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Abstract

Throughout history, humans have sought ways to break free from the constraints of

the body and interact with the world directly through the mind. Brain-computer

interfaces (BCIs) represent the realization of this long-standing ambition, allowing

individuals to control external devices directly using their brain activity. BCIs

measure brain activity using electroencephalography (EEG), a technique that

records the electrical activity of neurons using electrodes placed over the scalp.

Then, EEG is analyzed using signal processing methods to decode users’ inten-

tions and translate them into commands that can be used to control external

devices.

BCI technology has great potential in a wide range of applications within the

biomedical sector. Its most direct use is the development of assistive systems for

people with severe motor impairments or paralysis, allowing them to communicate

and control devices. Moreover, the implementation of BCIs in the neurorehabil-

itation field is rapidly increasing in recent years. Currently, BCIs are used as an

innovative technique to treat various conditions, including stroke, depression, drug

addiction, and even to enhance human cognitive abilities, such as memory or at-

tention. However, there are several barriers to wider adoption of BCIs, including

low reliability, their synchronous operation, and a lack of validation with target

users. In order to fully realize the potential of BCIs, these limitations must be

addressed.

The research presented in this compendium of publications was focused on

assistive systems based on event-related potentials (ERPs), which use the P300

evoked potential as control signal. The aim of this work was to address some of

the current limitations of these BCIs in assistive contexts by developing new signal

processing methods and software tools to accelerate research and applications in

this area.

Firstly, the issue of the asynchronous control was addressed. By default, these
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II Abstract

systems have a synchronous behavior: they select a command even when the user is

not attending the stimuli. This poses a great limitation that prevents their use for

practical applications outside the laboratory. For this reason, we proposed a novel

method, called the Oddball Steady State Response Detection (OSRD) method, for

monitoring the user’s attention and avoiding undesired selections when the user

is engaged in another task. This method aimed to discriminate the user’s control

state by detecting the steady-state visual evoked potential (SSVEP) provoked by

the stimulation pattern of the row-column paradigm (RCP) used in our ERP-

based BCI. After a comprehensive characterization experiment with five subjects,

we concluded that this control signal could be used to detect the user’s control

state in assistive ERP-based spellers. Then, the system was designed using two

stages: the control state detection stage, which monitors the user’s attention and

provides asynchronous control with the OSRD method, and the command decod-

ing stage, which decodes the desired command only if the user is attending to the

stimulation paradigm. The OSRD method uses a feature engineering approach

based on spectral and correlation features. It was tested on 15 subjects in of-

fline and online sessions. The results showed that our approach provided reliable

asynchronous control, with an final average accuracy of 95.5% in the control state

detection stage during the online sessions. Additionally, it has two advantages

in comparison to previous methods based on thresholds: it is independent of the

command decoding stage, and it does not require to extend the duration of the

calibration sessions.

Once this first asynchronous approach was designed, we investigated the use

of deep learning to improve the command decoding accuracy and speed of our

system. A novel convolutional neural network (CNN), called EEG-Inception, was

proposed. This model was inspired in different state-of-the-art methods from the

computer vision domain to increase its performance. Concretely, this lightweight

CNN was designed to perform a multiscale analysis of the EEG signal using In-

ception modules, which were combined with a hyperparamter optimization process

and different techniques to avoid overfitting. Additionally, this architecture was

trained with a novel strategy based on cross-subject transfer learning and fine-

tuning to improve the performance of the model in the command decoding task

with minimum calibration time. The model was validated with data from 73 sub-

jects, including 31 with severe motor disabilities, for the command decoding task.

The results showed that EEG-Inception outperformed five previous approaches in

a direct comparison, achieving significant accuracy improvements up to 16.0%,

10.7%, 7.2%, 5.7% and 5.1% in comparison to regularized discriminant analysis,
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xDAWN with Riemannian geometry, CNN-BLSTM, DeepConvNet and EEGNet,

respectively.

The next study addressed the applicability of EEG-Inception to detect the

user’s control state. We designed a signal processing pipeline that leveraged the

power of this deep-learning model to improve the asynchronous control of our

system. It is worth noting that this was the first asynchronous ERP-based BCI

reported in the literature that solely relied on deep learning for both the con-

trol state detection and command decoding stages. This approach method was

evaluated with 22 healthy subjects. The results for the control state detection

task indicated that the model achieved an average test accuracy of over 91% with

just one sequence of stimulation and 30 calibration trials, reaching a peak value

of 96.95% when using 15 sequences. Furthermore, the overall system, including

the control state detection and command decoding stages, was able to achieve a

high information transfer rate of 35.54 bpm. These results demonstrate that the

proposed system is a promising step towards more practical applications of these

BCIs.

Finally, we created MEDUSA©, a novel software ecosystem optimized for BCI

and cognitive neuroscience research. Our goal was to overcome the limitations

of existing BCI platforms (e.g., BCI2000, OpenVibe) in terms of modularity,

flexibility and scalability. MEDUSA© was implemented in Python, a popular

open-source programming language that is commonly used in both research and

industry. The reasons of this popularity are its high-level of abstraction, which re-

duces the development time, and strong community support, with a wide range of

packages and specialized tools for signal processing and machine learning, such as

Numpy, Scipy or Tensorflow. MEDUSA© has two main components: (1) a Python

library called MEDUSA© Kernel, which provides signal processing functions at

different levels of abstraction; and (2) a BCI platform called MEDUSA© Plat-

form, which implements advanced signal acquisition based on the lab-streaming

layer protocol, a wide variety of real-time charts, and open implementations of

state-of-the-art BCI and neuroscience experiments, including our ERP-based BCI

based on deep learning. Additionally, this open-source software encourage com-

munity contributions in order to increase its impact and provide a space to share

the latest advances in the field.

We believe that the findings and developments presented in this doctoral dis-

sertation will enhance the practical use of ERP-based BCIs outside the labora-

tory, particularly as assistive technology to improve the lives of individuals with

disabilities. Our work highlighted that both the control state detection and com-
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mand decoding are equally important for assistive systems, proposing novel signal

processing methods for both stages. In this regard, the final design of our asyn-

chronous ERP-based BCI, the first that fully relies on deep learning, represents

a significant step forward in this context. Additionally, MEDUSA© is a novel

software ecosystem that meets the needs of BCI researchers by providing a range

of signal processing functions, deep-learning architectures, connectivity analysis

tools, and ready-to-use BCI and neuroscience experiments. Thus, it has the po-

tential to accelerate BCI and cognitive neuroscience research.



Acronyms

ADHD Attention-Deficit/Hyperactivity Disorder

BCI Brain–Computer Interface

BE Backward Elimination

BH Benjamini-Hochberg correction

BOLD Blood-Oxygen-Level-Dependent response

CAR Common Average Reference

CCA Canonical Correlation Analysis

CNS Central Nervous System

C-VEP Code-Modulated Visual Evoked Potential

EEG Electroencephalography

ERD Event-Related Desynchronization

ERP Event-Related Potential

ERS Event-Related Synchronization

FDR False Discovery Rate

FIR Finite Impulse Response

fMRI Functional Magnetic Resonance Imaging

fNIRS Functional Near-Infrared Spectroscopy

HS Healthy Subjects

IIR Infinite Impulse Response

ISI Inter-Stimuli Interval

JCR Journal Citation Reports

LIS Locked-In Syndrome

LDA Linear Discriminant Analysis

LOO Leave one out

MD Motor-Disabled Subjects

MEG Magnetoencephalography

V



VI Acronyms

MI Motor Imagery

MSE Multiscale Entropy

NF Neurofeedback

OSRD Oddball Steady State Response Detection

PET Positron Emission Tomography

PSD Power Spectral Density

RCP Row-Col Paradigm

RG Riemannian geometry

ROC Receiving Operating Characteristic

RSVP Rapid Serial Visual Presentation

SampEn Sample Entropy

SCI Spinal Cord Injury

SCP Slow Cortical Potentials

SD Stimulus Duration

SMR Sensorimotor Rhythms

SOA Stimulus Onset Asynchrony

SSVEP Steady-State Visual Evoked Potential

SVM Support Vector Machine

SW Step-Wise regression

VEP Visual Evoked Potential



Contents

Abstract I

Acronyms V

1 Introduction 1

1.1 Compendium of publications: thematic consistency . . . . . . . . . 2

1.2 Dissertation Context . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Brain–computer interfaces . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Recording neural activity . . . . . . . . . . . . . . . . . . . 10

1.3.2 EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 BCI control signals . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 EEG processing in BCI . . . . . . . . . . . . . . . . . . . . 22

1.3.5 BCI Applications . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.1 Asynchronous control of ERP-based BCIs . . . . . . . . . . 25

1.4.2 Deep learning in ERP-based BCIs . . . . . . . . . . . . . . 27

1.4.3 BCI platforms . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Hypothesis and objectives 33

2.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Subjects and signals 37

3.1 The row-column paradigm . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 EEG recording setup . . . . . . . . . . . . . . . . . . . . . . . . . . 41

VII



VIII Contents

4 Methods 45

4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Frequency filtering . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Spatial filtering . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Time-based features . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Frequency-based features . . . . . . . . . . . . . . . . . . . 48

4.2.3 Correlation-based features . . . . . . . . . . . . . . . . . . . 49

4.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Stepwise regression . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Feature classification . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . 53

4.4.2 EEG-Inception . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.3 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 BCI platform development . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.2 Design principles . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.3 Implemented in Python . . . . . . . . . . . . . . . . . . . . 63

4.6.4 Open-source community-oriented philosophy . . . . . . . . 64

5 Results 65

5.1 SSVEPs elicited by the RCP . . . . . . . . . . . . . . . . . . . . . 65

5.2 Oddball Steady Response Detection (OSRD) method . . . . . . . . 67

5.2.1 Offline experiment . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Online experiment . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Command decoding with EEG-Inception . . . . . . . . . . . . . . . 72

5.3.1 Hyperparameter optimization . . . . . . . . . . . . . . . . . 73

5.3.2 Evaluation experiment . . . . . . . . . . . . . . . . . . . . . 74

5.4 Control state detection with EEG-Inception . . . . . . . . . . . . . 75

5.4.1 Evaluation experiment . . . . . . . . . . . . . . . . . . . . . 78

5.5 MEDUSA©: our novel BCI platform . . . . . . . . . . . . . . . . . 82

5.5.1 MEDUSA© Kernel . . . . . . . . . . . . . . . . . . . . . . 82

5.5.2 MEDUSA© Platform . . . . . . . . . . . . . . . . . . . . . 84



Contents IX

6 Discussion 91

6.1 SSVEP elicited by non-target stimuli from ERP-based spellers . . 92

6.2 Feature-engineering approach for control state detection: the OSRD

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 Evaluation experiment . . . . . . . . . . . . . . . . . . . . . 94

6.2.2 Comparison with previous approaches . . . . . . . . . . . . 95

6.3 Deep-learning approach for command decoding: EEG-Inception . . 98

6.3.1 Architecture design . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.2 Evaluation experiment . . . . . . . . . . . . . . . . . . . . . 99

6.4 Deep-learning approach for control state detection: EEG-Inception 101

6.4.1 Evaluation experiment . . . . . . . . . . . . . . . . . . . . . 102

6.4.2 Comparison with previous approaches . . . . . . . . . . . . 103

6.5 Design of MEDUSA© and comparison with previous BCI platforms 105

6.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Conclusions 111

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Main conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Future research lines . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Compendium of publications 117

B Scientific achievements 119

B.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1.1 Papers indexed in the JCR . . . . . . . . . . . . . . . . . . 119

B.1.2 Book chapters . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.1.3 International conferences . . . . . . . . . . . . . . . . . . . 121

B.1.4 National conferences . . . . . . . . . . . . . . . . . . . . . . 123

B.2 International internship . . . . . . . . . . . . . . . . . . . . . . . . 125

B.3 Awards and honors . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C Resumen en castellano 129

C.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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Chapter 1

Introduction

This doctoral dissertation aims to design, develop, and test novel methods and

tools for the advancement of non-invasive brain–computer interfaces (BCI) with

one objective: improve their applicability in practical environments. To this end,

we investigated several crucial aspects of these systems, such as asynchronous

control, classification performance and BCI platforms. This research has led to

the publication of 4 articles in journals indexed in the Journal Citation Reports

(JCR) from the Web of Science�. This scientific production has led to write this

dissertation as a compendium of publications. Throughout the document, a gen-

eral framework of the dissertation is provided to summarize and discuss the most

relevant results and draw a joint conclusion of the study.

The structure of this chapter is as follows. First, the thematic consistency of

the articles that make up this dissertation is explained in detail in section 1.1.

Then, the context of this research and the related knowledge fields are introduced

in section 1.2. Section 1.3 is focused on BCIs, introducing the history, charac-

teristics, control signals, applications, and limitations of these systems, with the

latter giving rise to the motivation for the present study. In this section, several

non-invasive methods to record brain activity are also discussed to motivate the

use of electroencephalography (EEG) in this work, explaining the main advantages

and disadvantages of this biomedical signal. Finally, section 1.4 provides a com-

prehensive state-of-the-art revision of the main topics that have been addressed

in this investigation: asynchronous control, deep learning for EEG decoding, and

BCI platforms.

1
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1.1 Compendium of publications: thematic con-

sistency

Understanding the brain has been a long-standing ambition for humankind, but

this task proved to be a real challenge during centuries. Until the late nineteenth

and early twentieth centuries, when Santiago Ramón y Cajal and other pioneers

laid the groundwork of contemporary neuroanatomy, the rate of developments in

this field was slow (Fornito et al., 2016). Nowadays, recent advances in brain imag-

ing opened a window to our central nervous system that was impossible just a few

decades ago, transforming the field of neuroscience into one of the most fruitful

research areas. In this context, both research laboratories and industry are ex-

ploiting this knowledge to build BCIs, a technology with the potential to transform

fields such as human-machine interaction, neurorehabilitation, and entertainment,

among others (Wolpaw and Wolpaw, 2012). This technology analyzes the EEG,

which measures the electrical activity of the brain, to decode user’s intentions in

real time, allowing direct interaction with devices without the use of muscles or pe-

ripheral nerves. Nevertheless, there are still limitations that need to be addressed

in order to use these systems for practical day-to-day applications (Wolpaw and

Wolpaw, 2012). The most important are the complexity of the required hard-

ware, the difficulty of fine measurement of brain activity, limited performance,

synchronous operation and lack of validation with end users (Santamaŕıa-Vázquez

et al., 2019a).

This dissertation aims to contribute with novel signal processing methods and

tools to improve the usability of BCIs for practical applications. The thread run-

ning through this research is the use of BCIs based on event-related potentials

(ERP) as a novel assistive technology to improve the independence and quality

of life of severely disabled people. Thus, the four articles that comprise the com-

pendium of publications are focused on this field. A graphical representation of the

thematic consistency and contributions of the four papers is depicted in Figure 1.1.

The first paper was focused on the problem of asynchronous control of ERP-

based BCIs (Santamaŕıa-Vázquez et al., 2019a). By default, these systems decide

which command the user wants every few seconds. However, current implemen-

tations cannot detect whether the user is controlling the system or is engaged in

other task, performing synchronous selections even when it is not desired. Thus, an

additional method is required in order to detect the user’s attention focus, a task

that has turned out to be as difficult as ERP detection. This first study proposed a

novel feature-engineering method based on the power spectral density (PSD) and
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Figure 1.1: Main contributions of the papers included in the compendium of publica-
tions, arranged by the BCI function addressed in each study and ordered chronologically.
IEEE TNSRE: IEEE Transactions on Neural Systems and Rehabilitation Engineering;
CMPB: Computer Methods and Programs in Biomedicine; BCI: brain-computer inter-
face; EEG: electroencephalography; ERP: event-related potentials; RCP: row-column
paradigm; SSVEP: steady-state visual evoked potentials.

canonical correlation analysis (CCA) to investigate the potential of residual steady

state visual evoked potentials (SSVEP) to provide a robust asynchronous control

of ERP-based BCIs. This approach was tested with 15 healthy subjects, showing

its advantages. The second article was aimed to improve the classification per-

formance in this BCI paradigm (Santamaŕıa-Vázquez et al., 2020b). To this end,

we investigated the advantages of convolutional neural networks (CNN) for EEG

processing. Concretely, we proposed a novel architecture, called EEG-Inception,

which was able to overcome previous approaches for ERP detection in a population

of 73 subjects, including 31 motor disabled. In the third article, we returned to

the limitation of synchronous operation in ERP-based BCIs (Santamaŕıa-Vázquez

et al., 2022). This time, we investigated a novel strategy for the asynchronous con-

trol task using EEG-Inception. This strategy was tested in 22 healthy subjects,

achieving significantly higher performance than our previous method. Finally, in

the fourth article we presented MEDUSA©, a novel open-source, Python-based,

software ecosystem to facilitate the implementation of BCI and cognitive neu-

roscience experiments with the objective of accelerating research in these areas

(Santamaŕıa-Vázquez et al., 2023). This platform was developed during the whole

dissertation, and it implements the methods from previous articles to foster its use

and reproducibility. It also includes a wide range of signal processing algorithms

and BCI applications that were implemented for side projects developed in parallel
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to this research, making MEDUSA© one of the most complete solutions available

today.

The four articles that make up this dissertation, which is organized as a com-

pendium of publications, are included in this document in Appendix A. Titles,

authors, and abstracts of each one, as well as the journals in which they were

published, are shown below:

Asynchronous Control of ERP-based BCI Spellers Using Steady-State

Visual Evoked Potentials Elicited by Peripheral Stimuli (Santamaŕıa-

Vázquez et al., 2019a).

Eduardo Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-Cagigal, Javier Gomez-Pilar, and

Roberto Hornero. IEEE Transactions on Neural Systems and Rehabilitation En-

gineering, vol. 27(9), p. 1883-1892, 2019. Impact factor in 2019: 3.340, D1 (Q1)

in “Rehabilitation”, and Q1 in Biomedical Engineering (JCR-WOS).

Abstract: Brain–computer interface (BCI) spellers based on event related po-

tentials (ERPs) are intrinsically synchronous systems. Therefore, selections are

constantly made, even when users are not paying attention to the stimuli. This

poses a major limitation in real-life applications, in which an asynchronous control

is required. The aim of this study is to design, develop and test a novel method

to discriminate whether the user is controlling the system (i.e., control state) or

is engaged in other task (i.e., non-control state). To achieve such asynchronous

control, our method detects the steady-state visual evoked potentials (SSVEPs)

elicited by peripheral stimuli of ERP-based spellers. A characterization experi-

ment was conducted to investigate several aspects of this phenomenon. Then, the

proposed method was validated in offline and online sessions. A total of 20 healthy

subjects participated the experiments. The proposed method achieved an average

accuracy of 95.5% for control state detection during the online sessions, providing

a reliable asynchronous control. Furthermore, our approach is independent of the

ERP classification stage, and to the best of our knowledge, is the first procedure

that does not need to extend the duration of the calibration sessions to acquire

non-control observations.

EEG-Inception: A Novel Deep Convolutional Neural Network for As-

sistive ERP-based Brain-Computer Interfaces (Santamaŕıa-Vázquez

et al., 2020b).
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Eduardo Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-Cagigal, Fernando Vaquerizo-

Villar, and Roberto Hornero. IEEE Transactions on Neural Systems and Re-

habilitation Engineering, vol. 28(12), p. 2773-2782, 2020. Impact factor in 2020:

3.802, D1 (Q1) in “Rehabilitation” and Q2 in Biomedical Engineering (JCR-

WOS).

Abstract: In recent years, deep-learning models gained attention for electroen-

cephalography (EEG) classification tasks due to their excellent performance and

ability to extract complex features from raw data. In particular, convolutional

neural networks (CNN) showed adequate results in brain-computer interfaces

(BCI) based on different control signals, including event-related potentials (ERP).

In this study, we propose a novel CNN, called EEG-Inception, which improves

the accuracy and calibration time of assistive ERP-based BCIs. To the best of

our knowledge, EEG-Inception is the first model to integrate Inception modules

for ERP detection, which combined efficiently with other structures in a light

architecture, improved the performance of our approach. The model was validated

in a population of 73 subjects, of which 31 present motor disabilities. Results show

that EEG-Inception outperforms 5 previous approaches, yielding significant im-

provements for command decoding accuracy up to 16.0%, 10.7%, 7.2%, 5.7% and

5.1% in comparison to rLDA, xDAWN + Riemannian geometry, CNN-BLSTM,

DeepConvNet and EEGNet, respectively. Moreover, EEG-Inception requires very

few calibration trials to achieve state-of-the-art performances taking advantage

of a novel training strategy that combines cross-subject transfer learning and

fine-tuning to increase the feasibility of this approach for practical use in assistive

applications.

Robust Asynchronous Control of ERP-Based Brain-Computer Inter-

faces using Deep Learning (Santamaŕıa-Vázquez et al., 2022).

Eduardo Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-Cagigal, Sergio Pérez-Velasco,

Diego Marcos-Mart́ınez, and Roberto Hornero. Computer Methods and Pro-

grams in Biomedicine, vol. 215, 2022. Impact factor in 2021: 7.027, Q1 in

“Computer Science, Interdisciplinary Applications”, “Computer Sci-

ence, Theory & Methods”, “Biomedical Engineering” and “Medical

Informatics” (JCR-WOS).

Abstract: Background and Objective. Brain-computer interfaces (BCI) based on

event-related potentials (ERP) are a promising technology for alternative and

augmented communication in an assistive context. However, most approaches
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to date are synchronous, requiring the intervention of a supervisor when the

user wishes to turn his attention away from the BCI system. In order to bring

these BCIs into real-life applications, a robust asynchronous control of the

system is required through monitoring of user attention. Despite the great

importance of this limitation, which prevents the deployment of these systems

outside the laboratory, it is often overlooked in research articles. This study

was aimed to propose a novel method to solve this problem, taking advantage

of deep learning for the first time in this context to overcome the limitations

of previous strategies based on hand-crafted features. Methods. The proposed

method, based on EEG-Inception, a novel deep convolutional neural network,

divides the problem in 2 stages to achieve the asynchronous control: (i) the

model detects user’s control state, and (ii) decodes the command only if the

user is attending to the stimuli. Additionally, we used transfer learning to

reduce the calibration time, even exploring a calibration-less approach. Results.

Our method was evaluated with 22 healthy subjects, analyzing the impact

of the calibration time and number of stimulation sequences on the system’s

performance. For the control state detection stage, we report average accuracies

above 91% using only 1 sequence of stimulation and 30 calibration trials,

reaching a maximum of 96.95% with 15 sequences. Moreover, our calibration-less

approach also achieved suitable results, with a maximum accuracy of 89.36%,

showing the benefits of transfer learning. As for the overall asynchronous

system, which includes both stages, the maximum information transfer rate was

35.54 bpm, a suitable value for high-speed communication. Conclusions. The

proposed strategy achieved higher performance with less calibration trials and

stimulation sequences than former approaches, representing a promising step

forward that paves the way for more practical applications of ERP-based spellers.

MEDUSA©: A novel Python-based software ecosystem to accelerate

brain-computer interface and cognitive neuroscience research (Santa-

maŕıa-Vázquez et al., 2023).

Eduardo Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-Cagigal, Diego Marcos-Mart́ınez,

Vı́ctor Rodŕıguez-González Sergio Pérez-Velasco, Selene Moreno-Calderón, and

Roberto Hornero. Computer Methods and Programs in Biomedicine, vol. 230,

2023. Impact factor in 2021: 7.027, Q1 in “Computer Science, Interdis-

ciplinary Applications”, “Computer Science, Theory & Methods”,

“Biomedical Engineering” and “Medical Informatics” (JCR-WOS).
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Abstract: Background and objective. Neurotechnologies have great potential to

transform our society in ways that are yet to be uncovered. The rate of de-

velopment in this field has increased significantly in recent years, but there are

still barriers that need to be overcome before bringing neurotechnologies to the

general public. One of these barriers is the difficulty of performing experiments

that require complex software, such as brain-computer interfaces (BCI) or cog-

nitive neuroscience experiments. Current platforms have limitations in terms of

functionality and flexibility to meet the needs of researchers, who often need to

implement new experimentation settings. This work was aimed to propose a novel

software ecosystem, called MEDUSA©, to overcome these limitations. Methods.

We followed strict development practices to optimize MEDUSA© for research in

BCI and cognitive neuroscience, making special emphasis in the modularity, flexi-

bility and scalability of our solution. Moreover, it was implemented in Python, an

open-source programming language that reduces the development cost by taking

advantage from its high-level syntax and large number of community packages.

Results. MEDUSA© provides a complete suite of signal processing functions,

including several deep learning architectures, and several ready-to-use BCI and

neuroscience experiments, making it one of the most complete solutions nowa-

days. We also put special effort in providing tools to facilitate the development

of custom experiments, which can be easily shared with the community through

an app market available in our website to promote reproducibility. Conclusions.

MEDUSA© is a novel software ecosystem for modern BCI and neurotechnology

experimentation that provides state-of-the-art tools and encourages the participa-

tion of the community to make a difference for the progress of these fields. Visit the

official website at https://www.medusabci.com/ to know more about this project.

1.2 Dissertation Context

This dissertation is focused on the improvement of several aspects of BCIs to

increase their applicability outside the laboratory. Therefore, it falls within the

area of biomedical engineering, and more specifically, it is related to the fields

of biomedical signal processing, neural engineering and assistive technologies. In

the following paragraphs, an overview of these disciplines is presented in order to

provide a common framework for the study.

The field of biomedical signal processing studies how to measure and analyze

physiological signals (Bronzino and Peterson, 2014). Our organism is composed

by a great number of systems (e.g., nervous, cardiovascular, gastrointestinal, res-

https://www.medusabci.com/
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piratory) that work together to maintain our body function. Through different

mechanisms, we can acquire and analyze physiological signals that measure some

feature of these systems over time in order to gain knowledge or perform diag-

nostics (Bronzino and Peterson, 2014). Some of the greatest discoveries in this

discipline occurred as early as the early 20th century, the most notable being the

invention of the electrocardiogram (ECG) in 1903 byWilliam Eindhoven (Bronzino

and Peterson, 2014). Another of the great milestones in this field was the EEG,

discovered in 1929 by Hans Berger (Berger, 1929). During the last decades, this

field experienced a rapid expansion, and nowadays there are tens of physiologi-

cal signals that are widely used for different purposes. These signals are usually

classified based on their origin, being the most representative: bio-electrical, bio-

impedance, bio-acoustic, bio-mechanic and bio-chemical (Bronzino and Peterson,

2014). In this work, we applied biomedical signal processing to analyze the EEG,

which measures the electrical activity of the brain. Thus this field played a crucial

role in this work.

Another field that is related to this investigation is neural engineering, also

known as neuroengineering. This emerging discipline encompasses any technology

that combines principles from neuroscience and engineering to understand, design,

diagnose, replace, repair, or enhance biological or artificial neural systems (He,

2020). This general definition encompasses a very wide range of fields, includ-

ing neuroimaging, neuromodulation, neuromechanics, neural prostheses, neuro-

morphic circuits, neural tissue engineering or computational neuroscience, among

others (Durand, 2006). BCIs are also included in this definition, using neural

engineering techniques to measure brain activity and identify specific patterns or

waveforms that can be used to decode the user’s intentions and control an appli-

cation (He, 2020). These waveforms are called control signals, and the study and

optimization of the cognitive tasks or the stimulation paradigms that trigger them

is one of the main research areas in the BCI field. Concretely, this doctoral disser-

tation focused on visual ERPs, which are the response to visual stimuli reflected

in the EEG. In this regard, ERPs are a reliable and widely studied control signal

that can be used for assistive applications.

Finally, assistive technologies are products, equipment, and systems that are

used to increase, maintain, or improve the functional capabilities of persons with

disabilities. Some examples of assistive technologies are wheelchairs, special-

purpose computers, prosthetics, screen readers, power lifts, eye trackers, etc. BCIs

were also conceived as assistive technologies, and despite that the range of uses

has increased in recent years, this application remains as one of its main purposes
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(Wolpaw et al., 2002). In fact, BCIs have the potential to solve many of the com-

munication and dependency problems of severely disable people once the technical

limitations of these systems are resolved. This dissertation focused on this appli-

cation to design, develop and test the contributions that have been proposed in the

four papers of the compendium, and thus, it represents the higher level framework

of the investigation.

1.3 Brain–computer interfaces

Ever since the development of the EEG in 1929 by Hans Berger, scientists have

speculated about the use of BCIs to decode neural activity in real time to provide

new forms of interaction with the outside world. A BCI capable of interpreting

thoughts, desires, or intentions could drastically change the way we interact with

our environment, unlocking an unimaginable world of possibilities —and risks—

in multiple fields. Although we are still far from this point, the field has rapidly

evolved in the last decades to build increasingly complex and accurate BCI sys-

tems.

Formally, BCIs are systems that provide an alternative communication path-

way between the user and the environment by decoding brain activity in real time

to replace, restore, enhance, supplement or improve the human natural outputs,

i.e., motor responses (Wolpaw and Wolpaw, 2012). In general, all BCIs have a

common workflow with three stages: (1) recording of neural activity with neu-

roimaging techniques, such as the EEG; (2) decoding of recorded data using signal

processing to detect the user’s intentions; and (3) translation of these intentions

into application commands and execution of these commands. This general work-

flow is depicted in Figure 1.2. As can be seen, BCI systems form a closed loop.

The user’s intentions, encoded in their brain activity, drive responses that have

a tangible impact on the environment through the BCI system, which leads to

further interactions. Therefore, this workflow follows the rules of operant condi-

tioning, a crucial feature to achieve natural interactions (Wolpaw and Wolpaw,

2012).

The next subsections provide an overview of the most important topics to

design and develop modern BCIs, defining a common framework from which to

approach the rest of the dissertation.
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Figure 1.2: Schematic representation of a EEG-based BCI system. Firstly, the signal
is acquired with electrodes over the scalp. Then, the signal processing stage decodes the
user’s intentions and translated them into commands. Finally, the commands are sent to
the final application, which provides feedback to the user. BCI applications can replace,
restore, enhance, supplement and/or improve the natural body outputs. Adapted with
permission from Mart́ınez-Cagigal (2020)

1.3.1 Recording neural activity

The central nervous system is the most complex part of multi-cellular organisms.

It can be seen as a control center that receives information from the outside world

and acts accordingly. Neurons are the functional units of the nervous system,

thus representing a central part in its study (Jessen, 2004). Figure 1.3 depicts a

typical neuron, which consists of a cell body, or soma, dendrites and the axon.

These specialized cells are specifically designed to receive and generate electrical

signals. Between the intra-cellular and extra-cellular spaces, there is a gradient of

energy, called resting membrane potential, created by the different concentration

of positive and negative ions on both sides of the cellular membrane (Raghavan

et al., 2019). The cell can control the resting membrane potential by changing
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Figure 1.3: Schematic representation of a neuron. Dendrites receive electrical impulses
from other neurons. The cell body, or soma, is the core section of the neuron, maintain-
ing its structure and providing energy to drive function. The axon transmits electrical
impulses to the axon terminals, and can be coated in myelin, a protein that improves the
transmission. Dendrites and axon terminals are connected by synapses. Adapted from
He (2020).

the concentration of the ions across the membrane, predominantly sodium (Na+),

potassium (K+), and chloride (Cl−) (Raghavan et al., 2019). Since the cell lipid

bilayer membrane is not permeable to ions, this change is enabled by special-

ized structures called ion channels and ion pumps (Raghavan et al., 2019). Ion

channels allow the passive movement of ions down their electrochemical gradient.

