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Abstract

This thesis presents an analysis of the Casimir-Lifshitz effect for configurations of two
objects, being one of them contained within the other. The first of the two parts of this
work is devoted to the construction and study of a particular family of potentials
that will be used for mimicking the bodies. The aim is to employ a potential sim-
ple enough for obtaining some nontrivial analytical results. This will help us to gain
some insight in the properties of the quantum vacuum for these systems and thus be
able to present general results for more realistic systems. To that end, we use a gener-
alization of the Dirac δ, the so-called δ-δ′ interaction, extending the one-dimensional
definition to spherical systems for spatial dimension d ≥ 2. The definition is based on
constructing self-adjoint extensions of the original Hamiltonian. We perform a study
of the domain and spectrum of the resulting operator, indicating some possible appli-
cations in quantum mechanics, in particular within the context of mean-field nuclear
models. For this reason, we add nonsingular potentials to the δ-δ′ interaction such as
the spherical well and a Coulombic term, suitable to describe neutron and proton en-
ergy levels. We show that general features of the low-energy states can be obtained,
indicating how these singular interactions can be used as a first approximation for
real physical systems in certain contexts.

The second part of the thesis is devoted to the proper study of the vacuum energy
in cavity configurations. The main goal is to expand the analysis of the Casimir ef-
fect to this kind of configurations, establishing some general results on the sign of the
energy and pressure. Thus, we first study a massless scalar field in the presence of
two concentric δ-δ′ spheres. For computing the pressure on the spheres, the interac-
tion energy between them and the self-energy should be considered. On this basis,
we first study the interaction between the spheres employing the TGTG representa-
tion. The interaction energy is known to be free of divergences. However, this is not
the case for the self-energy. In order to regularize this quantity we employ the zeta
function regularization method. Studying the structure of the divergences we find
a one-parameter family of potentials in which the self-energy and self-pressure are
unambiguously defined. The latter is based on the cancellation of the heat kernel co-
efficient a2, so no renormalization procedure is needed. Bearing in mind the results
obtained for the interaction energy for the scalar field, some general results for the
electromagnetic field are obtained also employing the TGTG representation. In par-
ticular, we consider two different configurations: a dielectric sphere enclosed within
an arbitrarily shaped magnetodielectric cavity and a dielectric object with a spherical
cavity in which another arbitrarily shaped magnetodielectric object is enclosed. For
the latter, some new results in classical scattering theory for experiments in which
source and detector are inside an object are presented. As for the scalar field, the
self-energy is also considered when computing the total pressure. In this case, for
one of the few configurations in which the self-energy is unambiguously defined for
material bodies, a dilute dielectric ball.





xi

Resumen

Esta tesis presenta un estudio del efecto Casimir-Lifshitz para configuraciones de
dos objetos, estando uno de ellos contenido dentro del otro. La primera de las dos
partes de este trabajo está dedicada a la construcción y estudio de una familia de
potenciales singulares que se utilizarán para modelar los cuerpos. El objetivo es em-
plear un potencial suficientemente simple pero que dé lugar a resultados analíticos
no triviales. Esto facilitará la comprensión de las propiedades del vacío cuántico para
estos sistemas para así ser capaces de presentar resultados generales para sistemas
más realistas. Para ello, utilizamos una generalización de la δ de Dirac, la llamada
interacción δ-δ′, extendiendo la definición unidimensional a sistemas esféricos de di-
mensión espacial d ≥ 2. La definición se basa en la construcción de extensiones au-
toadjuntas del hamiltoniano original. Realizamos un estudio del dominio y espectro
del operador resultante, indicando algunas posibles aplicaciones en mecánica cuán-
tica, en particular para modelos nucleares de campo medio. Por esta razón, añadi-
mos potenciales no singulares a la interacción δ-δ′ como el pozo esférico y un tér-
mino coulombiano, adecuados para describir los niveles de energía de neutrones y
protones. Mostramos que se pueden obtener características generales de los estados
de baja energía, indicando cómo estas interacciones singulares sirven como primera
aproximación para sistemas físicos en ciertos contextos.

La segunda parte de la tesis está dedicada al estudio de la energía del vacío en con-
figuraciones con una cavidad. El objetivo principal es ampliar el análisis del efecto
Casimir-Lifshitz a este tipo de sistemas, demostrando resultados generales sobre el
signo de la energía y la presión. De esta forma, primero estudiamos un campo es-
calar sin masa en presencia de dos esferas δ-δ′ concéntricas. Para calcular la presión
sobre las esferas debemos considerar la energía de interacción entre ellas y también
la autoenergía de cada una por separado. De esta forma, primero estudiamos la in-
teracción entre las esferas empleando la representación TGTG de la energía, la cual
da lugar a una energía y fuerza finita. Sin embargo, lo mismo no ocurre para la
autoenergía. Para regularizar esta cantidad empleamos el método basado en fun-
ciones zeta. Estudiando la estructura de las divergencias encontramos una familia
uniparamétrica de potenciales en la que la autoenergía y la presión están definidas
de forma inequívoca. Esto último se basa en la cancelación del coeficiente del núcleo
de calor a2, por lo que no se necesita ningún procedimiento adicional de renormal-
ización. Teniendo en cuenta los resultados obtenidos para la energía de interacción
con el campo escalar, hemos demostrado resultados generales para el campo electro-
magnético, usando también la representación TGTG. En particular, hemos consider-
ado dos configuraciones diferentes: una esfera dieléctrica encerrada dentro de una
cavidad magnetodieléctrica con geometría arbitraria y un objeto dieléctrico con una
cavidad esférica en la que está encerrado otro objeto magnetodieléctrico también con
geometría arbitraria. Para probar esto hemos introducido nuevos resultados en el
contexto de la teoría clásica de scattering para experimentos en los que la fuente y el
detector están dentro del objeto. Al igual que para el campo escalar, la autoenergía
también se ha considerado al calcular la presión total. En este caso, para uno de los
pocos sistemas en los que la autoenergía se define sin ambigüedades para objetos
materiales, una esfera dieléctrica en el límite diluido.
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Introduction

“Summer or autumn 1947, I mentioned my results to Niels Bohr during a walk. That is nice,
he said, that is something new. . . and he mumbled something about zero-point energy. That
was all, but it put me on a new track.”

H.B.G. Casimir, 1992 [1]

The Casimir effect is a macroscopic manifestation of quantum vacuum fluctua-
tions. It was named after the physicist H. B. G. Casimir, who predicted this phe-
nomenon in 1948 [2]. He was the first to prove that the electromagnetic zero-point
energy implies an attractive force between two neutral, parallel, conducting plates at
zero temperature. This force between uncharged plates could not be explained by
classical electrodynamics, leading to a purely quantum effect arising solely from the
modification of the vacuum by the introduction of boundaries. He provided a reg-
ularization procedure for dealing with the infinite quantities present in this simple
configuration, subtracting the infinite vacuum energy of free Minkowski space from
the infinite vacuum energy of the electromagnetic field in the presence of the plates.
After removing the regularization, the resulting energy and pressure found were

E0(a) = − π2h̄c
720a3 , p0(a) = −dE0(a)

da
= − π2h̄c

240a4 .

The final expression does not depend on any parameter describing the properties of
the plates but only on the distance a between them. This is due to the ideal-metal
approximation used for the materials, assuming perfect reflectivity at all frequencies.
It is worth noting that the pressure does not depend either on the fine structure con-
stant α of quantum electrodynamics. This results from considering a fluctuating field
in a classical background, which is governed by the one-loop effective energy [3]. In
consequence, radiative corrections accounting the interaction between photons and
electrons are neglected. This is justified for the typical experimental distance 1µm,
where these corrections are several orders of magnitude smaller [4] and therefore
imperceptible in current measurements. Based on the theory of electromagnetic fluc-
tuations in thermal equilibrium, E. M. Lifshitz a few years later considered the case
of two dielectric half spaces separated by vacuum at finite temperatures [5]. Within
this approach, Casimir and Casimir-Polder results [2, 6] were obtained as limiting
cases. Instead of perfectly conducting metals, the material properties of the bodies
were represented by frequency-dependent dielectric response functions, finding that
the force1 between both bodies was also attractive.

After these pioneer works, the interest in the attractive or repulsive character of
the force grew over the decades. Historically, the first reason followed from Casimir’s
semiclassical model for the electron [7]. He suggested that the electron can be mod-
eled by a conductive spherical shell with the electron charge uniformly distributed.

1As is customary, we shall refer to this quantity as Casimir or Casimir-Lifshitz force, being the latter
more suitable for systems modeled by magnetodielectric response functions.
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The repulsive pressure coming from the electrostatic energy, tending to expand the
sphere, would be balanced by an attractive force due to vacuum fluctuations, similar
to the setup with two plates. Indeed, since the equilibrium condition was indepen-
dent of the radius, the fine structure constant could be estimated. Unfortunately,
Boyer in 1968 proved, after an arduous numerical analysis, that the pressure due to
vacuum fluctuations for a conducting sphere also tends to expand the sphere [8]. This
result was later confirmed by other authors employing different formalisms [9], like
the multiple reflection expansion [10, 11] or the Green’s function technique [12]. Based
on the latter, it was also found that the force is, however, attractive for a perfectly con-
ducting cylindrical shell [13]. These results led to explore how geometry can affect
the character and magnitude of the force. In addition, since 1961 it was known that
repulsive forces can also be obtained without assuming idealized metallic surfaces.
Dzyaloshinskii, Lifshitz and Pitaevskii (DLP) extended the study of two infinite half-
spaces separated by a vacuum gap [5] introducing three different permittivities [14].
They considered two slabs of different materials, labeled 1 and 2, with an intermedi-
ate medium, labeled M. The interaction force was expressed as a sum over a set of
frequencies with terms proportional to

− [ε1(ω)− εM(ω)] [ε2(ω)− εM(ω)] , (1)

being ε i the corresponding permittivities. In 2009, Munday, Capasso and Parsegian
were the first to experimentally obtain a repulsive force between material bodies by
suitably choosing the permittivities of a sphere, a plate and the intermediate medium
(ε1 > εM > ε2) according to DLP’s idea [15].

Nowadays, it is known that the force strongly depends on geometry and bound-
ary conditions and this nontrivial dependence is one of the exotic features of this phe-
nomenon [16–18]. However, a satisfactory understanding of this behaviour has not
yet been found. The more far-reaching theoretical results have been proved using the
representation of the interaction energy in terms of transition matrices [19, 20]. This
is often referred to as the representation of the Casimir energy in terms of functional
determinants or TGTG representation. For instance, Kenneth and Klich proved that
for any mirror symmetric arrangement of objects the force is always attractive [21, 22].
First, note that this is consistent with DLP’s result since ε1 = ε2 makes the product
(1) negative. More generally, the interaction always leads to attraction between a sin-
gle object and a plane when both share boundary conditions [3]. Another particular
consequence is that although for a conducting sphere an outward pressure arises [8],
two conducting hemispheres attract each other at arbitrary short distances. Within
this scattering approach, an extension of Earnshaw’s theorem can also be proved [23].
This result sets restrictive constraints on the stability of arbitrarily shaped neutral ob-
jects held in equilibrium only by Casimir-Lifshitz forces. In particular, the condition
for stable equilibrium with dielectric objects is determined by the sign of the expres-
sion found by DLP in terms of the product of relative permittivities (1), leading to
unstable equilibrium for dielectrics in vacuum.

Aside from the theorems mentioned above, in general, if we want to know the
character of the force or the stability of a particular configuration, we are only left
with choosing a suitable system of coordinates such that the calculation is feasible2.
That is to say, whether the interaction force between two arbitrary bodies is attrac-
tive or repulsive is in general not known until the explicit calculation is performed.
However, a deeper understanding of this phenomenon is relevant for applications,

2It is worth mentioning the improvements based on a variable phase method for computing the
transition matrices in the TGTG representation for asymmetric bodies [24].
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for instance, when designing nanoscale devices with ultra-low stiction [15, 25–27],
where the stability of the configuration also plays an important role, especially for
levitating devices [15, 26]. Unfortunately, attractive forces are more likely than repul-
sive ones in current configurations, leading to the stiction problem, the malfunction
of microdevices or nanodevices due to the adhesion of some of their components.
Some underlying reasons are the Kenneth and Klich theorem [21] and its aforemen-
tioned consequences. In addition, the fact that ordinary materials have permittivities
higher than vacuum (or air) and permeabilities very close to µ0 leads to an attractive
force according to [14]. In fact, real experiments for material bodies are mostly re-
stricted to planar geometries, generally a sphere and a plate at very short distances.
This is the configuration in which the most precise force measurements have been
performed, as shown in Ref. [28], where a general review of the experimental work
until 2009 can be found. Recent experiments in this context consider predominantly
planar geometries as well. For instance, when demonstrating how Casimir-Lifshitz
forces can prevent stiction and provide a stable equilibrium for a nanoplate [29] and
when these forces are used for self-assembling optical microcavities and polaritons,
assuming parallel nanoflakes at short distances [30]. Nonetheless, some methods for
avoiding undesired attractive forces in these devices have been proposed. Some of
them are explained in detail in the introduction of Chapter 6. For example, instead of
parallel plates, nontrivial geometries with metallic objects give rise to repulsive forces
[31, 32]. However, the equilibrium in these cases is only along the axis of symmetry,
making the experimental realization rather challenging. Another proposals are based
on the introduction of a chiral medium for avoiding the no-go theorem of Kenneth
and Klich [21] and for controlling the strength of the resulting forces in response to an
external magnetic field [33]. There is also a novel technique which relies on coating
one of the materials with a thin layer of a low-refractive index dielectric in order to
obtain a repulsive force at short distances but attractive at long distances, thus real-
izing stable equilibrium [29]. Indeed, it has been experimentally demonstrated that
there is no need to obtain a repulsive Casimir force for avoiding stiction if the system
is immersed in a critical binary liquid mixture [34]. In this case the attractive force
is counteracted by a repulsive critical Casimir force. The latter can be tailored vary-
ing the temperature of the mixture, allowing dynamic control of the nanomechanical
system. The critical Casimir forces can be seen as a classical analogue of the Casimir
forces due to the fluctuations of the concentrations in the liquid between the surfaces
[35].

