

Disease localization Lin et al., 2015 [6] Level segmentation based on Bayesian or
KNN or SVM classifier

Periapical
Radiographs 31 images Alveolar bone loss NA Leave

one-out
Mean SD True Positive Fraction (TPF):
0.925, True Positive Fraction (FPF): 0.14

The model localizes bone loss areas with high
classification effectiveness

Disease detection

Lee et al., 2022 [41] VGG+Individual CNN Periapical
Radiographs

1740 images Train: 1218 images,
Valid: 417 images, Test: 105 images
1218/417/105

Bone loss Three dentists NA Acc: 0.99, AUC: 0.98 The proposed algorithm is helpful in diagnosing
periodontal bone loss

Krois et al., 2019 [5] Seven layered deep CNN Panoramic
radiographs

1750 images, Train: 1400 images,
Valid: 350 images, 1400/350 Bone loss Three examiners Ten-fold Acc: 0.81 The model shows discrimination ability similar

to that of dentists

Kim et al., 2019 [63] Deep CNN + Transfer learning Panoramic
radiographs

12,179 images, Train: 11,189 images,
Valid: 190 images, Test: 800 images
1189/190/800

Bone loss Dental clinicians NA
AUROC: 0.95, F1-score: 0.75,
Sensitivity: 0.77, Specificity: 0.95, PPV:
0.73, NPV: 0.96

The model is useful in tooth numbering and
achieved detection performance superior to that
of dental clinicians

Lee et al., 2019 [43] GoogleNet InceptionV3 + Transfer
learning

Panoramic
radiographs and
CBCT images

2126 images including 1140
panoramic and 986 CBCT images
Train: 1700 images,
Test: 426 images, 1700/426

Odontogenic cyst
lesion NA NA

Panoramic images: AUC—0.847,
Sensitivity—0.882, Specificity—0.77,
CBCT images AUC—0. 914,
Sensitivity—0.961, Specificity—0.771

The model provides higher diagnostic
performance on CBCT images in effectively
detecting and diagnosing cystic lesions

Disease classification Moran et al., 2020 [7] ResNet Inception Periapical
radiographs

467 images, Train: 415 images,
Test: 52 images, 415/52

Periodontal bone
destruction NA NA Acc: 0.81, Precision: 0.76, Recall: 0.92,

Specificity: 0.71, NPV: 0.90

The inception model classifies regions based on
the presence of periodontal bone destruction
with encouraging performance

Disease segmentation

Khan et al., 2021 [44] UNet + DenseNet121 Periapical
radiographs

200 images, Train: 160 images,
Test: 40 images

Bone recession and
inter-radicular
radioulency

Three experts NA mIoU: 0.501, Dice score: 0.569 Automates the process of detecting the presence
and shape of caries

Zheng et al., 2021 [8] Automatically constrained dense U-Net CBCT images 100 images bone lesion
identification Three reviewers Four-fold

Dice score for different categories:
Background: 0.961, Lesion: 0.709,
Material: 0.822, Bone: 0.877,
Teeth: 0.801

The model is helpful in detecting the correct
shape of the lesion and the bone

Duong et al., 2019 [45] UNet High frequency
ultrasound images

35 images, Train: 30 images,
Test: 5 images, 30/5

Alveolar bone
assessment Three experts NA Dice Coefficient: 0.75, Sensitivity: 0.77,

Specificity: 0.99
The method yields a higher performance in
delineating alveolar bone as compared to experts

Nguyen et al., 2020 [46] U-Net with ResNet34 encoder Intraoral
ultrasound images

1100 images, Train: 700 images,
Valid: 200 images,
Test: 200 images 700/200/200

Alveolar bone
assessment Three examiners NA Dice Coefficient: 0.853, Sensitivity:

0.885, Specificity: 0.998
The model has the potential to detect and
segment alveolar bone automatically

Disease diagnosis

Li et al., 2020 [64] Mask RCNN + novel caliberation method Panoramic
radiographs

298 images, Train: 270 images,
Test: 28 images 270/28

Periodontitis
prediction Junior dentist NA mAP: 0.826, Dice score: 0.868, F1-score:

0.454, Accuracy: 0.817
The model is useful for diagnosing the severity
degrees of periodontitis

Papantonopoulos et al., 2014 [23] Multilayer Perceptron ANN Textual 29 subjects Aggressive
periodontitis NA Ten-fold Accuracy: 0.981 The model provides effective periodontitis

classification

Geetha et al., 2020 [19] Back propagation Neural Network Intraoral digital
radiographs 105 images Dental caries

detection NA Ten-fold Accuracy: 0.971, FPR: 2.8%, ROC: 0.987 The model is helpful for the detection of tooth
decay and is independent of visual errors

Risk assessment Shankarapillai et al. 2012 [9] Multilayer Feedforward Propagation Textual 230 subjects Periodontitis risk
assessment NA NA MSE: 0.132 The model can be used for effective periodontitis

risk prediction
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3.2. AI in Endodontics

Endodontics is the branch of dentistry concerned with diseases of the dental pulp and
tissues surrounding the root or tooth. AI has gained immense popularity in aiding treatment
planning in endodontics. AI with different models can help dentists to diagnose, and manage
endodontic problems with encouraging performance and ensuring enhanced and precise
patient care. The review is focused on extracting and analyzing AI-based approaches for
disease diagnosis and treatment planning. The summary of relevant studies for AI application
in endodontics to provide better dental treatment outcomes is shown in Table 4.

Ghaedi et al. presented a circular Hough transform-based segmentation method to
detect and score caries lesions in intraoral occlusal tooth surface images. The model yielded an
accuracy of 86.3% in detecting and scoring caries lesions [31]. A random forest-based machine
learning algorithm has been proposed by Berdouses et al., evaluated on colored images, the
model achieved an accuracy of 80% higher compared to two pediatric dentists [32].