On the other hand, ion pumps transport ions against their natural gradient at

the expense of energy (Raghavan et al., 2019). In normal conditions, the rest-

ing membrane potential has a negative value between -40 and -80 mV relative to

the extra-cellular medium. However, under certain conditions of excitation, neu-

rons trigger regenerative events that revert the resting potential to values close to

+50 mV, returning to the baseline point after a few milliseconds. These events,

called action potentials, are propagated through the neural network, being central

for multiple functions, including information processing and transmission, mus-

cle contraction or hormone release (Raghavan et al., 2019). A neuron receives

actions potentials from other neurons through the dendrites and cell body, and

transmits new stimulus through the axon (Raghavan et al., 2019). The interaction

between axons and dendrites is governed by complex biochemical interactions in

the synapses. Whether or not an action potential is generated in the cell body

of a neuron depends on the input signals, forming a very complex communication

system (He, 2020). However, it should be noted that there are still many open
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questions regarding the details of the structure and functioning of neurons. In fact,

it is estimated that the human brain roughly 100 billion neurons, with more than

40 different types described to date, each one of them with different characteristics

that are not always fully understood (He, 2020).

From a macroscopic point of view, neurons arrange in networks that, together,

form the nervous system. Particularly, the central nervous system (CNS) is com-

posed by the spinal cord and the brain, being the latter the organ responsible for

the centralized control of the majority of body functions. Anatomically, the brain

can be divided in three parts, as shown Figure 1.4: brainstem, cerebellum, and

cerebrum (Jacobson, 2008). The brainstem connects the inferior parts of the brain

with spinal cord, having critical functions such as the transmission of sensory and

motor information, cardiac and respiratory regulation, or sleep cycle management.

The cerebellum is related to accurate unconscious motor control (timing, coordi-

nation and body posture), and primary cognitive functions and emotions, such as

attention, emotional control, and fear/pleasure responses. Finally, the cerebrum,

which the largest part of the human brain, contains the cerebral cortex and sub-

cortical structures like the hippocampus, basal ganglia and olfactory bulb. This

part of the brain controls the majority of high-level functions, being the cerebral

cortex the most important structure for the purposes of this dissertation.

The cerebral cortex, whose main lobes are shown in Figure 1.4, can be divided

in different functional areas, being the most relevant for this work (Jacobson, 2008):

(1) the primary motor cortex, located in the frontal lobe, plays an important role

in motor planning and execution through efferent pathways; (2) the somatosensory

cortex, located in the parietal lobe, receives sensory information (e.g., temperature,

pain, touch or proprioception) through afferent pathways; (3) the visual cortex,

located in the occipital lobe, processes the visual information received through

the optic nerves; (4) the auditory cortex, located in the superior and medial areas

of the temporal lobes, processes sounds, being also involved in language; and

(5) the prefrontal cortex, located in the frontal part of the brain, is fundamentally

involved in high-level cognitive processes such as working memory, planning motor

execution, decision making, personality and social behaviour, language, etc.

When the brain performs a cognitive task, the neurons involved in the process

increase their activity. Typically, complex cognitive processes activate multiple

local networks that are sensitive to the current task. The neurons that form

these networks synchronize their activity and increase the firing rate of action

potentials to process and transmit relevant information. At a higher level, these

local networks also synchronize through long distance connections with other parts
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Figure 1.4: Schematic representation of the brain, divided in its three anatomical parts:
brainstem, cerebellum and cerebrum. The lobes of the cerebral cortex are also displayed.
Adapted from Jacobson (2008).

of the brain, forming a larger network that leaves a recognizable activity footprint.

This allows to study which parts of the brain are involved in a certain cognitive

task (Jacobson, 2008).

The goal of a BCI is to decode this activity in real time to detect the user’s

intentions. Therefore, in order to implement a BCI, the first step is the acquisition

of data reflecting the underlying neural activity of the user’s brain, and especially,

the cortex. Unfortunately, this measurement is a difficult challenge. First, the

physical barriers that protect the brain (e.g., scalp, skull, dura, arachnoid) make

it difficult to measure neural activity directly on the source, which would max-

imize precision (Wolpaw and Wolpaw, 2012). In fact, this is only possible with

highly invasive and complex techniques that, for safety and ethical reasons, can

only be used as last resource in life threatening situations. Another reason is the

exceptional complexity of the brain. The accurate decoding of high-level mental

processes would be required to measure the activity of billions of neurons at the

same time throughout the brain, but current technology lack the required capac-

ity and precision. However, the development of neuroimaging in the last decades

brought up several techniques that opened a window into the brain, enabling cru-

cial advancements for a better understanding of this organ (Wolpaw and Wolpaw,

2012).
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Neural activity involves electromagnetic, chemical and metabolic processes.

Depending on which one of these processes is measured and how, the neuroimaging

method will have different characteristics and purposes. In this regard, practical

BCI technology should be precise, non-invasive, cheap, portable, easy to use, and

comfortable to reach a wide acceptance by both end-users and clinicians.

The precision will depend on three important aspects of the neuroimaging tech-

nique: the spatial resolution, temporal resolution and coverage. Spatial resolution

refers to the minimum number of neurons whose activity can be recorded with

a neuroimaging method. For instance, a method with perfect spatial resolution

would allow to record the activity of single neurons. On the other hand, temporal

resolution accounts for the fastest event that be detected. Ideally, a method with

perfect temporal resolution would register any change in the neuron’s activity, in-

cluding rapid variations on the membrane potential or ions concentration. Finally,

the coverage is the volume of brain covered by the recording. A neuroimaging tech-

nique with high spatial and temporal resolution, but that only covers a small part

of the brain (e.g., 1 mm3) cannot be used to decode high-level cognitive processes,

since the processing is distributed across many parts of the brain.

The next crucial characteristic that affects the election of a neuroimaging tech-

nique to build a BCI is the degree of invasiveness. In this regard, invasive tech-

niques should only be considered for life-threatening situations and extreme cases

(e.g., locked-in patients). However, for applications such as the majority of assis-

tive systems (leaving aside extreme cases), neurorehabilitation or entertainment,

invasive systems are not a viable option, especially if they involve neurosurgery.

Finally, aspects such as the price and the usability of the BCI should also

be considered, especially for assistive systems and entertainment applications. In

the following subsections we review the most widely used neuroimaging meth-

ods nowadays, analyzing these aspects. According to their underlying principle,

current techniques can be divided in two categories:

Metabolic

Neural activation due to cognitive activity increases the firing rate of action poten-

tials and other processes that require energy. This energy is provided by oxygen

and glucose, the basic fuels of metabolism. These components are supplied to the

neurons by circulatory system through capillaries. When neurons require more en-

ergy, the blood flow to that region is increased to meet the demands. This change

in the hemodynamic response of the brain is locally regulated, thus providing a

marker for neuronal activity. Currently, the most important techniques that use



1.3. Brain–computer interfaces 15

metabolic processes to record the brain’s activity are (Sitaram et al., 2012):

1. Functional transcranial Doppler (fTCD). This technique uses pulse-

wave doppler technology to measure cerebral perfusion changes due to neural

activation. The main advantages are its simplicity and portable equipment.

However, its low spatial resolution only allows to measure changes in major

arteries between different hemispheres of the brain. This drawback prevents

the use of fTCD in BCI, but since its development it has substantially con-

tributed to our understanding of the hemispheric brain organization (Baum-

gartner, 2006; Sitaram et al., 2012).

2. Positron emission tomography (PET). This technology traces radioac-

tive substances to visualize and measure biochemical changes. It requires the

injection of radioactive compounds, called radiotracers, which bind to differ-

ent chemicals. PET traces these substances to detect changes or anomalies in

the distribution of the chemical throughout the body. In neuroscience, PET

combined with different radiotracers (e.g., oxygen-15, F-FDG) allows to de-

tect changes in metabolism. Despite the usefulness of this method, which is

widely used to detect tumors or infections in the daily clinical practice, it is

of no interest for BCIs due to its cost, low temporal resolution, non-portable

equipment, and slight invasiveness (Sitaram et al., 2012).

3. Functional near-infrared spectroscopy (fNIRS). This method detects

changes in the oxygenation levels of the blood using infrared light of differ-

ent wavelengths. These changes, known as the blood-oxygen-level-dependent

(BOLD) response, are measured by tracking different oxy- and deoxy-

hemoglobin concentrations from the surface of the cortex (Sitaram et al.,

2012). fNIRS represents a feasible candidate for certain BCI systems due

to its coverage, non-invasiveness, and portability (Naseer and Hong, 2015).

Nevertheless, its low temporal resolution, limited by the slow metabolic re-

sponse, and low spatial resolution, make this technique unsuitable for BCIs

that require multiple control choices and high information transfer rates

(ITR) (Naseer and Hong, 2015).

4. Functional magnetic resonance imaging (fMRI). As the fNIRS, this

technique also measures the BOLD response. In this case, the measurement

is based on the distinctive response of oxy- and deoxy-hemoglobin to high-

power magnetic fields, allowing to substantially increase the spatial resolu-

tion with respect to fNIRS (Sitaram et al., 2012). On the other hand, it has
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low temporal resolution and it requires expensive, non-portable equipment.

For these reasons, although fMRI can be considered the most suitable tech-

nique based the measurement of metabolic processes to design certain types

of BCIs, it is impractical for most situations and the range of applications is

mostly limited to neurorehabilitation (Yuan et al., 2021).

In general, methods based on the detection of metabolic processes are non-

invasive (except PET), achieve good spatial resolutions that range between less

than 1 mm3 to 5 mm3, and allow a broad brain coverage. On the other hand,

the hemodynamic response is slow, taking at least 2s for a blood vessel to react

to increased glucose and energy demands. Therefore, the temporal resolution is

limited, hindering the detection of brief, sparse events. Despite this drawback,

blood-flow imaging has been instrumental in many advancements in neuroscience,

being the most widely used techniques in this field.

Electromagnetic

The number of studies that used metabolic methods, especially fMRI, to map cog-

nitive functions into the underlying neuroanatomy of the brain grew exponentially

in the last decades. Despite the undeniable advances that this approach has pro-

vided in linking cognitive functions to different areas of the brain, we now know

that it can only show a part of the whole picture. This, perhaps, overemphasis on

the spatial mapping approach was probably inherited from the pre-neuroimaging

era, when brain function was primarily understood through localized brain le-

sions. However, recent advances in neuroimaging techniques with high temporal

resolution showed that a precise comprehension of the spatio-temporal dynamics of

neural activity throughout the brain can fill the gaps in our current understanding.

These techniques are based on the measurement of the electrical and magnetic

fields generated by neurons, which are assumed to be the primary form of com-

munication in our nervous system. The current methods are (Srinivasan, 2012):

1. Local fields potentials (LPF). This signal is the electric potential

recorded in the extracellular space of brain tissue. Typically, it is recorded

with micro-electrodes, such as metal, silicon and glass micropipettes, which

are implanted in the brain, reflecting the activity within volumes of 10−3

mm3 to 1 mm3.

2. Electrocorticography (ECoG). This method uses electrodes placed over

the surface of the cortex to measure the activity at the mesoscopic scale,
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targeting a volume of brain tissue that ranges between 1 mm3 and 20 mm3.

3. Electroencephalography (EEG). This technique uses electrodes placed

over the scalp to record the electrical activity of the brain. It is estimated

that a single EEG electrode measures the activity within tissue volumes

between 103 mm3 and 104 mm3, reflecting the averaged electrical potentials

of a hundred million to a billion of neurons (Srinivasan, 2012).

4. Magnetoencephalography (MEG). This signal reflects the magnetic ac-

tivity of the neurons at the macroscopic scale. Due to the small amplitude

of the magnetic field relative to unavoidable ambient magnetic variations,

its measurement requires the use of a superconducting quantum interference

device magnetometer at a very low temperature placed in a magnetically

shielded chamber (Srinivasan, 2012). Noteworthy, despite that EEG and

MEG reflect neural activity at the same scale, electric and magnetic fields

generated by the neurons are partly independent due to the low frequency

of brain signals and specific source characteristics. This implies that MEG

and EEG are sensitive to the activity of different neurons, providing com-

plementary information (Srinivasan, 2012).

The previous techniques are based on the same underlying physiological prin-

ciples, being the main differences between them the way to measure the elec-

tromagnetic fields and the location and characteristics of the electrodes. All of

them present excellent temporal resolution due to the propagation speed of elec-

tromagnetic fields. Regarding the spatial resolution, LPF achieves the best spatial

resolution, followed by ECoG, MEG and EEG, which has the lowest one. More-

over, LPF, ECoG and EEG use portable equipment with a relatively low cost

compared to metabolic neuroimaging and MEG. With respect to the degree inva-

siveness, EEG and MEG are the only ones that are non-invasive and completely

safe, whereas the other techniques present a high risk for the subject. This allows

to place as many electrodes as needed over the scalp, providing a total coverage

of the cortex’s surface. In fact, modern high-density EEG and MEG equipment

records up to 256 channels at different positions at the same time.

Taking into account all the aspects that should be considered for designing BCI

systems, the EEG is the best technique in most scenarios. The reasons are its ex-

cellent temporal resolution, total coverage of the cortex’s surface, non-invasiveness,

price, and usability, being the weakest point its low spatial resolution. Other tech-

niques that can be used in certain scenarios are the ECoG, which can be used
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in extreme cases with severely disabled subjects, and fNIRS/fMRI in some neu-

rorehabilitation applications. However, the EEG is, by far, the most extended

neuroimaging technique in the BCI field and it is the one that was used in this

dissertation (Wolpaw and Wolpaw, 2012).

1.3.2 EEG

EEG records electric potentials using electrodes placed over the user’s scalp. The

origin of these potentials is the neural activity of the brain, but the underlying

generation mechanisms are not yet fully understood (He, 2020). The most accepted

hypothesis is that the EEG reflects averaged oscillations provoked by postsynaptic

activity of large populations of pyramidal neurons from the cortex (He, 2020). On

the other hand, the contribution of action potentials is questioned for two reasons:

(1) their short generation time (i.e., ∼ 1ms), which makes synchronization between

neuronal assemblies difficult, thus canceling the resulting electric field measured

from a macroscale point of view; and (2) the strong frequency-filtering properties

of the tissues separating sources from the electrodes, which remove frequencies

above 100 Hz (He, 2020). Additionally, the volume conduction problem has to be

taken into account. This phenomenon accounts for the spread of the electric field

when it crosses through different layers of tissue, decreasing the spatial resolution

of the EEG. Therefore, this signal only reflects a small, but important part of the

underlying neural activity. Despite the fact that EEG showed consistent and strong

correlation with brain states, these limitations hide the physiological origin of the

recorded oscillations. However, the increasingly complex methods to analyze EEG,

which have been developed in the last decades, are improving our understanding of

this signal, increasing its presence in applied clinical and neurotechnology settings.

EEG is composed by spontaneous and evoked activity. Spontaneous activity

is present in the absence of explicit inputs (e.g., sensory stimuli) or outputs (e.g.,

motor responses) (Musso et al., 2010). This activity is attributed to both con-

scious and unconscious processing. There is increasing evidence to support that

these oscillations are organized in a coherent default-mode network with a specific

spatio-temporal structure that helps to maintain homeostasis, which is necessary

for proper brain function (Musso et al., 2010). On the other hand, evoked ac-

tivity is triggered by specific events, such as a sudden sound or the movement of

an arm. Thus, it is time-locked to events, having a specific temporal onset, and

leaves characteristic footprints on the EEG that can be replicated under the same

experimental conditions. For this reason, EEG patterns associated with evoked ac-
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tivity can be extracted by averaging different EEG features (e.g., amplitude, band

power, etc.) for multiple trials of the same experiment to cancel the influence of

the spontaneous activity, which is superimposed and follows a random distribution

(Wolpaw and Wolpaw, 2012). The result of this synchronized average is an ERP,

which is composed by different components that can be classified in three main

categories (Luck, 2014): (1) exogenous components provoked by primary process-

ing of sensory stimuli; (2) endogenous components triggered by mental tasks and

high-level cognitive processes; (3) motor components that accompany the prepa-

ration and execution of movements. It should be noted that different events leave

different footprints with specific spatio-temporal structure.

Due to the complexity of EEG, it is difficult to extract meaningful information

from this signal simply by visual inspection in the temporal domain. EEG reflects

the synchronized activity of large populations of neurons that engage in different

cognitive processes at the same time, often behaving as an oscillatory phenomenon

with a specific spatio-temporal structure. For this reason, it is often represented in

the frequency domain, which allows to analyze the underlying rhythmic activity.

Numerous studies showed that certain brain processes or mental states are associ-

ated with an increased/decreased activity in different frequency bands. Typically,

the EEG is divided into 5 bands, according to their characteristics and frequency

ranges: delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), beta (β, 13–30

Hz), and gamma (γ, 30–100 Hz) (Tantum, 2021).

An EEG recording typically needs electrodes to capture the electrical potentials

and a biomedical amplifier to amplify, filter and convert the EEG signal to the

digital domain. The minimum setup requires at least three electrodes: ground,

reference, and signal channel. The ground electrode is connected to the amplifier

ground and isolated from the power supply to prevent drifts and optimize common-

mode rejection. Then, the EEG signal is obtained as the difference between the

channel and the reference, which is typically placed far the brain sources, such

as the ear, mastoid, or neck (Srinivasan, 2012). Clinical and BCI experiments

often require multiple EEG channels. In order to achieve comparable, consistent

and reproducible EEG recordings, the American Clinical Neurophysiology Society

proposed several standards to define the positions of the electrodes, being the

most widely used are the International Systems 10-20 and 10-10 (Acharya et al.,

2016). These systems are based on the average distance between the inion and the

nasion, which are used as reference points. The Figure 1.5 depicts the International

System 10-10.
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Figure 1.5: The International System 10-10 illustrated in schematic views showing (A) a
lateral view, (B) a top view, and (C) a scalp projection. This standard uses proportional
distances of 10% between the nasion and the inion for positioning the electrodes on the
scalp (Mart́ınez-Cagigal, 2020).

1.3.3 BCI control signals

Decoding neural activity from EEG signals is not straightforward due to the low

spatial resolution and high complexity of this signal. To achieve this goal, EEG

must first encode the user’s intention that is being conveyed. Then, different signal

processing techniques must be applied to isolate this information and translate it

into an application command.

In order to encode user’s intentions in the EEG, BCIs use certain types of

evoked activity. During the last decades, researchers studied different paradigms

to optimize the use of evoked activity for BCI control, using neural engineering

techniques to trigger adequate responses for each application. These responses are

known as control signals, being the most important nowadays:

1. Sensorymotor rhythms (SMR). SMR are components recorded in the

sensorimotor cortex in alpha, beta, and gamma bands. SMR activity is pro-

voked by the conscious preparation of a motor intent and is characterized by:

(1) a contralateral power decrease, known as event-related desynchronization

(ERD); and (2) an ipsilateral power increase, known as event-related syn-

chronization (ERS) (Pfurtscheller and McFarland, 2012). ERD/ERS events

are bound to the area of the cortex that controls the muscles involved in the

movement. An interesting feature for BCI control is that, since SMRs are

modulated by motor planning and attention mechanisms, instead of actual

movement execution, executed and imagined movements can trigger similar

ERD/ERS responses. Therefore, this control signal can be used by different
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types of users, including severely disabled, to control a BCI system. How-

ever, in order to achieve a successful control through motor imagery exercises,

users usually need to train for several hours. Another handicap of the SMRs

is that the number of classes that can be discriminated is limited due to

the low spatial resolution of the EEG. Therefore, the number of different

commands that can be implemented in a SMR-based BCI is also limited. In

fact, current SMR-based BCIs rarely implement more than 4 commands to

maintain a suitable accuracy.

2. Steady-state visual evoked potentials (SSVEP). SSVEPs are the re-

sult of rapid and repetitive visual stimulation at fixed rates (Luck, 2014).

In this paradigm, the resulting evoked responses are overlapped producing

a constant oscillation at the stimulation frequency. Since these evoked re-

sponses are the result of low-level sensory processing, no mental tasks are

involved. Therefore, SSVEPs are a considered an exogenous control signal

that can be triggered in the user without training. If the stimulation is

maintained enough time, SSVEPs can be identified with a simple frequency

analysis. The classical setup of SSVEP-based BCIs is a matrix with cells that

produce visual stimuli at different frequencies. When the user pays attention

to a specific cell, the SSVEP is detected in the EEG and the corresponding

application command is executed. This setup allows to implement a high

number of commands (typically between 12 and 64), but it is still limited by

the refreshing rate of current LCD screens (Luck, 2014).

3. Code-modulated visual evoked potentials (c-VEP). c-VEPs are

elicited by flashing stimulation sequences that follow pseudo-random noise

codes, generating evoked neural activity correlated with the sequence the

user is paying attention to (Mart́ınez-Cagigal et al., 2021). In this paradigm,

several cells are arranged in a matrix, each one of them with a different stim-

ulation sequence associated to a command. When the user wants to perform

a selection, the BCI system detects which sequence is more correlated to the

EEG activity and executes the corresponding command (Mart́ınez-Cagigal

et al., 2021). In recent years, this paradigm achieved the highest accuracy

and selection speed ever reported in the BCI literature, being one of the

most promising alternatives for communication and control BCIs. However,

c-VEP-based BCIs require complex time synchronization and the number

of commands, typically between 4 and 16, is still limited by the availability

of uncorrelated psudo-random codes and the refreshing rate of LCD screens
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(Mart́ınez-Cagigal et al., 2021).

4. P300 evoked potentials. In this paradigm, the user is presented with

different cells, each one associated to a command, that are highlighted se-

quentially in random order. The task of the user is to focus on the target

cell while ignoring the other stimuli that are presented. In this setup, target

events elicit visual ERPs with the P300 potential in the EEG, whereas the

other stimuli triggers visual ERPs without this component, as can be seen

in Figure 1.6 (Santamaŕıa-Vázquez et al., 2019a). The P300 component is a

positive potential elicited by the recognition of a rare stimulus (target) within

a series of frequent stimuli (non-target), appearing around 300 ms after the

stimulus onset. In order to decode the command, the BCI system detects

the P300 in the EEG using signal processing techniques. This waveform is

considered an endogenous component, since it reflects high-level cognitive

tasks to differentiate between the two different types of stimuli, but the user

does not require training to elicit it. This control signal has been widely

studied to implement systems for communication and control. Despite the

fact that P300 evoked potentials generally provide lower accuracy and speed

than SSVEPs and c-VEPs, the number of commands is not limited, thus

allowing to control complex interfaces such as domotic systems or full key-

boards. Furthermore, it does not require complex user interfaces or accurate

time synchronization. For these reasons, this control signal is considered the

most reliable for applied systems outside the laboratory, probably being the

most extended in the BCI field nowadays (Sellers et al., 2012). The systems

that use this control signal are known as ERP-based BCIs or P300-based

BCIs. Although both terms are often used interchangeably in the literature,

in this document we use the term ERP-based BCIs.

1.3.4 EEG processing in BCI

Once the information to discriminate the command has been encoded in the EEG

using the previous or other control signals, the system must detect the correspond-

ing neural activity and isolate it from the rest of EEG components by applying

signal processing methods. Although the algorithm will depend on the specific

BCI paradigm, we can define a general signal processing framework implemented

in 4 sequential stages: pre-processing, feature extraction, feature selection and

feature classification.
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Figure 1.6: The figure illustrates the averaged EEG epochs for both target and non-
target stimuli in an ERP-based BCI. The left graph represents the signal in channel Cz,
with the stimulus onset placed at t=0. As can be seen, the ERP, with the P300 com-
ponent, is clearly visible for target stimuli. The graph on the right shows the amplitude
values recorded in eight different channels at the peak of the ERP.

The goal of the pre-processing stage is to remove non-target components and

noisy artifacts from the EEG, increasing the signal-to-noise ratio (SNR) of the

control signal (Lotte et al., 2018). The most typical methods include: (1) fre-

quency filters such as infinite impulse response (IIR) filters and finite impulse

response (FIR) filters to remove frequencies outside the interest band; (2) spatial

filters to increase the spatial resolution, such as common average reference (CAR),

Laplacian Filters or Common Spatial Patterns; and (3) source separation to re-

move certain signal components, such as Independent Component Analysis (ICA)

(Lotte et al., 2018).

In the feature extraction stage, the algorithm extracts meaningful features to

detect the control signal in the EEG, facilitating the learning and generalization

steps in the classification stage (Lotte et al., 2018). Depending on the control sig-

nal, different features can be used, being the most relevant: (1) temporal features

such as amplitude distribution indices or moving averages; (2) spectral features

based on Fourier analysis, such as band powers or spectral entropy; (3) non-linear

metrics such as central tendency measure (CTM), Lempel-Ziv complexity (LZC)

or Sample entropy (SampEn); (4) connectivity metrics, including amplitude and

phase parameters such as phase locking value (PLC), amplitude envelope corre-

lation (AEC); and (5) graph theory metrics. A common approach is to calculate

different types of features and use all of them in the following stages (Lotte et al.,

2018).

After the feature extraction stage, the information contained in the EEG is syn-
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thesized in a set of variables (Lotte et al., 2018). However, some of these features

may provide irrelevant or redundant information for the control signal detection

problem, which may reduce the performance of the algorithm and increase over-

fitting. Therefore, an optional feature selection stage can be applied to select the

most relevant features. There are two types of algorithms that can be used. Filter

approaches are independent from the classification stage, selecting the most rele-

vant features based on correlation analyses. On the other hand, wrapper methods

use predictions with a given model to decide which features are more relevant for

the task, calculating the optimal set for a specific classification method (Guyon

and Elisseeff, 2003).

The feature classification stage automatically detects the EEG patterns corre-

sponding to the control signal depending on the values of the input features. The

classification method calculates the optimal decision boundaries in the feature

space to separate the classes based on different criteria. For EEG classification

tasks, the most successful methods are based on supervised learning, which require

a training set to calculate the optimal decision boundaries (Lotte et al., 2018).

Some widely used classifiers for EEG classifications tasks are linear regression, lin-

ear discriminant analysis (LDA), support vector machines (SVM), artificial neural

networks (ANN) and Riemannian-based classifiers (Lotte et al., 2018). Depending

on the paradigm, an additional step might be necessary to translate the classifier

output to application commands, as in ERP-based BCIs, where the detected P300

must be mapped to their corresponding command.

1.3.5 BCI Applications

A BCI system works as a general interface between the user’s brain and an external

device. Therefore, this technology can be potentially used for unlimited applica-

tions. Nevertheless, due to its current high complexity and low performance, its

use is restricted to specific fields. Nowadays, the most important applications of

BCIs on the biomedical field are assistive systems and neurorehabilitation.

In the 1980s, BCIs were conceptualized as an aid system for people with com-

munication and motor control problems (Farwell and Donchin, 1988). Nowadays,

increasing the quality of life and independence of severely disabled people is still

one of the main goals of the EEG-based BCI technology (Wolpaw and Wolpaw,

2012). In the last decades, many different kinds of assistive systems controlled

through BCI appeared: web browsers (Mart́ınez-Cagigal et al., 2017), wheelchairs

(Cruz et al., 2021), exoskeletons and robotic limbs (Tariq et al., 2018), social media
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applications (Mart́ınez-Cagigal et al., 2019a) or alternative communication devices

(Vansteensel and Jarosiewicz, 2020).

BCIs can also be used to rehabilitate or enhance brain functions through repet-

itive endogenous stimulation of brain activity (Enriquez-Geppert et al., 2017).

Using neurofeedback (NF) and operant conditioning, BCIs allow to self-modulate

neural activity and promote brain plasticity using real-time feedback of neural

activation parameters (Enriquez-Geppert et al., 2017). NF has emerged in recent

years as a promising methodology to correct pathological states and behaviours,

such as attention deficit hyperactivity disorder, anxiety or depression, and even

to improve recovery expectancies after suffering brain damage provoked by stroke

or traumatic brain injury. Furthermore, NF techniques have been proposed as a

cognitive enhancement tool for healthy subjects (Enriquez-Geppert et al., 2017).

1.4 State of the art

The contributions of this dissertation cover a wide range of topics in the BCI

field, including: (1) improvement of asynchronous control of ERP-based BCIs;

(2) application of novel pattern recognition techniques based on deep learning

to improve BCI performance; and (3) the development of a novel platform to

accelerate BCI and cognitive neuroscience research. The following subsections

provide a comprehensive state of the art review of these topics.

1.4.1 Asynchronous control of ERP-based BCIs

As mentioned in previous sections, BCIs use evoked activity to decode the user’s

intentions from the EEG. However, in a single EEG observation, control signals

(e.g., SMR, ERP) are, in most cases, barely discernible from the spontaneous com-

ponents due to the low SNR of this signal. For this reason, the command selection

time is usually pre-allocated. This approach allows to synchronize neural events in

order to increase the performance of the signal processing algorithm, simplifying

the classification task. The main implication is that the user can only interact

with the system during specific, fixed-duration time windows. Furthermore, to

maximize the accuracy, the system assumes that the user always wants to make a

selection in the given time slot. Thus, it always decides and executes a command

even if the user does not want to interact with the BCI.

This synchronous behaviour is not a limitation in neurorehabilitation appli-

cations, where the goal is to facilitate endogenous stimulation of certain neural
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activity patterns. But for practical assistive applications, this poses a great draw-

back. In this case, users must be able to shift their attention away from the BCI

to attend different tasks on demand (Santamaŕıa-Vázquez et al., 2019a). If the

system randomly selects commands when the user is not controlling it, it can po-

tentially create undesired or even dangerous situations, as in an application for

wheelchair control. In these cases, the system needs to implement an additional

control state detection layer to provide an asynchronous control of the application

by dynamically detecting whether the user is willingly controlling the BCI (i.e.,

control state), or is attending to other task (i.e., non-control state). As one of the

most widely used paradigms for assistive applications, asynchronous ERP-based

BCIs based on the P300 potential are of great interest.

Several works studied different strategies to provide an asynchronous control of

ERP-based BCIs. The approaches can be divided into two categories: (1) thresh-

olds dependent on the output scores of the feature classification stage (Aloise

et al., 2011; Aydin et al., 2018; He et al., 2017; Mart́ınez-Cagigal et al., 2017,

2019a; Zhang et al., 2008); or (2) hybrid BCIs that combine different control sig-

nals (Li et al., 2013; Panicker et al., 2010; Yu et al., 2017). Nevertheless, these

approaches still present limitations. For instance, algorithms that rely on the out-

put scores of the ERP classification stage have high inter-session variability. Small

changes in the amplitude or latency of the ERPs could override the threshold and

cause a drastic decrease in the accuracy of these methods. In fact, thresholds

must be recalibrated before each session with the BCI system. This procedure

is time consuming, affects the usability of the system and it is frustrating for

users (Mart́ınez-Cagigal et al., 2017; Schettini et al., 2014). Moreover, previous

approaches require to record additional data to characterize the EEG when the

users are not paying attention to the system in order to calculate the threshold,

which increases the duration of the calibration sessions. On the other hand, hybrid

BCIs increase the complexity of the system, requiring different stimulation inter-

faces. In these BCIs, the user has to be able to manage with two or more control

signals, making them more demanding. Consequently, hybrid BCIs might be a

major challenge for certain users who cannot maintain high levels of concentration

(Amiri et al., 2013).