The above-mentioned work on the Casimir effect has focused primarily on con-
figurations in which the bodies lie outside each other, although some closed cavities
have also been considered [36–46]. For instance, a typical system could be a sphere
inside the cavity of another object, where the pressure induced on the surface of the
sphere by the quantum fluctuations can also be computed. For the study of this
quantity, we do not get the full picture if we only consider the interaction energy
between both objects. In particular, after subtracting the contribution from free space,
the Casimir energy can be written as

EC = E1 + E2 + Eint,

being E1 and E2 the self-energies of each object. In the usual case, the force is defined
by variations of the distance between bodies, being the self-energies of each body
independent of it. This force can be studied between bodies outside each other, as al-
ready described, or even when one is inside the other [20, 45]. However, the pressure
is defined by variations with respect to the radius of the sphere and its energy E1 also
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depends on it. Since the divergent contributions in the energy depend on the charac-
teristics of each body, the interaction force is always free of divergences [3]. However,
a renormalization procedure is in general needed for giving a valid result for the self-
energy. Note also that this pressure is the meaningful quantity for configurations
like the two concentric shells studied in Chapter 4, where the net force acting on the
shells is zero due to the symmetry of the system. It is also worth mentioning that the
measurement of this pressure is rather challenging and, to our knowledge, there has
not been any experimental attempt yet. However, despite considering cavity config-
urations, we show that our findings can be checked against experimentally verified
results [15], being DLP’s setup a limiting case of the system studied in Chapters 6 and
7.

Objectives

As explained, a complete understanding of some essential features of the Casimir-
Lifshitz effect has still not been reached. This has encouraged us to pursue in this
thesis the objectives summarized below. These will be explained in more detail, to-
gether with the main results, in the following section.

• We propose to employ a simple model in order to study the vacuum fluctuations
in cavity configurations. The idea is to build a potential for modeling real phys-
ical systems in particular contexts. We use a generalization of the Dirac δ, which
enables us to obtain nontrivial analytic results. Based on the theory of self-adjoint
extensions, we extend previous results for one-dimensional or planar systems. We
perform a comprehensive study of the quantum mechanical potential: bound state
structure, scattering states and resonances. We show how these singular interac-
tions can be used in physical systems, comparing with the numerical results of
well known models such as the phenomenological Woods-Saxon potential.

• We show how the previous analysis within nonrelativistic quantum mechanics
(QM) can be used in quantum field theory (QFT) for scalar fields. We first con-
sider a cavity configuration composed of two concentric δ-δ′ spherical shells. We
propose to understand some features of the interaction energy and self-energy in
this context, where the scattering data of the quantum mechanical system will be
crucial for computing the interaction energy between the two spherical δ-δ′ shells
and the self-energy of each one.

• After studying these simple models, we propose to consider more realistic sys-
tems. In particular, we study the electromagnetic field coupled to matter described
by continuous permittivity and permeability functions, instead of singular interac-
tions. We base our derivation on the TGTG representation and some results of clas-
sical electromagnetic scattering. We prove some general features regarding the at-
tractive or repulsive character of the interaction pressure. We are able to determine
its sign, under general circumstances, without performing the explicit numerical
calculation. We have also developed some new results of classical electromagnetic
scattering for the unusual scattering setup needed when studying the interaction
energy between one object inside the other.

Main results

In this section we elaborate on the established objectives and the main results of this
thesis. We outline the principal features of these findings, showing the purpose of
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each objective in connection with the others and reviewing the appropriate literature
for each particular topic.

A simple yet complex enough model

The main goal of Part I is to construct and study a model simple enough so it can be
solved analytically but with the appropriate number of free parameters to provide in-
sight into some of the features of certain physical systems. Perhaps one of the simplest
way to model a body in this context is the use of boundary conditions. For instance,
in the original Casimir setup Dirichlet boundary conditions are imposed on the vec-
tor potential [3]. As mentioned before, this is clearly an idealization of a real physical
body since this model assumes electrons rushing about to counteract any incoming
field and the effect of imperfect reflection is known to be large in experiments [16].
The next step could be the introduction of the Dirac delta, which is indeed a general-
ization of Dirichlet boundary conditions in the so-called strong limit [47]. Contrary to
boundary conditions, this potential connects the regions at each side of the boundary.
This is why it is often called semitransparent or penetrable boundary condition [48,
49]. In spite of its simplicity, it has a vast amount of applications in modeling real
physical systems. A complete set of references can be found in the introductions of
Chapters 1, 2, 3 and the references quoted therein. The key point is that this potential
enables to obtain a relatively simple solution while keeping the essential properties of
the problem. Furthermore, it serves as a fair approximation when the particle wave-
length is much larger than the range of the potential, for a very short range interaction
between a single particle and a fixed heavy source or for a contact interaction in the
center of mass of two particles [50]. In addition, Dirac lattices has also been employed
for modeling polarizable sheets [51, 52]

In view of the above, we are going to use a generalization of the Dirac δ potential,
the so-called δ-δ′ interaction defined in Chapter 1. It was first introduced by Kurasov
in Ref. [53], where its definition was based on the theory of self-adjoint extensions. In
particular, in one-dimensional QM the corresponding operator can be written as

H1 := − d2

dx2 + aδ(x) + bδ′(x), a, b ∈ R, (2)

where δ(x) and δ′(x) denote the Dirac delta and its generalized derivative [53], respec-
tively. In this reference it was proved that this interaction imposes the following
matching conditions on the wave function and its derivative

(
ψ(0+)
ψ′(0+)

)
=

 2 + b
2 − b

0
4a

4 − b2
2 − b
2 + b

( ψ(0−)
ψ′(0−)

)
. (3)

If b = 0, we have a continuous wave function with a finite jump proportional to the
delta coupling for its derivative ψ′(0+)− ψ′(0−) = aψ(0), as expected. Although the
definition of the delta is unambiguous, it is also worth mentioning another kind of δ′

interaction3, called nonlocal in Chapters 2 and 3, where this controversy is mentioned.

3In some texts, for instance [54], the singular interaction defined by Eq. (3) with a = 0 is denoted by
δ′(x), while δ′ interaction is used for the definition given by Eq. (4). We will not follow this notation,
using δ′ interaction for Kurasov’s definition along this thesis.
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The latter is defined by the matching conditions [55, 56](
ψ(0+)
ψ′(0+)

)
=

(
1 b′

0 1

)(
ψ(0−)
ψ′(0−)

)
, (4)

where b′ is the coupling of this δ′ interaction. It is clear that both definitions are dif-
ferent and, as mentioned in Chapters 2 and 3, we choose the definition introduced by
Kurasov since both the δ and the δ′ are compatible at the same point. In addition, the
δ′ interaction defined by Eq. (4) can not be interpreted as the derivative of the Dirac δ
as its name could suggest [55]. This interaction is, however, used as such in Ref. [47]
for analyzing the self-energy of a singular spherical shell. The interpretation as the
derivative is more suitable for the δ′ interaction used in this thesis, which was orig-
inally introduced as a distribution defined on the space of discontinuous functions4

described in Ref. [53]. Nonetheless, in this thesis we are defining the δ′ interaction by
means of the matching conditions of Eq.(3), without using any properties regarding
the derivative in the distributional sense.

As we have previously stated, most of the work for the δ-δ′ was done in one di-
mension, on the basis of the original work [53]. A large part of it was developed by
the theoretical physics group which I have been a part of during my Ph. D. [59–69].
This work was crucial for our task of proposing a generalization to hyperspherical
geometries in the context of practical applications. For instance, one of the objectives
was to consider geometries such that we can study one object inside another. In par-
ticular, in Chapter 1 we introduce Hd, the d-dimensional analogue of the operator H1
in Eq. (2),

H0 := − d2

dr2 −
d − 1

r
d
dr

+
ℓ(ℓ+ d − 2)

r2 + V0(r),

Hd := H0 + w0 δ(r − r0) + 2w1 δ′(r − r0).
(5)

Note that we have also added a nonsingular potential V0(r). The introduction of this
kind of potentials was also considered in some of the one-dimensional papers cited
before [60, 62, 65, 66]. As we shall see, Hd determines a self-adjoint extension of H0
when the proper domains are considered. In Chapter 1 we study only the singular
interaction V0(r) = 0, we add a spherical well inside the sphere in Chapter 2 and
we consider the same spherical well plus the static Coulomb potential of a uniformly
charged sphere of radius r0 in Chapter 3. Along these chapters the changes produced
due to the addition of new terms in the Hamiltonian are studied.

The main idea for generalizing the one-dimensional results is to consider the ra-
dial one-dimensional analogue. For a d-dimensional space, if we apply separation of
variables for each value of the angular momentum ℓ in the dimensionless Schrödinger
equation

[−∆ + V(r)]ψℓ(x) = Eψℓ(x), ψℓ(r, Ωd) = Rℓ(r)Yℓ(Ωd),

where Yℓ(Ωd) is a combination of hyperspherical harmonics [70], we reduce the orig-
inal problem to a one-dimensional one. Indeed, the radial function satisfies[

− d2

dr2 −
d − 1

r
d
dr

+
ℓ(ℓ+ d − 2)

r2 + V(r)

]
Rℓ(r) = HdRℓ(r) = ERℓ. (6)

4The standard theory with C∞(D) functions fails since the second derivative with the Dirac delta and
its derivative would not lead to a self-adjoint operator [53]. Nevertheless, D. J. Griffiths also arrived at
the matching conditions of Eq. (3) integrating the one-dimensional Schrödinger equation [57], although
there are some inconsistencies when the matching conditions for higher derivatives of the delta potential
are derived [54, 58].
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Introducing the reduced radial function uℓ(r) := r
d−1

2 Rℓ(r) we have, essentially, a
operator similar to H1 in Eq. (2)

− d2

dr2 +
(d + 2ℓ− 3)(d + 2ℓ− 1)

4r2 . (7)

In Chapters 2 and 3 we show how the matching conditions from the one-dimensional
problem can be used for the reduced function, even though we have different do-
mains and additional terms such as the centrifugal or centripetal (d = 2 and ℓ = 0)
potential in (7). With this analysis, we arrive at the following matching conditions for
the radial function: (

Rℓ(r+0 )
R′
ℓ(r

+
0 )

)
=

(
α 0
β̃ α−1

)(
Rℓ(r−0 )
R′
ℓ(r

−
0 )

)
, (8)

where the following parameters are obtained when undoing the changes introduced

α :=
1 + w1

1 − w1
, β :=

w0

1 − w2
1

, β̃ := β −
(
α2 − 1

)
(d − 1)

2 α r0
=:

w̃0

1 − w2
1

. (9)

Note that the matching conditions depend on the radius of the sphere and the spatial
dimension. The dependence on d or r0 does not appear in systems where the singular
interaction is supported on a hyperplane of dimension d − 1 ≥ 0. In addition, the
δ-δ′ interaction also leads to boundary conditions. This can be proved analyzing the
values w1 = ±1, or equivalently5, b = ±2 in Eq. (3). In this case, the matching
conditions are not well defined and we have Robin and Dirichlet boundary conditions
at each side [71]:

Rλℓ(r+0 )−
4

w̃+
0

R′
λℓ(r

+
0 ) = 0, Rλℓ(r−0 ) = 0 if w1 = 1,

Rλℓ(r−0 ) +
4

w̃−
0

R′
λℓ(r

−
0 ) = 0, Rλℓ(r+0 ) = 0 if w1 = −1,

(10)

where w̃±
0 := w0 ± 2(1 − d)/r0. The key point is that, within this approach, the prob-

lem of solving the Schrödinger equation with the singular interaction reduces to find-
ing the solutions at each side of the interaction, matching them using Eq. (8). Note
that if we choose a solvable potential V0(r), the wave function can be found analyt-
ically. In consequence, although we essentially have a one-dimensional problem for
each value of the angular momentum, we are indeed modeling a three-dimensional
system. This allows us to consider physical examples in the first part of the thesis.
Apart from the application in QFT in Part II, in Chapters 2 and 3, we show how the
low-lying nucleon energy levels of doubly magic nucleus like 208Pb can be obtained.
We consider neutrons in Chapter 2 and neutrons and protons in Chapter 3. In both
chapters we compare these low-lying states with the ones obtained using the Woods-
Saxon model, obtaining fair enough results in the range considered.

As we have mentioned, previous work with δ-δ′ singular interactions was done
essentially in one dimension. However, there are several works where the extension
of this interaction to hyperspherical systems has been proposed, in particular [72, 73].
In Chapter 1 we explain why the results of the first article regarding the study of the

5The factor 2 multiplying the δ′ coupling in Eq. (5) is introduced in order to have the values leading
to boundary conditions at ±1.
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quantum mechanical potential are not as general as the ones proposed in this thesis.
In short:

• The domain of the Hamiltonian considered, as proved in Chapter 2, should be
square integrable functions satisfying

{ f (x) ∈ L2(R>0)| H0 f (x) ∈ L2(R>0)}, (11)

instead of belonging to the Sobolev space W2
2 (R>0) as suggested in Ref. [72]. The

latter is valid in one dimension since the function and its second derivative (H1 f )
should be square integrable but it is not the case for higher dimensions. Within
these domains, it is clear that physical quantities like the finite value of the kinetic
operator mentioned in Chapter 1 are finite. The latter can be easily proved using
the Cauchy-Schwarz inequality.

• The matching conditions for the radial function written in Ref. [72] are given by
Eq. (8) with β = β̃. These conditions are therefore independent of the radius and
the dimension, being valid only for situations involving large values of r0.