Different DL models have also been employed in endodontics for disease detection,
classification, and segmentation. Pauwels et al. evaluated a transfer learning-based CNN
using intraoral radiographs to detect periapical lesions. The model achieved superior perfor-
mance compared to three radiologists [47]. Fukuda et al. performed vertical root fracture
detection using DetectNet on 300 panoramic radiographs. The model was found to be useful
and provided better performance for fracture detection compared to three observers [49].
Orhan et al. proposed the U-Net model to diagnose periapical lesions using 3D CBCT images.
The model was able to detect periapical lesions with 92.8% reliability [48]. A seven-layer
feed-forward network was presented by Ekert et al. for diagnosing apical lesions using
panoramic radiographs. Compared to six independent and experienced dentists, the model
was able to detect lesions with an AUC of 85% [50]. Bayraktar and Aryan presented an inter-
proximal caries detection method based on you look only once (YOLO) pre-trained using
DarkNet-53 using bitewing radiographs. The authors achieved an accuracy of 94.59% higher
compared to two experienced dentists [51]. For classification and assessment of distal roots,
Hiraiwa et al. evaluated AlexNet achieving a detection performance of 87.4% superior to that
of dental radiologists in differentiating whether the distal root was single or with an extra
root [52]. Symmetric autoencoder with skip connections similar to U-Net and the encoding
path was presented by Casalegno et al. to detect proximal occlusal caries using 217 grayscale
near-infrared transilluminations (NILT) images. The model achieved higher throughput in
detecting occlusal and proximal lesions compared to two dentists [53]. Kositbowornchai et
al. presented a probabilistic neural network to be used as CDSS for diagnosing vertical root
features. The model achieved an accuracy of 95.7% on intraoral digital radiographs [20].

3.3. AI in Orthodontics

Recent years have witnessed the immense popularity of AI in orthodontics due to its
ability to make the diagnostic process more accurate and efficient. Orthodontic treatments
are usually long procedures which is why more efficient solutions are required for effective
and efficient planning. AI-based knowledge has the potential to automate disease diagnosis
and treatment prognosis processes to help dental clinicians in making decisions more accu-
rately and efficiently in a time-constrained environment. AI applications can further help
in preventing human errors through their ability to learn and make automotive decisions.
Different studies have been explored that incorporate the use of AI for orthodontic disease
diagnosis and treatment planning which are shown in Table 5.
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Table 4. Summary of related studies for AI application in endodontics.

AI Application Author, Year (Ref) Architecture Data Modality Dataset Size Split
(Train/Val/Test or Train/Test) Study Factor Reference Standard

(Ground Truth)
Validation
Scheme

Results
(Performance Metrics/Values) Conclusion

Disease
detection and
classification

Ghaedi et al., 2014 [31] Circular Hough Transform Based
Segmentation

Intraoral optical
occlusal tooth
surface images

88 images with blue background Detect and score
caries lesions

International Caries
Detection and
Assessment System
(ICDAS) experts

Ten fold Accuracy: 0.863, Specificity: 0.983,
Sensitivity: 0.83

The automated system was helpful in detecting
and score caries lesions.

Berdouses et al., 2015 [32] Random Forest Photographic
colored images 103 digital images Occlusal caries

lesions Two pediatric dentists Ten-fold Accuracy: 0.80, Precision: 0.86, Recall:
0.86, F1-score: 0.85, ROC: 0.98

The model was able to provide detection
performance similar to that of trained dentists

Disease Detection

Pauwels et al., 2021 [47] CNN + Transfer Learning Intraoral
radiographs

280 images, Train: 168 images,
Test 112 images 168/112 Periapical lesions 3 oral radiologists Five-fold Sensitivity: 0.79, Specificity: 0.88,

ROC-AUC: 0.86

The study explored the potential of CNN-based
assessment of periapical lesions and achieved
superior performance compared to
human observers

Fukuda et al., 2020 [49] DetectNet (CNN) Panoramic
radiographs

300 images, Train: 240 images,
Test: 60 images 240/60

Vertical root
fracture Three observers Five-fold Recall: 0.75, Precision: 0.93,

F1-score: 0.83
The model was useful in identifying teeth with
vertical root fracture

Orhan et al., 2020 [48] Deep CNN (U-Net) 3D CBCT images 153 images Periapical lesions
Two Oral and
maxillofacial
radiologist

NA Recall: 0.89, Precision: 0.95,
F1-score: 0.93

The model was able to detect periapical pathosis
with 92.8% reliability

Ekert et al. 2019 [50] 7 layer feed forward CNN Panoramic
radiographs

85 images, Train: 56 images,
Valid: 29 images 56/29 Apical lesions Six independent and

experienced dentists Ten-fold Avg AUC: 0.85, Confidence Interval
(CI): 95%

A moderately deep CNN was helpful in
detecting apical lesions and can be helpful in
reducing dentists’ diagnostic efforts

Disease diagnosis Bayraktar & Ayan, 2022 [51] Deep CNN (YOLO) pretrained using
DarkNet-53

Bitewing
radiographs

1000 images, Train: 800 images,
Test: 200 images 800/200

Interproximal
caries lesions

Two experienced
dentists Hold-out

Accuracy: 0.945, Sensitivity: 0.722,
Specificity: 0.981, PPV: 0.865, NPV:
0.954, AUC: 0.871

The study shows promising outcomes for
detecting caries in bitewing images achieving an
accuracy above 90%

Disease classification Hiraiwa et al., 2019 [52] AlexNet GoogleNet CBCT images and
panoramic images

Training image patches:
Single root group: 11,472,
Extra root group: 11,004, Testing
image patches: Single root group:32,
Extra root group—32

Assessing number
of distal roots of
mandibular first
molars

Two radiologists Five-fold
Accuracy: 87.4, Sensitivity: 77.3,
Specificity: 97.1, PPV: 96.3, NPV: 81.8,
AUC: 0.87

The model achieved detection performance
superior to that of dental radiologists in
differentiating whether distal root was single or
with an extra root

Disease segmentation Casalegno et al., 2019 [53]
Symmetric Autoencoder with skip
connections similar to U-Net and
encoding path similar to VGG16

Near Infrared
transillumination
(TI) images

217 grayscale images of upper and
lower molars and premolars, Train:
185 images, Test: 32 images 185/32

Proximal and
occlusal caries
lesion

Two dentists Monte
Carlo

IoU score: Occlusal—0.49,
Proximal—0.49, AUROC:
Occlusal—0.83, Proximal—0.85

The proposed system has the potential to
support dentists by providing higher throughput
in detecting occlusal and proximal lesions

Disease diagnosis Kositbowornchai et al., 2013 [20] Probabilistic Neural Network Intraoral
radiographs