Algorithms independent of the ERP classification stage may help to over-

come the previous limitations. In this regard, Pinegger et al. (2015) proposed

a groundbreaking method based on the hypothesis that the flashing frequency of

the classical P300-based speller should be encoded somehow in the EEG due to

low-level processing of non-target visual stimuli. However, the proposed method
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only reached an average accuracy of 79.5% in the control state detection task.

Moreover, it required to double the duration of the calibration sessions in order to

acquire non-control trials. Therefore, there was still room for improvement, and

further developments could solve the limitations of the study of Pinegger et al.

(2015). In this regard, novel techniques to detect the low-level processing of vi-

sual stimuli are promising candidates to provide a real asynchronous control of

ERP-based BCIs.

1.4.2 Deep learning in ERP-based BCIs

Another limitation of current BCIs is their performance. For some applications,

including assistive systems, the accuracy and command selection speed, which are

the two main metrics to measure the performance of a BCI, are far from ideal. In

this regard, there are two ways of improving the accuracy and speed of a BCI: (1)

improve the control paradigm to elicit stronger responses in the EEG that are easier

to detect (i.e., improve SNR); or (2) improve the signal processing stage to increase

the sensibility and specificity of the system for a given paradigm. Although both

approaches get a lot of attention, the latter is easier to put into practice, taking

into account that you can use existing BCI applications and databases to design

novel pattern recognition methodologies.

In the case of ERP-based BCIs, classical methods based on feature engineering

and machine learning, such as LDA and SVM, have been widely explored (Lotte

et al., 2018, 2007). They achieve a reasonable performance, but their robustness is

easily compromised by noisy artifacts or inter-subject and inter-session variability

(Lotte et al., 2007). Moreover, several studies demonstrated that the performance

of these methods is reduced drastically in real environments with severely disabled

populations (Mart́ınez-Cagigal et al., 2017, 2019a). Recent developments in tensor

classifiers based on Riemannian geometry (RG) and adaptive methodologies have

made some improvements, but their accuracy and generalization ability remain

limited (Congedo et al., 2017; Lotte et al., 2018).

In recent years, the development of deep learning brought breaking advances

in the field of pattern recognition (Craik et al., 2019). Deep neural networks are

able to automatically extract complex features from raw data, learning hierarchical

representations of the input in different levels of abstraction (Lecun et al., 2015).

This ability has revolutionized fields such as computer vision, natural language

processing, genomics or drug-discovery (Lecun et al., 2015). In the EEG domain,

deep neural networks have been used for ERP, SMR and SSVEP classification,
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seizure detection and prediction, sleep stage scoring, mental workload detection,

data augmentation or emotion recognition, among others (Craik et al., 2019).

However, there are still relatively few studies of deep-learning models for EEG

analysis (Roy et al., 2019). Since the application of deep learning to EEG is

relatively new, most studies explored simple architectures based on convolutional

neural networks (CNN) and recurrent neural networks (RNN) (Craik et al., 2019).

Nevertheless, there is still room for improvement, and more complex architectures

specifically designed for EEG analysis could enhance the performance of CNNs in

this domain.

Several studies proposed deep-learning models for ERP detection in a BCI

framework. Table 1.1 presents a summary of previous approaches, including a

brief description of their contributions, validation method, testing subjects, and

outcomes. It can be observed that CNNs are the most widely used method. Among

them, EEGNet, proposed by Lawhern et al. (2018), had great impact for its suit-

able performance and efficient use of depthwise and separable convolutions to cre-

ate a robust and lightweight structure. Another approach was the model proposed

by Borra et al. (2019), which was a fine-tuned version of EEGNet for ERP de-

tection in subjects with attention-deficit/hyperactivity disorder (ADHD). In this

table, we also include our first deep-learning model (not included in this com-

pendium), called CNN-BLSTM, which combines a convolutional layer to extract

spatial patterns with 2 recurrent layers based on bidirectional long-short term

memory units (BLSTM) to learn temporal patterns (Santamaŕıa-Vázquez et al.,

2019b). The use of RNNs for EEG processing is scarce, especially for ERP de-

tection (Craik et al., 2019). The reason for this may be that RNNs have a high

computational cost and take longer to train compared to CNNs. However, RNNs

are well-suited for processing time series data, making them a viable alternative

to CNNs in EEG processing.

It should be noted that previous studies have not tested their deep-learning

models on subjects with motor impairments. Furthermore, Cecotti and Gräser

(2011) and Liu et al. (2018) only included two and three healthy subjects, respec-

tively. It is well-known that patients often have lower classification accuracy due to

factors related to their specific conditions, such as neural damage, attention prob-

lems, visual impairment, involuntary tremors, or limited cognitive performance

(Mart́ınez-Cagigal et al., 2017, 2019a). Furthermore, these symptoms can vary

greatly between individuals, even among those with the same condition, making

severely disabled subjects a particularly challenging and heterogeneous group for

ERP detection. Therefore, a thorough evaluation of new models in this group is
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Table 1.1: Previous deep-learning approaches for ERP-based BCIs

Study Highlights Validation Subjects Accuracy
Cecotti and
Gräser (2011)

First CNN for BCI classification
tasks

Intra-subject 2 CS 95%

Manor and
Geva (2015)

Spatio-temporal regularization Cross-subject 15 CS 70%

Liu et al.
(2018)

Dropout and Batch normaliza-
tion

Intra-subject 3 CS 97%

Lawhern et al.
(2018)

Depthwise and separable convo-
lutions

Cross/intra-
subject

18 CS 90/92%

Santamaŕıa-
Vázquez et al.
(2019b)

Use of bidirectional LSTM lay-
ers

Hybrid 15
ADHD

84%

Borra et al.
(2019)

Depthwise and separable convo-
lutions

Intra-subject 15
ADHD

92%

CS: control subjects; CNN: convolutional neural network; ADHD: subjects with attention deficit hyper-
activity disorder; MDS: motor disabled subjects; CNN: convolutional neural network; LSTM: long-short
term memory; Validation: intra-subject strategies train and test the models with data from the same
subject, cross-subject strategies train and test the models with data from different subjects and hybrid
approaches combine both techniques; Accuracy: test command decoding accuracy.

necessary to determine their usefulness in assistive BCI applications.

1.4.3 BCI platforms

In order to gain new insights into brain function or test new signal process-

ing algorithms, BCI researchers often need to conduct sophisticated experiments

with strict temporal requirements and high-precision synchronization between pro-

cesses. The implementation of such experiments requires specialized software tools

to handle the signal acquisition, data processing, task presentation, and feedback

to the user (Wolpaw and Wolpaw, 2012). The design and development of these

tools is difficult and time consuming, requiring extensive technical knowledge in

several domains. Furthermore, a great flexibility is often required in this research

environment to rapidly adjust the applications to particular studies or projects.

Unfortunately, this expertise is often out of reach for most neuroscience research

groups, who stick to the available software or rely on external entities to develop

the required programs for their research, leading to delays and cost increases. This

is particularly relevant in closed-loop experiments implemented with BCIs due to

their technical complexity (Ciliberti and Kloosterman, 2017; Lopes and Monteiro,

2021).

In this context, software tools and applications specifically designed to facilitate

the implementation of neuroscience experiments are of great importance for the

progress of brain research and neurotechnology. The impact that this kind of tools

could have in particular fields should not be underestimated due to their ability
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to speed up experimentation, reduce project costs, and enable the participation

of researchers without technical knowledge (Renard et al., 2010). While there is

a wide range of signal/image processing toolboxes with state-of-the-art methods,

such as EEGLAB (Delorme and Makeig, 2004), Brainstorm (Tadel et al., 2011) or

MNE (Gramfort et al., 2013), there are limited options for experimental design and

implementation. Most of the current tools have few or none customization options

and they can only be applied for specific tasks. Moreover, these programs are often

distributed under proprietary terms with no compatibility between biomedical

recording equipment from different manufacturers, which limits the opportunity

to take advantage from all available resources in a research laboratory.

There have been some attempts to overcome these limitations. Two exam-

ples of open-source platforms for neuroscience research with success within the

BCI community are BCI2000 (Schalk et al., 2004) and OpenVibe (Renard et al.,

2010). Although these platforms have been widely used in BCI studies for years,

they have drawbacks that should be considered. Their signal acquisition module

is not prepared to handle multiple input signals, which limits their application

in some experiments (e.g., collaborative and competitive BCIs). Another im-

portant aspect is that their implementation in C++, a complex programming

language, is not convenient to keep up with the latest developments in the BCI

field. For instance, BCI2000 and OpenVibe do not offer some state-of-the-art BCI

paradigms, such as those based on c-VEPs, or signal processing algorithms, such

as deep neural networks. Moreover, these platforms lack specific tools to create

and share new applications and experiments, which are important functionalities

in research environments. As a result, despite the useful help that they provided

in the past decades, the community has little opportunity to contribute to their

development. These limitations also apply to less-known projects that, in some

cases, are barely (or no longer) maintained: BF++ (http://www.brainterface.com)

(Bianchi et al., 2003), xBCI (http://xbci.sourceforge.net) (Susila et al., 2010) or

Pyff (https://bbci.de/pyff/index.html) (Venthur et al., 2010).

To summarize, we identified a gap in the availability of appropriate BCI soft-

ware tools to carry out the research we had intended to conduct at the beginning of

this work. The lack of modern BCI platforms capable of handling the complexity

of these new challenges has hindered progress in the field. The development of BCI

platforms with more power and flexibility could facilitate further advancements.

Once the main topics of this dissertation have been introduced in this chap-

ter, the rest of the document is organized as follows. Chapter 2 establishes the

http://www.brainterface.com/
http://xbci.sourceforge.net/
https://bbci.de/pyff/index.html
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hypotheses and objectives of this investigation. The databases that were used

to perform the experiments are detailed in chapter 3. Then, chapter 4 describes

the methodology that has been used in each of the studies that form this work.

The main results are described in chapter 5, being further discussed in chapter 6.

Finally, the contributions of this dissertation, as well as the final conclusions, are

detailed in chapter 7. The last sections are intended to complement this docu-

ment by including: the papers of the compendium of publications (appendix A),

the scientific achievements achieved during the Ph.D. (appendix B), and a brief

summary in Spanish (appendix C).





Chapter 2

Hypothesis and objectives

As shown in the first chapter, EEG-based BCI technology still faces major issues

that hinder its use for practical applications outside the laboratory. This doctoral

dissertation was devoted to providing new methods and tools in order to solve

some of these limitations, especially in the context of assistive systems for severely

disabled people. The following section outlines the supporting hypotheses and

main objectives of this work.

2.1 Hypothesis

This dissertation was focused on three of the limitations that affect ERP-based

spellers: (1) synchronous control; (2) performance; and (3) software tools for

BCI research. The hypotheses that guided each of the studies that compose the

compendium are described in the following paragraphs.

Regarding the first limitation, we started from the following hypothesis: the

stimulation pattern used in ERP-based spellers elicits different types of brain ac-

tivity that can be detected in the EEG. Based on the work of Pinegger et al. (2015),

we also assumed that this brain activity can be used to provide a reliable detection

of the user’s control state over the BCI. These hypotheses guided the first and

third studies of the compendium.

Despite the fact that there were several works that studied the application

of deep learning for EEG processing, and more specifically, ERP detection, the

improvement achieved by these investigations was not as impressive as in other

pattern recognition tasks (e.g., image recognition or natural language processing).

This fact led to our next hypothesis: more complex deep-learning architectures that
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take into account the specific spatiotemporal dynamics of the EEG could improve

the performance of these models for BCI applications. This statement guided

our research to increase the performance of asynchronous ERP-based spellers for

assistive applications in the second and third studies of the compendium.

The third limitation that was addressed in this work is related to the avail-

able tools for BCI research. We identified a number of problems in current BCI

platforms that were hindering the development and distribution of the proposed

BCIs. This analysis led to the following hypothesis: the development of a novel

BCI platform could accelerate the research in this field. This last hypothesis was

the foundation of the fourth and last work of the compendium.

These statements are the main hypotheses that form the core of the present

dissertation, which can be merged into the following global hypothesis:

“The development of novel signal processing methods and research

tools can significantly advance the field of ERP-based BCIs, thereby

bringing these systems closer to practical implementation for assistive

applications.”

2.2 Objectives

The main goal of this dissertation was to design, develop and test novel signal pro-

cessing methodologies to improve the performance and usability of asynchronous

ERP-based BCIs in an assistive context. In order to achieve this general objective,

the following specific objectives were proposed:

I. To further characterize the EEG signal during control/non-control states

in ERP-based spellers to provide new insights that could be later used to

improve control state detection in these systems.

II. To optimize signal processing methods in ERP-based spellers to increase the

performance of the control state detection stage using novel features based

on the characterization of control/non-control states.

III. To increase the performance of ERP-based spellers for assistive applications

using deep learning approaches.

IV. To develop a novel BCI platform to facilitate the design, implementation

and distribution of custom BCI experiments and applications to be used

throughout this investigation, allowing us to reach the previous objectives.
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V. To disseminate the main results of this work in JCR indexed journals, and

international/national conferences.





Chapter 3

Subjects and signals

In this chapter, the databases that were used in each of the studies that compose

this dissertation are detailed. Section 3.1 introduces the row-column paradigm

(RCP), which is the BCI control paradigm that was used in the first three studies

of the compendium: Santamaŕıa-Vázquez et al. (2019a, 2022, 2020b). Section 3.2

describes the clinical and demographic characteristics of the subjects that partic-

ipated in the experiments. Finally, section 3.3 details the acquisition setups for

each study, including EEG devices, sampling rate and electrode montages.

3.1 The row-column paradigm

As discussed in section 1.3.3, ERPs are the brain response to specific events. For

instance, sudden visual stimuli provoke a series of characteristic EEG waveforms

with different positive and negative peaks that can be revealed by averaging EEG

epochs after the stimulus onset. Specifically, P300 evoked potentials are endoge-

nous components elicited by the oddball paradigm, where the user has to detect an

infrequent target stimuli among frequent non-target stimuli. This simple cogni-

tive task triggers conscious responses that activate high-level areas of the cortex in

frontal and parietal lobes whenever the user detects a target stimulus. This activ-

ity is reflected in the EEG with a characteristic waveform called P300 potential,

which appears around 300 ms after the stimulus onset. Importantly, the P300 is

not present for non-target stimulus (Sellers et al., 2012).

Different BCI paradigms take advantage of these differences in the EEG for

target vs non-target stimuli. The RCP is probably the most known among them.

In this paradigm, the system displays a matrix of commands, whose rows and
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Figure 3.1: Representation a row-column paradigm (RCP) trial with a 6×6 matrix.
When the trial starts, the system highlights all the rows and columns of the matrix. The
process is repeated Ns times to increase the number of observations and improve the
detection accuracy of the P300 potential. Finally, the BCI processes the EEG signal and
decodes the command.

columns are highlighted randomly. To select a command, the user has to stare

at the desired option, eliciting an ERP with the P300 component when a target

stimulus is perceived. On the other hand, non-target stimuli does not trigger

such response, only eliciting low-level responses in the early stages of the visual

cortex related to unconscious processing. Finally, the system decodes the row and

the column using signal processing algorithms to detect the P300 component and

executes the corresponding command, providing feedback to the user. Figure 3.1

shows an schematic representation of the RCP operation. It should be noted that

this paradigm is inherently synchronous: the system assumes by default that the

user is always attending the stimuli and selects a command after every trial. In

this regard, due to the low SNR of the ERPs, the control state detection task

requires specific processing in order to detect the user’s control state.

In order to configure the RCP operation, several parameters must be defined:

1) Stimulus duration (SD). This parameter defines the time that each row

and column is highlighted. Its value is usually set between 75 to 200 ms.

Values below 50 ms can prevent the detection of the stimulus by the user,

leading to very low command decoding accuracies (Blankertz et al., 2006;

Treder et al., 2011).

2) Inter-stimulus interval (ISI). This parameter defines the temporal sepa-

ration between two consecutive stimuli. Typically, the ISI is set between 75
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and 300 ms (Blankertz et al., 2006; Treder et al., 2011). A rather common

practice is to let the value of the ISI change between stimulus according

to a random uniform distribution to prevent users’ anticipation (Mart́ınez-

Cagigal et al., 2017).

3) Stimulus onset asynchrony (SOA). The SOA is the sum of the SD and

the ISI, representing the time between two consecutive onsets. It usually

takes values in the range of 175–500 ms (Blankertz et al., 2006).

4) Number of sequences (Ns). In order to increase the accuracy of the sys-

tem, the stimulation procedure is repeated Ns times to increase the accuracy

of the system. Generally, calibration data is recorded with 10 ≤ Ns ≤ 15 se-

quences, being reduced afterwards to increase the command selection speed

(Mart́ınez-Cagigal et al., 2017). The flashing order should be randomized for

every sequence to assure one of the main principles to elicit suitable P300:

an unexpected stimulation.

5) Matrix dimensions. The number of rows and columns of the matrix will

determine the number of commands that can be allocated. One of the most

useful features of the RCP is that the accuracy of the system is not com-

promised regardless the number of commands. However, it should be noted

that a higher number of commands implies a higher selection time. Another

important aspect is that there are few target stimuli that will elicit a P300

in comparison with non-target stimuli, leading to class-imbalanced datasets

(e.g., 1:6 for a 6 x 6 matrix) that will affect the design of the signal processing

algorithms.

Additional notation details that will be used along this document are: (1) a

stimulus refer to the highlighting of a row or column; (2) a trial is a single selection

with the system (e.g., one letter); and (3) a run is series of several trials that are

selected to perform a specific task (e.g., write a word, browse a web).

Several studies proved that the RCP could be a reliable paradigm for assistive

BCI applications (Mart́ınez-Cagigal et al., 2017, 2019a). However, as stated in

section 1.4, there is still room for improvement in terms of accuracy, speed and

asynchronous management.

3.2 Subjects

Three independent databases were used during the course of this doctoral thesis:
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1 Asynchrony database. This database was acquired to characterize the dif-

ferences in the EEG during control vs. non-control states in our ERP-based

speller with the RCP. Participants performed 120 trials, 60 control and 60

non-control, of 15 stimulation sequences with the proposed system. Signals

were recorded using a 16-channel EEG cap. The database was recorded in

two phases. The first 15 subjects (11 males, 4 females, mean age: 26.1 ±
2.3 years) were acquired for Santamaŕıa-Vázquez et al. (2019a). Afterwards,

this sample was extended for Santamaŕıa-Vázquez et al. (2022) with 7 more

subjects, making a total of 22 control subjects (CS) (15 males, 7 females,

mean age: 24.7 ± 4.3 years). Table 3.1 shows the demographic information

of subjects in this database.

2 BCI Web Browser database. This database was acquired to validate

an RCP speller to help severely disabled people to surf the internet with

an adapted BCI web browser (Mart́ınez-Cagigal et al., 2017). The database

consisted of 10 CS (6 males, 4 females, mean age: 24.8 ± 2.9) and 15 motor

disabled subjects (MD) (10 males, 5 females, mean age: 42.7 ± 7.5 years)

that performed different tasks with the web browser using the speller. Each

subject performed 87.9 ± 7.3 control trials. It should be noted that some

tasks contained free spelling moments, hence the variability in the num-

ber of trials per subject. Signals were recorded using an 8-channel EEG

cap (Mart́ınez-Cagigal et al., 2017). Demographic and clinical data of this

database are shown in Table 3.2

3 BCI Social Networks database. This database contains data from a

feasibility study to evaluate an assistive BCI application to use several so-

cial networks in a smartphone controlled through a RCP speller (Mart́ınez-

Cagigal et al., 2019a). The database contained data from 10 CS (8 males,

2 females, mean age: 26.10 ± 3.45) and 16 MD (10 males, 6 females, mean

age: 45.5 ± 9.68 years). Each subject performed 63.4 ± 8.2 control trials

using an 8-channel cap (Mart́ınez-Cagigal et al., 2019a). Demographic and

clinical data of this database are shown in Table 3.3.

Table 3.4 summarizes the characteristics of each database. All subjects gave

their informed written consent for participating in the respective studies. The

protocols were approved by the local ethics committee and complied with the

declaration of Helsinki. MD subjects of “BCI Web browser study” and “BCI

Social networks study” were recruited by the Spanish National Reference Centre

on Disability and Dependence.
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Table 3.1: Demographics of the Asynchrony database.

User Sex Age

C
o
n
tr
o
l
su

b
je
ct
s

CS01 M 27
CS02 M 26
CS03 M 27
CS04 M 30
CS05 M 35
CS06 M 26
CS07 M 27
CS08 M 27
CS09 F 28
CS10 F 26
CS11 M 27
CS12 F 25
CS13 F 23
CS14 M 26
CS15 M 27
CS16 F 19
CS17 M 19
CS18 M 19
CS19 F 19
CS20 M 19
CS21 F 19
CS22 M 26

MD: motor disabled subjects, M: male, F: female.

3.3 EEG recording setup

For the three databases, the data were recorded with a g.USBAmp (g.tec Medical

Engineering, Austria), at a sampling rate of 256 Hz. The ground was placed in FPz

and the EEG signal was referenced to the earlobe. The electrode positions were

different across databases. For the Asynchrony database 16 EEG channels were

recorded, whereas for the BCI Web Browser and BCI Social Networks we used 8

EEG channels. Figure 3.2 shows the EEG montages for the three databases ac-

cording to the International System 10–10. For all the recordings, the participants

were sat on a comfortable chair in front of a computer screen, keeping a minimum

distance of 50 cm.
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Table 3.2: Demographics and clinical data of the BCI Web Browser database.

User Sex Age Condition

C
o
n
tr
o
l
su

b
je
ct
s

CS23 M 26 Healthy
CS24 M 24 Healthy
CS25 F 25 Healthy
CS26 M 26 Healthy
CS27 F 23 Healthy
CS28 F 28 Healthy
CS29 M 30 Healthy
CS30 M 20 Healthy
CS31 M 24 Healthy
CS32 F 22 Healthy

M
o
to
r
d
is
a
b
le
d
su

b
je
ct
s

MD01 M 31 Multiple sclerosis
MD02 M 43 Multiple sclerosis
MD03 F 47 Multiple sclerosis
MD04 M 56 Multiple sclerosis
MD05 F 32 Multiple sclerosis
MD06 M 35 Multiple sclerosis
MD07 M 41 Multiple sclerosis
MD08 F 49 Multiple sclerosis
MD09 M 44 Multiple sclerosis
MD10 F 41 Multiple sclerosis
MD11 M 43 Multiple sclerosis
MD12 M 44 Multiple sclerosis
MD13 M 52 Multiple sclerosis
MD14 F 38 Multiple sclerosis
MD15 M 47 Multiple sclerosis

MD: motor disabled subjects, M: male, F: female.

Figure 3.2: Electrode montages according to the International System 10–10: (A)
Asynchrony database (Santamaŕıa-Vázquez et al., 2019a, 2022); (B) BCI Web Browser
and BCI Social Networks databases (Santamaŕıa-Vázquez et al., 2020b). Ground and
reference electrodes are marked in yellow and blue, respectively. Adapted from Mart́ınez-
Cagigal (2020).
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Table 3.3: Demographics and clinical data of the BCI Social Networks database.

Identifier Sex Age Condition
C
o
n
tr
o
l
su

b
je
ct
s

CS33 M 25 Healthy
CS34 M 25 Healthy
CS35 M 24 Healthy
CS36 M 25 Healthy
CS37 M 25 Healthy
CS38 M 32 Healthy
CS39 M 24 Healthy
CS40 M 25 Healthy
CS41 F 23 Healthy
CS42 F 33 Healthy

M
o
to
r
d
is
a
b
le
d
su

b
je
ct
s

MD16 F 48 Stroke
MD17 M 46 Spinal cord injury
MD18 F 38 Friedreich’s ataxia
MD19 M 39 Spinal cord injury
MD20 F 49 Friedreich’s ataxia
MD21 M 31 Cerebral palsy
MD22 M 52 Cerebral palsy
MD23 M 44 Friedreich’s ataxia
MD24 M 47 Cerebral palsy
MD25 M 67 Cerebral palsy
MD26 M 62 Muscular dystrophy
MD27 M 47 Muscular dystrophy
MD28 F 66 Friedreich’s ataxia
MD29 F 40 Friedreich’s ataxia
MD30 M 38 Spinal cord injury
MD31 M 50 Spinal cord injury

MD: motor disabled subjects, M: male, F: female.

Table 3.4: Summary of each database.

Database CS MD Paradigm SD ISI Channels

Asynchrony 22 0 RCP 75 100 16
BCI Web Browser 10 15 RCP 62.5 U(125, 250) 8
BCI Social Networks 10 16 RCP 62.5 U(125, 250) 8

CS: control subjects; MD: motor disabled subjects; RCP: row-col paradigm; SD: stimulus dura-
tion in ms, ISI: inter-stimuli interval in ms; U randomized within uniform distribution.





Chapter 4

Methods

This chapter describes the methods that have been applied to conduct this doc-

toral dissertation. First, the signal processing methods are explained, including

pre-processing in section 4.1, feature extraction in section 4.2, feature selection

in section 4.3, and feature classification in section 4.4. It should be taken into

account that in this document we only included the methods that were part of the

proposed processing pipelines of each study, leaving out those that were used only

for comparison purposes. After the signal processing methods, the performance

metrics, statistical methodology and validation strategies that were used in this

work are detailed in section 4.5. Finally, the methods and strategies to develop

MEDUSA©, our novel BCI platform, are explained in section 4.6.

4.1 Pre-processing

Pre-processing is an important step in the analysis of EEG signals, as it helps to

clean and prepare the raw data for further analysis. This is crucial because EEG

signals often contain a significant amount of noise and artifacts, such as electrical

interference, muscle activity, and eye movements. A proper pre-processing can help

to remove or reduce these artifacts, improving the overall quality and reliability

of EEG data. It can also help to extract relevant features from the EEG signal

in further stages of the processing pipeline, such as frequency-based features or

time-frequency representations, which can provide valuable information about the

underlying brain activity. In this work, we applied two pre-processing techniques

to enhance the EEG signals: frequency filtering and spatial filtering.
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4.1.1 Frequency filtering

Although it is difficult to establish a unified criterion, it is widely accepted that the

EEG carries information from the electrical activity of the brain in the range from

0.1 to 100 Hz approximately (see section 1.3.2). Therefore, frequencies outside

this band should be removed before any analysis, making special emphasis in the

elimination of the amplifier’s low-frequency drifts in the 0 to 0.1 Hz band. The

power line frequency (50 or 60 Hz) must also be removed to avoid this interference.

Additionally, it should be taken into account that the power of the EEG features

encoding the user’s intentions in a BCI system is usually not spread across this

entire spectrum. In that case, a narrower frequency filter can increase the SNR of

the control signal by removing undesired EEG components. For instance, visual

ERPs are low-frequency waveforms that have most of the power between 1 and 10

Hz, whereas SMRs are mainly detected from 10 to 30 Hz.

There are two types of digital filters that can be applied in this context: finite

impulse response (FIR) and infinite impulse response (IIR) filters. In this work, we

used FIR filters over IIR filters for: (1) linear phase response, making them par-

ticularly useful for applications where phase distortion is undesirable; (2) inherent

mathematical stability, avoiding unwanted oscillations; and (3) non-feedback de-

sign, which simplifies the implementation and avoids compounding rounding errors

their(Proakis, 2001). On the other hand, FIR filters require more computational

resources to achieve the same level of performance as IIR filters. However, this

increase in the computational cost is affordable in ERP-based BCIs, which have to

process a trial every few seconds (Santamaŕıa-Vázquez et al., 2019a, 2022, 2020b).

The output signal is calculated as the discrete convolution of the input signal

with the filter coefficients, which determine the frequency response of the filter.

The general equation for a FIR filter can be expressed as follows (Proakis, 2001):

y[n] =

N−1∑
k=0

h[k] · x[n− k], (4.1)

where y[n] is the output signal at time n, x[n] is the input signal at time n, h[k]

are the filter coefficients, and N is the number of coefficients in the filter.

In this dissertation, EEG signals were pre-processed by applying FIR band-pass

filters with Hamming window and order 1000. The frequency ranges depended on

the specific features that were extracted for each analysis. These bands are detailed

in following sections, where the different processing pipelines are described.
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4.1.2 Spatial filtering

Spatial filters can be used to minimize the volume conduction problem, remove

noisy artefacts, or increase the SNR of localized control signals, among others. In

this work, we applied a common average reference (CAR) filter to enhance the

detection of ERPs. The CAR filter provides an estimate for the ideal reference-

independent potentials at each recording location. Importantly, this estimation

is ideal for montages covering a surface that contains all current within the head

volume. Although the entire head surface cannot be covered (e.g., face and neck),

the error of the approximation is reduced as the number of electrodes grow (Srini-

vasan, 2012). This method also allows to reduce artifacts common to all electrodes,

such as power interference. Since the recorded EEG signal was already referenced

to the ear lobe in our experiments (see section 3.3), the CAR filter is calculated by

subtracting to each channel the mean potential of all the electrodes. The general

equation for the CAR filter can be expressed as follows (Srinivasan, 2012):

xc = xc −
1

Nc

Nc∑
i=1

xi, (4.2)

where xc is the signal for the channel c, and Nc is the number of channels.

4.2 Feature extraction

In machine learning, features are measurable properties or characteristics of a phe-

nomenon being observed that serve as the input data to the classification model.

Features can be any type of data, such as numeric, categorical, or binary values.

In the EEG domain, the most basic features are the amplitude values of the signal

at each location and temporal point. Then, these values can be transformed, using

a wide range of mathematical methods, to obtain more meaningful information for

the analysis. Overall, the choice of features is crucial in the development of EEG

models, as it can have a significant impact on the performance and accuracy of

the method. Proper feature engineering can help to improve the predictive power

of an EEG model and make it more effective at solving specific problems, such as

ERP detection or MI classification.

Taking into account the strict temporal requirements of the EEG processing

stage in a BCI system, the aim is to maintain this stage as simple as possible

using computationally efficient algorithms. In this investigation we used temporal,

spectral and correlation features for the control state detection and command
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decoding tasks of our ERP-based BCI.

4.2.1 Time-based features

Time-based features are directly related with the amplitude values of the EEG

over time. Thus, they represent the most primary source of information of this

signal. In Santamaŕıa-Vázquez et al. (2019a, 2022, 2020b), we used these features

to implement different algorithms for the control state detection and command

decoding stages of our ERP-based BCI, analyzing the EEG signal corresponding

to the stimulation events of the RCP. The process that was followed in this studies

is detailed in the following paragraphs.

First, we decimated the signal to reduce its dimensionality, decreasing the

sampling rate from fs to fd. Noteworthy, a low-pass filter must be applied before

to avoid aliasing effects with a cutt-off frequency of fd/2 in accordance to the

Nyquist–Shannon theorem (Proakis, 2001).