In addition, in Ref. [73] the matching conditions arising from constructing the most
general self-adjoint extension are used. Omitting a global phase, these are simply
given by (

gℓ(r+0 )
g′ℓ(r

+
0 )

)
=

(
a1 b1
c1 d1

)(
gℓ(r−0 )
g′ℓ(r

−
0 )

)
, (12)

where the determinant of the matching condition matrix should be equal to one. It is
then clear that b1 = 0 leads to the δ-δ′ matching conditions. Performing the change
g(r) = r(2−d)/2 φℓ(r), it is stated that the new function φℓ(r) satisfies(

φℓ(r+0 )
φ′
ℓ(r

+
0 )

)
=

(
ā1 b1
c̄1 d1

)(
φℓ(r−0 )
φ′
ℓ(r

−
0 )

)
, (13)

being

ā1 := a1 +
2 − d
2r0

b1, c̄ := c1 +
2 − d
2r0

d1. (14)

However, performing the same change we find that the actual matching conditions
should be (

φℓ(r+0 )
φ′
ℓ(r

+
0 )

)
=

(
ā b̄
c̄ d̄

)(
φℓ(r−0 )
φ′
ℓ(r

−
0 )

)
, (15)

being

ā := a1 +
(2 − d)

2r0
b1, b̄ := b1, d̄ := d1 +

(d − 2)
2r0

b1,

c̄ := c1 +
(2 − d)(2r0(d1 − a1) + b1(d − 2))

4r2
0

.

From these equations we find that the δ potential matching conditions, a1 = 1, d1 = 1
and b1 = 0, are invariant under these changes and indeed the same for every dimen-
sion. This property was obtained also in the first chapter of the thesis [74], but it does
not hold assuming Eq. (13) of [73].

As already mentioned, in all of these chapters special attention is paid to the quan-
tum mechanical properties, like the bound state structure and phase shifts, which will
be of central importance for Part II of the thesis. The main findings are briefly sum-
marized here.
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In Chapter 1, we focus on a hyperspherical singular interaction without a back-
ground potential V0(r) = 0. We find the number of bound states for each value of the
angular momentum and an upper bound as in Bargmann’s inequalities [75]. We an-
alyze the dependence on the spatial dimension d, paying special attention to the fea-
tures of two-dimensional systems d = 2. Since we know the number of bound states
is finite, we also find the maximum value of the angular momentum ℓmax such that
bound states appear. This is particularly useful for Chapters 4 and 5, since ℓmax < 0
implies that there are no bound states, which simplifies the calculation of the corre-
sponding quantum energy when this potential is used in QFT. We also completely
characterize the scattering states computing the phase shifts. As shown in the next
section, this is essential for the interaction energy in Chapter 4 and the self-energy in
Chapter 5. The zero-energy states and the mean value of the position operator are
also studied.

In Chapter 2 we continue the analysis of the δ-δ′ interaction including a spherical
well. We show that some well known properties of continuous spherically symmetric
potentials are fulfilled, characterizing also the unstable quantum states (resonances).
We analyze the new features of the bound state structure, noting that, as expected,
the singular interaction becomes less relevant if the well is deep enough. We also an-
alyze large-parameter configurations, proving that the δ-δ′ interaction vanishes in the
limit w1 → ±∞, contrary to the delta potential strong limit, which leads to Dirichlet
boundary conditions. This justifies why in Chapters 4 and 5 the interaction and self-
energy tend to zero as |w1| goes to infinity. Now the analysis is more involved since
we have, in addition to the modified Bessel functions of Chapter 1, Bessel functions
of the first and second kind in the wave function. These functions present zeros in
the positive real axis, giving rise to a richer structure for the bound states. In this
chapter and in the following one, we have used a language that makes it suitable for
the possible application in nuclear physics. Nevertheless, a nonrelativistic study of
a quantum particle in a spherical well with a contact interaction in the edge can be
analyzed within this framework as it is done in Chapter 1.

We conclude the analysis of this singular interaction in Chapter 3 adding the
Coulombic term of a uniformly charged sphere of radius r0

VC(r) =
Ze2

4πϵ0


3 − (r/r0)2

2r0
, r ≤ r0,

1
r

, r > r0,

where Z is the number of protons. As mentioned, this enables the study of neutron
and proton energy states, thus completing the study of the previous chapter. It is
worth mentioning that since we are adding new terms to the potential, the solution
at each side of the interaction changes. In this case we essentially have confluent hy-
pergeometric functions with complex arguments [76], which are less studied in the
literature. Since the analytical results on the bound state structure are based on the
properties of these special functions, the analysis is more involved. For instance, the
secular equation is complex, although it can be proved using properties of Kummer’s
function that the imaginary part is meaningless. Nonetheless, we are able to find
some analytical and numerical results regarding the spectrum and the role of the sin-
gular interaction. In particular, we emphasize here another advantage of considering
the δ-δ′ interaction rather than just the δ potential. In this paper we perform a phe-
nomenological approach. Namely, within the proposed model the physical meaning
of the Dirac δ is unequivocal, it accounts for the spin-orbit interaction. However, there
is no clear interpretation of the δ′ term. This is why we use this free parameter of the
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model for finding the better fit with the available data, such as an optimized Woods-
Saxon model [77]. We also check that the main structure and the role of the singular
interaction are similar to the ones of the neutron case studied in Chapter 2, showing
how we can use our model in order to work with actual physical constants.

We end this section emphasizing that in all of these three chapters some applica-
tions are indicated but they are circumstantial for the central objectives of this thesis.
Although the usefulness in certain contexts has been proved, the main goal is to use
this singular interaction as an intermediate step for obtaining relevant conclusions
regarding the Casimir-Lifshitz effect in cavities. This is explained in the following
section.

Singular interactions for scalar fields

As outlined in the previous paragraphs, the properties of the quantum mechanical
model have been obtained from the stationary Schrödinger equation

[−∆ + V(r)]ψ(x) = Eψ(x). (16)

We now show why this study is also useful for the relativistic theory. In particular,
as stated in Chapter 4, the dynamics of the quantum fluctuations of a massive scalar
field φ interacting with a classical background V(x) is governed by the action6 [78]

S[φ] =
∫

d3+1x
{

1
2

∂µ φ∂µ φ − F(φ)

}
,

F(φ) :=
1
2
(
V(x)φ2 + m2φ2) .

We are interested in the shift of the zero-point energy due to the presence of the back-
ground. Note that we are assuming that the background is adequately described by
a classical theory so the scalar field interacts only with this background but not with
other quantum fields. As already mentioned, this kind of procedure excludes the
radiative corrections accounting the interaction with the electron-positron field. For
instance, the analogue of the original Casimir effect is given by a massless field in
which the background imposes Dirichlet boundary conditions at the plates [3]. Ap-
plying the variational principle, we arrive at the Klein-Gordon equation

∂µ∂µ φ(t, x) + F′(φ(t, x)) = ∂2
t φ(t, x)− ∆φ(t, x) + F′(φ(t, x)) = 0, (17)

where F′(φ) := dF/dφ. For a static background it is convenient to apply the Fourier
transform in time

φ(t, x) =
∫ ∞

−∞
dω φω(x)e−iωt, (18)

so we can work at a fixed frequency. The resulting equation can now be written as

[−∆ + V(x)] φω(x) = (ω2 − m2)φω(x). (19)

Note that within QFT, the quantized field is considered as a collection of oscillators of
all frequencies [79]. For each oscillator of frequency ωn, the energy is given by7

En = h̄ωn

(
n +

1
2

)
,

6We shall use units such that h̄ = 1 and c = 1.
7We have recovered Planck constant only for this formula and the next one.
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where n is the eigenvalue of the number operator, the number of energy quanta. Con-
sequently, the vacuum energy should be given by the sum of the zero-point energies
of this set of oscillators:

E0 =
h̄
2 ∑

n
ωn =

h̄
2 ∑

n
(k2

n + m2)1/2. (20)

This expression is also referred to as the ground-state energy, being essentially the ex-
pectation value of the energy-density operator T00 in the vacuum state |0⟩ [80]. This
sum is obviously divergent and some process of regularization is needed. Nonethe-
less, regarding the connection between QM and QFT, we can see from Eqs. (16) and
(19) that we have the same differential operator. It seems reasonable then that the pre-
vious nonrelativistic quantum mechanical analysis is relevant in this context. There
are indeed more specific reasons justifying it. First, note that the definition of the δ-δ′

interaction is the same as in QM. The construction of this potential is based on the
self-adjoint extensions of a given operator, the Hamiltonian without the singular in-
teraction, which is the same in both cases. However, the definition will be different for
other fields. For instance, the analysis for the Dirac operator can be found in Ref. [81].

Second, we show how the self-energy is completely determined by the scatter-
ing data of the quantum mechanical potential. As we have mentioned, the energy in
Eq. (20) needs to be regularized. For a comprehensive understanding of the connec-
tion between the operators in QM and QFT, it is convenient to see the details of the
process of regularization. We can use the method based on spectral zeta functions
explained in Chapter 5 and write

E0(s) :=
µ2s

2 ∑
k∈C

(k2 + m2)1/2−s = ζP(s −
1
2
), C := {k ∈ R>0 | f (k) = 0}, (21)

being µ a regularization parameter with dimensions of mass and f (k) a function
such that its zeros are the modes contributing to the zero-point energy, the mode-
generating function introduced in the original works [82, 83]. This function deter-
mines the spectral zeta function ζP associated with the Schrödinger-type operator P
of Eq. (19) [84]. For instance, for Dirichlet boundary conditions, this set can be found
by requiring the field to be zero at the boundaries. Since we do not know the eigenval-
ues of the secular equation explicitly, we propose to evaluate the sum using Cauchy’s
argument principle. Note that we can write f ′(k)/ f (k), which has simple poles at the
modes such that k ∈ C and the residue equals one at these points. The latter holds if
we assume f ′(k) ̸= 0, which will be the case in the examples considered. As usual, we
enclose the system in a large sphere of radius R and we impose Dirichlet boundary
conditions on this auxiliary sphere. The final result is independent of the boundary
conditions so we impose the simplest ones [3, 84]. Since we now have a bounded
domain, the spectrum is discrete and the sum can be written as [85]

E0(s) =
µ2s

2

∮
γ

dz
2πi

(k2 + m2)1/2−s d
dk

log f (k), (22)

where γ is a contour oriented counterclockwise on the complex plane such that it
encloses all the values belonging to the set C. As mentioned, we have a Schrödinger-
like equation with spherical symmetry so we know the solutions of the differential
equation (19) from scattering theory. The radial part for large r is written in terms of
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the Jost function fℓ(k) [86]

ρℓ(r) ∼ fℓ(k)h
(2)
ℓ (kr) + f ∗ℓ (k)h

(1)
ℓ (kr). (23)

That is to say, we have a term proportional to the spherical Hankel function of the
first kind (outgoing) and the second kind (incoming). As mentioned before, we can
obtain the secular equation imposing that the wave function8 vanishes at the radius
of the auxiliary sphere R. Consequently, we have

f (k) := fℓ(k)h
(2)
ℓ (kR) + f ∗ℓ (k)h

(1)
ℓ (kR) = 0. (24)

As in Casimir’s original work [2], we now remove the infinite contribution from
Minkowski free space. Due to the structure of the integrand, this is equivalent to
consider the mode-generating function

f (k) :=
fℓ(k)h

(2)
ℓ (kR) + f ∗ℓ (k)h

(1)
ℓ (kR)

h(2)ℓ (kR) + h(1)ℓ (kR)
, (25)

where the denominator is the free space term. The contour can be chosen such that
half of it is just above the real axis and the other half just below it [3]. For the inte-
gration above the real axis, f (z) reduces to fℓ(k) when the radius of the sphere goes
to infinity. This is based on the asymptotic behaviour of Hankel functions, which can
be found in Chapter 2. In the same way, when we make the radius of the sphere
go to infinity for the integration contour below the real axis, f (z) reduces to f ∗ℓ (k).
We now use known properties of Jost functions from quantum mechanical scattering.
From the Schwarz reflection principle, it can be proved that the Jost function satisfies
fℓ(z) = f ∗ℓ (−z∗) [86]. In particular,

fℓ(x) = f ∗ℓ (−x∗), fℓ(ix) = f ∗ℓ (ix), x ∈ R>0. (26)

Using the first relation it is clear that for the integration below the real axis, the inte-
grand can be written as f ∗ℓ (k) = fℓ(−k). With this, we now rotate to the imaginary
axis. The integration contour over the real axis goes to the positive imaginary axis
and the one below to the negative imaginary axis. Due to the symmetry properties of
the Jost function mentioned, we can finally write [3]

E0(s) = −µ2s

2 ∑
ℓ∈N0

(2ℓ+ 1)
∫ ∞

0

dκ

2πi
(g(iκ)− g(−iκ))

d
dκ

log fℓ(iκ), (27)

where the degeneracy factor for three spatial dimensions (2ℓ+ 1) has been included
and

g(z) := (z2 + m2)1/2−s.

The function g(iκ) − g(−iκ) should be evaluated considering the branch points of
g(z) at z = ±im. Specifically, introducing polar coordinates

(z2 + m2)1/2−s = ((z + im)(z − im))1/2−s, z ∓ im := r±eiθ± ,

8Note that the equations for the wave function and φω(x) are the same but the interpretation of
them are completely different. For instance, φω(x) is simply a field evolving through a Schrödinger-like
equation, with none of the probability interpretation of the wave function.
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and taking into account the phases θ±, it is easily proved that

g(iκ) =


eiπ(1/2−s)(κ2 − m2)1/2−s if κ > m,

0 if κ ∈ (−m, m),

e−iπ(1/2−s)(κ2 − m2)1/2−s if κ < −m.

(28)

Consequently, we can finally write

E0(s) = −µ2s

2π
cos(πs) ∑

ℓ∈N0

(2ℓ+ 1)
∫ ∞

m
dκ(κ2 − m2)1/2−s d

dκ
log fℓ(iκ). (29)

As shown, the analysis of the first part of the thesis is crucial since, in the context
of quantum fluctuations about classical configurations, the self-energy is completely
determined by the Jost function of the quantum mechanical scattering problem. From
the second equation of (26) we also note that this representation of the energy is real,
as expected. In addition, the asymptotic behaviour κ → ∞ of the integrand deter-
mines the lower bound of the strip of convergence and this region does not include
s = 0 [84]. We then need to extend it in order to include this value. This can be
achieved by adding and then subtracting the appropriate terms of the asymptotic
behaviour, as explained in Chapter 5. Note also that the Jost function can be multi-
plied by a function which does not introduce new zeros, in particular for avoiding
problems at the origin [84]. The zeta function regularization method also enables to
isolate the divergences of the system. In particular, in Chapter 5 it is explained that
for three spatial dimensions the divergence in the vacuum energy is proportional to
the heat kernel coefficient a2 [49]

E0(s) = − a2

32π2

(
1
s
+ 2 log(µr0)

)
+ O(s0). (30)

This expression arises from the connection between the spectral zeta function and the
heat kernel K(t) through the Mellin transform

ζ(s) =
∫ ∞

0
dt

ts−1

Γ(s)
K(t), (31)

and the asymptotic small-t expansion of K(t) in terms of the heat kernel coefficients
[84]. In Chapter 5 we compute the self-energy of a δ-δ′ sphere, finding a one-parameter
family of couplings in which this energy is unambiguously defined since a2 = 0.
These couplings satisfy c0λ1 = λ0r0 being

c0 :=

(
1
24

(
3
√

42
√

30 + 224 − 142/3

3
√

3
√

30 + 16
+ 14

))−1

≃ 1.20818671192.