200 images (50 sound and 150
vertical root fractures), Train: 120,
Test: 80 120/80

Vertical root
fracture detection N/A Three-

fold
Sensitivity: 0.98, Specificity: 0.905,
Accuracy: 0.957

The model was helpful in diagnosing vertical
root fractures using intraoral digital radiographs
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Table 5. Summary of related studies for AI application in orthodontics

AI Application Author, Year (Ref) Architecture Data Modality Dataset Size Split
(Train/Val/Test or Train/Test) Study Factor Reference Standard

(Ground Truth)
Validation
Scheme Results (Performance Metrics/Values) Conclusion

Disease
diagnosis

Chen et al., 2020 [33] ML-based algorithm based on multisource
integration framework CBCT images 36 CBCT images, Train: 30 images,

Test: 6 images 30/6
Assess maxillary
structure variation NA NA Dice score of maxilla: 0.80 The method is helpful in assessing maxillary

structure variation in unilateral canine impaction

Nino-Sandoval et al., 2016 [34] Support Vector Machine (SVM) cephalograms 229 cephalograms Sagittal (skeletal)
patterns NA Ten-fold Accuracy: 0.741

The non-parametric method has the potential to
classify skeletal patterns using
craniomaxillary variables

Yu et al., 2014 [35] Support Vector Regression (SVR) Colored
Photographs 108 images

Facial
attractiveness
(most attractive to
least attractive)

69 Orthodontists NA Accuracy: 0.718
The model was helpful in finding close
correlation with facial attractiveness from
orthodontic photographs

Treatment
planning

Riri et al., 2020 [37] Tree Based Classification Extraoral intraoral
and mould images

1207 total images, Extraoral:
325 images, Intraoral: 812 images,
Mould: 70 images

Facial and skin
color features NA NA Accuracy: 0.942, Sensitivity: 0.953,

Specificity: 0.996, F1-score: 0.926

The automatic approach was helpful in
classification of orthodontic images with
encouraging classification performance

Suhail et al., 2020 [38] Random Forest Ensemble
Learning Method

Patient records
(medical charts,
x-rays, facial
photographs)

287 patient records Decision making
for teeth extraction Five experts Five-Fold Accuracy: 0.944 The RF ensemble classifier was helpful in

extraction and treatment planning

Landmark
detection in
cephalograms

Song et al., 2020 [60] Pretrained ResNet-50 using transfer
learning X-Ray images

400 cephalograms, Train:
150 images, Testing sets:
Test set 1—150 images,
Test set 2—100 images

Detect
cephalometric
landmarks

Two experienced
doctors NA Successful Detection Rate (SDR):

Test 1—0.862, Test 2—0.758
The model was able to achieve satisfying SDR in
detecting 19 landmarks

Kim et al., 2020 [65] Two stage DNN with stacked
hourglass network

Dataset 1: 2075
cephalograms,
Dataset 2: 400

cephalograms
Detect
cephalometric
landmarks

Two experts NA SDR: Test set 1—0.883, Test set 2—0.77
The fully automated cephalometric analysis
algorithm and web application help in the
diagnosis of anatomic landmarks

Gilmour and Ray, 2020 [66] Pretrained ResNet-50 with foveated
pyramid attention algorithm cephalograms 400 cephalograms

Detect
cephalometric
landmarks

NA Four-fold SDR: Test set 1—0.883, Test set 2—0.77
The multiresolution approach was useful in
learning features across all scales and is
promising for large images

Zhong et al., 2019 [67] Attention guided deep regression model
through 2 stage U-Net cephalograms 300 cephalograms Train: 150,

images Test: 150 images 150/150

Detect
cephalometric
landmarks

Two experienced
doctors Four-fold SDR: 86.74%

The attention-guided mechanism ensures that
smaller searching scopes and high data
resolution with minimum information
redundancy and the model is generalizable to
other landmarks

Park et al., 2019 [61] YOLOv3 cephalograms 1311 cephalograms, Train: 1028
images, Test: 283 images 1028/283

Detect
cephalometric
landmarks

One examiner NA SDR: 0.804 Computational time: 0.05 s
The model was effective in identifying 80
landmarks with 5% higher accuracy compared to
top benchmarks

Disease
diagnosis

Makaremi et al., 2019 [68] Customized CNN cephalograms 1870 cephalograms
Cervical vertebra
maturation (CVM)
degree

Experts Three-
fold Accuracy: 0.95

The model was helpful in determining the
degree of maturation of CVM and has the
potential to be implemented in real
world scenario

Yu et al., 2020 [69] Modified DenseNet pretrained with
ImageNet weights

Lateral
cephalograms 5890 cephalograms skeletal

classification
Five orthodontic
specialists NA Sagittal Accuracy: 0.957, Vertical

Accuracy: 0.964

The model shows potential in skeletal
orthodontic diagnosis using lateral
cephalograms

Treatment plannimng Lee et al., 2020 [62] Modified AlexNet cephalograms
333 cephalograms,
Train: 220 images, Valid: 73 images,
Test: 40 images

Differential
orthodontic
diagnosis

NA Four-fold Accuracy: 0.919, Sensitivity: 0.852,
Specificity: 0.973, AUC: 0.969

The study indicates that the DCNNs-based
model can be applied for differential diagnosis in
orthodontic surgery

Disease
diagnosis

Amasya et al., 2020 [21] ANN cephalograms 647 cephalograms, Train: 498
images, Test: 149 images 498/149

Cervical vertebra
maturation degree

Two independent
observers NA Accuracy: 0.869, Sagittal Sensitivity:

0.935, Vertical Specificity: 0.945
The model was helpful in CVM staging and
cervical vertebral morphology classification

Kok et al., 2019 [70] ANN cephalograms 300 cephalograms Cervical vertebrae
stages Orthodontists Five-fold

AUC: CV1—0.99, CV2—0.96,
CV3—0.94, CV4—0.90, CV5—0.91,
CV6—0.96

Compared with machine learning algorithms,
ANN provides the most stable results with
2.17 average rank on hand-wrist radiographs

Budiman et al., 2013 [22] ANN Orthodontic scans 190 scanned dental casts Shape of arch form Three orthodonotics NA Accuracy: 0.763 ANN has the potential to identify arch forms
with encouraging accuracy