After decimation, the EEG values that correspond to each flash of the RCP

are extracted using a temporal window that typically lasts from the stimulus onset

(i.e. t = 0 ms) to a point in time that captures the entire P300 component (e.g.

600-1000 ms). These chunks of signal are known as epochs. Then, EEG epochs are

normalized using a z-score baseline normalization, based on a previous reference

time window. This mathematical operation can be expressed as follows:

x =
x− µxR

σxR

, (4.3)

where xR is the EEG signal of the reference window, and µ and σ are the mean

and standard deviation, respectively.

Finally, our feature arrays are EEG epochs with shape x ∈ RNs,Nc , where Ns

is the number of samples in the window and Nc is the number of channels. This

array was the input of the deep-learning models (i.e., EEG-Inception, EEGNet and

DeepConvNet, CNN-BLSTM) (Santamaŕıa-Vázquez et al., 2019a, 2022, 2020b).

For the machine-learning models (i.e., LDA), the channels were concatenated to

obtain a feature vector x ∈ R1,Ns×Nc as required by these methods (Santamaŕıa-

Vázquez et al., 2019a, 2020b).

4.2.2 Frequency-based features

As explained in 1.3.2, spectral analysis is a common technique used to analyze

the frequency content of the EEG. The signal is decomposed into its frequency
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components using techniques based on Fourier transform or wavelet transform

(Tantum, 2021). The resulting frequency spectrum gives the power of the EEG at

each frequency, which can be used to extract features that capture the underlying

neural activity.

There are many different features that can be extracted from the frequency

spectrum. The most typical are band powers, which quantify the power of EEG

signals within specific frequency bands. For example, alpha power is often used

as a measure of relaxation, while beta power is often associated with cognitive

load. The use of band-power ratios is also extended. For instance, the ratio of

alpha power to beta power (theta/beta ratio) is often correlated with performance

in various cognitive abilities, such as attentional control (Angelidis et al., 2018).

Other metrics, such as spectral entropy, have been proposed to study different

conditions (Abásolo et al., 2006).

In Santamaŕıa-Vázquez et al. (2019a), we used a frequency-based feature de-

signed to detect the user’s control state in ERP-based spellers. The feature was a

band-power ratio directly derived from the PSD of the EEG to detect the SSVEPs

that are elicited by non-target stimuli in the RCP (Santamaŕıa-Vázquez et al.,

2019a).

Firstly, all channels of the signal corresponding to an entire trial (not to a

single stimulus) were concatenated in a single vector to increase the spectral reso-

lution. Afterwards, the PSD of this vector was estimated using the Welch’s method

(Welch, 1967). From the PSD, the feature is calculated as the difference between

the mean value in a narrow range and the mean value in a wide range, as shown

in see Figure 4.1(a). Both ranges are centered in the stimulation frequency of the

ERP-based speller. Formally:

x2 =
1

bw2

∫ fst+bw2/2

fst−bw2/2

S(f)df − 1

bw1

∫ fst+bw1/2

fst−bw1/2

S(f)df , (4.4)

where S(f) is the PSD, and bw1 and bw2 are fixed to 2 Hz and 0.1 Hz, respectively

(Santamaŕıa-Vázquez et al., 2019a). These values were chosen to have enough

points of the PSD within these bands, making the method more robust against

noise.

4.2.3 Correlation-based features

Correlation-based features measure the degree of similarity between two datasets.

In BCI, these features are widely used to detect SSVEPs. As explained in 1.3.3,
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Figure 4.1: (a) Representation of the frequency-based feature, including the parameters
fst, bw1, bw2. The graph shows the averaged power spectral density (PSD) of control
and non-control trials of the Asynchrony database. (b) Schematic representation of the
canonical correlation analysis (CCA) used to extract the correlation-based. The EEG
signal represents one trial of dimensions C ×N , where C is the number of channels and
N the trial length in samples. The reference signal is an ideal sinusoid sin(2π · fst · t) of
dimensions 1×N .

SSVEPs are the result of repetitive stimulation, in which individual VEPs are

overlapped producing a constant oscillation at the stimulation frequency that re-

sembles a sinusoidal wave (Luck, 2014). Therefore, the correlation between the

EEG during the stimulation and a sine at the stimulation frequency is high, allow-

ing to differentiate between different commands in SSVEP-based BCIs (Bin et al.,

2009; Lin et al., 2006).

In Santamaŕıa-Vázquez et al. (2019a), we used a correlation-based feature to

identify the user’s control state in ERP-based spellers. The goal was to detect

the SSVEP elicited by non-target stimuli of the system. Concretely, we used

canonical correlation analysis (CCA), a multivariate statistical technique that aims

to identify the relationships between two multidimensional datasets, denoted as

X and Y (Krzanowski, 2000). It finds the optimal linear combinations x =

wT
x ∗X, y = wT

y ∗ Y of the datasets, such that the correlation between x and y

is maximized. In our study, X represents the EEG signal of a single trial with

an ERP-based speller, with dimensions N × C, where N is the length of the trial

and C is the number of channels. Y represents the reference signal, which is a

sine wave at the stimulation frequency of the RCP fst, and has dimensions N × 1.

The calculated feature corresponds to the correlation coefficient between the trial

signal and the reference calculated using the following equation:
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ρc = max
wx,wy

wT
xΣXY wy√

wT
xΣXXwx

√
wT

yΣY Y wy

, (4.5)

where ρc is the canonical correlation coefficient, wx and wy are the canonical

weights for the two sets of variables, and ΣXY , ΣXX , and ΣXY are the covariance

matrices of the two sets of variables. Figure 4.1(b) shows a schematic representa-

tion of the CCA method.

CCA had previously been applied in SSVEP-based BCIs, but, to the best of

our knowledge, Santamaŕıa-Vázquez et al. (2019a) was the first study that used it

for control state detection in ERP-based spellers.

4.3 Feature selection

The feature selection stage is designed to optimize the data passed to classification

models by eliminating redundant and irrelevant information from the dataset, thus

retaining only the most important features. This not only reduces the number of

features, but also improves the model’s resistance to overfitting and increases its

efficiency (Jobson, 1991). In this dissertation, we only used one feature selection

method as part of the command decoding pipeline in Santamaŕıa-Vázquez et al.

(2019a): stepwise regression.

4.3.1 Stepwise regression

Stepwise (SW) regression is a widely used feature selection algorithm in ERP-

based BCIs, as described in various studies such as Krusienski et al. (2008) or

(Sellers et al., 2012). The SW algorithm follows a sequential process, where it

either adds or removes a single feature at each step. The process to add new

features is called forward selection (FS), whereas the process eliminate a features

is named backward elimination (BE) (Jobson, 1991).

The SW algorithm starts from an empty dataset. First, it applies FS by testing

the significance of adding each feature separately, according to a partial F-statistic.

The most statistically significant feature, provided its p–value is less than a preset

threshold pin, is then added to the model. After each new feature is added, the

algorithm performs BS, testing the significance of each included feature again.

The less significant feature, given that the p–value is greater than another preset

threshold pout, is then removed from the model. This sequential combination of FS

and BE procedures is repeated until one of three conditions is met: (1) there are
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no features that meet the pin and pout criteria; (2) there are no remaining features;

or (3) the number of included features reach a predefined limit. It is important to

note that in order to prevent an infinite loop, the pin threshold should be at least

as small as pout (Jobson, 1991).

In Santamaŕıa-Vázquez et al. (2019a), SW regression was used with the follow-

ing criteria: pin = 0.10, pout = 0.15 and a maximum of 60 features. These values

were selected in accordance to previous studies (Krusienski et al., 2008).

4.4 Feature classification

In this dissertation, we used machine learning algorithms in the feature classifi-

cation stage to decide the presence/absence of the pattern we are looking for in

the EEG and decode the user’s intentions. Thus, it is the final step of the signal

processing pipeline in a BCI system.

Machine learning is a subfield of artificial intelligence that involves the develop-

ment of algorithms and models that allow computer systems to learn and improve

their performance on a specific task without explicit programming. These algo-

rithms and models are designed to recognize patterns and relationships in data,

making predictions or decisions based on that analysis (Bishop and Nasrabadi,

2006).

There are several types of machine learning, including supervised learning, un-

supervised learning, semi-supervised learning, and reinforcement learning (Bishop

and Nasrabadi, 2006). In this dissertation, we only applied supervised learning,

which is the most robust approach for EEG classification tasks.

In supervised learning, the model infers a discriminant function to make pre-

dictions based on a labeled dataset, which includes a collection of observations

from the phenomena that need to be detected, along with the corresponding cor-

rect output for each observation (Bishop and Nasrabadi, 2006). The model is then

trained by minimizing the error between its predictions and the correct output.

In this work, the models were used for two tasks: (1) control state detection to

provide an asynchronous control of our ERP-based speller; and (2) command de-

coding to detect the user’s intentions. The training data consisted of labeled EEG

recordings while the user was using the system. For the control state detection,

we recorded the brain activity of the subjects while they were using the system

and while they were performing other tasks, labeling the control trials as posi-

tive, otherwise as negative. For the command decoding task, subjects were asked

to spell predefined words using the system, labeling the stimuli that corresponds
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to the target character as positive, otherwise as negative. Once the models were

trained, the system could classify new online or offline data (Santamaŕıa-Vázquez

et al., 2019a, 2022, 2020b).

In the following subsections, the classifiers that were used to implement the

proposed methods in this dissertation are described: linear discriminant analysis

and EEG-Inception.

4.4.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a method to separate observations from dif-

ferent classes using a linear combination of features. In this dissertation, we used

this method as a classification technique, although it can be applied for dimen-

sionality reduction too. In the training stage, LDA calculates the linear combi-

nation of features that best separates the classes by maximizing the separation

between-class mean while simultaneously minimizing the within-class variance. In

the testing stage, this linear combination is used to make predictions with new

data.

For a binary classification problem like the one being considered, the weight

vector can be found by solving the following optimization problem (Bishop and

Nasrabadi, 2006):

max J(w) =
wTSBw

wTSWw
, (4.6)

SB = (µ2 − µ1)(µ2 − µ1)
T , (4.7)

SW =
∑
n∈C1

(Xn − µ1)(Xn − µ1)
T +

∑
n∈C2

(Xn − µ2)(Xn − µ2)
T , (4.8)

where SB is the between-class matrix, SW the within-class matrix, and µi the

mean of class i ∈ C{1,2}. Given these equations, the optimal weights are:

w ∝ S−1
W (µ2 − µ1). (4.9)

Once the optimal vector w is found, it can be used to define a linear de-

cision boundary, which can be written as wTx + b = 0, where b is a bias

term. Generally, this term is chosen as the hyperplane between the class means:

b = wT · 1
2 (µ1 + µ2). New data points can then be classified by evaluating their

position relative to this decision boundary. Points on one side of the boundary

belong to one class, while points on the other side belong to the other class.
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In order to reduce the over-fitting effect and increase the robustness of the clas-

sifier to outliers, there are different regularization techniques that can be applied.

A widely used method is to introduce shrinkage to improve the estimation of co-

variance matrices. This technique increases the generalization performance of the

classifier when the number of training samples is small. Generally, the regularized

covariance estimator is defined as (Ledoit and Wolf, 2004):

S∗ = (1− λ)S + λµI, (4.10)

µ =
Tr(S)

Nf
, (4.11)

where λ ∈ (0, 1) is the shrinkage parameter, S is the sample covariance, I is the

identity matrix, Tr represents the sum of the diagonal elements, and Nf is the

number of features. In this dissertation, the shrinkage parameter was calculated

using the Ledoit and Wolf formula as implemented in the scikit-learn package

(Pedregosa et al., 2011). When this technique was applied, we denote to the

classifier as regularized LDA (rLDA) (Santamaŕıa-Vázquez et al., 2020b).

Finally, it is worth noting that, for the command decoding task, an additional

step is needed to decode the command. For each trial, we have (R+C)×Ns EEG

epochs (i.e., observations), being R the number of rows of the RCP matrix, C the

number of columns, and Ns the number of sequences. Each epoch corresponds

to one stimulus (i.e., highlight of a row or a column). The LDA algorithm then

decides, for each observation, whether it contains an ERP with P300 potential (i.e.,

target epoch) or not. Thus, in order to decide the command, the scores for each

row and column are averaged, selecting the pair of them with highest probability

for the target class.

4.4.2 EEG-Inception

EEG-Inception is a novel CNN that was proposed in Santamaŕıa-Vázquez et al.

(2020b) for EEG classification tasks. In comparison to a machine learning classi-

fier, such as LDA, deep learning models incorporate an additional feature extrac-

tion stage embedded in the architecture that is automatically optimized during

training (Lecun et al., 2015). Concretely, EEG-Inception is a model composed

of multiple layers that extract hierarchical representations of the input data. In

general, the first layers of the network learn to extract simple, low-level features

from the input data. However, as the data passes through the network and it is

processed by deeper layers, the features become increasingly abstract and complex,
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capturing high-level information about the signal.

EEG-Inception was inspired by previous works on the computer vision field,

incorporating several concepts from this domain, such as Inception modules and

depthwise convolutions, to improve the processing of EEG signals (Santamaŕıa-

Vázquez et al., 2020b).

Inception modules were proposed by Szegedy et al. (2015) for image classifi-

cation. This structure uses multiple convolutional layers in parallel with different

kernel sizes to perform multiscale analysis of the input signal. This approach has

been shown to be effective at extracting rich feature maps with relatively low com-

putational cost, improving performance while maintaining a reasonable training

and evaluation time. Inception modules are particularly well-suited for analyzing

EEG signals, which are composed of transient and oscillatory patterns of various

temporal lengths that reflect brain activity (Santamaŕıa-Vázquez et al., 2020b).

Depthwise convolutions were introduce to allow the model to learn more tar-

geted and specialized features in a CNN (Chollet, 2015). Standard convolutional

layers filter the input data using the same set of weights for all the feature maps.

Depthwise convolutions, on the other hand, apply a different set of weights to

each feature map. Thus, the model processes each map separately, rather than

combining them as in standard convolutions. In EEG-Inception, depthwise convo-

lutions enable the learning of specific features for each feature map extracted by

the Inception modules. This is a key feature for the model, as it will be revealed

bellow (Santamaŕıa-Vázquez et al., 2020b).

Additionally, EEG-Inception incorporates standard methods to increase the

performance of the model for EEG processing, including batch normalization to

normalize the feature maps (Ioffe and Szegedy, 2015), non-linear activation func-

tions (Goodfellow et al., 2016), and dropout regularization (Srivastava et al., 2014)

to prevent overfitting.

The architecture of EEG-Inception is shown in Figure 4.2, whereas Table 4.1

provides further details about the hyperparameters of each layer. The input ex-

pected by the model is the time-based feature array as described in section 4.2.1

with decimation to 128 Hz sampling rate and eight channels Santamaŕıa-Vázquez

et al. (2020b). Then, the signal is processed by the model, which is organized in

three main blocks, each one with a different purpose. The first module performs a

first temporal and spatial analysis of the EEG to extract low-level features in both

domains. The second module performs a second analysis that combines the tem-

poral and spatial information to extract high-level features. Finally, the output

block is responsible for the final classification of the input signal. In the following
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Figure 4.2: Schematic representation of EEG-Inception. 2D convolution blocks and
depthwise 2D convolution blocks include batch normalization, non-linear activation and
dropout regularization. The kernel size is displayed for convolutional and average pooling
layers.

sections, the three modules of EEG-Inception are explained in detail:

Inception module 1

The first Inception module is designed to perform a first stage of temporal and

spatial analysis. The initial 2D convolutions analyze the input signal in the time

domain using three branches, each one with a different temporal scale. The tem-

poral scales are defined by the kernel sizes of the 2D convolutional layers: C1, C2

and C3. The kernels sizes of these layers are 64×1, 32×1 and 16×1, respectively.

Therefore, given that the sampling rate of the input is 128 Hz, these kernels cor-

respond to temporal windows of 500 ms, 250 ms and 125 ms. Following these

layers, D1, D2 and D3 process the signal in the spatial domain using depthwise

convolutions. In this architecture, this type of convolutions allow the model to

learn optimal spatial filters (i.e., EEG channels weights) for each temporal feature

map extracted by previous layers (Santamaŕıa-Vázquez et al., 2020b). Finally, the

concatenation layer N1 merges the output features from D1, D2 and D3. Finally,

average pooling is applied for dimensionality reduction.

Inception module 2

The second module has a similar structure to the previous one. It is formed by

three branches that process the feature maps in the same temporal scales: 500 ms,

250 ms and 125 ms. It should be noted that, after the previous average pooling

layer (A1), the kernel sizes that correspond to these temporal scales are 16×1,

8×1 and 4×1. As in the first module, the outputs of convolutional layers are
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concatenated and average pooling is applied. The purpose of this module is to

extract higher level features, already taking into account the temporal and spatial

information, which was mixed in the previous module.

Output module

The final convolutional layers of the model are responsible for identifying the most

relevant patterns for the classification task and condensing this information into a

small number of features. The dimensionality is reduced by progressively decreas-

ing the number of filters and applying average pooling layers to avoid overfitting.

In fact, only 24 features are passed to the final classification layer. Finally, the

softmax output performs the binary classification, estimating the probability of

each class (Santamaŕıa-Vázquez et al., 2020b).

Hyperparameter choice and training process

The selection of hyperparameters in deep learning models is critical for achieving

good results. For EEG-Inception, we automatically optimized the learning rate,

activation function, and dropout rate due to their significant impact on model

performance (Santamaŕıa-Vázquez et al., 2020b). Unfortunately, an automatic

optimization of all hyperparameters is impractical due to the cost in time and

computational resources of this process. Thus, the remaining hyperparameters

(e.g., number of layers, number of branches in Inception modules, number of filters,

kernel sizes, and pooling sizes) were set based on our experience. The results of

the automatic optimization process are detailed in section 5.3.1.

Regarding the training process, the model wights were optimized using the

Adam algorithm with default hyperparameters β1 = 0.9 and β2 = 0.999 (Kingma

and Ba, 2015), the categorical cross entropy loss function (Zhang and Sabuncu,

2018), and a mini-batch size of 1024. The model was trained for a maximum of

500 epochs with early stopping if the loss on the validation set did not improve

for 10 consecutive epochs. This early stopping mechanism speeds up training and

prevents overfitting (Santamaŕıa-Vázquez et al., 2020b).
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4.5 Validation

4.5.1 Performance metrics

When an ERP-based speller is validated, there are several ways of measuring its

performance. For this reason, different metrics were needed to provide a compre-

hensive evaluation of the system:

1) Accuracy. This metric represents the percentage of correctly classified tri-

als:

Acc =
Nct

Nt
× 100, (4.12)

where, Nct is the number of correctly classified trials, and Nt the total num-

ber of trials. In this case, we used this metric to evaluate different aspects of

the proposed system. For this reason, several suffixes are used throughout

this document to identify these aspects and avoid confusion. Acccsd denotes

the accuracy of the control state detection stage, i.e., the percentage of tri-

als in which the user’s control state was correctly identified. As there are

two possible states (control or non-control), the chance level is 50%. Acccmd

represents the accuracy of the command decoding stage, i.e., percentage of

correct selections (letters or commands). In this case, the chance level is
1
Nc

×100, where Nc is the number of possible commands in the RCP matrix.

Finally, Accovr is the accuracy of the overall asynchronous system, includ-

ing the control state detection and command decoding stages. To calculate

Accovr, a trial is considered correct only if both the control state and the

command are accurately detected.

2) Positive predictive value (PPV). This metric represents the probability

of having an actual positive case, given a positive prediction:

PPV =
Ntp

Ntp +Nfp
× 100, (4.13)

where, Ntp is the number of true positives, and Nfp the number of false

positives.

3) Negative predictive value (NPV). This metric represents the probability

of having an actual negative case, given a negative prediction:

NPV =
Ntn

Ntn +Nfn
× 100, (4.14)
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where, Ntn is the number of true negatives, and Nfn the number of false

negatives.

4) True positive rate (TPR). This metric, also known as sensitivity, repre-

sents the probability of a positive result, conditioned on the trial truly being

positive:

TPR =
Ntp

Ntp +Nfn
× 100, (4.15)

where, Ntp is the number of true positives, and Nfn the number of false

negatives.

5) True negative rate (TNR). This metric, also known as specificity, repre-

sents the probability of a negative result, conditioned on the trial truly being

negative:

TNR =
Ntn

Ntp +Nfp
× 100, (4.16)

where, Ntn is the number of true negatives, and Nfp the number of false

positives.

6) Information transfer rate (ITR). The ITR takes into account not only

the command decoding accuracy, but also the speed of the system. Using

the Shannon’s information theory, the ITR estimates the number of bits per

minute that the system is able to convey (Wolpaw et al., 2002):

ITR =
1

T

(
log2 N + P log2 P + (1− P ) log2

1− P

N − 1

)
, (4.17)

where N is the number of trial selections, P is the selection accuracy (i.e.,

Acccmd for synchronous systems, and Accovr for asynchronous systems), and

Ts is the average duration of a trial in seconds.

4.5.2 Statistical analysis

Statistical tests are applied to make a fair comparison between two groups of results

and extract the correct conclusions from the analysis. These tests evaluate the

evidence provided by the data against a null hypothesis H0. The p-value returned

by the test represents the probability of getting the observation assuming that H0

is true. If this probability is lower than a certain threshold α, it is considered

that H0 is false. A typical value for α is 0.05, representing a probability of 5%.

When these tests are applied for group comparison, H0 assumes that there are no
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differences between the two groups of data. If H0 is rejected, then we can talk

about significant differences (Narsky and Porter, 2013).

In this dissertation, we applied two continuous, univariate, non-parametric sta-

tistical tests. In this regard, we used non-parametric tests because variables under

study did not passed normality and/or homoscedasticity tests (Jobson, 1991).

First, the Wilcoxon signed-rank test was used to assess paired comparisons (i.e.,

dependent samples that came from the same subjects) to analyze the statistical dif-

ferences between the proposed pipelines and the previous methods in Santamaŕıa-

Vázquez et al. (2019a, 2022, 2020b). On the other hand, the Mann-Whitney U

test, also known as the Wilcoxon rank-sum test, was used for unpaired comparisons

(i.e., independent samples that came from different subjects) (Santamaŕıa-Vázquez

et al., 2022). When multiple tests were performed (e.g., comparisons among sev-

eral models, for different number of sequences, etc), multiple testing correction was

applied to correct the false discovery rate (FDR) using the Benjamini-Hochberg

approach (Benjamini and Hochberg, 1995).

4.5.3 Cross-validation

Fundamentally, cross-validation techniques are used to assess the generalization

ability of the results achieved by a classification algorithm. In other words, cross-

validation allows to evaluate if a model can generalize to an independent dataset,

which is not assured if the training samples are not representative (Bishop and

Nasrabadi, 2006).

In this dissertation, we used leave-one-out (LOO) cross validation in Santa-

maŕıa-Vázquez et al. (2019a, 2022, 2020b) to test the models in the different clas-

sification tasks. This method is a particularization of the k-fold cross-validation,

keeping in each iteration one sample (or subject) for testing, whereas the rest of

the dataset is used for training. This process is repeated for every observation in

the dataset, so that each sample is used once as the test set. Then, the classifi-

cation results are used to calculate the performance of the model using different

metrics (e.g., accuracy). This technique provides an adequate estimate of the gen-

eralization ability of the model when the model is applied to new, unseen data

without the need of a separate validation set (Bishop and Nasrabadi, 2006).

LOO can be computationally expensive, especially for large datasets, but it is

a robust technique for evaluating models with small sample sizes. It is also useful

when the dataset is unbalanced, having different number of observations for each

class (Bishop and Nasrabadi, 2006).
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4.6 BCI platform development

As mentioned in section 1.4.3, the lack of suitable software tools to achieve our

primary research objectives led us to the development of a novel BCI platform:

MEDUSA©. The goal was not only provide ourselves with the tools to conduct

more efficiently this and other side projects that were developed during the dis-

sertation period, but to make these tools available for the whole BCI community

in the hope of making an difference in the progress of this field. In this section,

we explain the strategies and software development methodologies that we used

to achieve this goal.

4.6.1 Components

MEDUSA© is a software ecosystem for the development of BCI and neuroscience

experiments, consisting of two independent components: MEDUSA© Kernel and

MEDUSA© Platform.

MEDUSA© Kernel is a Python package designed for the analysis of brain

signals. It offers a variety of methods, including advanced signal processing tech-

niques, deep learning architectures, BCI models and other high and low-level anal-

yses. The package also provides tools for handling bio-signals (e.g., EEG, MEG

or EMG), saving experimental data and creating processing pipelines.

MEDUSA© Platform is a desktop application, also written in Python, that

offers high-level functions for conducting BCI and neuroscience experiments. It

includes a user-friendly graphical user interface (GUI) supported by advanced

signal acquisition functions and real-time charts. One of its key features is the

ability to create “apps”, which are independent implementations of experiments

or paradigms. All of these functions rely on MEDUSA© Kernel for the signal

processing.

The features of both components are detailed in section 5.5, where the results

of this work are explained.

4.6.2 Design principles

The design of MEDUSA© was guided by three principles:

� Modularity. MEDUSA© is composed of autonomous structures organized

at various levels of abstraction that are connected through simple communi-

cation protocols. This design allows for quick fixes or upgrades to be made
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without affecting the rest of the system. For example, the MEDUSA© Ker-

nel has different interfaces for low-level and high-level functions with specific

implementations that promote the independence between them. Similarly,

the MEDUSA© Platform is designed to allow the creation of new experimen-

tal protocols on demand using specific components, known as apps, which

are independent of the real-time acquisition and visualization stages.

� Flexibility. MEDUSA© was specifically designed to be a research tool,

with an architecture that enables rapid experimentation with new signal

processing methods and feedback paradigms. We placed a strong emphasis

on providing thorough documentation and code comments, as well as ex-

amples and tutorials, to help users understand the platform’s operation and

how to develop new apps.

� Scalability. The design of MEDUSA© allows it to update its capabilities

over time without requiring changes to unrelated parts of code, thanks to

the use of standardized meta-classes. This is especially useful in a research

setting, as it enables the software to adapt to the latest developments in the

BCI field, such as new signal processing algorithms or BCI paradigms.

4.6.3 Implemented in Python

MEDUSA© was created using Python, a popular and open-source programming

language that is commonly used in both research and industry due to its ease

of use and open-source nature. In comparison to other languages like C, C++,

or Java, Python makes it simpler to develop complex programs thanks to its

high-level syntax, at the expense of a decrease in performance. This trade-off

is especially beneficial in BCI research settings, where flexibility is a key aspect

as new methods and experiments are frequently being developed. Python also

has a large community that develops a variety of specialized tools and libraries.

MEDUSA© takes advantage of packages like SciPy, Numpy, Scikit-learn, and Ten-

sorflow, which were developed to provide state-of-the-art data processing, machine

learning, and deep learning capabilities (Harris et al., 2020; Virtanen et al., 2020).

This gives MEDUSA© an advantage over other neurotechnology platforms devel-

oped in C++, such as BCI2000 and OpenVibe, allowing us to easily incorporate

and use the latest developments in these areas into the software workflow to im-

prove different BCI paradigms.
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4.6.4 Open-source community-oriented philosophy

MEDUSA© is an open-source software suite that is available under a Creative

Commons Attribution-NonCommercial-NoDerivs 2.0 license. Therefore, it can be

downloaded without cost from the official website: www.medusabci.com. Addi-

tionally, the official repositories for all of our developments, including MEDUSA©

Platform and MEDUSA© Kernel, can be accessed at www.github.com/medusabci.

Thus, our users have complete access to the source code and can participate in

the its development. In our view, the involvement of the community will deter-

mine the future success of MEDUSA©. Thus, we put special effort in creating

content and tools to promote the participation of the community in the project.

Concretely, the website provides updated information, documentation, tutorials,

discussion forums and an app market where users can download apps and upload

their own projects.

https://www.medusabci.com
https://github.com/medusabci


Chapter 5

Results

This chapter presents the most relevant results of this dissertation. It is organized

in accordance with the four hypothesis that were outlined in the section 2.1. At the

same time, these hypothesis are directly aligned with the research papers included

in the compendium of publications (see appendix A). First, SSVEPs elicited by

the RCP are analyzed in section 5.1. Second, we assess the performance of the first

method proposed to detect the user’s control state in ERP-based BCIs in section

5.2. Then, sections 5.3 and 5.4 describe the results achieved by EEG-Inception

in the command decoding and control state detection tasks, respectively. Finally,

the characteristics and functionalities of MEDUSA©, our novel BCI platform, are

detailed in section 5.5.

5.1 SSVEPs elicited by the RCP

In Santamaŕıa-Vázquez et al. (2019a), we studied the effect of the RCP stimulation

on the user’s EEG. The goal was to find and characterize patterns of brain activity

that could later be used to detect the user’s control state. In this regard, it was

already known that the stimulation frequency of the RCP was somehow reflected in

the EEG and could be used to detect the user’s control state (Pinegger et al., 2015).

However, the underlying mechanisms and characteristics of this phenomenon had

not yet been thoroughly investigated. Our hypothesis was that non-target stimuli

would elicit a weak SSVEP in the EEG of the user. When a user wants to select

a command, they fix their gaze in the target letter or icon. However, non-target

stimuli are also perceived through their peripheral field of vision. If the rows and

columns of the matrix are highlighted at a fixed rate, these stimuli would trigger

65
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Figure 5.1: Matrices used during the experiments: (a) RCP matrix, (b) overt matrix,
(c) covert matrix.

a SSVEP.

To study this phenomenon, we performed a characterization experiment with

5 healthy subjects of the Asynchrony database. This experiment was composed by

two analysis aimed to study the origin of the SSVEP and how its characteristics

change as a function of the stimulation frequency:

� The first analysis aimed to examine how the characteristics of the SSVEP

varied as a function of the stimulation frequency. The stimulation frequency

is the inverse of the time interval between two consecutive flashes: fst =

1/SOA. For this analysis, the participants performed six runs of six trials

with 15 stimulation sequences using the matrix shown in Figure 5.1(a). The

stimulation frequency for each run is listed in Table 5.1.

� The second analysis aimed to investigate the origin of the SSVEP using

four runs with different stimulation matrices. Each run consisted of six

trials with 15 sequences. The SOA was fixed at 175 ms, corresponding to a

stimulation frequency of 5.71 Hz. The first run used the overt matrix shown

in Figure 5.1(b), where participants only saw stimuli in their peripheral visual

field. The second run used the covert matrix shown in Figure 5.1(c), where

participants only saw stimuli in the central region of their visual field. Then,

users performed a control and a non-control run with a RCP matrix, depicted

in Figure 5.1(a). The study sought to determine whether the SSVEPs are

triggered by the peripheral stimuli of the RCP and whether the EEG signal

in different modes (overt, covert, control, and non-control) would show the

presence or absence of SSVEPs and ERPs with the P300 component.

Figures 5.2 and 5.3 show the results of the first and second analysis of the

characterization experiment, respectively. Concretely, the Figure 5.2 characterizes

the EEG signal for each stimulation rate. The left graphs depict the average PSD

of all trials, channels and participants. The right graphs show the topographic
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Table 5.1: Stimulation parameters for the characterization experiment.