It is worth noting that for the δ potential a2 = 0 if and only if λ0 = 0, i.e., in the trivial
configuration where the Casimir energy vanishes [49].

Furthermore, the analysis of the bound states is also important in this context. It is
clear that the previous derivation is not valid if there exists a finite number of poles in
the imaginary axis. From the quantum mechanical point of view, we know that poles
in the positive imaginary axis can appear. Specifically, our potential is spherically
symmetric so there exits a one-to-one correspondence between the bound states of
the quantum mechanical Hamiltonian and the poles of the S matrix for each value of
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the angular momentum [86]. In fact, this is the basis for Levinson’s theorem. For each
value of the angular momentum the components of the S matrix in the spherical basis
are

sℓ(k) = exp(2iδℓ(k)) =
fℓ(−k)
fℓ(k)

. (32)

This is why we can also write the energy (29) in terms of the phase shifts δℓ [3, 85, 87].
Leaving aside the domains of analyticity, we can intuitively show that zeros of fℓ(k)
give rise to bound states. If k0 satisfies fℓ(k0) = 0, from Eq. (23) we have

ρω,ℓ(r) ∼ fℓ(−k0)h
(1)
ℓ (kr). (33)

Due to the asymptotic behaviour of Hankel functions shown in Chapter 2, we have
an exponentially decreasing behaviour. Taking into account the regularity condition
of the wave function at the origin we have a square integrable solution, i.e., a bound
state. In consequence, the quantum mechanical Hamiltonian admits an eigenstate of
energy k0/2m and for these cases we should change the contour of integration. This
would give rise to an expression similar to (29) but with the Cauchy principal value
and a finite number of terms accounting for the residues at the positive imaginary
axis. In the corresponding chapters, we restrict ourselves to cases in which there are
no bound states, not discussing any questions related to vacuum decay and particle
creation [79]. For determining the values of the couplings such that this occurs we
use the analysis of the bound state structure of Part I. In particular, we can always
determine in which regions of the space of couplings {w0, w1} there are bound states
for a given value of the angular momentum. For that we use the maximum value of
the angular momentum given in Chapter 1

ℓmax := ⌊Lmax⌋ , Lmax :=
w1 − x0 w0/2

w2
1 + 1

+
2 − d

2
, (34)

since we know that Lmax < 0 implies the nonexistence of bound states.
So far we have proved the usefulness of the quantum mechanical analysis for

the self-energy. However, the first part of the thesis also plays a crucial role for de-
termining the interaction energy. If the spatial support of the two bodies satisfies
supp V1 ∩ supp V2 = ∅, the vacuum interaction energy between the two objects can
be written as [19, 20]

Eint =
1

2π

∫ ∞

0
dκ Tr log

(
I − T1G0

12T2G0
21
)
, (35)

where the integration is over imaginary frequencies ω = iκ. This is why the name
TGTG representation is used. It is worth mentioning that this representation can also
be derived following a mode summation approach similar to the one explained here
for the self-energy, starting with Eq. (20) but with a different set C [88, 89]. Contrary
to the Casimir energy of a single object, the interaction energy always gives an unam-
biguous finite result for the force. The idea behind it lies in the independence of the
heat kernel coefficients, which determine the divergences, on the distance between
bodies [3]. Note that the properties of each body are given by the corresponding
Lippmann-Schwinger Ti operator and the relative position between both objects en-
ters through the operator G0

ij, related to the projection of the propagator across the
vacuum G0. Consequently, with this representation, the properties of each body and
the distance between their centers can be treated separately. We then focus on the
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transition matrices, since for concentric spheres G0
ij are essentially identities9. When

the two objects are outside each other we need the usual components of the Ti op-
erator in nonrelativistic quantum mechanics. Specifically, if φreg represents a regular
wave, in spherical coordinates the radial part is given by the Bessel function of the
first kind, we need the components ⟨φreg, Ti φ

reg⟩. From QM we know the radial so-
lution inside and outside the sphere, which can be written as

ρℓ(r) =

{
Aℓρ

reg
ℓ (r) r < r0,

aℓρ
reg
ℓ (r) + bℓρout

ℓ (r) r > r0.
(36)

Consequently, the scattering produced by the sphere in this situation can be calcu-
lated with the components

Tℓ
i = − bℓ

aℓ
. (37)

This is the ratio between the scattered component, proportional to the outgoing wave,
and the incident wave, proportional to the regular wave. Due to the relation between
the T matrix and the S matrix we have [19, 90]

Tℓ
i = − bℓ

aℓ
∝ exp(2iδℓ(k))− 1. (38)

That is to say, we can compute the components of Ti entering in the TGTG operator
with the scattering analysis performed in the first part of the thesis. As stated above,
we are going to focus on interior configurations. That is, systems of two objects in
which one of them is inside the other without overlapping. In this case, we require
different components for T2 in (35). This is proved in Ref. [20, 88] and explained
in the second part of the thesis. Nonetheless, this case can also be analyzed from a
quantum mechanical perspective. The components of T2 appearing when the first
object is inside the second can be computed if we investigate a scattering experiment
in which the source and the detector are inside the cavity. The solution in this case
can be written as

ρℓ(r) =

{
ãℓρ

reg
ℓ (r) + b̃ℓρout

ℓ (r) r < r0,

Bℓρ
out
ℓ (r) r > r0.

(39)

The components of T are then given by the ratio of the reflected and the emitted wave,
but this time inside the sphere,

T̃ℓ
2 = − ãℓ

b̃ℓ
. (40)

This atypical scattering experiment is less studied in the literature and some differ-
ences with respect to the regular setup will be drawn in Chapter 4 for two concentric
δ-δ′ spheres.

Casimir-Lifshitz effect in cavity configurations

With all of these findings, in Chapter 4 we analyze how the signs of the couplings
of the singular potentials determine the positive or negative value of the interaction
energy. In particular, along this chapter we denote the couplings by {λ0,i, λ1,i}i=1,2,

9This is one of the few cases, together with the planar geometry, in which both T and G0
ij are simul-

taneously diagonal in the appropriate basis.
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being the two spheres modeled by

V(r) = V1(r) + V2(r) =
2

∑
i=1

λ0,iδ(r − ri) + 2λ1,iδ
′(r − ri), r1 < r2. (41)

In Chapter 4 we show the sign of the interaction energy for two different configura-
tions, which for clarity we reproduce again here in Figs. 1a and 1b. With this numeri-

(a) Interaction energy between two concentric
δ′ spheres (λ0,1 = 0 = λ0,2 = 0).

(b) Interaction energy between a δ and a δ′

sphere (λ1,1 = 0 and λ0,2 = 0).

Figure 1: Dependence of the interaction energy on the sign of the couplings.

cal analysis, we show that the signs of λ0 and, in particular, λ1 determine the sign of
the interaction energy. Indeed, for δ spherical shells only positive values are obtained,
since λ0,i > 0 is assumed in order to avoid bound states in the quantum mechanical
sense. Furthermore, this behaviour is not a particular feature of spherical geometry
and for parallel plates the same pattern was found in Ref. [63]. Although the field can
be obtained analytically, the interaction energy (35) can only be evaluated numeri-
cally. In view of this, our aim was to generalize these results to more realistic systems
with the electromagnetic field. In addition, due to the reasons that we will explain
below, we tried to obtain analytic results on the sign without performing the explicit
calculation.

First, note that if we assume that the coupling of the electromagnetic field to mat-
ter can be described by continuous permittivity ε and permeability µ functions, for a
homogeneous medium characterized by εM and µM, Maxwell curl equations, can be
written as a stationary vector Schrödinger-like equation

[∇×∇×+V(ω, x)]E(ω, x) = k2E(ω, x).

We have defined k :=
√

εMω and the potential V(ω, x), now a differential operator:

V(ω, x) := Iω2 [εM(ω)− ε(ω, x)] +∇×
[

1
µ(ω, x)

− 1
µM(ω)

]
∇× . (42)

As for the scalar case, we can write the interaction energy with an analogous repre-
sentation [19, 20]

Eint =
1

2π

∫ ∞

0
dκ Tr log

(
I − T1GM

12T2GM
21

)
. (43)
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The properties of each body are also encoded in the Lippmann-Schwinger T operator,
now being [91]

Ti = Vi

(
I + GMVi

)−1
: Hi → Hi := L2(supp Vi)

3.

Furthermore, the relative position between both objects enters through the operator
GM

ij := PiG
MPj : Hj → Hi, being GM the propagator across the medium and Pi the

projection operator onto the Hilbert space Hi. In particular, for spherically symmetric
systems the problem reduces to two scalar problems, one for each polarization [92].
For instance, the transverse electric (TE) potential of a dielectric sphere is [93]

VTE(ω, r) = ω2 [εM(ω)− ε1(ω, r)] .

The main differences with respect to the scalar case are that we do not have the ℓ = 0
contribution and the frequency (energy) dependence on the potential. In any case, the
sign of the potential Vi describing each body is determined by the following relation
for the relative permittivities and permeabilities:

si := sgnVi = ±1 if ε i(iκ, x) ≷ εM(iκ) and µi(iκ, x) ⋚ µM(iκ), (44)

for every frequency and the whole body [23]. Within this context, in the two final
chapters we are able to rewrite the TGTG operator inside the integral in a suitable
way and, using some results of classical scattering theory, we arrive at the main find-
ings of this thesis. In particular, for the configurations considered siTi is a positive
operator so we can write Ti = si

√
siTi

√
siTi, being

√
siTi the square root of siTi. In

consequence, the interaction energy can be rewritten as

Eint =
1

2π

∫ ∞

0
dκ Tr log(I − s Mi), (45)

where we have defined s := s1s2 and

M1 :=
√

s2T2GM
21s1T1GM

12
√

s2T2 = (
√

s1T1GM
12
√

s2T2)†√s1T1GM
12
√

s2T2,

M2 :=
√

s1T1GM
12s2T2GM

21
√

s1T1 = (
√

s2T2GM
21
√

s1T1)
†√s2T2GM

21
√

s1T1,

where † stands for the adjoint operation. In Chapter 6 we use Eq. (45) for i = 1 and
the same formula with i = 2 in Chapter 7. Once the expressions are written as above,
we can make use of standard manipulations like

⟨E, A†AE⟩ = ⟨AE, AE⟩ = ∥AE∥2 ≥ 0 (46)

for determining the sign of the energy. Indeed, we easily prove that the sign of the
interaction energy is given by sgn Eint = −s. The latter holds for two arbitrary mag-
netodielectrics, even if they lie outside each other, as long as there is no overlapping.

We then proceed to study the pressure acting on the spherical surfaces of the sys-
tems shown in Figs. 2a and 2b. To define this pressure we do not need to include
elastic deformations and we simply make use of the principle of virtual work. Ac-
cordingly, the mean value of the pressure due to a virtual variation of the radius
satisfies [94, 95]

⟨pint⟩ :=
1

4π

∫
S2

dΩ pint(r, Ω) = − 1
4πr2

∂Eint

∂r
. (47)
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(a) Configuration studied in Chapter 6. (b) Configuration studied in Chapter 7.

Figure 2: Cross-section view of the systems under study in the last two
chapters.

In order to find the derivative with respect to the radius of the interaction energy, in
Chapter 6 we employ the quantum mechanical Calogero equation [96] generalized
to electromagnetic scattering by arbitrarily shaped objects [97, 98]. Adapted to imagi-
nary frequencies with the definitions given in Chapter 7, the derivative of Text defined
in Chapter 6 can be written as

∂rT
ext = κW†

ext(r)U(r)Wext(r), (48)

where Text are the components of the T operator in the spherical wave basis. Due to
the structure of previous equation, we can again make use of standard manipulations
with the adjoint operator for determining the sign of the pressure. As in the scalar
case, different components enter in the calculation for the second body, corresponding
to a different scattering experiment. Since fewer articles on this topic can be found
in the literature, some new results were developed. Specifically, in Chapter 7 we
prove the following nonlinear differential equation for the interior components of the
T matrix

∂rT
int = −κW†

int(r)U(r)Wint(r). (49)

The derivation follows from the Lippmann-Schwinger equation for a scattering ex-
periment in which the source and the detector are inside the cavity10. Due to this
different setup, an additional global minus sign appears compared with the usual
case (48). With this, we are then able to determine the sign of the interaction pressure
acting on the two spherical surfaces shown in Figs. 2a and 2b

sgn Eint = −sgn ⟨pint⟩sphere = sgn ⟨pint⟩cavity = −s1s2. (50)

This is one of the main results of the thesis. As we can see, the sign of the interaction
energy completely determines the sign of the pressure on the spherical surfaces. Al-
though the latter also holds for planar geometries under general assumptions [17], it
is not always the case and, for example, attractive and repulsive forces can be found
for negative energies only [31]. The equations in (50) are also independent of the ge-
ometry and matter distribution of the bodies as long as the signs si are well defined.
We have considered inhomogeneous permittivity functions ε(iκ, x) such that the sign

10We also consider the other two possibilities, source (detector) inside and detector (source) outside.