Treatment planning
and prognosis Choi et al., 2019 [24] ANN cephalogram

316 cephalograms, Train:
136 images, Valid: 68 images,
Test: 112 images

Surgery type and
extraction decision One otthodontist NA

Accuracy Surgery decision: 0.96,
Surgery type and extraction
decision: 0.91

The model was helpful in diagnosing and
making surgery type and extraction decision
effectively and can be used as auxiliary reference
when clinicians make a decision
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Several authors have adopted machine learning techniques for disease diagnosis and
treatment planning in the field of orthodontics. Chen et al. proposed a machine learning
algorithm based on a multisource integration framework for assessing maxillary structures
using CBCT images. The model achieved encouraging performance with a dice ratio of 0.80
in assessing maxillary structure variation in unilateral canine impaction [33]. An SVM-based
algorithm was evaluated by Nino-Sandoval to classify skeletal patterns using craniomaxillary
variables using cephalograms. The model achieved an accuracy of 74.5% in analyzing sagittal
skeletal patterns [34]. Yu et al. investigated support vector regression (SVR) to rate facial
attractiveness from most attractive to least attractive using colored photographs. It was found
that the model can be used in finding a close correlation with facial attractiveness from
orthodontic photographs with an accuracy of 71.8% [35]. Different studies explored the use of
ML in treatment planning. Riri et al. proposed a tree-based classification method to identify
facial and skin molds using intraoral and extraoral mold images. The model yielded an
accuracy of 94.28% [37]. Suhail et al. proposed a random forest ensemble method to automate
the extraction and treatment planning process. Based on patients’ medical health records, the
model was able to make decisions for teeth extraction with an accuracy of 94.4% [38].

Literature addressed landmark detection problems as well using DL techniques. Song
et al. evaluated a ResNet-50 model pre-trained using transfer learning on 400 cephalograms
to detect cephalometric landmarks. The model achieved a superior SDR for two test cases
in detecting 19 landmarks compared to two experienced doctors [60]. Kim et al. presented
a two-stage deep neural network (DNN) with a stacked hourglass network for landmark
detection using 2075 cephalograms followed by a web application. The model provided SDR
of 82.92% and 84.53% for dataset 1 and dataset 2, respectively [65]. Gilmour et al. proposed pre-
trained ResNet-50 with foveated pyramid attention algorithm achieving an SDR of 88.32% and
77.05% for dataset 1 and dataset 2, respectively [66]. Park et al. performed landmark detection
using YOLOv3 on 1311 cephalograms. The model was effective in identifying 80 landmarks
with 5% higher accuracy compared to top benchmarks. Moreover, attention-based networks
have also been explored actively in landmark detection [61]. Zheng et al. explored attention
guided deep regression model through a two-stage U-Net using 300 cephalograms. The model
achieved an SDR of 86.74% which was higher compared to that of two experienced doctors [8].
Different deep learning-based methods have been employed for disease diagnosis. Makeremi
et al. proposed a customized CNN to determine cervical vertebra maturation degree using
cephalograms. The model achieved an accuracy of 95% helpful in determining the degree
of maturation of CVM and has the potential to be implemented in real-world scenarios [68].
Yu et al. presented modified DenseNet pre-trained with ImageNet weights using lateral
cephalograms. The model yielded an accuracy of 95.70% superior to that of five orthodontic
specialists [69]. Deep learning for treatment planning has also gained attention in recent
years. Lee et al. proposed a modified AlexNet for differential diagnosis in orthodontic surgery
achieving an accuracy of 91.9% [62]. The study indicated that deep CNNs-based models can
be applied for differential diagnosis in orthodontic surgery.

Different studies have explored ANNs as CDSS in orthodontics. Amasya et al. pro-
posed ANN to diagnose cervical vertebra maturation degree using cephalograms. The
model achieved an accuracy of 86.93% in CVM staging and cervical vertebral morphology
classification [21]. Kok et al. proposed an ANN-based network to classify cervical verte-
brae stages. It was found that ANN provided the most stable results with a 2.17 average
rank on hand-wrist radiographs compared to an orthodontist [70]. Another ANN-based
method was evaluated by Budiman using orthodontic scans to detect the shape of the arch
form. The model achieved an accuracy of 76.32% [22]. In terms of treatment planning and
prognosis, different studies explored the use of ANNs. Choi et al. proposed an ANN-based
method for diagnosing and making surgery type and extraction decisions effectively [24].

3.4. AI in Restorative Dentistry and Prosthodontics

The number of studies exploring the use of AI in restorative dentistry has increased
considerably in recent years. Different studies explored the use of AI in assisting the
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diagnosis of caries, and vertical tooth fracture, predicting restoration failure, and planning
treatment. Table 6 shows the relevant studies for AI application in restorative dentistry to
provide better dental treatment outcomes.

The usefulness of AI in restorative dentistry has been investigated by several researchers.
Lee et al. proposed a machine learning method based on a decision tree to determine
tooth prognosis for effective treatment planning using clinical cases. The model achieved an
accuracy of 84.1% [39]. A cubic SVM-based algorithm was proposed by Abdalla-Aslan et
al. using panoramic radiographs. The model has the potential to detect and classify dental
restorations to promote patients’ health [40].

Lee and Jeong proposed a fine-tuned and pre-trained deep CNN to diagnose den-
tal implants using panoramic radiographs. The model yielded an AUC of 97.1% for the
identification and classification of dental implants with performance similar to that of peri-
odontists [54]. A deep CNN pre-trained with ImageNet weights was proposed by Takahashi
et al. to diagnose partially edentulous arches achieving an accuracy of 99.5% for maxillar
arches and 99.7% for mandible arches on oral photographs. The study showed that deep
learning can be used effectively in designing removable partial dentures [71]. To preserve
the teeth boundary, Xu et al. presented a two hierarchical CNN for segmentation of upper
and lower teeth using 3D dental model images [72].

In terms of treatment planning and prognosis, ANNs have been utilized in different
studies. Cui et al. proposed a triple classification algorithm based on extreme gradient
boost (XGBoost). Using electronic health records, the model yielded an accuracy above 90%
superior to that of prosthodontists in predicting tooth extracting therapy [25]. Another feed-
forward ANN was presented by Javed et al. to identify occlusal dentinal caries lesions. The
study proposed an iOS app for the meticulous prediction of caries using clinical cases [26].