Run SOA Inter-stimulus
time

Stimulus
duration

Flashing
frequency

1 475 ms 400 ms 75 ms 2.10 Hz
2 375 ms 300 ms 75 ms 2.67 Hz
3 275 ms 200 ms 75 ms 3.64 Hz
4 175 ms 100 ms 75 ms 5.71 Hz
5 150 ms 75 ms 75 ms 6.66 Hz
6 125 ms 50 ms 75 ms 8.00 Hz

SOA: stimulus onset asynchrony

plots of the PSD at the stimulation frequency, averaged for all trials, channels and

participants. As hypothesized, the experiment triggered an SSVEP whose main

component coincides with the stimulation rate. The harmonics are also visible

in the PSD graphs. Interestingly, the frequency and spatial characteristics of the

SSVEP changed significantly for the different frequencies.

In Figure 5.3, the brain activity of a single participant in channel Cz is depicted

for the four scenarios of the second analysis: overt, covert, control, and non-control.

The top of the figure presents the averaged epochs lasting 1000 ms from the start

of RCP stimuli. On the other hand, the bottom row displays the average PSD of

the trials. As can be seen, the SSVEP is clearly visible in the overt and control

conditions, which proves that the origin of this waveform are the non-target stimuli

of the RCP perceived through the peripheral field of vision.

The results of this experiment shed light on the origin and characteristics of

these weak SSVEPs that are generated when users are controlling an ERP-based

speller with the RCP, proving that this side effect can be used to differentiate con-

trol vs non-control states (Santamaŕıa-Vázquez et al., 2019a). Furthermore, this

control signal is independent of the P300, which is used to decode the commands

in these systems and does not allow to accurately differentiate these states due to

its low SNR.

5.2 Oddball Steady Response Detection (OSRD)

method

Based on the results of the previous experiment, we proposed a novel feature-

engineering method to detect the user’s control state in ERP-based spellers (San-

tamaŕıa-Vázquez et al., 2019a). The method, called Oddball Steady Response

Detection (OSRD), detects the SSVEPs elicited by non-target stimuli while the

user attends to the RCP.

The OSRD method provides a binary output y ∈ {0, 1} after analyzing the
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Figure 5.2: SSVEPs for different stimulation frequencies. Graphs on the left show the
grand average of the PSD for all trials, channels and participants. Topographic plots
on the right show the normalized peak value of the PSD at the stimulation frequency
averaged for all trials and participants.

Figure 5.3: Temporal and spectral representation of the ERPs in overt, covert, control
and non-control modes for participant S01. The upper part of the figure shows the
averaged epochs (i.e., 1000 ms after stimuli) in channel Cz. The shaded area represents
the 95% confidence interval. The bottom part of the figure shows the averaged PSD in
channel Cz. The stimulation frequency in overt and control modes was 5.71 Hz.

EEG signal corresponding to one trial from the first stimulus of the first sequence

to the last stimulus of the last sequence. When the control state is detected

(y = 1), the system continues to the command decoding pipeline and performs a

selection. Conversely, when the non-control state is detected (y = 0), no further

actions are taken and a new trial begins.

In order to train and test the algorithm, we performed experiments with 15

subjects of the Asynchrony database, as detailed in section 3.2. Regarding the

configuration of the system, we used a SD of 75ms and an ISI of 100ms, which

gives a SOA of 175ms (see 3.2). Therefore, the corresponding stimulation frequency



5.2. Oddball Steady Response Detection (OSRD) method 69

of the RCP was fst = 1/SOA = 5.71 Hz.

The signal processing methods that compose the OSRD method were explained

in section 4, but there are some details that must be further specified. For the

pre-processing, OSRD applies bandpass FIR filtering between [fst− 1, fst+1] Hz,

where fst is the stimulation frequency (i.e., 5.71 Hz), and CAR spatial filtering .

The features that were extracted for each control and non-control trial were the

frequency- and correlation-based features that were explained in sections 4.2.2 and

4.2.3, respectively. We proposed two approaches to calculate the features. The first

and most classical one used control and non-control trials to calculate the training

and testing observations. On the other hand, the second approach used synthetic

non-control observations from control trials, avoiding de need of recording non-

control trials and thus reducing the calibration time of the OSRD method by half.

This approach assumes that the characteristics of the EEG around f ′
st for control

trials are the same as around fst for non-control trials, being f ′
st = fst + 0.5

Hz. In this case, non-control observations can be simulated by calculating the

features with control trials, but using f ′
st. Finally, the features were classified

using LDA, as explained in section 4.4.1. This model was trained with control and

real non-control/synthetic non-control observations.

In this study, we also applied a classical and widely used processing pipeline

for the command decoding task in RCP spellers (Krusienski et al., 2008). This

pipeline is independent of the OSRD method. The pre-processing consisted on FIR

filtering between 1 and 10 Hz and CAR spatial filtering . The feature-extraction

stage used time-based features (see 4.2.1), with sub-sampling to 20 Hz, epochs of

800 ms from the stimulus onset, and baseline correction using the signal 250 ms

prior to stimulus onset. The 60 most relevant features were selected using SW

as explained in section 4.3.1, and the final ERP classification was performed with

LDA. The algorithm selected the command corresponding to the row and column

that reached the highest score in the classification stage (Santamaŕıa-Vázquez

et al., 2019a).

In sections 5.2.1 and 5.2.2, the results of the experiments that were performed

to validate the OSRD method are presented.

5.2.1 Offline experiment

The offline experiment was designed to assess the performance of the OSRD

method, validate the synthetic non-control observations approach, and gather data

to train the OSRD method for the online experiment.
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The 15 participants completed two sessions, each one with five control and five

non-control runs of six trials. The control runs required the participants to spell six

random characters using a 6×6 RCP matrix, while the non-control runs required

them to ignore stimuli while watching a video or reading a text. The experiment

setup is depicted in Figure 5.4. Therefore, the dataset of the offline experiment

had 60 control trials and 60 non-control trials per participant. Two analyses

were conducted to evaluate the OSRD method and validate the synthetic non-

control observations approach. The first analysis applied LOO cross-validation (see

section 4.5.3) to the entire dataset for each participant (i.e., 119 trials for training,

1 for testing), using both control and non-control trials. The second analysis

modified the evaluation procedure by training the OSRD method on synthetic non-

control observations, which were created from control trials following the process

explained above. Importantly, the testing synthetic non-control observations were

replaced by actual non-control observations in each iteration of the LOO process,

providing a realistic estimation of the model’s performance.

The results of these analyses are summarized in Table 5.2. The test accuracy

in the control state detection task using the OSRD method is shown for 1, 5,

10 and 15 sequences, breaking down the results using real and simulated non-

control observations for training. As can be seen, the OSRD method achieved a

high accuracy, reaching values near 90% with only five sequences of stimulation.

Additionally, we analyzed the differences between the real and synthetic non-

control observations approaches with Wilcoxon signed-rank test, correcting the

FDR with the Benjamini-Hochberg approach, as described in section 4.5.2. We did

not found statistical differences, which validates the use of synthetic non-control

observations to reduce the calibration time of the asynchronous system.

5.2.2 Online experiment

The online experiment was designed to evaluate the efficacy of OSRD in a more real

scenario. To this end, the same participants of the offline experiments performed

a third session. In this session, they were asked to make four runs of six selections

each (i.e., 24 trials) using the same 6×6 RCP matrix. The participants had to

attend stimuli the first three trials of each run, while they had to ignore the

stimuli in the others.

For each trial, the control state was determined using the OSRD method.

Afterward, the command was selected by applying the command decoding pipeline.

Of note, the system only selected a command if control state was determined by
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Figure 5.4: Experimental setup. (a) Depicts a schematic representation of the subject
and the two screens. The left screen displayed the browser used during the non-control
runs while the speller was shown on the right screen. The paradigm was active during
both tasks, but subjects were only required to pay attention to the stimuli during the
control runs. (b) Shows the experiment plan, which was made up of two sessions, each
with 10 runs of 6 trials and 15 sequences. Control and non-control runs were alternated
to prevent subject fatigue.

Table 5.2: Results of the offline experiment

No. Sequences
1 5 10 15

R S R S R S R S
U01 55.0 54.2 84.2 85.0 98.3 98.3 99.2 99.2
U02 60.8 59.2 88.3 89.2 95.8 95.8 97.5 97.5
U03 63.3 64.2 94.2 95.0 97.5 97.5 100 100
U04 64.2 64.2 83.3 84.2 96.7 95.8 99.2 99.2
U05 61.7 60.8 87.5 87.5 96.7 96.7 97.5 98.3
U06 65.8 64.2 95.8 95.0 96.7 96.7 98.3 98.3
U07 56.7 58.3 75.0 75.8 79.2 76.7 87.5 86.7
U08 63.3 62.5 97.5 97.5 100 100 100 100
U09 61.7 60.0 89.2 88.3 91.7 92.5 95.0 97.5
U10 50.8 50.0 80.8 80.0 88.3 89.2 88.3 88.3
U11 65.0 65.8 91.7 91.7 100 100 100 100
U12 60.0 61.7 79.2 80.0 86.7 85.8 92.5 92.5
U13 65.0 65.0 79.2 78.3 90.0 90.0 95.0 95.0
U14 60.0 56.7 94.2 95.0 99.2 98.3 100 100
U15 73.3 72.5 96.7 96.7 99.2 99.2 100 100
Mean 61.8 61.3 87.8 87.9 94.4 94.2 96.7 96.8
±SD 5.0 5.2 7.0 6.9 5.8 6.2 4.1 4.2

Control state detection accuracy (Acccsd). R: training and testing with real non-control observations,
S: training with synthetic non-control observations and testing with real non-control observations.

the OSRD method previously. The control state detection and command selection

stages were calibrated using the 60 control trials that were collected in the offline

experiment for each participant. Therefore, we used synthetic observations to

calibrate the OSRD method for the online session. The number of stimulation

sequences for each participant was determined as the minimum to reach a training

accuracy of 95% in command selection. If a participant could not reach this

threshold, the number of sequences was set to 15.

The results of this analysis are summarized in Table 5.3. This table provides

a detailed description of the system’s performance. Results for the control state
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Table 5.3: Results of the online experiment

Ns
Control State Detection Overall

Acccsd PPV NPV TPR TNR Accovr ITR
U01 10 100 100 100 100 100 91.7 12.4
U02 10 95.8 100 92.3 91.7 100 91.7 12.4
U03 8 100 100 100 100 100 95.8 16.8
U04 10 91.7 100 85.7 83.3 100 91.7 12.4
U05 12 91.7 100 85.7 83.3 100 83.3 8.7
U06 10 95.8 100 92.3 91.7 100 91.7 12.4
U07 15 95.8 92.3 100 100 91.7 95.8 9
U08 8 95.8 92.3 100 100 91.7 95.8 16.8
U09 12 95.8 92.3 100 100 91.7 95.8 11.2
U10 15 91.7 91.7 91.7 91.7 91.7 91.7 8.2
U11 10 95.8 100 92.3 91.7 100 95.8 13.4
U12 10 91.7 91.7 91.7 91.7 91.7 91.7 12.4
U13 8 100 100 100 100 100 100 18.5
U14 12 95.8 100 92.3 91.7 100 91.7 10.3
U15 10 95.8 92.3 100 100 91.7 83.3 10.5
Mean 10.7 95.5 96.8 94.9 94.5 96.7 92.5 12.4
±SD 2.1 2.8 3.9 5.2 5.8 4.1 4.4 2.9

Ns: number of sequences; Acccsd: accuracy of the control state detection stage; PPV: positive predic-
tive value; NPV: negative predictive value; TPR: true positive rate; TNR: true negative rate; ACCovr:
accuracy of the overall system; ITR: information transfer rate (bits/min).

detection stage include Acccsd, PPV, NPV, TPR and TNR achieved by OSRD

method during the online sessions. In this analysis, control state has been consid-

ered as the positive class and the non-control state as the negative class. Results

of the overall system include the control state detection and command detection

stages. Hence, control trials were considered correct whether the control state

and the command were correctly determined at the same time. For the overall

system, ACCovr and ITR are given. The table shows that the system achieved

high accuracy in both tasks, reaching 92.5% for the asynchronous speller.

5.3 Command decoding with EEG-Inception

In Santamaŕıa-Vázquez et al. (2020b), we focused on the ERP detection problem to

improve the command decoding accuracy of our asynchronous ERP-based speller.

In this study, we proposed a novel deep-learning model, called EEG-Inception,

which was described in section 4.4.2.

The model was evaluated in an experiment simulating a realistic scenario, tak-

ing into account that the amount of training data from a single subject is limited

in real-life settings, and that the target users of ERP-based spellers are severely

disabled people. Additionally, we compared EEG-Inception with five previous

methods: rLDA (Krusienski et al., 2008), xDAWN + RG (Barachant et al., 2012),

CNN-BLSTM (Santamaŕıa-Vázquez et al., 2019b), DeepConvNet (Schirrmeister

et al., 2017) and EEGNet (Lawhern et al., 2018).
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Figure 5.5: Workflow of the study. First, the hyperparameter optimization process for
EEG-Inception was done based using the validation set. Then, the models were trained
using the training set. Finally, they were evaluated in the test set using a fine-tuning
process for each subject. Fine-tuning trials were randomly selected, and the process is
repeated 100 times for each N and subject.

For the evaluation experiment, we used the three databases that were detailed

in section 3.2. The dataset was split in three. Of the 42 healthy subjects, 33 (i.e.,

80%) were assigned to the training set, and 11 to the validation set (i.e., 20%). The

remaining 31 severely disabled subjects from the BCI Web Browser database and

the BCI Social Networks database were assigned to the test set in order to achieve

a more realistic estimation of the performance of the model in this population.

The hyperparameter optimization process and the evaluation experiment are

detailed in sections 5.3.1 and 5.3.2. The Figure 5.5 shows a schematic representa-

tion of the process followed to perform these analyses.

5.3.1 Hyperparameter optimization

We optimized the learning rate (lr), activation function (fact) and dropout rate

(pdrop) of EEG-Inception using the validation set. The search space for each

hyperparameter was: lr = {0.01, 0.001, 0.0001}; fact = {Sigmoid,ReLU,ELU};
pdrop = {0.00 : 0.05 : 0.5}. The Figure 5.6 depicts the results of this optimization

process. The score is the command decoding accuracy in the validation set. The

optimal values for each hyperparameter were chosen by identifying the set that

resulted in the highest score.

The optimal set was lr = 0.001; fact = ELU ; pdrop = 0.25. The results

also showed that the activation function and learning rate had great impact in the

performance of EEG-Inception, whereas dropout rates between 0.1 and 0.4 yielded
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Figure 5.6: Results of the optimization process of EEG-Inception in the validation set
(8 healthy subjects). Each line depicts the mean command decoding accuracy after a
fine-tuning process for each subject with N = 30, considering 5 sequences of stimulation.
(a) Score for each activation function and dropout rate using the best value of learning
rate (lr = 0.001). (b) Score for each learning rate and dropout rate using the best
activation function (ELU).

similar results.

5.3.2 Evaluation experiment

The performance of EEG-Inception and the comparison models was assessed with

the evaluation experiment. Firstly, all models were trained using the training set.

Then, we evaluated all the models in the test set using a fine-tuning process for

each subject with N = {0, 5, 10, 20, 30} trials. When N = 0, the models were

directly evaluated on the test set, simulating a plug & play device. This allows us

to assess their robustness to inter-subject variability. For N > 0, the models were

fine-tuned. First, the algorithm picked N trials from each test subject randomly.

Then, the model, which is already initialized with the training set, fits the data

from these trials. Finally, the fine-tuned model is tested with the rest of trials of

the test subject. This process was repeated 100 times for each value of N and

subject, and the results were averaged to obtain a final performance measure.

The evaluation experiment was designed to mimic a real-life scenario, where

the calibration time should be under 20 minutes of effective training (or approx-

imately 30 trials) to maintain a suitable usability. In this regard, excessively

long calibration times can negatively impact the usability of an ERP-based speller

(Mart́ınez-Cagigal et al., 2017). Our training approach, which combines cross-

subject transfer learning with fine-tuning, aims to reduce the required calibration
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Figure 5.7: ITR: information transfer rate; N : number of fine-tuning trials. ITR in
bits/min in the test set (31 motor disabled subjects) as a function of N and the number
of sequences.

time and prevent overfitting. Moreover, the distribution of the dataset for the

evaluation experiment, with all the severely disabled subjects in the test set, al-

lowed us to evaluate the effectiveness of the proposed model and training strategy

for end users of ERP-based spellers.

Table 5.4 summarizes the results of the evaluation experiment, showing the

command decoding accuracy of the models in the test set for each number of fine-

tuning trials and sequences considered to make the prediction. The last column

provides the improvement achieved by EEG-Inception with respect to the rest of

models. This improvement was calculated as the mean difference in the command

decoding accuracy. Wilcoxon Signed-Rank Test was used to assess the statistical

difference between the performance of EEG-Inception and the other models, cor-

recting the FDR with the Benjamini-Hochberg approach, as detailed in 4.5.2. On

the other hand, the Figure 5.7 shows the simulated ITR of the models.

As can be seen, EEG-Inception clearly outperformed the rest of models, reach-

ing the highest performance for command decoding accuracy and ITR. Moreover,

this improvement was significant (p-value < 0.01), regardless of the number of

fine-tuning trials and sequences considered in the analysis.

5.4 Control state detection with EEG-Inception

In Santamaŕıa-Vázquez et al. (2020b), we focused on increasing the command de-

coding accuracy of our ERP-based speller with EEG-Inception. However, we did

not address the control state detection problem. EEG-Inception could be com-

plemented with the OSRD method to provide an asynchronous control. However,

after the impressive results of this CNN in the ERP detection task, our goal was to

achieve similar improvements in the control state detection stage. Consequently,

we continued with this line of research in Santamaŕıa-Vázquez et al. (2022). Unlike
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Table 5.4: Command decoding accuracy

No. Sequences
N Model 1 5 10 15 Imp.

0

rLDA 14.6 ± 8.6 33.1 ± 20.4 40.3 ± 24.2 43.7 ± 25.1 14.7
xDAWN + RG 17.9 ± 9.2 37.5 ± 19.6 46.2 ± 22.8 49.7 ± 23.4 9.6
CNN-BLSTM 19.6 ± 8.8 42.7 ± 19.8 53.6 ± 22.0 57.2 ± 22.5 3.7
DeepConvNet 20.7 ± 9.8 42.0 ± 20.8 53.2 ± 23.4 56.9 ± 23.7 4.0
EEGNet 19.5 ± 9.5 42.3 ± 21.0 51.9 ± 23.2 56.5 ± 23.3 4.6
EEG-Inception 21.3 ± 9.9 46.1 ± 21.1 57.4 ± 23.7 61.4 ± 23.8 —

5

rLDA 18.6 ± 8.6 41.7 ± 18.7 53.4 ± 20.3 58.2 ± 20.0 16.0
xDAWN + RG 20.6 ± 8.9 47.3 ± 19.6 59.0 ± 20.5 63.4 ± 19.9 10.7
CNN-BLSTM 24.3 ± 10.3 52.7 ± 19.8 64.7 ± 20.2 68.5 ± 19.4 5.6
DeepConvNet 23.8 ± 10.3 53.2 ± 20.5 64.3 ± 21.3 68.3 ± 20.4 5.7
EEGNet 23.8 ± 9.8 53.0 ± 20.2 65.3 ± 20.8 69.4 ± 20.1 5.1
EEG-Inception 26.4 ± 10.8 58.7 ± 19.4 70.7 ± 18.8 74.6 ± 17.2 —

10

rLDA 22.0 ± 10.0 50.4 ± 19.5 63.5 ± 20.3 68.2 ± 19.2 11.6
xDAWN + RG 24.1 ± 9.8 54.9 ± 19.4 67.2 ± 19.1 71.5 ± 17.8 7.7
CNN-BLSTM 25.9 ± 10.7 56.0 ± 19.9 68.3 ± 19.5 72.1 ± 18.5 6.7
DeepConvNet 26.4 ± 11.0 58.4 ± 20.3 69.6 ± 20.1 73.3 ± 18.8 5.2
EEGNet 26.1 ± 10.2 58.2 ± 19.8 70.6 ± 19.6 74.5 ± 18.3 4.8
EEG-Inception 28.8 ± 11.1 63.6 ± 18.7 75.3 ± 17.6 78.9 ± 15.5 —

20

rLDA 25.1 ± 11.0 56.7 ± 19.6 69.9 ± 19.6 74.6 ± 17.8 9.9
xDAWN + RG 26.4 ± 10.4 60.1 ± 18.3 72.3 ± 17.3 76.4 ± 15.6 7.2
CNN-BLSTM 27.5 ± 11.2 60.1 ± 19.2 72.3 ± 18.1 75.7 ± 16.8 7.2
DeepConvNet 28.9 ± 11.6 62.7 ± 19.6 73.7 ± 18.7 77.1 ± 17.0 5.6
EEGNet 28.8 ± 10.7 63.2 ± 18.8 75.6 ± 17.9 79.1 ± 16.2 4.3
EEG-Inception 32.0 ± 12.1 68.4 ± 17.9 79.4 ± 16.0 82.8 ± 13.7 —

30

rLDA 26.2 ± 11.2 59.5 ± 19.3 72.7 ± 19.0 77.3 ± 16.9 9.4
xDAWN + RG 27.3 ± 10.6 62.0 ± 17.9 74.2 ± 16.5 78.2 ± 14.9 7.5
CNN-BLSTM 29.0 ± 11.5 62.6 ± 18.9 74.4 ± 17.4 77.7 ± 16.0 7.2
DeepConvNet 29.8 ± 11.8 64.9 ± 19.1 75.8 ± 17.9 79.0 ± 16.3 5.7
EEGNet 30.4 ± 11.3 65.7 ± 18.6 77.8 ± 17.2 81.0 ± 15.5 4.3
EEG-Inception 33.7 ± 12.4 70.6 ± 17.4 81.5 ± 15.3 84.6 ± 13.2 —

N : number of fine-tuning trials for each subject. Command decoding accuracy (Acccmd) averaged
over the test set subjects (31 motor disabled). Column ”Imp.” shows the accuracy improvement
(%) yielded by EEG-Inception compared to the other 5 models, calculated as the mean difference in
command decoding accuracy for each N . Statistical differences between EEG-Inception and the other
models were assessed with Wilcoxon Signed Rank Test, correcting the FDR with Benjamini-Hochberg
approach, as described in section 4.5.2. All comparisons were significant (p-value < 0.01), regardless
of N and the number of sequences.

earlier deep-learning approaches for ERP classification, EEG-Inception allows the

analysis of EEG signals in multiple temporal scales (Santamaŕıa-Vázquez et al.,

2020b). This could enhance the model’s versatility, making it more adaptable to

a wider range of tasks. Therefore, our hypothesis was that this architecture could

be leveraged to provide a reliable asynchronous control of ERP-based spellers,

targeting different EEG patterns linked to the control of these systems, such as

SSVEPs elicited by the RCP (Santamaŕıa-Vázquez et al., 2019a), or differences

in the complexity of the EEG due to the user’s concentration, especially in the

prefrontal cortex (Mart́ınez-Cagigal et al., 2019b). In this regard, neither EEG-
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Inception nor any other deep-learning model had yet been used to discriminate

the user’s control state in ERP-based spellers.

To test this hypothesis, we performed an experiment designed to evaluate the

performance of EEG-Inception for this task. First, we extended the Asynchrony

database, which had 15 subjects at that moment, to reach 22 subjects, follow-

ing the same protocol as in the OSRD study. This protocol is described in sec-

tion 5.2.1. Then, we adapted the signal processing pipeline presented in San-

tamaŕıa-Vázquez et al. (2020b) to facilitate the integration of EEG-Inception for

this control state detection. This pipeline used the same features for the control

state detection and command decoding tasks. The pre-processing stage applied

FIR filtering between 0.5 and 45 Hz to keep as much discriminative information

as possible. Then, a CAR spatial filtering was used to remove noisy artifacts. The

features were calculated as described in 4.2.1. We applied decimation to 128 Hz

and extracted the epochs from 0 to 1000 ms after the onset. Baseline correction

was performed taking a window of 250 ms before the stimulus. Thus, the feature

array had 128 samples × 8 channels, which are the input dimensions required by

EEG-Inception (Santamaŕıa-Vázquez et al., 2020b). Considering that the experi-

ment had 2 sessions of 10 runs, with 6 trials of 15 sequences per run, the number of

observations for each subject was 21,600. Then, the total number of EEG epochs

for the 22 subjects was 475,200. Finally, two different EEG-Inception instances

are used for each of the two classification tasks.

The control state detection stage dynamically turns the system into an asyn-

chronous BCI. The workflow in this stage for each trial was as follows: (1) the

epochs are classified with the model trained to discriminate the control state; (2)

the model returns the probability of each state for every observation; and (3) the

probabilities are averaged, determining non-control state when the score is less

than 0.5 and control state otherwise. If the trial is classified as non-control, the

system starts a new trial without taking further actions. On the other hand, if

the trial is classified as control, the system continues to the command decoding

stage. Note that the algorithm operates under the assumption that all observa-

tions within a given trial have the same control state. Consequently, users are

advised to avoid switching tasks until the current trial has been completed. This

will ensure that the proposed method can analyze the data accurately and provide

reliable results.

Once the control state was determined for a trial, the other instance of EEG-

Inception is used to decode the command. This model was trained to detect P300

potentials. Thus, it discriminates between target and non-target epochs of the
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RCP. As the output scores of the model are associated to the row or column of the

stimulus, the system selects the command with maximum probability, providing

the appropriate feedback to the user. This process marks the beginning of a new

trial, and the cycle is repeated.

5.4.1 Evaluation experiment

In order to train and validate our approach, we simulated the real use of the

speller using LOO cross-validation combined with cross-subject transfer learning

and fine-tuning. The evaluation process was similar to the one used to validate

EEG-Inception in Santamaŕıa-Vázquez et al. (2020b). For each iteration, the

training subjects were used to initialize the models of the control state detection

and command decoding stages. This implies that the model for control state

detection was trained with 453,600 observations (21 subjects × 120 trials × 180

observations/trial), whereas the model for command decoding was trained with

226,800 observations (21 subjects × 60 control trials × 180 observations/trial).

Then, N = {0, 5, 10, 20, 30} control and non-control trials from the test subject

were randomly selected to fine-tune the models. Of note, these trials were not

used in the test phase. As a result, the number of test trials for each N was

the difference between the total number of trials and the number of fine-tuning

trials. To obtain a reliable validation, this process was repeated 100 times for

each subject, averaging results. By means of this analysis, it is possible to study

how the performance of the system is affected by the number of fine-tuning trials.

N = 0 represents a plug-and-play device with no calibration for the user, whereas

N = 30 would require a 30-minute calibration session to perform the control and

non-control selections.

Regarding the training process, the two models were trained independently

using different labels. Specifically, for the control state detection model, EEG

epochs were categorized as either control or non-control. The epochs in which the

user was paying attention to the stimuli were classified as control (positive class),

while those in which the user was focused on the web browser were classified

as non-control (negative class), thus generating a balanced dataset. Regarding

the command decoding model, it was trained with control trials only. In this

case, epochs corresponding to target commands were classified as P300 (positive

class), while non-target epochs were classified as non-P300 (negative class). Both

models were trained using identical settings: Adam optimizer with β1 = 0.9 and

β2 = 0.999; categorical cross-entropy loss; batch size of 1024; and a maximum of
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Table 5.5: Control state detection accuracy using EEG-Inception

N
No. Sequences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 81.4 85.23 86.63 86.89 87.01 87.69 88.26 88.22 87.95 88.48 89.02 89.05 89.28 89.13 89.36
5 86.11 88.96 89.99 90.62 90.98 91.06 91.29 91.45 91.63 91.74 91.89 91.91 91.98 92 92.05
10 88.33 91.16 92.27 92.84 93.23 93.47 93.61 93.82 94.05 94.14 94.23 94.3 94.29 94.42 94.48
20 91.24 94.37 95.31 95.76 96.06 96.31 96.45 96.6 96.69 96.83 96.98 97.06 97.07 97.21 97.28
30 91.91 94.41 95.23 95.67 96.02 96.33 96.53 96.53 96.52 96.66 96.77 96.76 96.85 96.88 96.95

N : number of fine-tuning trials in control state for each subject. Thus, the total number of calibration
trials used to fine-tune the model for this task was 2N (i.e., N control, N non-control). Test accuracy
for the control state detection task (Acccsd) averaged over the 22 subjects.

500 training iterations over the entire dataset, applying early stopping if there was

no improvement for 10 consecutive iterations (Santamaŕıa-Vázquez et al., 2020b).

The results of the control state detection task and the overall asynchronous

system are presented separately. The Table 5.5 and the Figure 5.8 summarizes

the results of the cross validation experiment for the control state detection task.

Concretely, the Figure 5.8 shows the normalized confusion matrices, whereas the

Table 5.5 shows the accuracy averaged across all subjects and broken down by

the number of fine-tuning trials and stimulation sequences. Together, they give a

complete overview of the system’s performance in this task. Additionally, Figure

5.9 characterizes the EEG in time and frequency to analyze differences between

correctly and incorrectly classified trials in the control state detection task and

understand which could be the main factors affecting the performance of the model.

As can be seen, the proposed method was able to discriminate the control state

with high accuracy.

Regarding the results of the overall system, the Table 5.6 shows the accuracy

including both stages for control state detection and command decoding, consid-

ering that both classifications must be correct at the same time. Therefore, if

one stage fails, it is considered as a mistake. As before, the accuracy is averaged

across subjects and broken down by the number of fine-tuning trials and stimu-

lation sequences. Additionally, Figure 5.10 shows the simulated ITR that would

be achieved by the asynchronous speller in an online experiment. This metric

takes into account the speed and the accuracy of the system, allowing a direct

comparison between different BCIs (Wolpaw et al., 2002). It should be noted that

the ITR was calculated only for control trials but considering the overall accuracy,

including control state detection and command decoding stages. As before, these

analyses show that our approach reached high performance in terms of accuracy

and simulated ITR for the overall system.
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Figure 5.8: Normalized confusion matrices averaged across subjects.

Table 5.6: Overall accuracy of the asynchronous system using EEG-Inception

N
No. Sequences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 52.05 60.49 66.7 70.00 73.45 75.49 77.77 79.43 79.62 80.95 82.20 83.26 83.94 84.24 85.38
5 59.70 70.30 76.05 80.77 83.48 85.11 86.47 87.76 88.6 89.22 89.72 90.09 90.33 90.68 90.99
10 62.63 73.73 80.34 84.55 87.09 88.75 90.07 91.27 91.99 92.44 92.78 93.11 93.20 93.58 93.79
20 64.90 77.34 83.98 88.20 90.73 92.32 93.32 94.42 94.98 95.49 95.82 96.21 96.20 96.51 96.68
30 66.49 78.20 84.33 88.69 91.30 92.96 93.71 94.61 94.95 95.34 95.70 96.01 96.09 96.30 96.47

N : number of fine-tuning trials in control state for each subject. Thus, the total number of calibration
trials used to fine-tune the model for control state detection was 2N (i.e., N control, N non-control),
whereas the model for command decoding only used N control trials. Overall test accuracy (Accovr) in
percentage for the control state detection and command decoding tasks averaged over the 22 subjects.
Noteworthy, one trial is considered correct only if both conditions were correctly classified at the same
time.
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Figure 5.9: n.u: normalized units. Characterization of correctly and incorrectly classi-
fied trials for the control state detection task. The upper graphs show the averaged EEG
epochs for the 3 different conditions: non-control, control non-target and control target.
The lower graphs show the power spectral density of the entire trials.