Main results 19

of ε i(iκ, x)− εM(iκ) is independent of κ and x and we can write

si = sgn(ε i − εM) = sgn[ε i(iκ, x)− εM(iκ)]. (51)

In addition, we can always consider a magnetodielectric object for the cavity in the
first system (Fig. 2a) and for the inner object in the second system (Fig. 2b). The sign
of the potential is now determined by Eq. (44) with µM = 1. As shown in Chapters 6
and 7, we can also extend the result of Eq. (50) to systems at thermal equilibrium since
the free energy Fint satisfies [80]

⟨pint(T)⟩ = − 1
4πr2

0

∂Fint(T)
∂r0

, (52)

and we can perform a similar derivation computing Fint(T) replacing the integral
in Eint by a sum over the Matsubara frequencies 2πkBnT, where the zero mode is
weighted by 1/2 [3]. The key point is that our analysis holds for each fixed frequency.

As already mentioned, the self-energy contribution should also be considered
when computing the pressure since the interaction term has no independent meaning.
In Chapter 6 we include the self-energy contribution for one of the cases in which it is
unambiguously defined. As explained in Chapter 5, if the corresponding heat kernel
coefficient does not vanish for a massless field when the whole space and both po-
larizations are taken together, there is in general no satisfactory interpretation of the
self-energy [3]. Unfortunately, there are a few cases in which this occurs, being most
of them listed in the introduction of Chapter 5 and Ref. [99]. A dilute dielectric ball is
one of the examples, where the renormalized energy takes the form

Eren
1 =

23
1536πr1

(ε1 − 1)2 + O (ε1 − 1)3 . (53)

For this case we find situations in which the total pressure is repulsive, tending to
expand the sphere inside the cavity.

Despite that, the findings described in Chapters 6 and 7 can be checked against
experimentally verified results. In particular, note that the sign for the interaction
force found by DLP in 1961 [14] is determined in a similar way as described here for
the interaction pressure. In particular, assuming that expression (1) holds for every
frequency, this relation can be written in terms of the signs of the potentials as

−sgn[ε1(iκ)− εM(iκ)]sgn[ε2(iκ)− εM(iκ)] = −s1s2,

and the DLP configuration can be recovered with the systems of Figs. 2a and 2b.
Specifically, if we consider the configuration shown in Fig. 3 and we take the radii
of the sphere and cavity wall to infinity, keeping the difference between them con-
stant [100], we arrive at the planar geometry with three slabs [14]. Indeed, it is a
generalization of the original configuration since we do not assume homogeneous
permittivities, but functions depending on the coordinate perpendicular to the slabs.
Now, the DLP result on the sign of the force per unit area sgn Fint can be found from
Eq. (50), noting

sgn Fint = −sgn ∂dEint = −sgn ∂r2 Eint = sgn ∂r1 Eint, (54)

where d := r2 − r1 > 0 is the difference between the radii of the cavity wall and
the sphere. From the previous equation, it is clear why the minus sign of Eq. (49) is
essential for obtaining consistent results. A particular choice of materials in which
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Figure 3: Cross-section view of the particular case which leads to the DLP result.

Fint is repulsive is proposed in the experiment described in Ref. [15], where they used
a sphere coated with gold and a silica plate immersed in bromobenzene, being

−(εg(iκ)− εb(iκ))(εs(iκ)− εb(iκ)) > 0, (55)

for a given range of frequencies, as shown in Fig. 4. Indeed, this relation only needs to
be valid for the frequencies contributing most to the integral [23]. Note also that from

Gold

Bromobenzene

Silica

14.5 15.0 15.5 16.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: Analytic continuation of ε(ω) for the materials used in Ref. [15]. The fre-
quency is given in rad/s.

Kramers–Kronig relations, we can write the analytic continuation of the dielectric
permittivity to the imaginary axis in terms of ε(ω) as [3]

ε(iκ) = 1 +
2
π

∫ ∞

0
dω

ω Im ε(ω)

ω2 + κ2 ,

from which it is clear that ε(iκ) is a real quantity along the positive imaginary fre-
quency axis [101]. It is also worth mentioning that in systems like the one shown in
Fig. 3, the interaction force acting on each object vanishes due to symmetry reasons.
In fact, this happens for any system which is invariant under mirror symmetry with
respect to the three spatial planes, like the one shown in Chapter 6. However, the
pressure is not zero and it should be taken into account for systems such as those
composed of liquid dielectrics, although other effects, such as hydrodynamic forces,
should also be considered [37, 38].

We conclude this introduction to the main results emphasizing that we have been
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able to obtain the sign of the pressure for the systems described in Figs. 2a and 2b
without relying on any particular symmetric configuration, in which the calculation
could be feasible. This is due to the scattering approach, which was previously em-
ployed in the seminal works on the attractive character of the force [21] and the study
of stable levitation based on Casimir-Lifshitz forces [23]. However, the main differ-
ence with respect to these articles is that we vary the interaction energy with respect
to the radii of the sphere and cavity wall and not with respect to the distance between
the bodies. In consequence, we do not study the properties of the propagators with
respect to this distance but the variation of the transition matrices with respect to the
radius. This is why we need particular results of classical electromagnetic scattering.
In fact, we have developed them for situations in which the source or the detector
can be inside the cavity. Note that this is not particularly useful in classical electrody-
namics since in current experiments both are outside the target, but it is needed for
studying the interaction energy when one object is contained within another. Since
we only focus on the radial dependence, we can assume an arbitrarily shaped ge-
ometry, an inhomogeneous matter distribution and nontrivial permeabilities for the
nonspherical object. Despite this difference with the two theorems aforementioned,
we obtain similar results. For instance, the stability reached with Casimir-Lifshitz
forces is also completely determined by the product of the signs of the potentials si,
leading, in general, to unstable equilibrium [23].

Structure of the thesis and methodology employed

This thesis comprises several self-contained topics that are connected by the general
framework described above. It is written as a compendium of publications and seven
scientific papers have been included [74, 100, 102–106], being one of them pending
of acceptance [106]. Since each chapter adapts the corresponding article, it is self-
explanatory with its own bibliography, although some minimal changes with respect
the original papers have been included for ease of reading of the whole thesis. This
thesis also fulfills the requirements to obtain the degree of Doctor of Philosophy in
Physics with the International Mention from the University of Valladolid.

The methods used within this thesis are mostly analytical. The remaining nu-
merical and graphical calculations are done within the Wolfram Language using the
program Mathematica. We have also used the interpreted programming language
Python in Chapter 5 for the numerical integral and sum of the finite energy Efin

0 . The
work presented is divided into two parts, being each of them organized as follows:

Part I: Study of spherical δ-δ′ interactions

• Chapter 1. Hyperspherical δ-δ′ potentials

Adapted from: J. M. Muñoz-Castañeda, L. M. Nieto and C. Romaniega, Hyperspher-
ical δ-δ′ potentials, Ann. Phys. 400, 246 (2019).

In this first chapter the spherical δ-δ′ interaction for a d-dimensional space is de-
fined. The bound states, scattering states and zero-energy states are computed. As
stated above, these results will play a central role in the second part of this thesis.

• Chapter 2. Regular and δ-δ′ potentials I

C. Romaniega, M. Gadella, R. M. Id Betan and L. M. Nieto, An approximation to the
Woods–Saxon potential based on a contact interaction, Eur. Phys. J. Plus 135, 372 (2020).

https://www.sciencedirect.com/science/article/abs/pii/S0003491618303026
https://link.springer.com/article/10.1140/epjp/s13360-020-00388-7
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We now add a spherical well to the potential, extending the study of the singu-
lar interaction defined in the previous chapter using von Neumann’s theory. We
show how we can adapt the one-dimensional work [53] to our system with singu-
lar and regular spherical potentials. We also characterize and calculate the number
of bound states, extend some properties of continuous spherically symmetric po-
tentials and describe the unstable quantum states. We indicate the possible use of
the interaction as a first approximation of real physical systems, particularly for
describing neutron energy levels for double magic nuclei.

• Chapter 3. Regular and δ-δ′ potentials II .

A. Martín-Mozo, L. M. Nieto and C. Romaniega, A solvable contact potential based on
a nuclear model, Eur. Phys. J. Plus 137, 33 (2022).

In this chapter we continue the analysis of the previous one. We now add the static
Coulomb potential of a uniformly charged sphere. This enables the study of proton
energy states and, as in the previous paper, some applications for describing phys-
ical systems are indicated. These are based on the properties of confluent hyperge-
ometric functions with complex arguments. In addition, we now find the optimal
δ′ contribution which best fits the available data for the nucleon level schemes of
the nuclei 208Pb, 40Ca and 16O.

Part II: Casimir-Lifshitz energy and pressure in cavities

• Chapter 4. Interaction energy between two concentric δ-δ′ spheres.

I. Cavero-Peláez, J. M. Muñoz-Castañeda, and C. Romaniega, Casimir energy for
concentric δ-δ′ spheres, Phys. Rev. D 103, 045005 (2021).

We begin the second part studying the interaction energy of a massless scalar field
in the presence of two concentric δ-δ′ spheres. As indicated, some results from the
previous part of the thesis are needed. In particular, we have computed the inter-
action energy for the values of the potential such that there are no bound states
in the quantum mechanical sense. In addition, the components of the T operators
appearing in the representation of the interaction Casimir energy in terms of func-
tional determinants are completely determined using the scattering data computed
in the first part of the thesis.

• Chapter 5. Self-energy of a δ-δ′ sphere.

C. Romaniega, I. Cavero-Peláez, and J. M. Muñoz-Castañeda, Casimir self-energy of
a δ-δ′ sphere (pending of acceptance).

We continue the analysis of the previous chapter computing the self-energy con-
tribution to the pressure on a δ-δ′ sphere using the zeta function regularization
method. In this context, the energy is completely determined by the Jost function
for each value of the angular momentum, which is easily found with the scattering
phase shifts of the first part of the thesis. We find a simple relation between the
couplings of the δ and δ′ interactions such that the Casimir self-energy is unam-
biguously defined, computing the relevant heat kernel coefficient. We also check
our results against particular cases previously studied in the literature.

• Chapter 6. Casimir-Lifshitz pressure in cavities I .

C. Romaniega, Repulsive Casimir–Lifshitz pressure in closed cavities, Eur. Phys. J. Plus
136, 327 (2021).

https://link.springer.com/article/10.1140/epjp/s13360-021-02247-5
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.045005
https://link.springer.com/article/10.1140/epjp/s13360-021-01308-z
https://link.springer.com/article/10.1140/epjp/s13360-021-01308-z
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In these two final chapters we study the interaction term of the energy for the elec-
tromagnetic field in the presence of more realistic bodies. Specifically, in this chap-
ter we consider a dielectric sphere enclosed within an arbitrarily shaped magne-
todielectric cavity. We determine, under general hypotheses, the sign of the inter-
action energy and pressure acting on the sphere. This is achieved by rewriting the
expression in terms of functional determinants and analyzing the properties of the
classical T matrices. In this sense, this approach is similar to the one employed in
Refs. [21, 23]. In addition, in this chapter and in the following we also obtain the
Dzyaloshinskii-Lifshitz-Pitaevskii result [14] on the sign of the interaction force as
a limiting case. For a dilute dielectric ball we also include the self-energy contribu-
tion, obtaining a total repulsive pressure.

• Chapter 7. Casimir-Lifshitz pressure in cavities II .

C. Romaniega, Casimir-Lifshitz pressure on cavity walls, Eur. Phys. J. Plus 136, 1051
(2021).

We continue the analysis of the previous chapter, now considering a dielectric ob-
ject with a spherical cavity in which another arbitrarily shaped magnetodielectric
object is enclosed. Due to the components of the T operator entering in the TGTG
representation, we need to introduce some novel results of classical electromag-
netic scattering for configurations with the source and detector inside the cavity.
The latter is based on the Lippmann-Schwinger equation and an invariant imbed-
ding procedure. As in the previous chapter, the results on the energy and pressure
are generalized to finite temperature systems at thermal equilibrium. We also check
against particular examples found in the literature like conducting shells and ho-
mogeneous spherical dielectrics.

The structures of this chapter and the previous one are very similar. We have ex-
ploited the derivation of Chapter 6, introducing the corresponding modifications
needed for the study of the new configuration and a slightly different notation for
some intermediate steps.
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Chapter 1

Hyperspherical δ-δ′ potentials

This chapter is adapted from:

Hyperspherical δ-δ′ potentials

J. M. Muñoz-Castañeda1, L. M. Nieto1,2, C. Romaniega1

Annal of Physics 400, 246 (2019)

DOI: https://doi.org/10.1016/j.aop.2018.11.017

1Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid,
47011 Valladolid, Spain.

2IMUVA- Instituto de Matematicas, Universidad de Valladolid, 47011 Valladolid,
Spain.

In this first chapter the spherical δ-δ′ interaction for a d-dimensional space is defined.
The bound states, scattering states and zero-energy states are computed. As stated
above, these results will play a central role in the second part of this thesis.

1.1 Abstract

The spherically symmetric potential a δ(r − r0) + b δ′(r − r0) is generalized for the d-
dimensional space as a characterization of a unique self-adjoint extension of the free
Hamiltonian. For this extension of the Dirac delta, the spectrum of negative, zero
and positive energy states is studied in d ≥ 2, providing numerical results for the
expectation value of the radius as a function of the free parameters of the potential.
Remarkably, only if d = 2 the δ-δ′ potential for arbitrary a > 0 admits a bound state
with zero angular momentum.

https://www.sciencedirect.com/science/article/abs/pii/S0003491618303026




33

Chapter 2

Regular and δ-δ′ potentials I

This chapter is adapted from:

An approximation to the Woods–Saxon potential based on a contact interaction

C. Romaniega1, M. Gadella1, R. M. Id Betan2,3,4 and L. M. Nieto1

The European Physical Journal Plus 135, 372 (2020)
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1Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de
Valladolid, 47011. Valladolid, Spain.

2Instituto de Física Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP
Rosario, Argentina.

3Facultad de Ciencias Exactas, Ingeniería y Agrimensura (UNR), Av. Pellegrini 250,
S2000BTP Rosario, Argentina.

4Instituto de Estudios Nucleares y Radiaciones Ionizantes (UNR), Riobamba y
Berutti, S2000EKA Rosario, Argentina.