3.5. AI in Oral Pathology

The relevant studies utilizing AI for disease diagnosis and prognosis are given in
Table 7. Orhan et al. proposed a machine learning algorithm based on KNN and random
forest using magnetic resonance images to diagnose temporomandibular disorders. The
model achieved an accuracy of 77% in identifying condylar changes and 74% for disc
displacement [36]. Hung et al. presented a three-step CNN-based on V-Net and SVR to
identify maxillary sinusitis using CBCT images. The model yielded an AUC of 92% for
mucosal thickening and 84% for mucous retention cyst identification [55].

In a similar fashion, Kuwana et al. evaluated DetectNet on panoramic radiographs to
detect maxillary sinus lesions with an accuracy of 90 to 91% for maxillary sinusitis and 97 to
100% for maxillary sinus cysts [56]. Moreover, a deep CNN (ResNet) was presented by Choi
et al. to diagnose temporomandibular joint disorders (TMJ) osteoarthritis. The model yielded
an accuracy of 78% similar to that of Oral and maxillofacial radiologists (OMFR) [58].

Kim et al. investigated the performance of CNN on water’s view radiographs to iden-
tify maxillary sinusitis. The model achieved significantly higher diagnostic performance
compared to that of five radiologists [42]. Murata et al. evaluated the deep learning model
AlexNet to diagnose maxillary sinusitis on panoramic radiographs. The model showed
diagnostic performance similar to the radiologists and superior to the resident dentists [57].
Jeyaraj et al. proposed a partitioned CNN based on GoogleNet and InceptionV3 for diag-
nosing oral cancer using hyperspectral images. The model achieved an accuracy of 91.4%
and 94.5% for benign and malign tissue respectively [59].

Clinical support decision systems have also been used in oral pathology. Iwasaki et al.
proposed a Bayesian belief network (BNN) using magnetic resonance images to diagnose
TMJ disorders. The model achieved an accuracy of 99% and can be used to determine
the progression of TMD in terms of bone changes, disc displacement, and bony space by
dental clinicians [27]. Moreover, a backpropagation ANN has been proposed by Bas et al. to
identify clinical symptoms of TMJ disorders. It was found that the model can help diagnose
the preliminary subtypes of TMJ and can be useful in the decision-making process [28].
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Table 6. Summary of related studies for AI application in prosthetic/restorative dentistry.

AI Application Author, Year (Ref) Architecture Data Modality Dataset Size Split
(Train/Val/Test or Train/Test) Study Factor Reference Standard

(Ground Truth)
Validation
Scheme Results (Performance Metrics/Values) Conclusion

Treatment planning Lee et al., 2022 [39] Decision Tree Electronic records 94 clinical cases Tooth prognosis Three prosthodontists NA Accuracy: 0.841 The model was helpful in determining tooth
prognosis for effective treatment planning

Disease detection Abdalla-Aslan et al., 2020 [40] Cubic SVM based algorithm Panoramic
radiographs 83 images Dental restorations Experienced

practitioners Five-fold For detection Sensitivity: 0.94, For
classification Sensitivity: 0.98

The model has the potential to detect and classify
dental restorations to promote patient’s health

Disease diagnosis

Lee et al. 2020 [54] Fine Tuned and pretrained Deep CNN
Panoramic and
periapical
radiographs

10,770 images, Train: 6462 images,
Valid: 2154 images, Test: 2154
images 6462/2154/2154

Dental implants Periodontists Ten-fold AUC:0.971
The model was helpful in the identification and
classification of dental implants with
performance similar to that of periodontist

Takahashi et al., 2021 [71] Deep CNN (ResNet152) pretrained with
ImageNet weights Oral photographs 1,184 images, maxilla: 748 images,

mandible: 436 images
Partially
edentulous arches Clincian NA

Maxilla: Accuracy: 0.995, Recall: 1.00,
Precision: 0.25, AUC: 0.99, Mandible
Accuracy: 0.997, Precision: 0.25, Recall:
1.00, AUC: 0.98

The method was helpful in classification of
dental arches and can be effective in designing
removable partial dentures

Disease segmentation Xu et al., 2018 [72] Two Hierarchical CNNs 3D dental images 1200 images, Train: 1000, Valid: 50,
Testing: 150 1000/50/150

Preserve teeth
boundary NA NA Accuracy: Upper dental model: 0.99,

Lower dental model: 0.987

The label-free mesh simplification method
helped preserve the teeth boundary information
using the 3D dental model.

Treatment
Planning
and Prognosis

Cui et al., 2020 [25] Triple Classification algorithm
(Extreme Gradient Boost (XGBoost))

Electronic health
records 4135 records Tooth extraction

therapy Two prosthodontists Five-fold

Binary Classification Accuracy: 0.962,
Precision: 0.865, Recall: 0.830, Triple
Classification Accuracy: 0.924,
Precision: 0.879, Recall: 0.836

The model was helpful in predicting tooth
extracting therapy with performance superior to
that of prosthodontists

Javed et al. 2020 [26] ANN Electronic records 45 records of children Occlusal caries
lesions NA Leave

one out Regression co-efficient: 0.99
The model was helpful in occlusal dentinal caries
lesions and the study proposes an iOS app for
meticulous prediction of caries

Table 7. Summary of related studies for AI application in oral pathology.