Figure 5.10: ITR: information transfer rate (bpm); N : number of fine-tuning trials in
control state for each subject. Average ITR of the overall system, including control state
detection and command decoding stages and only considering control trials.
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5.5 MEDUSA©: our novel BCI platform

When we were defining the objectives of this dissertation, and after my experience

with the bachelor’s and master’s theses, we realized that the software tools that

were available for BCI research were not fully adapted to our needs. As explained

in section 1.4.3, we identified a number of drawbacks in the most widespread

BCI platforms (e.g., BCI2000, OpenVibe) that could be addressed to facilitate

the research in this field. Therefore, we decided to build a novel BCI platform:

MEDUSA©. At the beginning, our goal was to implement the necessary functions

to develop and test the proposed ERP-based speller. This first version of the soft-

ware was presented at a national conference in 2018 (Santamaŕıa-Vázquez et al.,

2018). However, as we moved forward in the investigation and we developed new

projects, our purpose became increasingly ambitious. We wanted to include new

BCI paradigms and cognitive neuroscience experiments and share them with the

community to increase the impact of our work. Furthermore, if the community

could contribute with their developments too, MEDUSA© could become a new

space to share the latest advances in the field. With this vision guiding us, we

consistently worked on MEDUSA© throughout the development of this disserta-

tion following the architecture and methodologies that were detailed in section 4.6.

The results of these efforts were presented in Santamaŕıa-Vázquez et al. (2023) and

are summarized in the following sections.

5.5.1 MEDUSA© Kernel

MEDUSA© Kernel is a Python library, available in the Python Package Index

(PyPI) repository, with a complete suite of methods for signal processing. These

functions can be categorized according to their different levels of abstraction. The

first level is composed of low-level functions, which are generic methods that can

be used to process signals in many scenarios, being the most relevant:

� Frequency filters: configurable IIR and FIR filters.

� Spatial filters: CAR, Laplacian filter, multi-class common spatial patterns

(CSP) and CCA.

� Local activation metrics: including spectral metrics, such as band power, me-

dian frequency or Shannon entropy; and non-linear features, such as central

tendency measure, sample entropy, multiscale entropy, Lempel-Ziv’s com-

plexity and Multiscale Lempel-Ziv’s complexity.

� Connectivity metrics: including amplitude-based metrics, such as amplitude
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correlation envelope (AEC) and instantaneous amplitude correlation (IAC);

and phase metrics, such as phase locking value (PLV), phase-based lag index

(PLI) and weighted PLI (wPLI).

In a higher level of abstraction, there are functions that apply a whole process-

ing pipeline to the input data to analyze certain features. MEDUSA© Kernel does

not assume the nature of the input data in low-level functions, but most of the

high-level analysis that are currently implemented are designed to work with EEG

recordings. In short, high-level functions use the low-level methods to implement

specific use-cases (e.g., command decoding task in an ERP-based speller). The

current version of MEDUSA© Kernel includes the following modules:

� ERP-based paradigms: the complete classification pipelines for the con-

trol state detection and command decoding tasks that were developed in

the previous studies, including the OSRD method (Santamaŕıa-Vázquez

et al., 2019a), regularized linear discriminant analysis (rLDA) (Santamaŕıa-

Vázquez et al., 2020b), EEGNet (Lawhern et al., 2018) and EEG-Inception

(Santamaŕıa-Vázquez et al., 2020b), which can be applied in offline and

online ERP-based spellers; P300 analysis and charts; and specialized data

structures to handle data ERP data.

� MI paradigms: complete classification pipelines including CSP + rLDA (Fu

et al., 2019), EEGNet (Lawhern et al., 2018), EEG-Inception (Pérez-Velasco

et al., 2022) and EEGSym (Pérez-Velasco et al., 2022) that can be applied in

offline and online modes; MI analysis charts; and specialized data structures

to handle MI data.

� c-VEP-based paradigms: offline and online circular-shifting reference

pipeline based on CCA (Mart́ınez-Cagigal et al., 2021); c-VEP analysis and

charts; raster latencies correction; filter banks; and maximal length sequences

(i.e., m-sequences) generation through linear feedback shift registers (LSFR)

for binary and p-ary bases.

� Neurofeedback: battery of high-level models based on spectral and connec-

tivity metrics ready to be applied in online and offline apps (Marcos-Mart́ınez

et al., 2021).

This organization favors the independence between the different components

of the library, increasing the modularity. Additionally, some of the functions are

designed to be applied in both online and offline experiments. Therefore, this

package can be used for offline analysis of previously recorded data, such as pub-

lic databases, or real-time tasks. This is an interesting feature that allows to
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Figure 5.11: Schematic overview of MEDUSA©. EEG: electroencephalography; ECG:
electrocardiography; EMG: electromyography; LSL: lab-streaming layer. An arbitrary
number of input signals can be received in the platform through the LSL. These signals
are available for real-time charts and apps, which implement open-loop or closed-loop
BCI and neuroscience experiments. In this case, we represent the row-column paradigm
(RCP) app. Functions from the Kernel may be used for signal processing in real-time
charts and apps. In this example, the model detects the event-related potentials (ERP)
in the EEG.

reproduce exactly the same results in online and offline experiments, which facil-

itates the reproducibility of a research experiment. Finally, it should be noted

that community contributions are welcome. For more information, check the of-

ficial documentation page at https://docs.medusabci.com/kernel, where the API

reference, hands-on tutorials, and the contributor’s guide can be found.

5.5.2 MEDUSA© Platform

MEDUSA© Platform has a flexible and adaptable architecture that can be used

for a wide range of BCI and neuroscience experiments. Its architecture has three

modules: signal acquisition, real-time charts, and apps. The functionalities of

these modules can be controlled through a user-friendly GUI that provides a quick

and intuitive control of the software. A schematic overview of all the compo-

nents of MEDUSA© is shown in Figure 5.11. Additionally, the main window of

MEDUSA© Platform is shown in Figure 5.12. The official documentation can be

found at https://docs.medusabci.com/platform, where some hands-on tutorials,

and the contributor’s guide can be found.

https://docs.medusabci.com/kernel/
https://docs.medusabci.com/platform/
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Figure 5.12: Main window of MEDUSA© Platform. The view is divided in panels to
control the different functionalities. These panels are: apps (up-left), log (bottom-left)
and real-time plots (right). Additionally, more controls and configurations are available
in the task bars.

Signal acquisition

MEDUSA© Platform manages the incoming data using the lab-streaming layer

(LSL) protocol (Kothe, 2014). This open-source protocol handles the networking,

time-synchronization and real-time propagation to allow the transmission of time

series data, making our solution independent of the data recording hardware. Ad-

ditionally, the signal acquisition module wraps the LSL protocol with high-level

functionalities to offer advanced data acquisition features.

In order to connect a device with MEDUSA© Platform, an LSL bridge (i.e.,

independent program or script) is needed to receive data using the specific inter-

face of the device and send it through LSL. Then, MEDUSA© Platform can be

configured to receive the stream. Once the stream has been added to the plat-

form’s workspace, it is available for the other modules. An important detail is that

the signal acquisition module is able to manage several LSL streams at the same

time, which is useful in a wide variety of experiments (e.g., synchronous recording

of ECG and EEG, implementation collaborative/competitive BCIs).

The LSL protocol is widely used in many research laboratories around the

world to record biological signals, having a large community of users and develop-

ers. Thus, most commercial EEG recording devices (e.g., g.tec, Brain Products,

Neuroscan) have ready-to-use LSL bridges compatible with MEDUSA© Platform.
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If a device does not have this support yet, it is possible to create an LSL bridge to

connect the device to LSL. These features make LSL an ideal technology for the

signal acquisition module of MEDUSA© Platform, allowing it to offer advanced

functionality compared to other available solutions.

Real-time charts

MEDUSA© Platform includes time and frequency of charts for visualizing LSL

streams in real time using PyQtGraph (Luke Campagnola, 2020), an open source

Python package optimized for real-time representations. The panel can be cus-

tomized to fit various charts that can be adapted to different situations.

Temporal charts display the time courses of signals in real time. Both sin-

gle and multi-channel charts are supported, with options for pre-processing the

signal before representation, adjusting the display time, reducing computational

cost through decimation, scaling the display, and customizing the graphical user

interface (e.g., line width, colors, etc.).

Frequency charts estimate the PSD of the signal using the Welch method in real

time. This lightweight algorithm allows for smooth, real-time visualization of single

or multi-channel signals. The charts can be configured with various parameters,

such as spectral resolution, overlap, and segment length. These charts provide an

alternative way to visualize data and can be used to identify specific features in

the signal, noisy components, or sensor malfunctions, among others.

Apps

Apps are the most crucial components of MEDUSA© Platform. These programs

carry out tasks or stimulation paradigms, while simultaneously providing real-time

feedback and monitoring one or more signals. The platform’s architecture has

been structured to allow independence between the apps and the other modules.

This design enables the development of new apps as needed, without requiring

changes to the base code of the platform, increasing the scalability of out solution.

Additionally, the software offers generic workflows that can be used in most BCI

and neuroscience experiments, which facilitates the implementation of new apps

MEDUSA©.

MEDUSA© platform supports apps based on Qt and Unity to handle graphi-

cal part of the app (e.g., visual stimuli and feedback presentation). Qt is a C++

library with official Python bindings that is commonly used for developing GUI

applications. It offers a wide range of predefined widgets and functions, making it
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Figure 5.13: Screenshots of some MEDUSA© apps. (a) row-column paradigm (RCP)
speller, (b) code-modulated visual evoked potentials (c-VEP) speller, (c) Motor imagery
paradigm, (d) Jedi cube scenario from the neurofeedback app, (e) Luke’s spaceship sce-
nario from the neurofeedback app, (f) Neurorunner scenario from the neurofeedback app,
(g) Digit Span test from the Neuropsychological evaluation app (h) Corsi Block-Tapping
test from the Neuropsychological evaluation app, (i) Dual N -Back test from the Neu-
ropsychological evaluation app.

suitable for quickly creating simple apps. However, it does not offer precise refresh

rates and time synchronization, which can be important for certain experiments

(e.g., c-VEP or SSVEP spellers). On the other hand, Unity is a powerful graphics

engine with advanced options for GUI control, 3D modeling, and animations. It

requires coding in C#, its native programming language, and is more complex

to use for visual applications and games. However, it does provide precise con-

trol over refresh rates, making it suitable for advanced BCI applications. The

communication between Unity and MEDUSA© is handled through a multi-client

asynchronous TCP/IP protocol.

Currently, MEDUSA© platform offers six ready-to-use apps:

� Recorder. This app is designed to simplify the process of recording bio-

signals by providing a generic open-loop system. It allows users to define

custom conditions (e.g., eyes closed, eyes open) and events (e.g., movement,

blink) and create a recording plan to automatize experiments.
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� RCP speller. The RCP speller app implements the ERP-based BCI that

has been developed in this dissertation. First, it allows to configure all the

important parameters: stimulus duration, inter-stimulus interval, text or

icon commands, flashing colors or command functions. The app also al-

lows to configure the number of commands, including nested matrices to

design complex menus for practical applications. Regarding the signal pro-

cessing methods, all the models that have been presented in this document

are included. For the command decoding task, the available models are the

pipelines based on rLDA (Santamaŕıa-Vázquez et al., 2020b), EEGNet and

EEG-Inception (Santamaŕıa-Vázquez et al., 2020b). For the control state de-

tection task, we included OSRD (Santamaŕıa-Vázquez et al., 2019a) and the

pipeline based on EEG-Inception (Santamaŕıa-Vázquez et al., 2022). Figure

5.13(a) shows a screenshot of this application.

� c-VEP speller. The c-VEP speller app is, to the best of our knowledge,

the only available open-source implementation of this BCI paradigm. It al-

lows the customization of the number of commands, sequence stimulation

rate, sequence length, flashing colors and signal processing methods. It also

includes different binary m-sequences with different lengths which are au-

tomatically encoded using circular-shifting. The default command decoding

pipeline uses a filter bank, epoch averaging and CCA to compute command

templates (Mart́ınez-Cagigal et al., 2021). Figure 5.13(b) shows a screenshot

of this app.

� Motor imagery. The MI app presents feedback to the user (e.g., a colored

sphere and a sliding bar) depending on the detected class. It allows to

configure different parameters, such as preparation, trial or rest times. The

app includes two classification pipelines: CSP + rLDA (Fu et al., 2019)

and EEGSym (Pérez-Velasco et al., 2022). The latter model includes an

initialized version of EEGSym trained with data from 280 subjects that

allows to start controlling the app without prior calibration with an expected

accuracy above 80% (more information in (Pérez-Velasco et al., 2022)). The

MI application also implements a tool to visualize the ERD/ERS events

associated to MI. Figure 5.13(c) shows a screenshot of this app.

� Neurofeedback. This app includes three different scenarios to enable the

design of progressively more challenging NF protocols. Each scenario has

a unique, gamified design to keep users motivated and engaged throughout

the study (Roc et al., 2021). It also allows users to easily set up all the key
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parameters of a NF study, including the feedback rate, the brain activity

to be trained (using metrics based on band powers or connectivity between

different regions), and the difficulty of the training. Figures 5.13(d), 5.13(e)

and 5.13(f) show screenshots of the three training scenarios contained in this

app.

� Neuropsychological evaluation tasks. Included in this package, there

are six apps that implement computerized versions of widely used neuropsy-

chological tests: Dual N -Back (Jaeggi et al., 2010), Stroop task (MacLeod,

1991), Digit Span test (Ockelford, 2002), Corsi Block-Tapping test (Kessels

et al., 2000) and Go/No-go task(Verbruggen and Logan, 2008). These apps

alllow to record biosignals while the users are using doing the tests, allowing

to study the physiological response to this work. Figure 5.13(g), 5.13h, and

5.13(i) show screenshots of three of these test.

Additionally, it is worthy to mention that MEDUSA© Platform is also designed

to enable the creation of custom experiments. To make this easier, the platform

provides Qt- and Unity-based templates to simplify the design and development of

new apps, with a generic workflow that can be applied in most experiments. The

platform’s official documentation includes a comprehensive guide on how to design

and develop apps for MEDUSA©, including real examples. These apps can then

be shared through the official app market at https://www.medusabci.com/market.

https://docs.medusabci.com/platform/
https://www.medusabci.com/market/




Chapter 6

Discussion

In this dissertation, we have examined various challenges associated with current

BCIs and proposed solutions to address these issues. On one hand, we focused on

the development and optimization of signal processing techniques for ERP-based

spellers. The goal was to improve the performance of these systems by refining the

methods used to process and interpret the EEG data they rely on. Firstly, we ex-

plored the effects of non-target stimuli in these systems to propose a novel method,

called OSRD, for the control state detection task. This method was tested with 15

subjects, showing a suitable asynchronous management of the speller. Afterwards,

we developed EEG-Inception for P300 classification to improve the performance

of the system in the command decoding task. This CNN model was trained and

tested with a database of 73 subjects, including 42 severely disabled, outperform-

ing the previous approaches. Finally, we implemented a novel method that used

EEE-Inception to provide an asynchronous control of our system. This last method

was tested in 22 subjects, showing outstanding results. Noteworthy, this was the

first asynchronous ERP-based speller that used a fully deep-learning approach for

the command decoding and control state detection tasks. On the other hand, we

developed a novel software ecosystem to accelerate BCI and neuroscience research

called MEDUSA©. With this platform, we aimed to simplify the development and

distribution of BCI experiments and signal processing methods. In this chapter,

the main outcomes of this doctoral dissertation are discussed. Additionally, the

main limitations of the conducted research are presented in the last section.

91
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6.1 SSVEP elicited by non-target stimuli from

ERP-based spellers

As explained in section 1.4.1, providing a suitable asynchronous control of BCIs

for communication and control in general (e.g., SSVEP-based spellers, c-VEP-

based spellers), and ERP-based spellers in particular, is essential. Without it,

these systems have no practical applications outside the laboratory. The first step

to achieve such asynchronous control is the identification and characterization of

EEG patterns that can be used for this purpose. In this dissertation, the two

experiments presented in section 5.1 aimed to analyze the SSVEP triggered by

non-target stimuli of an ERP-based speller using the RCP.

In the first experiment, we tested different values of SOA, as detailed in Ta-

ble 5.1, to study how the variation of the stimulation rate affected the SSVEP.

As showed in Figure 5.2, all the stimulation frequencies provoke a SSVEP in the

user’s EEG. However, it is interesting to see how this waveform has higher power

for lower stimulation rates, being maximum at 2.67 Hz. On the other hand, the

amplitude of the SSVEP decreased for 6.66 Hz and 8.00 Hz. Additionally, the

second and third order harmonics are only clearly noticeable for 2.10 Hz, 2.67

Hz and 3.54 Hz. We hypothesize that, as non-target stimuli are received with

the peripheral field of vision, higher stimulation rates are more difficult to detect,

thus triggering weaker responses. This tendency is in accordance with the work

of Zhang et al. (2019), who demonstrated that the SSVEPs elicited by peripheral

flickering stimuli at 15 Hz have significantly lower amplitude than those received

in the central region of the receptive field. This analysis facilitated our choice

of SOA for the Asynchrony database. In this regard, the experiments had to be

performed to maximize the power of the SSVEP to increase the accuracy of the

control state detection task, without increasing too much the selection time of the

system. Table 6.1 explains this trade-off, comparing the SSVEP power and the

selection time using one stimulation sequence for each SOA. Despite the fact that

the maximum SSVEP power is reached at fst = 2.67 Hz (SOA = 375 ms), this

frequency would increase too much the command selection speed. Comparatively,

the average power of the SSVEP for a stimulation rate of fst = 5.71 Hz (SOA =

175 ms) is comparable, but the speed of selection is doubled. Moreover, this value

is similar to other related studies (He et al., 2017; Mart́ınez-Cagigal et al., 2019a;

Pinegger et al., 2015). Accordingly, we chose fst = 5.71 Hz in this dissertation

to perform the control state detection experiments and acquire the Asynchrony

database.
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Table 6.1: Comparative of the SSVEP power and speed of selection

SOA Stimulation frequency SSVEP power Selection time

475 ms 2.10 Hz 0.007 µV 2/Hz 5.55 s
375 ms 2.67 Hz 0.010 µV 2/Hz 4.55 s
275 ms 3.64 Hz 0.008 µV 2/Hz 3.33 s
175 ms 5.71 Hz 0.009 µV 2/Hz 2.00 s
150 ms 6.66 Hz 0.004 µV 2/Hz 1.78 s
125 ms 8.00 Hz 0.005 µV 2/Hz 1.49 s

SSVEP power: averaged power of the SSVEP across all participants in the first analysis of the char-
acterization experiment, SOA: stimulus onset asynchrony, Selection time: time required to select a
command with one sequence of stimulation.

The study of the spatial distribution of SSVEPs revealed interesting patterns.

At lower frequencies (2.10 Hz, 2.67 Hz, 3.64 Hz, 5.71 Hz), the power of the SSVEPs

was higher in the electrodes located on the midline of the brain (i.e., Fz, Cz, CPz,

Pz). Nevertheless, as the stimulation rate increased, the power of the SSVEPs

moved towards electrodes situated closer to the occipital lobe, where the visual

cortex is located (i.e., POz, PO7, PO8, Oz). This seems to contradict the results

of previous studies, which generally find that SSVEPs are triggered by stimulation

rates above 6 Hz and primarily found in the visual cortex (Bin et al., 2009; Chuan

Jia et al., 2011; Friman et al., 2007; Lin et al., 2006). This variation in results may

be attributed to the fundamental differences in the stimulation methodologies.

Most studies use a conventional flickering cell where the participant has to focus

to elicit an SSVEP. Thus, this paradigm does not involve any cognitive effort

(Wolpaw and Wolpaw, 2012). In contrast, in the RCP, the participant has to

distinguish between target and non-target stimuli to select a command, which

engages high-level cognitive functions. At low stimulation rates, the individual

may have the ability to differentiate the stimuli consciously, which may engage

frontal and parietal regions of the brain, linked with complex cognitive processes

and decision making (Standring, 2015). As the frequency of stimulation increases,

it becomes challenging for the participant to differentiate these stimuli consciously,

leaving the primary visual cortex as the most active area. Although this was

the first study that examined the frequency range and spatial distribution of the

SSVEP elicited by the RCP, previous research demonstrated that even minimal

differences in stimulation paradigms can change the frequency range, amplitude,

and brain sources of this control signal, making our hypothesis plausible (Bachiller

et al., 2015; Mazaheri and Picton, 2005; Odom et al., 2010; Polich, 2007).

The findings of the second experiment, as illustrated in Figure 5.3, indicate that

the SSVEP in the overt mode is evoked by the non-target stimuli of the RCP, which

are perceived in the peripheral field of vision. On the other hand, the covert matrix
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only triggers transient ERPs with the P300 potential. Furthermore, the averaged

EEG signal during control state is the outcome of the linear superposition of these

two components, whereas the non-control mode does not show any synchronized

activity. This suggests that the SSVEP and ERPs evoked by the RCP have distinct

underlying mechanisms and are independent.

These results shed light on the causes and characteristics of the SSVEPs elicited

by the RCP, laying the groundwork for using this control signal to our advantage.

Using the outcomes of these analyses, we developed two novel methods to detect

the user’s control state in ERP-based spellers based on the RCP. The results of

the corresponding studies are discussed in the following sections.

6.2 Feature-engineering approach for control

state detection: the OSRD method

Once the SSVEPs elicited by RCP were analyzed, we were able to design a suc-

cessful method to detect them: the OSRD method. This method uses spectral

and correlation features to detect the SSVEP in each trial. If this control signal

is detected, the system assumes that the user is controlling the speller, continuing

to the command decoding stage. On the contrary, if the SSVEP is not detected,

the system starts a new trial without selecting any command. Thus, the OSRD

method acts as an automatic switch of the system. Additionally, we proposed a

novel approach to create synthetic non-control observations that reduces the cali-

bration time, avoiding the need to register non-control trials to train the classifier.

This method was tested with 15 subjects in both offline and online experiments,

as detailed in section 5.2. The following sections discuss the main results of these

experiments.

6.2.1 Evaluation experiment

Regarding the offline experiments, we firstly validated the synthetic non-control

observations approach. As can be seen in Table 5.2, the accuracy values were

similar when the model was trained with synthetic and real non-control observa-

tions. In fact, the statistical analysis did not find significant differences, regardless

the number of sequences (p-value > 0.05). Thus, synthetic non-control observa-

tions are comparable to real non-control observations. The advantage of using

this approach is that it reduces the duration of the calibration sessions by half,

since the acquisition of non-control trials is no longer needed. Furthermore, both
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approaches achieved high accuracy, with 13 out of 15 participants reaching at

least 90%. Additionally, we can see that the higher the number of sequences, the

higher the precision of the OSRD method. The reason is that a longer period of

stimulation provokes a more discernible, stable SSVEP.

Table 5.3 shows the results of the online session. The results obtained in the

offline experiment were replicated in these online sessions, achieving an average

accuracy of (95.5%) for the control state detection task and demonstrating the

ability of the OSRD method to work in real time. The results for PPV, NPV, TPR

and TNR indicate that the method is more reliable in detecting the non-control

state. The most plausible reason is the decrease in the power of the SSVEP due

to momentary losses of concentration in control trials, which leads the system to

detect non-control state (i.e., false negative). On the contrary, detecting a SSVEP

during the non-control state (i.e., false positive), is highly unlikely given the design

of the OSRD method. In this regard, a maximum performance for both classes is

always desired, but the consequences of false positives and false negatives are often

different. False negatives require the user to repeat the trial, which can hinder the

system’s agility, but it is not a critical issue. On the other hand, false positives

can be especially frustrating, particularly in applications like wheelchair control,

where unwanted actions could be even dangerous. Therefore, it is important to

maximize the TPR. The OSRD method stands out in this task, achieving 96.7%.

Additionally, Table 5.3 also includes the accuracy and ITR of the overall system,

including the control state detection and command decoding stages. As shown,

participants were able to control the asynchronous ERP-based speller without

compromising the overall system performance, achieving an average accuracy of

92.5%.

6.2.2 Comparison with previous approaches

Table 6.2 shows a comparative between previous approaches of asynchronous ERP-

based spellers and our system. This comparison should be made with caution due

to differences in stimulation paradigms, and experimental settings. However, we

will highlight the most important aspects. The first asynchronous ERP-based

speller was proposed by Zhang et al. (2008), who designed a method that assessed

the statistical differences between the output of a SVM fed with target and non-

target epochs. This study achieved an ITR of 15 bits/min and a false positive

rate (FPR) of 0.71 events/min with 4 CS, which suggests that the asynchrony

management could be improved, especially if we take into account the implications
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Table 6.2: Comparative of previous asynchronous ERP-based spellers.

Study Asynch.
method

Subj. Ext.
calib.

Acccsd

(%)
FPR
(epm)

Accovr

(%)
ITR
(bpm)

Zhang et al. (2008) Probability
analysis

4 CS Yes – 0.71 – 15.0

Aloise et al. (2011) LDA
threshold

11 CS Yes – 0.26 – 11.2

Mart́ınez-Cagigal et al.
(2017)

LDA
threshold

5 CS
16 MD

Yes
– – 95.75

84.14
–

Tang et al. (2019) LDA
threshold

4 CS Yes – – 90.30 –

Aydin et al. (2018) LDA
threshold

10 CS Yes – – 93.27 43.1

Mart́ınez-Cagigal et al.
(2019a)

LDA
threshold

5 CS
16 MD

Yes
– – 92.30

80.60
–

Pinegger et al. (2015) SAM
21 CS Yes

79.5 – – –
HAM 95.5 – – –

Santamaŕıa-Vázquez
et al. (2019a)

OSRD 15 CS No 95.5 0.14 92.5 12.4

SAM: spectral analysis method; HAM: hybrid analysis method; CS: control subjects; MD: motor
disabled subjects; Acccsd: accuracy of the control state detection stage; FPR: false positive rate of the
control state detection stage; epm: events per min, Acccmd: accuracy of the command decoding stage;
ITR: information transfer rate of the overall system; bpm: bits per min; LDA: linear discriminant
analysis; OSRD: oddball steady response detection.

of a false positive. In comparison, the OSRD method achieved a FPR of 0.14

events/min in the online session, showing the reliability of our approach.

From this study, different works proposed methods based on thresholds defined

over the output scores of the LDA classifier used in the command decoding pipeline.

The principle of operation is simple: a classifier trained to detect ERPs should

score non-control epochs with lower probability than control epochs. Therefore,

the system detects the control state if the probability of the ERP classifier is

higher than a certain threshold that must be customized for each user. With

this approach, Aloise et al. (2011) improved the accuracy of the asynchronous

detection with respect to the work of Zhang et al. (2008), reaching a FPR =

0.26 events/min. However, our approach still improves this value. In Mart́ınez-

Cagigal et al. (2017, 2019a), we used the same asynchronous framework, obtaining

overall system accuracies of 95.75% and 92.30% with CS, respectively. Among

prior studies, Aydin et al. (2018) achieved the highest overall performance with an

ITR = 43.15 bits/min. However, it is worth noting that this study used a different

stimulation method, known as the region-based paradigm. This paradigm involves

placing commands in distinct regions and selections are performed in two levels

to increase speed, which makes it challenging to compare their results with other

studies (Aydin et al., 2018).

So far, all the examined studies relied on a threshold, calculated with different
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parameters derived from the output of the ERP classification stage (i.e., probabil-

ity analysis, area under the ROC curve, etc), in order to discriminate the control

state. However, in our own experience in Mart́ınez-Cagigal et al. (2017, 2019a),

threshold-based methods have several disadvantages. On one hand, the SNR of the

ERPs is low. The scores of target and non-target epochs are usually comparable,

making it necessary to repeat the stimulation for several sequences for an accurate

command decoding. As a consequence, thresholds for detecting the user’s control

state are delicately balanced, making them vulnerable to small changes in the am-

plitude or latency of the ERPs. This can result in sudden significant decreases in

the accuracy of these methods. In fact, they present high inter-session variability

and must be recalibrated before each session with the BCI system, a time con-

suming procedure that affects the usability of the system and is frustrating for

users. Moreover, this wrapper approach depends on the classifier of the command

decoding stage. Therefore, the method must be modified if a different classifier

is used. Nevertheless, it is important to note that while these disadvantages have

a significant impact on the practical usability of the system, they are difficult to

evaluate under controlled experimental conditions. This circumstance probably

leads to overestimate the performance of threshold-based approaches in previous

studies.

In contrast, control state detection methods independent of the command de-

coding task, such as OSRD, do not present the aforementioned disadvantages.

Pinegger et al. (2015) proposed the first method for detecting the user’s control

state that was independent of the ERP classification stage. This study also relied

on the SSVEPs triggered by the RCP as a means of identifying the user’s con-

trol state. They proposed the spectral analysis method (SAM), which followed

a simple approach: if the amplitude of the trial’s FFT at the stimulation rate

was higher than a certain threshold, the system detected control state, otherwise

assuming non-control state. Despite the novelty of this method, its performance

(TPR = 88.3%,TNR = 73.7%,ACC = 79.5%, 15 sequences) suggested that this

asynchrony method could be improved. Of all the approaches included in this

section, only SAM can be directly compared with our method, as it uses the same

phenomenon to identify the control state. This comparison shows that the OSRD

method outperforms SAM in all metrics (TPR = 94.5%,TNR = 96.7%,ACC =

95.5%). To improve their results, Pinegger et al. (2015) combined the FFT-based

method with the ERP classifier scores in a hybrid approach, achieving the same

average overall accuracy than the OSRD method (i.e., 95.5%), but using more

stimulation sequences (15 vs. 10.7). Moreover, it still relies on the ERP classifi-
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cation stage, having the same limitations than threshold-based approaches.

Finally, another crucial point is that, unlike OSRD, all the prior methods re-

quired non-control trials to be calibrated, which doubles the training time. More-

over, due to their reliance on the ERP classifier, they must be frequently recali-

brated because of the high inter-session variability of the ERPs (He et al., 2017).

This would ultimately consume a significant amount of time from the end users,

reducing the feasibility of these methods in a practical context. The OSRD method

solves this problem by generating synthetic non-control observations from control

trials to enhance the usability of the system.

6.3 Deep-learning approach for command decod-

ing: EEG-Inception

With the OSRD method, we had a fully asynchronous system based on feature

engineering. The next step in this investigation was to improve the performance of

our ERP-based speller using deep learning. For this purpose, we designed a novel

CNN architecture for ERP detection, called EEG-Inception. In the following sub-

sections, we discuss the design of EEG-Inception, and the results of the evaluation

experiment with a population of 73 subjects (i.e., 42 healthy, 31 severely disabled)

described in section 5.3.2.