We now add a spherical well to the potential, extending the study of the singular
interaction defined in the previous chapter using von Neumann’s theory. We show
how we can adapt the one-dimensional work to our system with singular and regular
spherical potentials. We also characterize and calculate the number of bound states,
extend some properties of continuous spherically symmetric potentials and describe
the unstable quantum states. We indicate the possible use of the interaction as a first
approximation of real physical systems, particularly for describing neutron energy
levels for double magic nuclei.

2.1 Abstract

We study a nonrelativistic particle subject to a three-dimensional spherical potential
consisting of a finite well and a radial δ-δ′ contact interaction at the well edge. This
contact potential is defined by appropriate matching conditions for the radial func-
tions, thereby fixing a self-adjoint extension of the nonsingular Hamiltonian. Since
this model admits exact solutions for the wave function, we are able to characterize
and calculate the number of bound states. We also extend some well known proper-
ties of certain spherically symmetric potentials and describe the resonances, defined
as unstable quantum states. Based on the Woods-Saxon potential, this configuration
is implemented as a first approximation for a mean-field nuclear model. The results
derived are tested with experimental and numerical data in the double magic nuclei
132Sn and 208Pb with an extra neutron.

https://link.springer.com/article/10.1140/epjp/s13360-020-00388-7
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Chapter 3

Regular and δ-δ′ potentials II

This chapter is adapted from:

A solvable contact potential based on a nuclear model

A. Martín-Mozo, L. M. Nieto and C. Romaniega
The European Physical Journal Plus 137, 33 (2022)

DOI: https://doi.org/10.1140/epjp/s13360-021-02247-5

Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de
Valladolid, 47011. Valladolid, Spain.

In this chapter we continue the analysis of the previous one. We now add the static
Coulomb potential of a uniformly charged sphere. This enables the study of proton
energy states and, as in the previous paper, some applications for describing physical
systems are indicated. These are based on the properties of confluent hypergeometric
functions with complex arguments. In addition, we now find the optimal δ′ contri-
bution which best fits the available data for the nucleon level schemes of the nuclei
208Pb, 40Ca and 16O.

3.1 Abstract

We extend previous work on the study of a particle subject to a three-dimensional
spherical singular potential including a δ-δ′ contact interaction. In this case, to have a
more realistic model, we add a Coulombic term to a finite well and a radial δ-δ′ contact
interaction just at the edge of the well, which is where the surface of the nucleus
would be. We first prove that we are able to define the contact potential by matching
conditions for the radial function, fixing a self-adjoint extension of the nonsingular
Hamiltonian. With these matching conditions, we are able to find analytic solutions of
the wave function and focus the analysis on the bound state structure characterizing
and computing the number of bound states. For this approximation for a mean-field
Woods-Saxon model, the Coulombic term enables us to complete the previous study
for neutrons analyzing the proton energy levels in some doubly magic nuclei. In
particular, we find the appropriate δ′ contribution fitting the available data for the
neutron- and proton-level schemes of the nuclei 208Pb, 40Ca and 16O.

https://link.springer.com/article/10.1140/epjp/s13360-021-02247-5
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Chapter 4

Interaction energy between two
concentric δ-δ′ spheres

This chapter is adapted from:

Casimir energy for concentric δ-δ′ spheres

I. Cavero-Peláez1,2, J. M. Munoz-Castaneda3, and C. Romaniega3

Physical Review D 103, 045005 (2021)

DOI: https://doi.org/10.1103/PhysRevD.103.045005

1Centro Universitario de la Defensa, Zaragoza, 50019, Spain.
2Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza,

Zaragoza, 50009, Spain.
3 Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de

Valladolid, 47011. Valladolid, Spain.

We begin the second part studying the interaction energy of a massless scalar field in
the presence of two concentric δ-δ′ spheres. As indicated, some results from the pre-
vious part of the thesis are needed. In particular, we have computed the interaction
energy for the values of the potential such that there are no bound states in the quan-
tum mechanical sense. In addition, the components of the T operators appearing in
the representation of the interaction Casimir energy in terms of functional determi-
nants are completely determined using the scattering data computed in the first part
of the thesis.

4.1 Abstract

We study the vacuum interaction of a scalar field and two concentric spheres defined
by a singular potential on their surfaces. The potential is a linear combination of the
Dirac δ and the δ′ interaction. The presence of the δ′ term in the potential causes that
it behaves differently when it is seen from the inside or from the outside of the sphere.
We study different cases for positive and negative values of the delta prime coupling,
keeping positive the coupling of the delta. As a consequence, we find regions in the
space of couplings, where the energy is positive, negative or zero. Moreover, the sign
of the δ′ couplings causes different behavior on the value of the Casimir energy for
different values of the radii. This potential gives rise to general boundary conditions
with limiting cases defining Dirichlet and Robin boundary conditions that allows us
to simulate purely electric or purely magnetic spheres.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.045005
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Chapter 5

Self-energy of a δ-δ′ sphere

This chapter is adapted from:

Casimir self-energy of a δ-δ′ sphere

C. Romaniega1, J. M. Munoz-Castaneda1, and I. Cavero-Peláez2,3

1 Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de
Valladolid, 47011. Valladolid, Spain.

2Centro Universitario de la Defensa, Zaragoza, 50019, Spain.
3Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza,

Zaragoza, 50009, Spain.

We continue the analysis of the previous chapter computing the self-energy contribu-
tion to the pressure on a δ-δ′ sphere using the zeta function regularization method. In
this context, the energy is completely determined by the Jost function for each value of
the angular momentum, which is easily found with the scattering phase shifts of the
first part of the thesis. We find a simple relation between the couplings of the δ and δ′

interactions such that the Casimir self-energy is unambiguously defined, computing
the relevant heat kernel coefficient. We also check our results against particular cases
previously studied in the literature.

5.1 Abstract

We extend previous work on the vacuum energy of a massless scalar field in the pres-
ence of singular potentials. We consider a single sphere defined by the so-called δ-δ′

interaction. Contrary to the Dirac δ potential, we find a nontrivial one-parameter
family of potentials such that the regularization procedure gives an unambiguous
result for the Casimir self-energy. The procedure employed is based on the zeta func-
tion regularization and the cancellation of the heat kernel coefficient a2. The results
obtained are in agreement with particular cases, such as the Dirac δ or Robin and
Dirichlet boundary conditions.

5.2 Introduction

Quantum vacuum fluctuations are known to give rise to forces between two distinct
bodies as well as pressure on the surface of a single object. This macroscopic mani-
festation of the vacuum state associated to quantum fields has been investigated and
measured in some special cases, achieving a level of concordance between theory and
experiments that has astonished the community (see Refs. [1, 2] for general reviews).
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From a quantum field theoretical point of view, the zero-point energy due to the quan-
tum vacuum fluctuations carries divergences. The appearance of the Casimir energy
has stressed the importance of dealing with divergences and acquiring a deep un-
derstanding of their nature to the point of extracting the finite part of the zero-point
fluctuations, isolating the different divergent contributions and obtaining a physically
meaningful result. After regularization and renormalization, the part of the quantum
vacuum energy that encloses the quantum vacuum interaction between two objects
is unambiguous and leads to a finite force between the bodies [1, 3–5]. However, in
general, the self-energy of a single object is only unambiguously defined for the case
of massive quantum vacuum fluctuations. In the case of massless quantum fields, the
self-energy is only defined in a unique way for a few cases involving special geome-
tries and boundary conditions. For example, it is well known that in the dilute case
the Casimir energy, that can also be calculated as the sum of the van der Waals in-
teractions, is unambiguously identified once the surface and volume divergences are
removed [6–8]. Perfectly conducting as well as dielectric geometries such as spheres
or cylinders have been computed resulting on finite answers for the Casimir stress on
the surface [9–12]

In all the cases mentioned above, different techniques for regularizing the vacuum
self-stress and extracting the divergences have been used. From the zeta function reg-
ularization, to point splitting, analytic continuation or the calculation of heat kernel
coefficients, several methods are used to understand the meaning and nature of the
infinities arising from summing the zero-point frequencies. The difficulties that the
study of the self-energies carries have been discussed broadly and Bordag et al. were
the first ones discussing these divergences by computing the heat kernel coefficients
[13]. Furthermore, Bordag, Kirsten, Vassilevich, and others, have given analytic for-
mulas that enable the characterization of the infinities and the ambiguities appearing
in the calculation of quantum vacuum self-energies in terms of the heat kernel coeffi-
cients [14, 15].

In a recent paper [16] (Chapter 4 of this thesis), we calculated the interaction en-
ergy between two concentric spherical shells mimicked by δ-δ′ singular potentials on
the surfaces. In this case the Casimir energy can be written as

EC = E1 + E2 + Eint, (5.1)

being Eint the interaction energy, which can be determined unambiguously, and E1
and E2 the self-energies of the first and second body, respectively. Since the divergent
contributions depend on the characteristics of the body, like the radius of the sphere, a
renormalization procedure is in general needed for the self-energies in order to give a
meaningful result. When the spheres (or any other geometrical body) are one outside
the other, the force between the bodies can be obtained as the derivative of the energy
with respect to the distance between the objects. Although a similar analysis can be
performed for a sphere inside a cavity [17], for two concentric spheres the interaction
energy has no independent meaning and to obtain a full understanding we need to
know the self-energy. Indeed, in this configuration the total interaction force acting
on the spheres vanishes, although the pressure acting on their surfaces does not. This
pressure is now defined as the derivative with respect to the radius of the shell, and
the self-energy also depends on it.

In this paper we focus on the pressure on a single sphere, thus extending the work
of our previous aforementioned paper [16]. In the latter, we studied the sign of the
interaction energy for a massless scalar field in the presence of two concentric δ-δ′

spheres employing the TGTG representation of the energy. The same representation
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was used in [18] (Chapter 6 of this thesis), where the pressure acting on a dielectric
sphere enclosed within a magnetodielectric cavity was studied. Although the sign of
the interaction pressure was determined for quite general inhomogeneous permittiv-
ities and permeabilities, the self-pressure of the sphere was only well defined in the
known dilute limit [13]. Indeed, as we have stated, there are a few cases in which
the self-energy has an unambiguous meaning [19]. One is the aforementioned dilute
limit [12, 13], a magnetodielectric object when the speed of light is the same inside
and outside [20, 21] or a perfectly conducting spherical or cylindrical shell [9, 10]. For
a massless scalar field, an unambiguously finite result is found up to second order for
the δ potential weak limit [22], as well as for for Dirichlet and Neumann boundary
conditions. For these boundary conditions a cancellation of the divergences occurs
when the whole space is considered [1]. However, for Robin boundary conditions
this is no longer the case, and the cancellation only occurs for certain values of the
parameter [14].

In this paper we will employ the zeta function regularization for analyzing the di-
vergences. Within this approach, the energy is expressed in terms of the zeta function
associated with a Schrödinger-type operator P

E0(s) =
µ2s

2 ∑
n

ω1−2s
n =

µ2s

2
ζP(s −

1
2
), (5.2)

where µ is a parameter with dimensions of mass introduced to keep the right dimen-
sions and h̄ = c = 1. The zeta function associated with the operator determining the
modes of the system is

ζP(s) = ∑
n

λ−s
n , Pφn(x) = λn φn(x). (5.3)

In our case, we have P = −∆ + Vδ-δ′(r), where the potential represents the spherical
singular interaction. From the asymptotic behaviour of the eigenvalues of this oper-
ator, indeed, for any second order elliptic differential operator [23], the sum (5.2) is
divergent for s = 0 and it needs to be regularized. Once the divergences are iden-
tified, we need to renormalize the resulting expression. Bordag, Kirsten, Vassilevich
and their collaborators demonstrated that the self-energy for massless scalar fields is
defined in a unique way only if the heat kernel coefficient a2 of the operator P given
above is identically zero.

The aim of this paper is to study a complicated enough interaction to obtain non-
trivial systems for which a2 = 0, unlike what happens for the δ potential, and simple
enough to proceed in an analytic way. The δ-δ′ potential is chosen since it has two
couplings that will enable, for certain particular cases, the cancellation of the a2 heat
kernel coefficient. This point interaction was introduced in [24] and studied in differ-
ent contexts over the years [25–28], where many analytical results have been obtained.