AI Application Author, Year
(Ref) Architecture Data Modality Dataset Size Split

(Train/Val/Test or Train/Test) Study Factor Reference Standard
(Ground Truth)

Validation
Scheme Results (Performance Metrics/Values) Conclusion

Disease
diagnosis

Orhan et al.,
2021 [36]

ML (KNN and Random
Forest (RF))

Magnetic
Resonance Imaging Temporomandibular disorders Pathologists NA NA Accuracy: Condylar changes—0.77,

Disk displacement—0.74
The model was found to be optimal in predicting
temporomandibular disorders

Hung et al.,
2022 [55]

Three step CNN based on
V-Net and SVR CBCT images 445 images, Train: 311 images, Valid: 62

images, Test: 249 images 311/62/249 Maxillary sinusitis NA NA AUC: Mucosal thickening—0.91,
Mucous retention cyst—0.84

The model helped detect and segment mucosal thickening and
mucosal retention cyst using low-dosed CBCT scans

Kuwana et
al., 2021 [56] CNN (DetectNet) Panoramic

radiographs 1174 images Maxillary sinus lesions NA NA

Maxillary sinusitis: Accuracy—0.90–0.91,
Sensitivity—0.81–0.85,
Specificity—0.91–0.96, Maxillary sinus
cysts: Accuracy—0.97–1.00,
Sensitivity—0.80–1.00, Specificity—1.00

The model was helpful in detecting maxillary sinus lesions

Choi et al.,
2021 [58] CNN (ResNet) Panoramic

radiographs
1,189 images, Training: 951 images,
Testing: 238 images 951/238

Temporomandibular joint
disorders (TMJ) osteoarthritis

Oral and maxillofacial
radiologist (OMFR) Five-fold Temporal: AUC - 0.93, Geographical

external: AUC—0.88
The model achieved significantly higher diagnostic performance
compared to that of radiologists

Kim et al.,
2019 [42] CNN Water’s view

radiographs 200 images Maxillary sinusitis Five radiologists NA Accuracy: Upper dental model: 0.99,
Lower dental model: 0.987

The label free mesh simplification method was helpful in preserving
the teeth boundary information using 3D dental model

Murata et al.,
2019 [57] AlexNet CNN Panoramic

radiographs 120 images Maxillary sinusitis Two radiologists, Two
dentists NA Accuracy: 0.875, Sensitivity: 0.867,

Specificity: 0.883
The model shows diagnostic performance similar to the radiologists
and superior to the resident dentists

Jeyaraj et al.,
2019 [59]

Partitioned CNN
(GoogleNet Inception V3)

Hyperspectral
images 600 images Oral Cancer Expert oncologist Seven-

fold
Benign tissue Accuracy—0.914,
Malign tissue Accuracy—0.945

The model helped predict cancerous or benign tumor and has the
potential to be applied as a workbench for automated classification

Disease
prognosis

Iwasaki et al.
2015 [27]

Bayesian Belief Network
(BNN)

Magnetic
Resonance Imaging 590 images Temporomandibular joint

disorders (TMJ) NA Ten-Fold Accuracy: 0.99
The model has the potential to determine the progression of TMD in
terms of bone changes, disc displacement and bony space and disc
affect with encouraging diagnostic performance

Bas et al.,
2012 [28] Back Propagation ANN Electronic records 219 records

Clinical symptoms
(Temporomandibular joint
disorders (TMJ))

Experienced oral and
maxillofacial surgeon NA

Unilateral with and without reduction:
Sensitivity—0.80 & 0.95,
Specificity—0.69 & 0.91

The model was helpful in diagnosing the preliminary subtypes of
TMJ and can be useful in the decision-making process
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4. Limitations and Future Direction

This study confirms the growing presence of AI in dentistry and highlights the perfor-
mance of AI-based techniques as clinical support decision systems. Although AI techniques
have been integrated increasingly into different subfields of dentistry, the current evidence
of AI in clinical practice is still very limited. This section discusses the limitations and
provides some future directions which may have a positive and stimulating impact on the
future application of AI-based techniques in the field of dentistry.

4.1. Limitations

Although AI techniques have been employed increasingly within the field of den-
tistry, certain limitations need to be addressed to improve the performance, reliability, and
generalizability of AI-based models. These limitations are discussed here

• Computational capability: AI-based techniques require a significant amount of parallel
processing power to keep up with the demands. There are certain limitations of
computational resources such as RAM and GPU cycles that are required to support
such approaches.

• Reliability: It is essential in a clinical setting and involves ethical fairness, the accuracy
of the system, and patients’ trust/acceptance of such systems. Limited reliability causes
spurious consequences.

• Generalizability: Issues in generalizability are a dominant concern for clinical guide-
lines, and a precise level of generalizability is required for the application of AI-based
models in clinical practices and ensuring that it performs well prospectively.

• Class imbalance: The difference in the number of samples representing each class
within the data is referred to as class imbalance. The lack of high-quality and labeled
datasets limits the deployment of robust and accurate AI-based models.

• Overfitting: Due to the high complexity in terms of parameters of deep learning
models, the models are more likely to overfit with the training data, thus affecting the
generalizability of the results.

The limitations of each relevant study covered in this review are given in Tables 8 and 9. One
of the most prevailing limitation in majority of the studies involving application of AI in subfields
of dentistry is dataset limitation in terms of size for disease diagnosis [5,19,31,42,44,45,51,56–59,71],
for treatment planning and prognosis [29,37,62], and for landmark detection [64]. Other limita-
tions include relying on the reliability of examiners for accurate diagnosis [41], less flexibility to
capture nonlinearities in data [23], limited practical use [54], poor performance on images that
are not evenly illuminated [6], limited class discrimination [6], lack in terms of generalizability
[29], lack in terms of performance [9,28,60–62,64–66,68,69], and computational capabilities [67].
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Table 8. Limitations of relevant studies employing AI for disease diagnosis.

Diagnostic Task Target Problem Author, Year (Ref.) Limitations

Disease diagnosis

bone recession and interradicular
radiolucency Khan et al., 2021 [44] Limited in terms of size

temporomandibular joint disorders Orhan et al., 2021 [36] Further study is required for identification for the reduction state.

Choi et al., 2021 [58] The dataset size is rather small and more images are required to improve performance

maxillary sinusitis lesions

Hung et al., 2022 [55] The performance can be further improved

Kuwana et al., 2022 [56] Dataset is small in terms of size. The study also did not include post-operative maxillary sinuses

Kim et al., 2019 [42] Dataset is limited in terms of size and only includes maxillary sinus using water view radiographs

Murata et al., 2019 [57] Limited dataset in terms of size

alveolar bone delineation Duong et al., 2019 [45] Limited dataset in terms of size

bone assessment Nguyen et al., 2020 [46] The model is restricted to detection and segmentation in buccal surfaces

periapical lesions Orhan et al., 2020 [48] The model can be influenced with variations i.e., presence of endo-perio lesions or other periodontal defects

bone loss

Lee et al., 2022 [41] The model is not able to detect vertical defect depth and angulation. The diagnosis also relies on the
reliability of examiners

Kim et al., 2019 [63] Low resolution for the individual tooth in panoramic images as it captures a wide field of view