6.3.1 Architecture design

The advancement of deep learning in recent years can be attributed to the progress

made in natural language processing and computer vision (Lecun et al., 2015). As

a consequence, the principles and structures that contributed to this achievement

are specific to those areas and do not apply to EEG processing, hindering the

development of deep-learning methods in this field (Schirrmeister et al., 2017).

For the design of EEG-Inception, traditional and novel techniques from image

classification and EEG processing were combined to achieve a new CNN that

outperformed preceding models for ERP detection. The key features of this model

will be discussed below.

A key feature of EEG-Inception is the integration of Inception modules tai-

lored for EEG processing. The Inception architecture was originally introduced

by Szegedy et al. (2015) for image processing, resulting in significant advancements

in that field. However, before our study there were only a few studies that have

used this architecture for EEG processing, and none for ERP detection (Lee et al.,



6.3. Deep-learning approach for command decoding: EEG-Inception 99

2020; Qiao and Bi, 2019; Yue and Wang, 2019). EEG-Inception includes two In-

ception modules with three branches that process the signal at different time scales

(i.e. 500ms, 250ms, and 125ms) in accordance to the size of the convolutional fil-

ters (see Table 4.1) and EEG sample rate. Our experiments have shown that the

inclusion of these modules leads to significant improvements when compared to

single-scale methods. However, the model’s performance remained consistent for

different kernel sizes, and the optimal values may vary depending on the specific

application. In this study, the scales were selected to maximize performance for

ERP detection.

The incorporation of additional strategies into our architecture also resulted in

significant performance improvements. Depthwise convolutions allow the extrac-

tion of independent spatial filters for each temporal pattern, dropout regularization

reduces the over-fitting effect, and batch normalization and average pooling are

useful to increase the stability of the model during training, avoiding problems

such as vanishing gradients (Lawhern et al., 2018). In addition, the inclusion of

the output block, which synthesizes the information extracted by previous layers

in few, high-level features, maximizes the gain of the fine-tuning process.

Finally, the optimization of the hyperparameters is an important contribution

that could help to develop new methods in the future. As seen in Figure 5.6(a),

the selection of the activation function is a crucial factor. We evaluated Sigmoid,

ReLU, and ELU functions, which are commonly used in deep learning. In this

regard, ReLU is a popular choice in computer vision, but in our experiments, ELU

showed superior performance. This is consistent with the findings of Schirrmeis-

ter et al. (2017) for SMR classification. To design deep-learning models for ERP

detection, it is also essential to minimize over-fitting. In our tests, dropout reg-

ularization was found to be the most effective technique for reducing this effect,

reaching the optimal value at 0.25. Finally, the learning rate had a significant im-

pact in the model’s performance too. As illustrated in Figure 5.6(b), the optimal

value was 0.001.

6.3.2 Evaluation experiment

The evaluation experiment outlined in section 5.3.2 was designed to not only vali-

date the effectiveness of EEG-Inception as part of the command decoding pipeline

of our ERP-based speller, but also to provide a direct comparison with several

well-established prior approaches. It is important to highlight that the compari-

son between these models would not have been feasible by analyzing the results



100 Chapter 6. Discussion

reported in the original studies due to varying training and testing strategies, as

well as differences in tested populations. In addition to the results of the experi-

ment, these aspects are also discussed in the following paragraphs.

Table 5.4 displays the command decoding accuracy for each model, number

of fine-tuning trials, and sequences. Thus, it provides direct and fair comparison.

As shown, EEG-Inception consistently achieved significantly better performance

(p-value < 0.01) than EEGNet, DeepConvNet, CNN-BLSTM, xDAWN+RG, and

rLDA. EEG-Inception also demonstrated higher robustness to inter-subject vari-

ability, as shown by the reduced standard deviation values, which is an important

factor in severely disabled populations with different pathologies.

Regarding the ITR, EEG-Inception reached the highest value, 25.64 bits/min,

as illustrated in Figure 5.7. This ITR is comparable to the range reported in

related studies with healthy subjects, indicating that, with the appropriate sig-

nal processing algorithms, individuals with severe disabilities can achieve similar

performance (Liu et al., 2018).

It is not surprising that a higher number of fine-tuning trials improves per-

formance, given the high inter-subject variability of the P300 potential. More

fine-tuning trials allow the models to learn subject-specific features, thus enhanc-

ing command decoding accuracy. However, this also increases the calibration time,

reducing the usability if the system. Therefore, a balance between performance

and calibration time should be found. In this regard, deep-learning models had

a clear advantage over machine learning approaches, achieving suitable accuracy

with fewer fine-tuning trials. Another factor to consider is the selection speed,

which is influenced by the number of sequences. A greater number of sequences

results in higher accuracy, regardless of the model, but also slows down the sys-

tem. Therefore, it is essential to strike a balance between precision and speed for

practical applications. In this regard, EEG-Inception offers higher accuracy with

shorter selection time.

The proposed strategy to train EEG-Inception is an important contribution

of the study, allowing for some valuable conclusions that are worth mentioning.

Most related works, likely due to limitations in the available data, assessed the

performance of new BCI classification approaches using either cross-subject evalu-

ation (i.e. training and testing with data from different subjects) or intra-subject

evaluation (i.e. training and testing with data from the same subject) (Lawhern

et al., 2018; Liu et al., 2018; Schirrmeister et al., 2017). In contrast, we used

a hybrid method that combined transfer learning and fine-tuning. For N = 0,

the models were not fine-tuned, simulating a calibration-less approach for cross-
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subject evaluation. For N > 0, the model was fine-tuned to the test subject with

few calibration trials. This approach is crucial to study the true potential of deep

learning for assistive BCIs, where reducing the calibration time is an important

issue. In this regard, EEG-Inception is specifically engineered to take full advan-

tage of this training approach, offering benefits for the practical implementation

of ERP-based spellers in real-world applications.

Another crucial aspect is that we validated our approach with data from

31 severely disabled subjects, which are the target users of assistive ERP-based

spellers. This allowed us to implement specific methods to improve the robustness

of EEG-Inception against inter-subject variability, which explains the outstanding

results in this particular, but important characteristic. In contrast, none of the

previous studies that proposed deep-learning approaches for ERP-based spellers

evaluated their models with this population (Borra et al., 2019; Cecotti and Gräser,

2011; Lawhern et al., 2018; Liu et al., 2018; Manor and Geva, 2015; Santamaŕıa-

Vázquez et al., 2019b; Schirrmeister et al., 2017). In this regard, individuals with

severe disabilities pose a significant challenge due to their heterogeneity and unique

characteristics. Generally, their performance is significantly lower compared with

healthy subjects, making a direct comparison with previous studies difficult. How-

ever, it is essential to validate new algorithms with end users to obtain an accurate

assessment of the model’s performance in a real-world setting. Thus, we consider

this point as one of our study’s strengths.

6.4 Deep-learning approach for control state de-

tection: EEG-Inception

After demonstrating the advantages of EEG-Inception for the command decoding

task, the next goal was to improve the performance of the asynchronous manage-

ment in our ERP-based speller using deep learning as well. Whereas the OSRD

method reached high accuracy, we suspected that the SSVEPs elicited by non-

target stimuli of the RCP were not the only EEG patterns that could be used

to detect the user’s control state. For instance, Mart́ınez-Cagigal et al. (2019b)

demonstrated that the attention mechanisms involved during the usage of an ERP-

based speller increase the complexity of the EEG, measured with the multiscale

sample entropy. Therefore, deep-learning models able to discriminate this kind

of patterns should increase the performance feature-engineering methods for the

detection of the user’s control state, given that they automatically learn high-
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level features from the input data. In this regard, EEG-Inception was a perfect

candidate due to its multiscale approach, which could be particularly optimal for

detecting different patterns of activity. To test this hypothesis, we designed the

first study that tested a deep-learning model, EEG-Inception, for this task. The

main results of this experiment, explained in section 5.4, are discussed bellow,

providing a comparison with previous approaches.

6.4.1 Evaluation experiment

EEG-Inception demonstrated high performance in the control state detection task,

as illustrated in Table 5.5. As can be seen, there is a trade off between perfor-

mance and selection time. More stimulation sequences led to a higher confidence

in the selection and reduced the impact of outliers, thereby improving the model’s

accuracy. As a downside, more sequences increase the selection time, reducing the

speed of the system. In this regard, EEG-Inception was able to achieve accuracies

above 91% with just one sequence of stimulation and N ≥ 20, which is an out-

standing result. The number of fine-tuning trials also had a positive impact on

the performance at the expense of increasing the calibration time. Nonetheless,

our approach can still achieve satisfactory results even with a limited number of

training observations, showing the effectivity of our cross-subject transfer learning

initialization. In fact, when simulating a plug-and-play system with no calibration

for the test subject (N = 0), the model still achieved accuracies close to 90% for 10

or more stimulation sequences. In addition to its ability to perform well with no

calibration for the test subject, EEG-Inception also has the ability to take advan-

tage from the fine-tuning process (N > 0). This results in a significant increase in

performance after a brief calibration. For example, for N = 30, the control state

detection accuracy was 91.91% with just one sequence of stimulation and 96.95%

with 15 sequences.

The confusion matrices, as shown in Figure 5.8, also offer some interesting

observations. The rate of false negatives tends to be higher than the rate of false

positives, particularly for lower values of N . This discrepancy could be attributed

to lapses in concentration, a theory that is supported by the EEG analysis in

Figure 5.9. This figure shows that the ERP had a lower amplitude, with the

SSVEP also exhibiting less power.

The evaluation of the entire system, with the control state detection and com-

mand decoding stages, proved the feasibility of our approach. As seen in Table

5.6, our system demonstrated outstanding performance. A possible practical con-
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figuration could be N = 30 and five stimulation sequences, which has an expected

overall test accuracy of 91.3%. Additionally, the Figure 5.10 shows that the system

achieved a maximum ITR of 35.54 bpm for N = 30 and one stimulation sequence,

with one subject achieving 88.60 bpm. In regard to the calibration-free approach

(N = 0), the system reached an accuracy of 85.38%, with an ITR of 13.57 bpm.

Finally, it is worth mentioning that the training/testing strategy plays an im-

portant role in leveraging the capabilities of the model. For instance, it allows

to have subject specific models with very few training trials by exploiting cross-

subject transfer learning. Ideally, in the initialization phase, the model learns

common features across subjects to detect the target patterns in each case. Then,

in the fine-tuning phase, the model particularizes these features to the specific

characteristics of each subject, resulting in an improved performance, as it was

demonstrated in our previous study (Santamaŕıa-Vázquez et al., 2020b). At the

same time, this method allows to take advantage from all the available data,

improving its scalability for real use, where data from new subjects could be in-

corporated to the models to increase their performance.

6.4.2 Comparison with previous approaches

EEG-Inception achieved promising results in the control state detection task.

Moreover, this was accomplished using an extensive database (the largest among

related studies) that assures the robustness of our results. However, making direct

comparisons with previous studies is often challenging due to significant varia-

tions in stimulation paradigms, experimental design, and sample characteristics.

This section highlights the most important aspects. When results per subject

were available, the statistical significance of the comparisons between different

approaches was determined using the Mann-Whitney U -test, adjusting the FDR

with Benjamini-Hochberg method (see section 4.5.2).

The performance of the proposed pipeline for control state detection was sig-

nificantly higher than previous approaches that relied on feature engineering, as

showed in Table 6.3. To simplify the comparison, here we only consider studies

that proposed asynchrony methods independent of the command decoding stage.

Note that wrapper threshold-based approaches were previously discussed in sec-

tion 6.2.2. Pinegger et al. (2015) proposed the SAM method, reaching an average

accuracy of 79.5% with 15 sequences of stimulation using spectral features, whereas

EEG-Inception achieved 97.28% (p-value < 0.01), as shown in Table 5.5. Simi-

larly, the proposed approach also outperformed the OSRD method, which was
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Table 6.3: Comparative of previous asynchronous systems with independent control
state detection and command decoding pipelines.

Study Asynch. method Subj. Acccsd

(%)
Accovr

(%)
ITR
(bpm)

Pinegger et al. (2015) SAM 21 CS 79.5 – –

Mart́ınez-Cagigal et al. (2019b) SampEn 10 CS 94.52 – –

Santamaŕıa-Vázquez et al. (2019a) OSRD 15 CS 95.5 92.5 12.4

Santamaŕıa-Vázquez et al. (2022) EEG-Inception 22 CS 97.28 96.68 35.54
SAM: spectral analysis method; HAM: hybrid analysis method, SampEn: sample entropy; CS: control
subjects; Acccsd: accuracy for the control state detection task; ITR: information transfer rate of the
overall system; bpm: bits per min; OSRD: oddball steady response detection.

based on spectral and correlation features (p-value < 0.01) (Santamaŕıa-Vázquez

et al., 2019a). The comparison with the results presented in Mart́ınez-Cagigal

et al. (2019b), which used sample entropy features, was also significant (p-value <

0.01). Notably, these differences are more pronounced when using few stimulation

sequences. For instance, when using five sequences, the accuracy was increased by

10.41% and 19.60% with respect to the latter two studies.

Regarding the overall results, there are some noteworthy points to consider.

Related studies achieved lower overall accuracy and ITR, which demonstrates the

superiority of EEG-Inception. For instance, the maximum average ITR was 35.54

bpm (see Figure 5.10). In comparison, the highest values achieved by Zhang et al.

(2008), Aloise et al. (2011) and Santamaŕıa-Vázquez et al. (2019a) were 15.0 bpm,

11.2 bpm (p-value < 0.01) and 12.3 bpm (p-value < 0.01), respectively. On the

other hand, Tang et al. (2019) obtained a maximum accuracy of 90.30% compared

to 96.47% in our analysis.

In terms of calibration time, this study was the first to investigate an asyn-

chronous ERP-based BCI without any user’s calibration (i.e., N = 0), achieving

an accuracy of 85.38% and ITR of 13.57 bpm. These results exceeded by a large

margin an overall performance of 70%, which is generally considered the minimum

acceptable accuracy to control a BCI (Kübler et al., 2004). In this regard, we

think that minimizing, or even eliminating, the system’s calibration is essential for

increasing the usability of asynchronous ERP-based spellers for practical assistive

applications. Thus, this is a key contribution of our work, paving the way for

further research in this area.

In summary, the results presented in Santamaŕıa-Vázquez et al. (2022) demon-

strated that EEG-Inception provides great advantages for the control state detec-

tion task in ERP-based spellers. The proposed approach reached higher perfor-

mance than the previous methods. It also addressed some of the main limitations of
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these systems for practical assistive applications, such as the calibration time and

instability of wrapper approaches based on thresholds. In this regard, it is worth

noting that none of the related studies explored the possibility of a calibration-free

approach.

With this study, we completed the final design of our asynchronous ERP-

based speller. The system is fully based on deep learning, using EEG-Inception

for the control state detection and command decoding tasks. As shown by the

results presented Santamaŕıa-Vázquez et al. (2022, 2020b), this design represents

a significant step forward in the state of the art of practical asynchronous ERP-

based spellers, providing higher performance than previous approaches.

6.5 Design of MEDUSA© and comparison with

previous BCI platforms

MEDUSA© is a novel BCI platform that was developed to address the limita-

tions of existing BCI software. It was created as part of this research project to

help us to achieve our goals and fill the gap of available options. The goal was to

accelerate BCI and cognitive neuroscience research by facilitating the implemen-

tation and open-source distribution of new systems and methods, as the ones that

have been presented in this dissertation. Furthermore, MEDUSA© also includes

additional BCI paradigms and EEG processing methods that were developed in

parallel projects as part of the research line.

The results of this work were described in section 5.5. In this section, we

discuss the most important features MEDUSA©, providing at the same time a

detailed comparative with other general-purpose BCI software, such as OpenVibe

or BCI2000. This comparison only includes those platforms that provide the three

main stages of a BCI system: signal recording, signal processing, and feedback

presentation. Thus, we leave out toolboxes for bio-signal analysis, such as MNE

or EEGLAB. A summarized comparison of the various BCI platforms currently

available can be found in Table 6.4.

The first aspect to discuss is the programming framework in which each plat-

form has been developed, as this characteristic has an important impact in other

features. The majority of platforms were developed in C++, including BCI2000,

OpenVibe, xBCI and BF++, while Pyff was the only one implemented Python

(Bianchi et al., 2003; Kothe and Makeig, 2013; Renard et al., 2010; Schalk et al.,

2004; Susila et al., 2010; Venthur et al., 2010). In this regard, C++ is a general-
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purpose and efficient language, but it has a steep learning curve and the develop-

ment time is increased due to its complex syntax. This makes difficult to maintain

the software and keep up with the latest advances in the field. On the other

hand, Python is a script-like, flexible language that reduces the development time

thanks to its simplicity. Additionally, it has a wide range community packages

(e.g., Scipy, Numpy, Tensorflow) that simplify the development of signal process-

ing methods. For these reasons, this language has gained popularity in the last

years. The main drawback of Python is its lower efficiency compared to compiled

languages like C++, but this can be addressed with careful implementations and

concurrent processing for most use cases. So far, Pyff was the only BCI software

that was completely written in Python, but its development has been interrupted

for more than 7 years. Additionally, BCpy2000 is a Python package designed to

facilitate the development of BCIs using BCI2000 as a foundation (Luczak and

Marcus, 2020). However, it is important to note that BCpy2000 has important

limitations in terms of functionality and carries forward other disadvantages inher-

ited from BCI2000. This makes MEDUSA© the leading alternative implemented

in Python.

Another important consideration is the maintenance of the software. As shown

in Table 6.4, most of the BCI platforms are no longer being updated. Out of the

software tools considered in this analysis, only OpenVibe is currently being actively

developed to stay current with the latest BCI advancements, whereas BCI2000

only receives critical updates. The remaining platforms have not been updated for

several years. It is important to note that creating these platforms requires ex-

tensive knowledge in software design, DevOps practices, concurrent programming,

signal processing, machine learning, or graphical engines. Due to this complexity,

updating and maintaining BCI software can be especially difficult, particularly

given the rapid pace of progress in the field. As a result, many projects are aban-

doned shortly after their release. In MEDUSA©, we apply several methods to

address this issue: (1) modular design that allows upgrading the different com-

ponents easily without requiring major changes to the rest of the software; (2)

flexible implementation in Python, a high-level programming language well-suited

for rapid development of new functionalities; (3) scalable architecture prepared

to accommodate additional signal processing methods or apps as needed; and (4)

tools specifically designed to promote community contributions. The development

of MEDUSA© has been guided by these principles to simplify the maintenance

process, which aligns with our long-term vision of the project.

MEDUSA© provides a comprehensive suite of signal processing methods and
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BCI experiments. For instance, it includes deep learning models and connectivity

metrics for M/EEG analysis, which can be used in offline and online experiments.

Furthermore, the diverse range of apps included in MEDUSA© Platform allows

for the investigation of crucial aspects within the BCI and cognitive neuroscience

fields. These apps facilitate the exploration of stimulus and feedback characteris-

tics in various BCI paradigms, the comparison of classification methods in online

and offline experiments, or the characterization of bio-signals, such as EEG or

ECG, under different cognitive states. It is worth noting that our c-VEP speller

implementation is currently the only publicly available option for investigators

interested in this BCI paradigm (Mart́ınez-Cagigal et al., 2021). In terms of func-

tionality, OpenVibe stands out as the only platform that offers a comparable range

of capabilities, whereas the other projects are significantly less advanced in this

regard (see Table 6.4). Finally, it should be noted that numerous research stud-

ies conducted in recent years have tested the feasibility of these functionalities,

thus providing scientific validation for our solution (Marcos-Mart́ınez et al., 2021;

Mart́ınez-Cagigal et al., 2019b; Pérez-Velasco et al., 2022; Santamaŕıa-Vázquez

et al., 2019a, 2022, 2020a,b).

Another aspect worth mentioning is that MEDUSA© provides tools to develop

and share custom apps with less effort. The tools include templates to facilitate

app development with Qt and Unity, detailed tutorials, and an official app market

to share apps with the community through our website. These features create

the adequate environment to encourage an active participation from a multidis-

ciplinary community. By simplifying the implementation of BCI and cognitive

neuroscience experiments and increasing their reproducibility, MEDUSA© aims

to attract more developers and professionals to these fields. In fact, this commu-

nity’s involvement is critical to the success of the project.
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6.6 Limitations

Despite the positive results that were achieved in all the studies that compose

this compendium, our work is not without limitations. The first limitation is

related to the databases that were used to test the proposed models in this disser-

tation. For instance, the OSRD method and EEG-Inception were evaluated using

the Asynchrony database, which was specifically designed for asynchrony stud-

ies with ERP-based spellers. However, due to the difficulty of recruiting severely

disabled patients, we were only able to include healthy subjects in this database.

Therefore, the results achieved in Santamaŕıa-Vázquez et al. (2019a, 2022) may

be overestimating the accuracy of both methods in a real setting with end users.

The importance of this aspect is illustrated if we compare the results achieved

by EEG-Inception in Santamaŕıa-Vázquez et al. (2020b) and Santamaŕıa-Vázquez

et al. (2022). In the latter study, which did not include disabled subjects, the

overall accuracy and ITR was much higher than on the first study, where the

model was evaluated on 31 severely disabled subjects, even when the system was

fully asynchronous and used the same command decoding pipeline. The cause

is usually related to physical and cognitive problems associated with disabilities

(e.g., attention deficit, involuntary movements). This demonstrates the impor-

tance of testing these methods with target users to obtain a better estimation of

the model’s performance in a real setting. In this regard, it should be noted that

this is a common limitation in BCI studies. For this reason, the fact that our

command decoding approach based on EEG-Inception was tested on target users

in Santamaŕıa-Vázquez et al. (2020b) is a great achievement. Another limiting

factor related to the databases is their size, which especially affects deep learn-

ing models. Despite the fact that the sample size used in Santamaŕıa-Vázquez

et al. (2022, 2020b) was the largest among related studies, our training strategy

for EEG-Inception is designed to benefit from as much data from as many sub-

jects as possible. Therefore, a larger sample size would increase the accuracy of

the models for the control state detection and command decoding tasks. In fact,

more training data could help to reduce the effect overfitting, which would allow

to increase the complexity of the model. Additionally, having more test subjects

would contribute to more robust and generalizable results.

Regarding EEG-Inception, this model has only been tested for P300 detec-

tion, control state detection and MI decoding, achieving very satisfactory results

(Pérez-Velasco et al., 2022; Santamaŕıa-Vázquez et al., 2022, 2020b). However,

EEG-Inception introduces several architectural advantages that could help to in-
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crease the classification performance in other tasks as well. We think that this

model has great potential in other contexts, such as SSVEP and c-VEP decod-

ing, sleep stage scoring, or disease detection, after appropriate fine-tuning and

hyperparameter optimization processes. Nevertheless, additional experiments are

required to corroborate these hypotheses. Moreover, did not tested methods such

as attention modules or transformers, which could help to further improve the

model. Additionally, we did not apply any method to explain the features learned

by EEG-Inception in the different tasks. In this regard, explainable deep-learning

models could help to gain insight into brain processes through EEG and optimize

the architectures, being a field of research with great potential. Therefore, future

endeavors are needed to address this issue.

MEDUSA© also present limitations. As in any software under development,

there may be unexpected errors in the code that need to be fixed. In this regard,

we have set up communication channels to report issues and suggestions, such as

the forum and the GitHub repositories. Another limitation is that certain com-

ponents of the software are only compatible with Windows. Compatibility with

Linux and iOS operating systems will be addressed in the future. Additionally,

MEDUSA© currently lacks certain functionalities that could expand the potential

applications of the software (e.g., real-time spectrogram, SSVEP speller, auditory

paradigms). Nevertheless, we are firmly committed to the continuous enhance-

ment of our solution to establish it as one of the leading BCI platforms. As a

result, forthcoming versions of MEDUSA© will integrate additional functionali-

ties, leveraging the platform’s design advantages. To encourage the community’s

engagement and participation in the project, we will also complete the website

with more features, tutorials, and documentation.



Chapter 7

Conclusions

The common thread of this doctoral dissertation has been the development of new

signal processing methods to improve the control state detection and command

decoding stages of ERP-based spellers, making these systems more practical for

real applications outside the laboratory. In this regard, we proposed one feature-

engineering method, called OSRD, to improve the asynchronous management of

this BCI systems. Then, we increased the performance of our approach with the

development of EEG-Inception. Additionally, while doing this work, we realized

the limitations of the available BCI platforms. Therefore, we created MEDUSA©

to improve the efficiency of implementing and distributing BCI systems, and in-

crease the impact of our work.

In this chapter, the main contributions of this collection of publications are

highlighted in section 7.1. Then, section 7.2 presents the joint conclusions of these

studies. Finally, future research related to this work is outlined in section 7.3.

7.1 Contributions

The main contributions of this dissertation are:

1) The OSRD method: a novel feature-engineering approach that provides an

asynchronous control of ERP-based spellers by detecting the SSVEP elicited

by the RCP using spectral and correlation features. This is the first method

that does not require to increase the calibration time of the system thanks to

the creation of synthetic non-control observations from control trials. More-

over, the offline and online evaluation of the OSRD method with 15 subjects
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showed its advantages over previous approaches (Santamaŕıa-Vázquez et al.,

2019a).

2) EEG-Inception: a novel deep-learning model that can be used for different

EEG classification tasks. To the best of our knowledge, this is the first CNN

for EEG processing that analyzes this signal from a multiscale perspective

through the combination of Inception modules with other state-of-the-art

structures in a lightweight architecture. These features, together with the

proposed training strategy, which applies cross-subject transfer learning and

fine-tuning, improved the performance of the model in comparison to existing

approaches (Santamaŕıa-Vázquez et al., 2020b).

3) The validation of EEG-Inception for the command decoding pipeline of

our ERP-based speller with 73 subjects (31 of whom had motor disabil-

ities). This evaluation showed that this model outperforms five previous

approaches: rLDA, xDAWN+RG, CNN-BLSTM, DeepConvNet and EEG-

Net. Additionally, to the best of our knowledge, this was the first study that

tested deep learning models for ERP-based spellers with data from severely

disabled subjects, the target users of this technology (Santamaŕıa-Vázquez

et al., 2020b).

4) The validation of EEG-Inception for the control state detection pipeline of

our ERP-based speller with 22 healthy subjects. This evaluation demon-

strated, for the first time, the ability of a deep learning architecture to pro-

vide an asynchronous control of these systems, outperforming previous meth-

ods in this task. Additionally, the experiments showed the feasibility of the

first asynchronous ERP-based speller fully based on deep learning, achieving

high overall accuracy and ITR with few calibration trials and stimulation se-

quences. This solution represents a significant milestone in the field, paving

the way for more practical applications of ERP-based spellers (Santamaŕıa-

Vázquez et al., 2022).

5) MEDUSA©: a novel software ecosystem optimized for BCI and cognitive

neuroscience research. This innovative software ecosystem offers advanced

signal acquisition functions, state-of-the-art signal processing methods, and

a complete suite of ready-to-use BCI and neuroscience experiments. Further-

more, to our best knowledge, MEDUSA© provides the most comprehensive

set of tools for developing and sharing new BCI applications with the com-

munity. These groundbreaking features make MEDUSA© one of the most
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promising open-source platforms in the BCI field (Santamaŕıa-Vázquez et al.,

2023).

7.2 Main conclusions

The analysis and discussion of the results achieved in this work allows for the

formulation of the main conclusions of this doctoral dissertation:

1) ERP-based spellers must incorporate a control state detection stage to pre-

vent accidental command selections. This is especially important in assistive

applications to allow users to be independent of supervision, thereby promot-

ing personal autonomy.

2) The characterization of EEG patterns that relate to control or non-control

states in a BCI provides valuable insights, which can be then used to imple-

ment asynchronous systems. Particularly, the RCP elicits a SSVEP at the

stimulation frequency provoked by non-target stimuli presented at a fixed

rate.

3) The OSRD method provides a robust control state detection in ERP-based

spellers. This method is characterized by its independence from the com-

mand decoding stage, as well as its potential to achieve high performance.

Moreover, it does not require to extend the calibration time of the system

by utilizing synthetic non-control observations.

4) Deep-learning models outperform classical feature-engineering approaches

for the command decoding and control state detection stages of ERP-based

spellers. The development of network architectures and training strategies

specifically tailored for EEG processing is key to improve the performance

of these models.

5) EEG-Inception has been validated as a highly effective classifier for the con-

trol state detection and command decoding stages in ERP-based spellers.

This CNN is characterized by the integration of Inception modules to pro-

cess the EEG in different scales, its effective regularization techniques, and

its efficiency in exploiting subject-specific fine-tuning with few calibration

trials.

6) The performance of motor-impaired individuals is significantly lower than

that of healthy subjects due to problems in attentional control, involuntary
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movements, or cognitive impairment, among others. Additionally, the design

of the system must take into account the special needs of this group. There-

fore, assistive BCIs must be tested with their target population to ensure

their practicality in a real-world setting.

7) There is a need for specialized software tools to facilitate the implementation

of neurotechnology experiments, especially in the fields of BCI and cognitive

neuroscience. These tools could speed up experimentation, reduce project

costs, and enable the participation of researchers without the required tech-

nical knowledge to develop such software.

8) MEDUSA© implements a wide variety of tools to accelerate BCI and cogni-

tive neuroscience research. However, in order to fully establish its position as

a leading software in these domains, the involvement of a broader community

of developers and content creators is essential.

7.3 Future research lines

There are several areas for future research that arise from this investigation, some

of which may expand upon or build upon the findings of this dissertation, and

others that may address other topics of the BCI field.

The first research line is to test our system with target users of assistive ERP-

based spellers: motor-impaired subjects. It is important to validate the proposed

algorithms in this population to obtain a more reliable estimation of their perfor-

mance with target users. In order to pursue this research line, it would be needed

to expand our asynchrony database with severely disabled subjects with different

pathologies. Moreover, a long-term longitudinal validation in a practical setting

could give insight into how socio-technological interactions and disease progression

would affect the efficacy of the BCI system.

Another line of investigation could be to validate the performance of EEG-

Inception on other EEG classification tasks and public datasets. This would help

to determine the generalization ability of this CNN and its potential applications

in a wider range of contexts, allowing for a more comprehensive understanding of

the model’s capabilities.

EEG-Inception could be further improved by incorporating recent develop-

ments in the deep-learning field, such as attention modules or transformers. The

training strategy could be optimized too by using self-supervised strategies to lever-

age the large amount of unlabeled EEG data that is currently available. Moreover,
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adaptive approaches for deep-learning models could lead to more efficient and ef-

fective BCI systems as well.

Another potential direction for future research is the use of explainable artificial

intelligence (XAI) techniques to gain insight into brain processes through EEG

data by providing interpretability and transparency in the decision-making process

of a deep-learning model. These techniques can help researchers and clinicians

to optimize the model architectures for BCI, interpret the results, and identify

potential biases or limitations in the model’s performance.

Finally, MEDUSA© is a software under active development that will continue

to improve in the future. The main lines of action include: fixing bugs, improving

the coverage of the platform by supporting Linux and iOS operating systems,

and adding a wider variety of signal processing methods and BCI applications.