The paper is organized as follows. In Section 5.3 we show previous results con-
cerning the δ-δ′ potential obtained in [29] (Chapter 1 of this thesis). In Section 5.4 we
compute the quantum vacuum energy for a three-dimensional spherical shell mim-
icked by a radial δ-δ′ potential using the zeta function regularization, and obtain those
particular values for the couplings that give rise to a heat kernel coefficient a2 iden-
tically zero. Section 5.5 shows the numerical results for the finite quantum vacuum
self-energy and pressure when unambiguously defined. Finally, in Section 5.6 we
present our conclusions and further comments. At the end, we include the Appendix
where we present some particular cases that enable us to check our calculations by
obtaining results already published by other authors.
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5.3 δ-δ′ potential on a spherical shell

Let us consider a single spherical shell defined by the singular potential

Vδ-δ′(r) = λ0δ(r − r0) + 2λ1δ′(r − r0), r0 ∈ R+. (5.4)

The system of units chosen implies that [λ0] = L−1, and [λ1] = 1. The scalar field
satisfies the Klein-Gordon equation which, after taking its time Fourier transform, is

[−∆ + Vδ-δ′(r)] φ(x) = ω2φ(x). (5.5)

Due to the spherical symmetry of the system, the solutions can be written as

φ(x) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

ρℓ(r)Yℓm(θ, ϕ), (5.6)

where Yℓm(θ, ϕ) are the spherical harmonics. The nonrelativistic Schrödinger Hamil-
tonian in Eq. (5.5) has been studied in detail in [29], where the potential Vδ-δ′(r) is
defined by matching conditions on the surface of the sphere with radius r0 over the
space of field modes as(

ρℓ(r+0 )
ρ′ℓ(r

+
0 )

)
=

(
α 0
β̃ α−1

)(
ρℓ(r−0 )
ρ′ℓ(r

−
0 )

)
. (5.7)

The prime here, and throughout the text, indicates derivative with respect to the argu-
ment and r±0 denotes the limit to r0 taken from the right or from the left, respectively.
We have also defined

α :=
1 + λ1

1 − λ1
, β̃ :=

λ̃0

1 − λ2
1

, λ̃0 := −4λ1

r0
+ λ0. (5.8)

These matching conditions are ill defined if λ1 = ±1. In these cases we can write [27]

ρℓ(r−0 ) = 0, ρ′ℓ(r
+
0 )− D+ρℓ(r+0 ) = 0 if λ1 = +1,

ρℓ(r+0 ) = 0, ρ′ℓ(r
−
0 ) + D−ρℓ(r−0 ) = 0 if λ1 = −1,

(5.9)

where D± = 4/(λ0 ∓ 4r−1
0 ). Notice that there is a typo in Eq. (30) in [16]. The eigen-

values are not known for this problem, so the explicit summation shown in (5.3) can
not be performed. However, using Cauchy’s formula, we can write the Casimir self-
energy in terms of the Jost function fℓ(κ) as

E0(s) = −µ2s cos πs
π

∞

∑
ℓ=0

ν

∞∫
0

dκ κ1−2s ∂

∂κ
log fℓ(κ), (5.10)

where the volume energy has already been subtracted [30]. For each value of the
angular momentum this function satisfies [31]

fℓ(ω)

f ∗ℓ (ω)
= e−2iδℓ(ω), (5.11)
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being δℓ(ω) the scattering phase shift. For the potential in Eq. (5.4) we computed
these phase shifts in [29] . From this we obtain

fℓ(κ) = 1 +
λ0r0 − 2λ1

λ2
1 + 1

Iν(y)Kν(y)−
2λ1y

λ2
1 + 1

(Iν(y)Kν(y))′, (5.12)

where
ω := iκ, ν := ℓ+

1
2

, y := κr0. (5.13)

By turning off the coefficient of the δ′ term in the potential, this expression reduces
to the known result of the Jost function corresponding to a spherical shell with a δ
potential on its surface [13],

fℓ(κ) = 1 + r0λ0 Iν(y)Kν(y). (5.14)

5.4 Zeta function regularization

The zeta function is connected with the heat kernel K(t) through the Mellin transform

ζ(s) =
∫ ∞

0
dt

ts−1

Γ(s)
K(t), (5.15)

where
K(t) = ∑

n
e−λnt. (5.16)

At s = 0 this expression is exponentially decreasing for large t. The trouble comes
when t is small. For that we use the asymptotic expansion [15]

K(t) ∼ 1
(4πt)3/2 ∑

n
an/2tn/2. (5.17)

Taking these expressions into account and using the Casimir energy for massless
scalar field as in Eq. (5.2), we find the result

Eas
0 (s) = − a2

32π2

(
1
s
+ 2 log(µr0)

)
+ Ean

0 + O(s), (5.18)

where the superindex -as stands for asymptotic and -an for the analytic part. Contrary
to massive fields, where the large-mass normalization condition ensures the absence
of ambiguities, the only way to get a universal answer for our massless field is to
consider configurations such that a2 = 0. In this case, the log term containing the
parameter µ, resulting from the regularization, disappears. In addition, with these
cancellation no renormalization procedure is needed. Therefore, we look for those
cases such that a2 = 0, where a2 can be identified as the coefficient of the divergent
term in the vacuum energy. Specifically, this coefficient can be computed analyzing
the behavior of the zeta function given in Eq. (5.2) if we take into account Eqs. (5.15)
and (5.17). In particular,

an = Res
s= 3

2−n
((4π)

3
2 Γ (s) ζ(s)), 2n ∈ N≥0. (5.19)

Note that the self-energy given by Eq. (5.10) is not well defined for s = 0 due to the
asymptotic behaviour of the integrand [14]. Therefore, we can extend the strip of
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convergence in order to include s = 0 adding and then subtracting the appropriate
asymptotic terms. In consequence, we define

Efin
0 := − 1

π

∞

∑
ℓ=0

ν

∞∫
0

dκ κ
∂

∂κ
(log fℓ(κ)− log f as

ℓ (κ)) , (5.20)

as the finite part of the energy at s = 0 and

Eas
0 (s) := −µ2s cos πs

π

∞

∑
ℓ=0

ν

∞∫
0

dκ κ1−2s ∂

∂κ
log f as

ℓ (κ), (5.21)

the asymptotic one. Note that the definition of log f as
ℓ (κ) is determined by requiring

Efin
0 to become finite. We achieve that by expanding the Jost function using its uni-

form asymptotic expansion [32] up to third order in 1/ν. This allows us to write the
argument of the logarithm as

f as
ℓ (κ) ≈ 1 + x(ν),

where x(ν) → 0 when ν → ∞. Then, we expand the logarithm in Eq. (5.21) as a power
series,

log f as
ℓ (κ) :=

N=3

∑
n=1

3n

∑
i=n

Cn,i
ti(z)
νn , (5.22)

where t(z) := 1/
√

1 + z2 and z = κr0/ν. Note that if we subtract N terms we move
the strip of convergence N/2 to the left, so subtracting the first three is enough to
isolate the analytic part of the zeta function [14]. Nonetheless, more terms could be
subtracted for improving the numerical evaluation of Efin

0 . The first nonzero coeffi-
cients Cn,i are

C1,1 =
λ0r0

2(λ2
1 + 1)

, C1,3 = − λ1

λ2
1 + 1

,

C2,2 = − λ2
0r2

0

8
(
λ2

1 + 1
)2 , C2,4 =

λ0λ1r0

2
(
λ2

1 + 1
)2 , C2,6 = − λ2

1

2
(
λ2

1 + 1
)2 ,

C3,3 =
2λ3

0r3
0 + 3

(
λ2

1 + 1
)2

(4λ1 + λ0r0)

48
(
λ2

1 + 1
)3 , C3,5 = −

2λ2
0λ1r2

0 + 3
(
λ2

1 + 1
)2

(9λ1 + λ0r0)

8
(
λ2

1 + 1
)3 ,

C3,7 =
120λ1

(
λ2

1 + 1
)2

+ λ0
(
5λ4

1 + 18λ2
1 + 5

)
r0

16
(
λ2

1 + 1
)3 , C3,9 = −

λ1
(
105λ4

1 + 218λ2
1 + 105

)
24
(
λ2

1 + 1
)3 .

For λ1 = 0, i.e., δ potential, we obtain the coefficients Xn,i found in [33] and [13],
although there is a minus sign missing in the coefficient X2,2 in [13].

5.4.1 Heat kernel coefficient a2

The purpose of this section is to analyze E0(s) as s → 0 in order to discuss the diver-
gences. Note that, by definition, Efin

0 gives no contribution to the poles at s = 0 so the
divergences are only contained in Eas

0 (s). The integral to be computed in (5.21), after



5.4. Zeta function regularization 47

performing the change of variables z = κr0/ν, is

I =
(r0µ)2s

r0
ν1−2s

∞∫
0

dz z1−2s ∂

∂z
log f as

ℓ (z),

which can be easily solved using

∫ ∞

0

zn

(z2 + 1)b dz =
Γ
( n+1

2

)
Γ
(
b − n

2 − 1
2

)
2Γ(b)

.

Now we perform the sum over ν in Eas
0 (s). This can be written in terms of the Hurwitz

zeta function for the three values of n

∞

∑
ℓ=0

ν1−n+1−2s =
∞

∑
ℓ=0

ν2−n−2s = ζ

(
n + 2s − 2,

1
2

)
.

The latter satisfies the following identity involving the Riemann zeta function

ζ

(
n + 2s − 2,

1
2

)
= (22s+n−2 − 1)ζ(n + 2s − 2).

It is then clear that the contribution for n = 2 vanishes. Computing the residue we
identify the a2 coefficient of the singularity, finding

a2 =
2π
(
128λ3

1 + 140λ2
0λ1r2

0 − 35λ3
0r3

0 − 224λ0λ2
1r0
)

105
(
λ2

1 + 1
)3 r0

. (5.23)

In addition, Ean
0 in Eq. (5.18) is given by

Ean
0 =

1

5040πr0
(
λ2

1 + 1
)3

(
−64λ3

1(12γ − 1 + 36 log2)− 420λ2
0λ1r2

0(2γ − 1 + log64)

+ 210λ3
0r3

0(γ − 1 + log8)− 21λ0r0

(
5λ4

1(−12 logA + 1 + log8)

− 2λ2
1(60 logA − 13 + 81 log2)− 60 logA + γ

(
5λ4

1 − 54λ2
1 + 5

)
+ 5 + 15 log2

))
,

where A is the Glaisher constant and γ is Euler’s one. For λ1 = 0, δ potential, we
recover the results found in [13, 33]. From (5.23), we find that there is a family of
parameters that make a2 vanish and therefore defines the self-stress over the sphere
without ambiguities. These couplings satisfy

λ1 =
1

24

(
3
√

42
√

30 + 224 − 142/3

3
√

3
√

30 + 16
+ 14

)
λ0r0.

There are other two combinations of the couplings such that a2 = 0, but they involve
complex solutions. Consequently, the self-energy is properly defined if

c0λ1 = λ0r0, c0 ≃ 1.20818671192. (5.24)
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5.5 Renormalized energy and pressure

Once a2 = 0, the renormalized energy is unambiguously defined

Eren
0 := Efin

0 + Ean
0 .

In contrast to Efin
0 and Ean

0 , this quantity is uniquely defined since it does not depend
on the number of terms subtracted. As we have stated, the renormalization is com-
pletely determined if the heat kernel coefficient a2 = 0 [1]. For the δ potential this is
only possible for the trivial case λ0 = 0 [13], although the weak limit can be computed
until second order [22]. Studying the divergences using Green’s functions it is shown
that they come from the surface term only [34].

5.5.1 Pressure on the sphere

The pressure acting on the surface of the sphere can be obtained from Eren
0 . To de-

fine this pressure we make use of the principle of virtual work. For our spherically
symmetric system [35, 36]

pren
0 = − 1

4πr2
0

∂Eren
0

∂r0
. (5.25)

For the case in Eq. (5.24), where the self-energy is well defined, the finite and analytic
parts of the renormalized energy become

Efin
0 =

1
πr0

∞

∑
ℓ=0

ν2
∞∫

0

dz (log fℓ(z)− log f as
ℓ (z)) (5.26)

and

Ean
0 =

F(λ1, c0)

5040π
(
λ2

1 + 1
)3 r0

, (5.27)

where we have integrated by parts in the first expression and the function F(λ1, c0) is
obtained from Eq. (5.23) setting λ0r0 = λ1c0. Both terms have the same dependence
on r0 and therefore,

sgn pren
0 = sgn Eren

0 . (5.28)

Indeed, Eren
0 can be written as Eren

0 = eren
0 /r0, being eren

0 a numerical constant indepen-
dent of r0. Then,

Eren
0 =

eren
0
r0

, p =
eren

0

4πr4
0

. (5.29)

5.5.2 Numerical evaluation

Now we compute Eren
0 when a2 = 0. The finite part of the energy (5.26) can be cal-

culated only numerically and for that we use a code in the interpreted programming
language Python.

First, note that if (5.24) holds there are no bound states in the quantum mechanical
sense. That is to say, with our potential in (5.5) we can not have ω2 < 0. For the
latter we should change the integration contour in order to avoid the poles along the
imaginary axis [31]. The absence of bound states can be proved with Proposition 2 in
[29]. This result states that the quantum mechanical system admits bound states with
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angular momentum from 0 to ℓmax, being

ℓmax =

⌊
−1

2
+

λ1 − λ0r0
2

λ2
1 + 1

⌋
. (5.30)

For the δ potential case we see that there are no bound states unless the potential is
deep enough, λ0r0 < −1, as expected. For the δ-δ’ potential however, and under the
condition in (5.24), there exist no bound states regardless of the value of λ0. This can
be easily proved noting that in this case

ℓmax = −1
2

⌊
1 + (2 − c0)

λ1

λ2
1 + 1

⌋
, λ1 =

λ0r0

c0
, (5.31)

which is always negative since c0 ∈ (0, 2). Indeed, this is clear if λ1 ≤ 0. If λ1 > 0 we
have λ1/

(
λ2

1 + 1
)
≤ 1/2. Note that for λ1 = 1/2, where ℓmax = 0 there is no zero-

mode either, see Sec. 4.2 of [29]. In addition, from [29] we know that bound states for
positive values of λ0 are only possible for two spatial dimensions.

We plot the renormalized vacuum energy as a function of λ1 in Fig. 5.1. Note
that only positive values are obtained, i.e., self-repulsion which tends to expand the
sphere. A similar behaviour for the energy was found for the interaction energy be-
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Figure 5.1: Renormalized energy for r0 = 1, Eren
0 = eren

0 , and a2 = 0, i.e., c0λ1 = λ0.

tween two concentric δ-δ′ spheres [16]. For instance, the result is not symmetric under
the change λ1 → −λ1, contrary to what happens with δ-δ′ plates [26]. In addition, the
maximum values of the energy are found when we approach λ1 = ±1 corresponding
to Dirichlet and Robin boundary conditions, see Eq. (5.9). In particular, we have

ρℓ(r−0 ) = 0, ρ′ℓ(r
+
0 ) +

4r0

4 − c0
ρℓ(r+0 ) = 0 if λ1 = +1,

ρℓ(r+0 ) = 0, ρ′ℓ(r
−
0 ) +

4r0

4 + c0
ρℓ(r−0 ) = 0 if λ1 = −1.

Consequently, we have found a system, which is combination of Dirichlet and Robin
boundary conditions inside and outside the sphere, whose renormalized self-energy
is well defined. Notice that this is not trivial since for Dirichlet or Neumann boundary
conditions a2 ̸= 0 if we only consider the interior or exterior region [1]. However,
due to the dependence on odd powers of the extrinsic curvature, when the interior
and exterior of the sphere are considered together, the divergences cancel each other.
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For Robin boundary conditions even powers are also present, and the cancellation
only occurs for special values of the Robin parameter [14]. Furthermore, the value
of the self-energy and the self-pressure are of the same order of magnitude that the
one found for Dirichlet boundary conditions, where Eren

0 ≃ 0.0028168/r0. However,
the results presented here are significantly lower than the one found for Neumann
boundary conditions, where Eren

0 ≃ −0.2238216/r0.
Note also that in the limit λ1 → ±∞ the self-energy goes to zero. This is in agree-

ment with previous results [37] (Chapter 2 of this thesis) since this case corresponds
to the configuration with no potential. These can be seen from Eq. (5.7), where the
fields and their derivatives become continuous at the boundary when λ1 → ±∞. In
the Appendix, we include two other consistency checks of our calculation. In par-
ticular, we have obtained the weak limit formula first computed in [22] for a Dirac
δ spherical shell, and reproduced the numerical results in [38] for a spherical shell
when approaching the decoupled limits λ1 → ±1.