Krois et al., 2019 [5] Limited dataset in terms of size

Zheng et al., 2021 [8] The approach is not applicable on unlabeled data

Papantonopoulos et al., 2014 [23] The model is not flexible enough to capture nonlinearities in data

oral cancer Jeyaraj et al., 2019 [59] Dataset is limited in terms of size

odontogenic cystic lesion Lee et al., 2019 [62] Limited dataset in terms of size

periodontal bone destruction Moran et al., 2020 [7] Poor performance in classifying healthy regions due to small dataset

vertical root fracture Fukuda et al., 2020 [49] The model is trained on panoramic radiographs with clear vertical root fracture (VRF) lines which impacts
the performance

apical lesions Ekert et al., 2019 [50] Manually cropped image segments were used for training The sensitivity should be improved before
clinical use

interproximal caries Bayraktar & Ayan, 2022 [51] Dataset is limited in terms of size. Carious lesions were not classifiedas enamel caries or dental caries

distal root assessment Hiraiwa et al., 2019 [52] Image patches are created by manual segmentation which is time-consuming.

proximal and occlusal caries Casalegno et al., 2019 [53] Limited dataset in terms of size and ground truth labels

dental implants Lee et al., 2020 [43] The proposed study only includes three types of dental implants which limit its practical use

preserve tooth boundary Takahashi et al., 2021 [71] Limited dataset in terms of size of maxilla set
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Table 8. Cont.

Diagnostic Task Target Problem Author, Year (Ref.) Limitations

Disease diagnosis

tooth decay detection Geetha et al., 2018 [19] Small dataset The model does not provide classification based on caries depth

alveolar bone loss detection Lin et al. 2015 [6] Poor performance on unevenly illuminated images

occlusal caries lesion detection Berdouses et al., 2015 [32] The accuracy can be improved further

sagittal skeletal patterns identification Nino-Sandoval et al., 2016 [34] Limited class discrimination

vertical root fracture identification Kositbowornchai et al., 2013 [20] The proposed model is not applicable on other root fractures in clinical practice

scoring lesions Ghaedi et al. 2014 [31] Small dataset Unbalanced number of images, histological verification of the diagnosis was not performed

cervical vertebra maturation degree Budiman, 2013 [22] There is an overlap in data distribution that affects the models’ performance

facial attractiveness Yu et al., 2014 [35] The model prediction is limited to certain angles and ratios

plaque segmentation Li et al., 2022 [29] The model is not generalizable to other caries areas

detect vertical vertebra maturation degree Amasya et al. 2020 [21] Hand-wrist radiographs are not considered

maxillary structure assessment Chen et al., 2020 [33] The dataset is limited in terms of size

Table 9. Limitations of relevant studies employing AI for different treatment planning, landmark detection, and risk assessment.

Diagnostic Task Target Problem Author, Year (Ref.) Limitations

Treatment planning and prognosis
surgery type and extraction decision Choi et al., 2019 [24] The study does not include skeletal asymmetry cases

tooth extraction therapy Cui et al., 2020 [24] Other factors such as adjacent teeth, subsequent treatments are not considered in this study

orthodontic diagnosis Lee et al., 2020 [62] Limited dataset in terms of size

Landmark detection cephalometric landmark identification

Song et al., 2020 [60] The computational time still needs further improvement

Yu et al., 2020 [69] Lacks in terms of performance

Li et al., 2020 [64] Small dataset Poor performance on radiographs with severe periodontitis with abnormal shape of teeth

Kim et al., 2020 [65] Not applicable to all landmarks in clinical situations

Gilmour and Ray, 2020 [66] The bottleneck is in terms of storage as each iteration only loads small glimpse of image

Zhong et al., 2019 [67] Limited in terms of computational capabilities

Park et al. 2019 [61] Intra/inter-examiner reliability statistics and reproducibility comparisons are required

Risk Assessment periodontitis risk assessment Shankarapillai et al., 2012 [9] Other metrics, i.e., accuracy have not been reported
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4.2. Future Directions

Keeping in view the current limitations of studies employing AI for disease diag-
nosis, treatment planning and prognosis, landmark detection, and risk assessment, the
following are a few research directions that can help in elevating the deep learning model’s
performance, reliability, and generalizability:

4.2.1. Data Augmentation

Class-imbalanced datasets are biased towards majority classes, hence the chances for
misclassification are often higher. However, different techniques can be employed to deal
with the class imbalance and improve the performance of deep learning models. Certain
techniques can be utilized to minimize class imbalance, such as data augmentation. To
extract the increased amount of information from medical images, non-linear transforma-
tions can be applied. Generative adversarial networks (GANs) can prove to be a good
alternative for creating similar images using non-linear transformations inside the network.
Particularly, GANs are being used increasingly for medical data augmentation such as
on pulmonary computed tomography (CT) images to detect COVID-19 lesions [73] and
on small-scale medical image datasets [74]. To get a powerful variation of the generative
model that can be employed to overcome the class imbalance in a more sophisticated way,
known as balancing generative adversarial networks (BAGANs). It focuses on generating
minority-class images of high quality.

4.2.2. Cross Center Training

One of the limitations of deep learning application in dentistry is the uncertainty about
the generalizability of the models. Limited generalizability may be related to differences in
terms of population characteristics such as dental status, and image characteristics such as
differences in data generation protocols involved. Thus, understanding the reasons behind
generalizability limitations will help in formulating strategies to mitigate generalizability
problems. Further research should be focused on employing cross-center training [75] to
increase the generalizability of deep learning-based models.

4.2.3. Robotics in Dentistry

Similar to other fields, dentistry is also moving forward toward a new era of data-driven
medicine assisted by robots. Robotic dental assistance [76] has the potential to be applied to
different fields including orthodontics, implant dentistry, and prosthodontics. To improve
the applicability of AI in dentistry, more flexible systems are needed to reach human-level
performance and further improve the reliability of AI-based models in clinical practice.

4.2.4. Virtual Reality and Augmented Reality

For practicing safe and efficient dentistry and gaining simultaneous feedback, virtual
reality (VR) can be adopted. To generate clinical information that can be visualized by
patients, augmented reality (AR) can be adopted. The use of AR and VR is increasing
gradually, and there is a limited number of studies that assessed their use [77]. From pro-
viding better visualization to reducing operative time and improving patient consultation
and providing promising treatment outcomes, AR and VR have the potential to enable
researchers in developing high-quality tools for clinical practice. Clinicians can make use
of AR to enable patients to visualize expected outcomes before undergoing the procedure.
AR and VR can be employed to provide improved dental education by enhancing students’
learning experiences during pre-clinical training [78].

5. Discussion and Conclusion

It is suggested that the AI-based systems developed in recent years possess the poten-
tial to be employed in different fields of dentistry to help dental clinicians and practitioners
in making precise diagnoses and providing accurate recommendations. However, AI is
still unlikely to replace the dentist-patient relationship in the foreseeable future as humane
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elements are also of utmost importance in decision-making to manage dental care. The AI
technologies are intended to support dental clinicians in reducing misdiagnosis and work
synergistically with the unique abilities of dentists to provide enhanced, accessible care by
taking away routine parts of dentists’ work.

Artificial intelligence has contributed substantially to different subfields of dentistry
over the past decade. This review discusses numerous applications of AI in periodontology,
endodontics, orthodontics, restorative dentistry, and oral pathology including studies
incorporating deep learning to effectively diagnose dental disease and plan treatments.
However, the current evidence of AI is still sparse due to limitations in terms of dataset
availability, size, performance, and generalizability. This study highlights the limitations
of the relevant studies and provides future directions which may have a positive impact
on the future application of AI-based networks within dentistry. This review indicates
that more flexible systems are needed to reach human-level performance and increase the
reliability of AI-based clinical decision support systems in dental practice.

Author Contributions: Conceptualization, A.F. and I.S.; Data curation, A.F. and J.B.; Formal analysis,
I.S., H.A. and I.D.L.T.D.; Funding acquisition, I.D.L.T.D.; Investigation, H.A. and J.C.M.E.; Methodol-
ogy, I.S.; Project administration, J.B. and J.C.M.E.; Resources, I.D.L.T.D. and D.R.-S.M.L.; Software,
D.R.-S.M.L. and J.B.; Supervision, I.A.; Validation, J.C.M.E. and I.A.; Visualization, D.R.-S.M.L.;
Writing—original draft, A.F. and H.A.; Writing—review & editing, I.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the European University of the Atlantic.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available from the authors on request.

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Haykin, S. Neural Networks and Learning Machines, 3/E; Pearson Education India: Noida, India, 2009.
2. Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods

2000, 43, 3–31. [CrossRef]
3. Baxt, W.G. Application of artificial neural networks to clinical medicine. Lancet 1995, 346, 1135–1138. [CrossRef]
4. Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [CrossRef]
5. Krois, J.; Ekert, T.; Meinhold, L.; Golla, T.; Kharbot, B.; Wittemeier, A.; Dörfer, C.; Schwendicke, F. Deep learning for the radiographic

detection of periodontal bone loss. Sci. Rep. 2019, 9, 8495. [CrossRef]
6. Lin, P.; Huang, P.; Huang, P.; Hsu, H. Alveolar bone-loss area localization in periodontitis radiographs based on threshold

segmentation with a hybrid feature fused of intensity and the H-value of fractional Brownian motion model. Comput. Methods
Progr. Biomed. 2015, 121, 117–126. [CrossRef]

7. Moran, M.B.H.; Faria, M.; Giraldi, G.; Bastos, L.; da Silva Inacio, B.; Conci, A. On using convolutional neural networks to classify
periodontal bone destruction in periapical radiographs. In Proceedings of the 2020 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), Seoul, Korea, 16–19 December 2020; pp. 2036–2039.

8. Zheng, Z.; Yan, H.; Setzer, F.C.; Shi, K.J.; Mupparapu, M.; Li, J. Anatomically constrained deep learning for automating dental
CBCT segmentation and lesion detection. IEEE Trans. Autom. Sci. Eng. 2020, 18, 603–614. [CrossRef]

9. Shankarapillai, R.; Mathur, L.K.; Nair, M.A.; George, R. Periodontitis risk assessment using two artificial neural network
algorithms—A comparative study. Int. J. Dental Clin. 2012, 4, 17–21.

10. Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the
physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [CrossRef]

11. Hinton, G. Deep learning—A technology with the potential to transform health care. JAMA 2018, 320, 1101–1102. [CrossRef]
12. Stead, W.W. Clinical implications and challenges of artificial intelligence and deep learning. JAMA 2018, 320, 1107–1108.

[CrossRef]
13. Park, W.J.; Park, J.B. History and application of artificial neural networks in dentistry. Eur. J. Dent. 2018, 12, 594–601. [CrossRef]

[PubMed]
14. Tundjungsari, V.; Sofro, A.S.M.; Sabiq, A.; Kardiana, A. Investigating clinical decision support systems success factors with

usability testing. Int. J. Adv. Comput. Sci. Appl. 2017, 8. [CrossRef]

http://doi.org/10.1016/S0167-7012(00)00201-3
http://dx.doi.org/10.1016/S0140-6736(95)91804-3
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1038/s41598-019-44839-3
http://dx.doi.org/10.1016/j.cmpb.2015.05.004
http://dx.doi.org/10.1109/TASE.2020.3025871
http://dx.doi.org/10.1103/RevModPhys.91.045002
http://dx.doi.org/10.1001/jama.2018.11100
http://dx.doi.org/10.1001/jama.2018.11029
http://dx.doi.org/10.4103/ejd.ejd_325_18
http://www.ncbi.nlm.nih.gov/pubmed/30369809
http://dx.doi.org/10.14569/IJACSA.2017.081168


Healthcare 2022, 10, 2188 21 of 23

15. Hajek, P. Fuzzy logic from the logical point of view. In Proceedings of the International Conference on Current Trends in Theory
and Practice of Computer Science, Milovy, Czech Republic, 23 November–1 December 1995; pp. 31–49.

16. Trillas, E.; Eciolaza, L. Fuzzy Logic; Springer International Publishing: Berlin, Germany, 2015; Volume 10, pp. 973–978.
17. Collins, A.; Yao, Y. Machine learning approaches: Data integration for disease prediction and prognosis. In Applied Computational

Genomics; Springer: Berlin, Germany, 2018; pp. 137–141.
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