5.6 Conclusions

In this paper we have added another example to the short list of simple configura-
tions in which the Casimir self-energy for a massless field is unambiguously defined.
This occurs due to a particular cancellation between the Dirac δ and the δ′ interac-
tion, Eq. (5.24). A similar cancellation arises when considering the Dirac δ and other
type of singular interaction1 defined by imposing matching conditions such that the
derivative is continuous and there is a finite discontinuity in the radial function [39].

For the one-parameter family of values in which the energy and pressure are well
defined, we only find positive values of both quantities. This leads to self-repulsion
which tends to expand the sphere. The first example of self-repulsion was found by
Boyer [9], refuting Casimir’s model for the electron.

In the Appendix we have tested our results against the Dirac δ weak limit and
Robin-Dirchlet boundary conditions. It is worth mentioning that our values of energy
and pressure are similar to the ones obtained for a Dirichlet sphere. In addition, from
this approach we see that we do not need to consider the interior and the exterior in
an independent way. This is clear for matching conditions, but we also obtain this in
the limit when we approach boundary conditions, even though a Jost function only
perceives the exterior region for any opaque potential.

We observe some similarities between the self-energy and the interaction energy
for concentric δ-δ′ spheres [16] and a complete study of the total pressure will be
performed in a forthcoming publication.
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Appendix

As a consistency check, we compare our results with previous work. This can be done
for particular values of {λ0, λ1} where our potential simplifies to well known cases.

First, we assume λ1 = 0 and small values of the δ coupling, i.e., the weak limit
for the δ potential. In [22] it is proved that, expanding the log in the total energy, an
unambiguously finite energy is obtained in second order of the coupling:

E(2)
0 =

r0

32π
λ2

0. (5.32)

Our results are plotted in Fig. 5.2. Note that the third order term of the expansion is
unambiguously divergent. Indeed, this was first proved in [13] and can be seen from
our expressions. Specifically, from (5.18) we know that the divergence is proportional
to a2. For the δ potential we have already mentioned that a2 ̸= 0 except for the trivial
case. In fact, a2 is proportional to λ3

0 as we can see from (5.23). In particular, the third
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Figure 5.2: Weak limit for the δ potential, λ1 = 0 and small λ0. Note that both E(2)
0

and E(3)
0 are positive quantities.

order term is [22]

E(3)
0 =

r2
0

24π
λ3

0ζ(1). (5.33)

Although the integral is convergent, the sum over the angular momentum is diver-
gent. This is why the Riemann zeta function ζ(z) is evaluated at z = 1. In Fig. 5.2
we can see that the result is in good agreement for small values of λ0. When the third
order term becomes relevant the difference between E(2)

0 and Eren
0 grows larger. Note

that in our case the sum is computed until certain ℓmax. In consequence ζ(1) is only
evaluated up to that ℓmax.

We can also verify the case λ1 → ±1 and λ0 = 0 making use of known results for
the electromagnetic field. In this case we approach the boundary conditions satisfied
by the transverse electric (TE) mode and the transverse magnetic (TM) mode of the
electromagnetic field in the presence of a perfectly conducting spherical shell [38].
Note that now we do not have the ℓ = 0 contribution. In particular, in [38] it is found
that for the TE mode plus ℓ = 0, TE0, the renormalized term of the zeta function inside
and outside the sphere, 2eren

0 , is

2eren
0 (TE0

in) ≃ 0.00889, 2eren
0 (TE0

out) ≃ −0.00326.
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For the TM mode plus ℓ = 0, TM0, this term inside and outside is

2eren
0 (TM0

in) ≃ 0.02805, 2eren
0 (TM0

out) ≃ −0.07223.

For each mode we have a scalar problem satisfying Dirichlet (TE0) or Robin (TM0)
boundary conditions. For the latter, the Robin boundary conditions are the ones in
Eq. (5.9) with λ0 = 0. Consequently, in a system with Robin inside and Dirichlet
outside the renormalized energy should be

eren
0 ≃ 0.02805 − 0.00326

2
≃ 0.012395.

With Dirichlet inside and Robin outside

eren
0 ≃ 0.00889 − 0.07223

2
≃ −0.03167.

Bearing in mind Eq. (5.9), the previous systems can be reached with our potential
setting λ0 = 0 and λ1 → ∓1, respectively. From our code we obtain

λ0 = 0, λ1 → −1, eren
0 ≃ 0.01241,

λ0 = 0, λ1 → +1, eren
0 ≃ −0.03166.

We want to point out that in these cases a2 ̸= 0 so the renormalized vacuum energy
is not properly defined. Nevertheless, this part of the zeta function can be computed
in order to check our findings.
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Chapter 6

Casimir-Lifshitz pressure in
cavities I
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Repulsive Casimir–Lifshitz pressure in closed cavities

C. Romaniega
The European Physical Journal Plus 136, 327 (2021)

DOI: https://doi.org/10.1140/epjp/s13360-021-01308-z

Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de
Valladolid, 47011. Valladolid, Spain.

In these two final chapters we study the interaction term of the energy for the electro-
magnetic field in the presence of more realistic bodies. Specifically, in this chapter we
consider a dielectric sphere enclosed within an arbitrarily shaped magnetodielectric
cavity. We determine, under general hypotheses, the sign of the interaction energy
and pressure acting on the sphere. This is achieved by rewriting the expression in
terms of functional determinants and analyzing the properties of the classical T matri-
ces. In this sense, this approach is similar to the one employed in previous theorems.
In addition, in this chapter and in the following we also obtain the Dzyaloshinskii-
Lifshitz-Pitaevskii result on the sign of the interaction force as a limiting case. For
a dilute dielectric ball we also include the self-energy contribution, obtaining a total
repulsive pressure.

6.1 Abstract

We consider the interaction pressure acting on the surface of a dielectric sphere en-
closed within a magnetodielectric cavity. We determine the sign of this quantity re-
gardless of the geometry of the cavity for systems at thermal equilibrium, extending
the Dzyaloshinskii-Lifshitz-Pitaevskii result for homogeneous slabs. As in previous
theorems regarding Casimir-Lifshitz forces, the result is based on the scattering for-
malism. In this case, the proof follows from the variable phase approach of electro-
magnetic scattering. With this, we present configurations in which both the interac-
tion and the self-energy contribution to the pressure tend to expand the sphere.

https://link.springer.com/article/10.1140/epjp/s13360-021-01308-z
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We continue the analysis of the previous chapter, now considering a dielectric object
with a spherical cavity in which another arbitrarily shaped magnetodielectric object
is enclosed. Due to the components of the T operator entering in the TGTG represen-
tation, we need to introduce some novel results of classical electromagnetic scattering
for configurations with the source and detector inside the cavity. The latter is based on
the Lippmann-Schwinger equation and an invariant imbedding procedure. As in the
previous chapter, the results on the energy and pressure are generalized to finite tem-
perature systems at thermal equilibrium. We also check against particular examples
found in the literature like conducting shells and homogeneous spherical dielectrics.

The structures of this chapter and the previous one are very similar. We have
exploited the derivation of Chapter 6, introducing the corresponding modifications
needed for the study of the new configuration and a slightly different notation for
some intermediate steps.

7.1 Abstract

We extend our previous work on the electromagnetic Casimir-Lifshitz interaction be-
tween two bodies when one is contained within the other. We focus on the fluctuation-
induced pressure acting on the cavity wall, which is assumed to be spherical. This
pressure can be positive or negative depending on the response functions describing
the bodies and the medium filling the cavity. However, we find that under general
hypotheses, the sign is independent of the geometry of the configuration. This result
is based on the representation of the Casimir-Lifshitz energy in terms of transition
operators. In particular, we study the components of these operators related to inside
scattering amplitudes, adapting the invariant imbedding procedure to this unfamiliar
scattering setup. We find that our main result is in agreement with the Dzyaloshinskii-
Lifshitz-Pitaevskii result, which is obtained as a limiting case.

https://link.springer.com/article/10.1140/epjp/s13360-021-02059-7
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Conclusions and further work

Although the main findings of this thesis are explained in detail in the Introduction,
we summarize here the key points and how they relate to further work.

We have first extended one-dimensional results on δ-δ′ singular interactions to hyper-
spherical systems in Chapter 1. We have properly defined the interaction by means of
matching conditions using the theory of self-adjoint extensions. We have also studied
the spectrum of the total Hamiltonian. The major advantage over one-dimensional
systems is the application to real physical situations. We have proved it by comparing
with actual data in the context of mean-field nuclear models. In addition, the anal-
ysis of the spectrum is also employed for investigating vacuum fluctuations in the
presence of classical backgrounds. We have studied the Casimir energy, modeling the
background with δ-δ′ spheres. Obviously, this is an idealization since we are assum-
ing bodies with zero thickness. However, the study of Chapters 2 and 3 can be used to
consider more realistic bodies. For instance, following the lines of Chapter 2, we can
add a spherical well for modeling a homogeneous body with a singular interaction at
the surface and proceed in the same manner for computing the energy. Note that the
scattering phase shifts needed can be easily obtained. Specifically, Proposition 4 of
Chapter 1, which is based on the asymptotic expression of the wave function, holds
for any potential with finite support. We can then straightforwardly compute the ap-
propriate components of the T operators for the interaction energy and compute the
Jost function for the self-energy, proceeding in the same manner as in Chapters 4 and
5, respectively. Particularly, for the self-energy we should take into account that if we
only had V0, the heat kernel coefficient a2 would never vanish. This is why we can
add the singular interaction at the edge. Indeed, for a smooth potential V(x) the heat
kernel coefficient a2 associated with the operator −∆ + V(x) is determined by [1]

a2 =
1
2

∫
R3

dx V(x)2.

First, note that V(x)2 has no meaning for our singular interaction. In addition, for
this kind of potentials a2 = 0 occurs if and only if we are in the free case, in which
the Casimir energy vanishes. However, when boundary or matching conditions are
present we can have nontrivial configurations in which a2 = 0, as we have proved
in Chapter 5. This is one of the reasons why there are not many configurations for
massless scalar fields with an unambiguous self-energy [2].

Studying vacuum fluctuations from different fields can also yield many insights
into the theoretical problems considered in this thesis. In this way, we are currently
investigating the self-energy of a singular shell for a massive spinor field with spin
one-half. This project started during my research stay at the department of Mathe-
matics of East Carolina University (ECU) with Dr. Guglielmo Fucci at the beginning
of 2022 [3]. For the Dirac operator the analogue of the δ-δ′ interaction was first in-
troduced by J. Dittrich, P. Exner and P. Šeba [4]. The approach is similar to the one
described in [5] and a four-parameter family of matching conditions is found using
the self-adjoint extension theory. However, in this case the analysis is more involved.
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Specifically, the eigenvalue equation resulting from the free Dirac equation for a mas-
sive spinor field can be written as

H0φ = Eφ, H0 ≡ −iαi∂i + mβ, (7.1)

where ψ(x) is a four-component bispinor and αi and β define the suitable gamma
matrices γµ. For the Dirac operator the conditions defining the spherical singular
interaction at r = R are given by

D
(

f (R+)
g(R+)

)
+ C

(
f (R−)
g(R−)

)
=

(
0
0

)
, φ(⃗r) =

1
r

(
i f (r)Yσ

ℓM(θ, ϕ)
g(r)σrYσ

ℓM(θ, ϕ)

)
, (7.2)

where Yσ
ℓM(θ, ϕ) are spherical spinors and C and D are real matrices [4, 6]. From this,

we show that we have four mode-generating functions instead of one. Note that for
each projection of the spin σ = ±1 this function is not necessarily the same for parti-
cles and antiparticles. On this basis, we have first considered values of the potential
in which the contact interaction separate the interior and exterior regions completely,
a situation similar to the one found for the values of the δ-δ′ interaction in which we
have boundary conditions (10). This kind of configurations have received consid-
erable attention in the context of phenomenological models for quark confinement,
such as the MIT bag model [7]. We have studied a massive field using the small mass
expansion. For the limiting massless case we have found a one-parameter family of
configurations in which the total residue is zero so the energy is defined in an unique
way. Furthermore, in the latter positive and negative pressures are found, depending
on the values of the free parameter of the potential. Note that only positive pressures,
repulsion which tends to expand the sphere, are obtained for the scalar field with the
δ-δ′ or with MIT boundary conditions, which are recovered as a limiting case [3].

Regarding the Casimir-Lifshitz effect, we have first determined the sign of the in-
teraction energy for two arbitrary magnetodielectrics. If the sign of the T operator
for each body is well defined, this result is independent of the geometry or the matter
distribution of the bodies. However, the energy is not by itself a measurable quantity,
although as we have shown it determines the behaviour of the interaction force in
some cases. This is why we have computed the interaction pressure in cavity config-
urations. Similarly, we are able to determine the sign of this quantity acting on the
surface of a sphere inside a cavity or on a cavity wall. As for the interaction energy,
both the matter distribution and the geometry of one of the objects are arbitrary, only
assuming a well defined sign of the T operator. However, we are assuming that the
body with the spherical surface and the medium are dielectrics. In consequence, the
first obvious generalization is to introduce nontrivial permeability response functions
for these materials. In order to do so, we should generalize the results described in [8].
The starting point would be the same, the Lippmann-Schwinger equation in position
space, but now considering the whole differential operator. In addition, it can also be
explored if the result on the sign of the pressure holds for different geometries. Specif-
ically, if instead of a S2 sphere we consider a surface M, the mean pressure over M
can be defined in the same way and with the appropriate results of classical electro-
magnetic scattering on the components of T, the derivation explained in Chapters 6
and 7 would remain unchanged.
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