Moreover, the development of more documentation, tutorials, and features to foster

the involvement of the community in the project will be addressed too.
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2. Eduardo Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-Cagigal, Daniel
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Cagigal, Roberto Hornero, “EEG-InceptionGen: Una Red Convolucional de

Propósito General para la Clasificación de señales EEG”, XXXIX Congreso
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ISBN: 978-84-09-36054-3, pp. 163-166, Madrid (Spain), November 25 -

November 26, 2021.
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Bioingenieŕıa 2022 (JREB 2022), Málaga (Spain), May 18 - May 20, 2022.

6. Selene Moreno-Calderón, Vı́ctor Mart́ınez-Cagigal, Eduardo Santamaŕıa-
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terfaces utilizando c-VEPs”, XL Congreso Anual de la Sociedad Española de

Ingenieŕıa Biomédica (CASEIB 2022), ISBN: 978-84-09-45972-8, pp. 324-

327, Valladolid (Spain), November 23 - November 25, 2022.

7. Sergio Pérez-Velasco, Diego Marcos-Mart́ınez, Eduardo Santamaŕıa-

Vázquez, Vı́ctor Mart́ınez-Cagigal, Selene Moreno-Calderón, Roberto

Hornero, “Caracterización espacio-temporal de la clasificación de imagi-

nación motora con herramientas de explainable artificial intelligence (XAI)”,

XL Congreso Anual de la Sociedad Española de Ingenieŕıa Biomédica (CA-

SEIB 2022), ISBN: 978-84-09-45972-8, pp. 316-319, Valladolid (Spain),

November 23 - November 25, 2022.

8. Diego Marcos-Mart́ınez, Ana Mart́ın-Fernández, Sergio Pérez-Velasco, Ed-

uardo Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-Cagigal, Selene Moreno-

Calderón, Roberto Hornero, “Análisis de los cambios en la conectividad

funcional tras un entrenamiento cognitivo mediante Neurofeedback”, XL

Congreso Anual de la Sociedad Española de Ingenieŕıa Biomédica (CASEIB

2022), ISBN: 978-84-09-45972-8, pp. 27-30, Valladolid (Spain), November

23 - November 25, 2022.

9. Vı́ctor Mart́ınez-Cagigal, Eduardo Santamaŕıa-Vázquez, Sergio Pérez-

Velasco, Diego Marcos-Mart́ınez, Selene Moreno-Calderón, Roberto Hornero,

“Un nuevo método de parada temprana no paramétrico para sistemas
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Brain–Computer Interface basados en c-VEP”, XL Congreso Anual de la

Sociedad Española de Ingenieŕıa Biomédica (CASEIB 2022), ISBN: 978-84-

09-45972-8, pp. 196-199, Valladolid (Spain), November 23 - November 25,

2022.

10. Vı́ctor Mart́ınez-Cagigal, Eduardo Santamaŕıa-Vázquez, Sergio Pérez-

Velasco, Diego Marcos-Mart́ınez, Roberto Hornero, “Sobre la Eficacia del

Principio de Vecinos Equivalentes en Sistemas BCI basados en c-VEP”, 12o

Simposio CEA de Bioingenieŕıa, pp. 32-36, Madrid (Spain), June 3 - June

4, 2021.

11. Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gon-

zalo C. Gutiérrez-Tobal, Verónica Barroso-Garćıa, Eduardo Santamaŕıa-

Vázquez, Félix del Campo, David Gozal, Roberto Hornero, “Modelo de

deep learning basado en la arquitectura Inception para el diagnóstico de la

apnea del sueño infantil mediante la señal de oximetŕıa”, XXXVIII Congreso

Anual de la Sociedad Española de Ingenieŕıa Biomédica (CASEIB 2020),

ISBN: 978-84-09-25491-0, pp. 340-343, Valladolid (Spain), November 25 -

November 27, 2020.

12. Vı́ctor Mart́ınez-Cagigal, Eduardo Santamaŕıa-Vázquez, Roberto

Hornero, “Interfaz Cerebro–Ordenador para el Control de las Funcional-

idades de un Teléfono Móvil”, XXXVI Congreso Anual de La Sociedad

Espñola de Ingenieŕıa Biomédica (CASEIB 2018), ISBN: 978-84-09-06253-9,

pp. 61–64, Ciudad Real (Spain), November 21 - November 23, 2018.

13. Vı́ctor Mart́ınez-Cagigal, Javier Gomez-Pilar, Daniel Álvarez, Eduardo

Santamaŕıa-Vázquez, Roberto Hornero, “Sistema Brain-Computer Inter-

face de Navegación Web Orientado a Personas con Grave Discapacidad”,

XXXVIII Jornadas de Automática (JA 2017), ISBN: 978-84-16664-74-0, pp.

313–319, Gijón (Spain), September 6 - September 8, 2017.

B.2 International internship

Three-month research internship at the Spaulding Neuromodulation Center,

Spaulding Rehabilitation Hospital, Harvard University, Boston, Massachusetts,

USA.

i. Purpose of the internship

The objective of the research stay was to establish a framework for col-
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laboration with the receiving group and delve into the application of EEG

signals and BCI systems in the field of neurorehabilitation. Three specific

objectives were proposed: 1) to apply EEG analysis techniques to identify

objective biomarkers that allow evaluating the progress of the neuroreha-

bilitation therapies applied at the Spaulding Neuromodulation Center with

patients with attention deficit and hyperactivity disorder (ADHD), spinal

cord injury, and chronic pain; 2) to study the potential of BCI systems for

improving the effectiveness of these therapies, especially in terms of patient

engagement and motivation; and 3) to develop new algorithms and software

tools based on machine learning techniques for optimizing the performance

of BCI systems in these applications.

ii. Summary of results

During the research stay, three studies were conducted to evaluate the ef-

fectiveness of various neuromodulation therapies. The first study was a ret-

rospective analysis of the effectiveness of a therapy combining neurofeed-

back and peripheral electrical stimulation in a group of 60 children with

ADHD. The second study was a preliminary evaluation of the effectiveness

of a neuromodulation therapy in 5 patients with spinal cord injuries, us-

ing low-frequency laser stimulation and electrical stimulation on the affected

area. The third study aimed to evaluate the potential of the placebo effect to

treat patients suffering from intense chronic pain due to spinal cord injury or

stroke. This therapy used a technique called operant conditioning, in which

a placebo pill was administered along with the patient’s prescribed analgesic

medication, with the goal of gradually reducing the analgesic dosage without

increasing the patient’s pain. This work aimed to identify the neural mecha-

nisms underlying the placebo effect in patients with chronic pain using EEG

and fNIRs.

iii. Quality indicators of the institution

The research stay took place at the Spaulding Neuromodulation Center, un-

der the supervision of the Associate Director of Research, Dr. Leon Morales-

Quezada, MD, PhD. The center is part of the Spaulding Rehabilitation In-

stitute at Harvard University, which is a leading global medical center in

the field of physical medicine and rehabilitation. The Spaulding Neuro-

modulation Center is a clinical research unit dedicated to the application

of innovative, non-invasive neurorehabilitation, and neuromodulation tech-

niques. The center currently consists of about 30 people, over half of whom
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hold an MD or PhD degree, and it is at the forefront of advancing the science

of neurorehabilitation to treat conditions such as stroke, spinal cord injury,

depression, and ADHD. Over the past 15 years, the center has studied the

impact of non-invasive stimulation, developed practical clinical treatments

for people with mental disorders, and promoted clinical research on brain

electrical activity. Its approach is based on a multidisciplinary perspective:

neuroscientific, neuropsychiatric, and rehabilitation. As part of Harvard

Medical School, and with close collaborations with other institutions, the

center has access to valuable databases with records of various biological

signals, allowing for a deep understanding of various methodological aspects

aligned with the topics of this dissertation. Dr. Morales-Quezada, the su-

pervisor of the stay, is the Associate Director of Research at the Spaulding

Neuromodulation Center Laboratory and the Director of the Clinical Neu-

romodulation Program at Spaulding Hospital. His curriculum includes 25

high-impact scientific publications in the field of neuroscience in the past 5

years. He is also an international consultant in pediatric neurological re-

habilitation for the Happy Hope Association in Europe and Neocemod for

Mexico and South America, and he is considered a pioneer in non-invasive

brain stimulation research. The doctoral student also had the opportunity

to work with the Director of the Spaulding Neuromodulation Center, Prof.

Felipe Fregni, MD, PhD, and Professor at Harvard Medical School (h-index

of 120), a world leader in the research of new neurorehabilitation therapies.

B.3 Awards and honors

� Best bioengineering research article of the year 2020 by Cen-

tro de Investigación Biomédica en Red en Bioingenieŕıa, Biomateri-

ales y Nanomedicina (CIBER-BBN) for the following article: Eduardo

Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-Cagigal, Fernando Vaquerizo-

Villar, Roberto Hornero, “EEG-Inception: A Novel Deep Convolu-

tional Neural Network for Assistive ERP-based Brain-Computer Inter-

faces”, IEEE Transactions on Neural Systems and Rehabilitation En-

gineering, vol. 28 (12), pp. 2773 - 2782, December, 2020, DOI:

10.1109/TNSRE.2020.304810.

� BR41N.IO Brain-Computer Interface Designers’ Hackathon at

BCI & Neurotechnology Spring School 2021 organized by g.Tec and

https://doi.org/10.1109/TNSRE.2020.3048106


128 Appendix B. Scientific achievements

IEEE Brain for the project “Towards P300 calibration-less single-trial

classification”.

� IMFAHE’s Nodal Award 2020 in shark tank competition orga-

nized by International Mentoring Foundation for the Advancement of

Higher Education (IMFAHE) for the project:“Artifical Intelligence for

Brain Cancer Diagnosis”.

� IFMBE Scientific Challenge Award at the XV Mediterranean Con-

ference On Medical And Biological Engineering And Computing (MEDI-

CON2019), held at Coimbra, Portugal - September 26th-28th, 2019

for the following work: Eduardo Santamaŕıa-Vázquez, Vı́ctor Mart́ınez-

Cagigal, Javier Gomez-Pilar, Roberto Hornero, “Deep learning archi-

tecture based on the combination of convolutional and recurrent layers

for ERP-based brain-computer interfaces”, XV Mediterranean Confer-

ence on Medical and Biological Engineering and Computing (MEDICON

2019), ISBN: 978-3-030-31635-8, pp. 1844–1852, Coimbra (Portugal),

September 26 - September 28, 2019, DOI: 10.1007/978-3-030-31635-8 -

224.

https://doi.org/10.1007/978-3-030-31635-8_224
https://doi.org/10.1007/978-3-030-31635-8_224


Apéndice C

Resumen en castellano

C.1 Introducción

A lo largo de la historia, hemos buscado formas de liberarnos de las limitaciones

del cuerpo e interactuar con el mundo directamente a través de la mente. Los sis-

temas brain-computer interface (BCI) son la materialización de esta ambición, ya

que permiten a las personas controlar dispositivos externos directamente utilizan-

do la actividad cerebral. Esta posibilidad comenzó a desarrollarse en el siglo XX

gracias al progreso de la neurociencia. Los avances de las técnicas de neuroimagen

permitieron estudiar nuestro sistema nervioso central con una precisión que era

impensable hace apenas unas décadas, transformando por completo nuestra com-

prensión del cerebro y convirtiendo este campo en una de las áreas de investigación

multidisciplinar más fruct́ıferas de la actualidad. En este contexto, tanto los labora-

torios de investigación como la industria están explotando este conocimiento para

construir sistemas BCI, una tecnoloǵıa con el potencial de transformar campos co-

mo la interacción hombre-máquina, la neurorrehabilitación y el entretenimiento,

entre otros. Un sistema BCI capaz de interpretar pensamientos, deseos o inten-

ciones podŕıa cambiar drásticamente la forma en que interactuamos con nuestro

entorno, desbloqueando un mundo inimaginable de oportunidades —y riesgos—.

Aunque esta tecnoloǵıa aún está muy lejos de ofrecer esta posibilidad, el campo

ha evolucionado rápidamente en las últimas décadas para construir sistemas BCI

cada vez más complejos y precisos.

Formalmente, un sistema BCI proporciona una v́ıa de comunicación alternativa

entre el usuario y el entorno mediante la decodificación de la actividad cerebral en

tiempo real para sustituir, restaurar, potenciar, complementar o mejorar nuestras

129
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interacciones con el entorno. En general, todos los sistemas BCI tienen un flujo

de trabajo común con tres etapas: (1) registro de la actividad neuronal con técni-

cas de neuroimagen; (2) decodificación de los datos registrados mediante técnicas

de procesado de señal y aprendizaje automático para detectar las intenciones del

usuario; y (3) traducción de estas intenciones en comandos de aplicación y ejecu-

ción de los mismos. Este flujo de trabajo general se representa en la Figura 1.2.

Como puede verse, estas etapas forman un bucle cerrado: las intenciones del usua-

rio, codificadas en su actividad cerebral, desencadenan respuestas que tienen un

impacto perceptible en el entorno que conducen a interacciones posteriores. Por

tanto, este flujo de trabajo sigue las reglas del condicionamiento operante, una

caracteŕıstica crucial para alcanzar una interacción natural.

El primer paso para implementar un sistema BCI es medir la actividad neuro-

nal, lo que es un reto extremadamente complejo debido a las barreras f́ısicas (e.g.,

cuero cabelludo, cráneo, meninges, etc.) que protegen el cerebro y a la complejidad

de este órgano. Para medir la actividad cerebral se emplean técnicas de neuroima-

gen cuya precisión depende de tres aspectos importantes: la resolución espacial,

la resolución temporal y la cobertura del registro. La resolución espacial se refie-

re al número mı́nimo de neuronas cuya actividad puede registrarse, la resolución

temporal al evento más rápido que puede detectarse y la cobertura al volumen de

cerebro que se está midiendo. El carácter invasivo de la técnica es otra conside-

ración importante. Además, factores como el coste y la facilidad de uso también

deben tenerse en cuenta para aplicaciones de BCI.

Las técnicas actuales de neuroimagen pueden dividirse en dos categoŕıas: me-

tabólicas y electromagnéticas. Las técnicas metabólicas detectan cambios en la

respuesta hemodinámica del cerebro causados por el aumento local de la actividad

neuronal al realizar una tarea cognitiva determinada. Entre ellas, se incluyen el

Doppler transcraneal funcional (fTCD), la tomograf́ıa por emisión de positrones

(PET), la espectroscopia funcional del infrarrojo cercano (fNIRS) y la resonancia

magnética funcional (fMRI). Estos métodos, que son no invasivos o mı́nimamen-

te invasivos (PET), proporcionan una buena resolución espacial y permiten una

amplia cobertura cerebral. Sin embargo, su resolución temporal es muy limitada

debido a la lentitud de la respuesta hemodinámica, lo que dificulta la detección

de eventos breves y dispersos. Además, el equipamiento necesario no es portátil,

es dif́ıcil de usar y tiene un elevado coste. Por otro lado, las técnicas de neuro-

imagen que miden los campos eléctricos y magnéticos generados por las neuronas

incluyen los potenciales de campo local (LPF), la electrocorticograf́ıa (ECoG),

la electroencefalograf́ıa (EEG) y la magnetoencefalograf́ıa (MEG). Estos métodos
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tienen una excelente resolución temporal debido a la velocidad de propagación de

las señales electromagnéticas. En cuanto al grado de invasión, los LPF y el ECoG

requieren de la implantación de electrodos dentro del cráneo por lo que, aunque

son métodos que ofrecen una excelente resolución espacial, son altamente invasi-

vos y conllevan un riesgo elevado para el sujeto. En cuanto al EEG y la MEG,

son técnicas no invasivas y completamente seguras que además proporcionan una

cobertura completa del córtex mediante la colocación de electrodos sobre el cue-

ro cabelludo. Como contrapartida, su resolución espacial es muy limitada ya que

refleja la actividad conjunta de millones de neuronas al mismo tiempo. También

se debe tener en cuenta que estas técnicas únicamente registran la actividad de

las neuronas más superficiales del córtex, por lo que no dan información acerca de

áreas más profundas. Por último, es importante destacar que, aunque la MEG es

una técnica más precisa, también tiene un coste mayor y no es portátil.

Teniendo en cuenta todos los aspectos que deben considerarse para diseñar sis-

temas BCI, el EEG es la mejor técnica en la mayoŕıa de los escenarios. Las razones

son su excelente resolución temporal, cobertura total de la superficie del córtex, no

invasividad, menor coste y usabilidad, siendo el punto más débil su baja resolución

espacial. Otras técnicas que pueden utilizarse en determinados escenarios son el

ECoG, que puede emplearse en casos extremos en sujetos con grave discapacidad,

y la fNIRS/fMRI en algunas aplicaciones de neurorrehabilitación. Sin embargo, el

EEG es, sin lugar a duda, la técnica de neuroimagen más extendida en el campo

de los sistemas BCI y es la que se ha utilizado en esta investigación.

La señal registrada con el EEG se compone de actividad espontánea y evo-

cada. La actividad espontánea está presente en ausencia de entradas o salidas

expĺıcitas y se atribuye tanto al procesamiento consciente como al inconsciente.

La actividad evocada se desencadena por acontecimientos espećıficos, como soni-

dos repentinos o el movimiento de un brazo. La actividad evocada está ligada a los

acontecimientos y deja una huella espećıfica en el EEG que puede reproducirse si

se repiten las condiciones del acontecimiento. Para estudiar la actividad evocada,

se realizan múltiples repeticiones del mismo experimento y se promedian diferentes

caracteŕısticas del EEG para anular la influencia de la actividad espontánea. Esta

operación da lugar a un potencial causado por el evento (event-related potential:

ERP), que es la forma de onda caracteŕıstica asociada al evento estudiado. Cabe

destacar que, debido a las limitaciones del EEG en cuanto a resolución espacial y

cobertura de áreas profundas del cerebro, únicamente se puede identificar la huella

asociada a eventos espećıficos que involucran a un gran número de neuronas de la

superficie del córtex. Por esta razón, un sistema BCI no puede detectar en esta
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señal ideas o conceptos de forma directa, sino que se tienen que aplicar técnicas de

neuroingenieŕıa para codificar en el EEG la intención del usuario y posteriormente

aislar esta información mediante técnicas de procesado de señal y traducirla en un

comando de aplicación.

Para codificar las intenciones del usuario en el EEG los sistemas BCI utilizan

ciertos tipos de actividad evocada, denominadas señales de control. Durante las

últimas décadas, los investigadores han estudiado diferentes paradigmas para op-

timizar el uso de la actividad evocada para el control de esta tecnoloǵıa, utilizando

diferentes técnicas para desencadenar respuestas adecuadas para cada aplicación.

En esta tesis doctoral nos hemos centrado en los potenciales evocados P300. En

este paradigma se presentan al usuario diferentes celdas en una pantalla, cada una

asociada a un comando, que se iluminan secuencialmente en orden aleatorio. La

tarea del usuario consiste en mirar fijamente al comando objetivo mientras se igno-

ran los demás est́ımulos. En esta configuración, los eventos asociados al comando

deseado provocan ERP visuales con el potencial P300 en el EEG, mientras que los

otros est́ımulos desencadenan ERP visuales sin esta componente, como se puede

ver en la Figura 1.6. El componente P300 es un potencial positivo provocado por

el reconocimiento de un est́ımulo poco frecuente (objetivo) dentro de una serie

de est́ımulos frecuentes (no objetivo), que aparece alrededor de 300 ms después

del inicio del est́ımulo. Para decodificar la orden, el sistema BCI detecta el P300

en el EEG mediante técnicas de procesamiento de señal. Esta forma de onda se

considera una componente endógena, ya que refleja tareas cognitivas de alto ni-

vel para diferenciar entre los dos tipos de est́ımulos, pero el usuario no necesita

entrenamiento para provocarla. Esta señal de control se considera una de las más

fiables para sistemas prácticos fuera del laboratorio, siendo probablemente la más

extendida en el campo de los sistemas BCI en la actualidad. Los sistemas que

utilizan esta señal de control se conocen como BCI basados en ERP o BCI basa-

dos en P300. Aunque ambos términos se utilizan a menudo indistintamente en la

literatura, en este documento utilizamos el término BCIs basados en ERP.

Una vez que la información para discriminar la orden del usuario se ha codifica-

do en el EEG utilizando los P300 u otras señales de control, el sistema debe detectar

la actividad neuronal correspondiente y aislarla del resto de componentes del EEG

aplicando métodos de procesamiento de señal. Aunque el algoritmo dependerá del

paradigma espećıfico de BCI, podemos definir un marco general de procesamiento

de señales implementado en cuatro etapas secuenciales: pre-procesado, extracción

de caracteŕısticas, selección de caracteŕısticas y clasificación de caracteŕısticas.

Una vez decodificadas las intenciones del usuario, estas se traducen en comandos
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de aplicación. Un sistema BCI funciona como una interfaz general entre el cerebro

del usuario y un dispositivo externo. Por tanto, esta tecnoloǵıa puede utilizarse

potencialmente para un número ilimitado de aplicaciones. Sin embargo, debido a

su elevada complejidad y bajo rendimiento en la actualidad, su uso está restringido

a campos espećıficos. En el momento actual las aplicaciones más importantes son

los sistemas de asistencia a personas con grave discapacidad, en los que se centra

esta tesis doctoral, y la neurorrehabilitación.

Aunque los sistemas de BCI basados en EEG han evolucionado enormemente en

los últimos años, todav́ıa existen varias limitaciones que deben solventarse antes

de que esta tecnoloǵıa esté preparada para un uso práctico generalizado como

sistema de asistencia para personas con grave discapacidad. Entre ellas se pueden

destacar la siguientes: (1) el registro del EEG, que requiere equipos que no están

preparados para un uso continuado; (2) la baja fiabilidad y rendimiento por la

alta variabilidad de la señal EEG; (3) la falta de validación con sujetos reales

con grave discapacidad para adaptar los sistemas a sus necesidades concretas; (4)

su funcionamiento śıncrono, que impide al usuario realizar otras tareas cuando el

sistema está activo, por lo que se necesita un supervisor; y (5) la complejidad de las

herramientas software necesarias para la investigación y desarrollo de aplicaciones

en este campo.

Las contribuciones de esta tesis doctoral se enfocaron en resolver algunas de las

limitaciones anteriores, presentando un compendio de cuatro publicaciones inde-

xadas en el Journal Citation Reports (JCR) entre los años 2019 y 2023. Las publi-

caciones se centran en: (1) mejorar el control aśıncrono mediante detección de po-

tenciales visuales de estado estable (stady-state visual evoked potencials: SSVEP)

residuales (Santamaŕıa-Vázquez et al., 2019a); (2) mejorar mediante técnicas de

aprendizaje profundo la precisión en la detección de los ERP (Santamaŕıa-Vázquez

et al., 2020b); (3) mejorar la detección del estado de control del usuario mediante

técnicas de aprendizaje profundo (Santamaŕıa-Vázquez et al., 2022); y (4) desa-

rrollar una nueva plataforma para acelerar la investigación en BCI y neurociencia

cognitiva (Santamaŕıa-Vázquez et al., 2023).

C.2 Hipótesis y objetivos

Esta tesis doctoral se centró en tres de las limitaciones que afectan a los deletrea-

dores basados en ERP: el control śıncrono; la fiabilidad y rendimiento; y las herra-

mientas software para la investigación y desarrollo de sistemas BCI. Las hipótesis

que guiaron cada uno de los estudios que componen el compendio se describen en
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los párrafos siguientes.

En cuanto a la primera limitación, partimos de la siguiente hipótesis: el patrón

de estimulación utilizado en los sistemas BCI basados en ERP provoca diferentes

tipos de actividad cerebral que pueden detectarse en el EEG. Basándonos en el

trabajo de Pinegger et al. (2015), también asumimos que esta actividad cerebral

puede utilizarse para proporcionar una detección fiable del estado de control del

usuario sobre el sistema BCI. Estas hipótesis guiaron el primer y tercer estudio

del compendio.

A pesar de que exist́ıan varios trabajos que trataban sobre la aplicación de

técnicas de aprendizaje profundo para el procesamiento de EEG y, más concre-

tamente, para la detección de ERP, la mejora conseguida por estos métodos no

era tan significativa como en otros campos como el reconocimiento de imágenes

o el procesamiento del lenguaje natural. Este hecho nos llevó a plantear nuestra

siguiente hipótesis: el diseño y desarrollo de arquitecturas de aprendizaje profun-

do más complejas que tengan en cuenta la dinámica espaciotemporal espećıfica del

EEG podŕıan mejorar el rendimiento de estos modelos para aplicaciones BCI. Esta

afirmación guio nuestra investigación para aumentar el rendimiento de los siste-

mas BCI aśıncronos basados en ERP para aplicaciones de asistencia a personas

con gran discapacidad en el segundo y tercer estudio del compendio.

La tercera limitación que se abordó en este trabajo está relacionada con las

herramientas software disponibles para la investigación y desarrollo de sistemas

BCI. En este sentido, identificamos una serie de problemas en las plataformas

BCI actuales que dificultaban la implementación y la distribución de los métodos

propuestos. Este análisis condujo a la siguiente hipótesis: el desarrollo de una

nueva plataforma BCI que solventara las limitaciones identificadas podŕıa acelerar

y aumentar el impacto de la investigación en este campo. Esta última hipótesis fue

el fundamento del cuarto y último trabajo del compendio.

El objetivo principal de esta tesis fue diseñar, desarrollar y probar nuevas me-

todoloǵıas de procesamiento de señales para mejorar el rendimiento y la usabilidad

de los BCI aśıncronos basados en ERP en un contexto de asistencia. Para alcanzar

este objetivo general, se propusieron los siguientes objetivos espećıficos:

I. Caracterizar la señal EEG durante los estados de control/no control en sis-

temas BCI basados en ERP con el objetivo de utilizar esta información

posteriormente para mejorar el control aśıncrono de estos sistemas.

II. Optimizar los métodos de procesado de señales en sistemas BCI basados en

ERP para aumentar el rendimiento de la etapa de detección del estado de
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control utilizando nuevas caracteŕısticas basadas en la caracterización de los

estados de control/no control.

III. Aumentar el rendimiento de los sistemas BCI basados en ERP para aplica-

ciones de asistencia a personas con grave discapacidad utilizando técnicas de

aprendizaje profundo.

IV. Desarrollar una novedosa plataforma BCI para facilitar el diseño, implemen-

tación y distribución de experimentos y aplicaciones BCI que pudiera ser

utilizada a lo largo de esta investigación, permitiéndonos alcanzar los obje-

tivos anteriores.

V. Difundir los principales resultados de este trabajo en revistas indexadas JCR,

congresos nacionales e internacionales.

C.3 Sujetos

En el curso de esta investigación se utilizaron tres bases de datos independientes

con datos EEG de sujetos utilizando un sistema BCI basado en ERP. Concre-

tamente, el paradigma de estimulación utilizado fue el paradigma fila-columna

(row-column paradigm: RCP). El RCP es un paradigma que muestra una matriz

de comandos, cuyas filas y columnas se iluminan aleatoriamente. El usuario selec-

ciona un comando mirando fijamente la opción deseada, lo que provoca un ERP

con el componente P300 cuando se percibe el est́ımulo objetivo. A continuación,

el sistema decodifica la fila y la columna utilizando algoritmos de procesado de

señal para detectar la componente P300 y ejecutar el comando correspondiente,

proporcionando realimentación al usuario. Este sistema también se conoce como

deletreador BCI basado en ERP, ya que la matriz de comandos t́ıpica se corres-

ponde con un teclado, aunque puede presentarse como cualquier otra interfaz de

control. A continuación, se detallan las caracteŕısticas de estas bases de datos y

los sujetos que las componen:

1 Base de datos de asincrońıa. Esta base de datos se adquirió para ca-

racterizar las diferencias en el EEG cuando el sujeto está controlando el

paradigma RCP vs cuando está realizando otra tarea. Esta base de datos

incluye señales de 22 sujetos de control (CS) (15 hombres, 7 mujeres, edad

media: 24,7 ± 4,3 años) que realizaron 120 selecciones con el sistema BCI (60

de control y 60 de no control). Las señales se registraron utilizando un equi-

po EEG de 16 canales. Hay que tener en cuenta que los primeros 15 sujetos
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Cuadro C.1: Resumen de las bases de datos utilizadas.

Base de datos CS MD Paradigma SD ISI Canales

Asincrońıa 22 0 RCP 75 100 16
Navegador Web BCI 10 15 RCP 62.5 U(125, 250) 8
Redes sociales BCI 10 16 RCP 62.5 U(125, 250) 8

CS: sujetos control; MD: sujetos con discapacidad motora; RCP: row-column paradigm; SD: du-
ración del est́ımulo en ms, ISI: intervalo entre est́ımulos en ms; U distribución aleatoria uniforme.

fueron adquiridos para Santamaŕıa-Vázquez et al. (2019a). Posteriormente,

esta muestra se amplió para Santamaŕıa-Vázquez et al. (2022) con 7 sujetos

adicionales.

2 Base de datos de Navegador Web BCI. Esta base de datos se adquirió

para validar un sistema BCI basado en ERP que usaba el RCP para ayudar

a personas con discapacidad severa a navegar por internet con un navegador

web BCI adaptado Mart́ınez-Cagigal et al. (2017). La base de datos contiene

señales de 10 CS (6 hombres, 4 mujeres, edad media: 24,8 ± 2,9) y 15 sujetos

con discapacidad motora (MD) (10 hombres, 5 mujeres, edad media: 42,7 ±
7,5 años) que realizaron diferentes tareas con el navegador web. Cada sujeto

realizó 87,9 ± 7,3 selecciones. Hay que tener en cuenta que algunas tareas

conteńıan momentos de uso libre, de ah́ı la variabilidad en el número de

ensayos por sujeto. Las señales se registraron utilizando 8 canales de EEG

(Mart́ınez-Cagigal et al., 2017).

3 Base de datos de Redes Sociales BCI. Esta base de datos contiene datos

de un estudio de viabilidad para evaluar una aplicación BCI asistida basa-

da en el RCP que permit́ıa utilizar varias redes sociales en un smartphone

(Mart́ınez-Cagigal et al., 2019a). La base de datos conteńıa datos de 10 CS

(8 hombres, 2 mujeres, edad media: 26,10 ± 3,45) y 16 MD (10 hombres,

6 mujeres, edad media: 45,5 ± 9,68 años). Cada sujeto realizó 63,4 ± 8,2

selecciones utilizando un equipo EEG de 8 canales (Mart́ınez-Cagigal et al.,

2019a).

En la tabla C.1 se resumen las caracteŕısticas de cada base de datos. Los

sujetos MD de los estudios “Navegador Web BCI” y “Redes Sociales BCI” fueron

reclutados por el Centro de Referencia Estatal de Discapacidad y Dependencia,

ubicado en la provincia de León.
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C.4 Métodos

En esta sección se describen los métodos que se han aplicado para realizar esta tesis

doctoral. En primer lugar, se explican los métodos de procesado de la señal, inclu-

yendo el pre-procesado y las etapas de la extracción, selección y clasificación de

caracteŕısticas que han aplicado sobre las señales EEG. Sólo se incluyen las técnicas

que forman parte de los métodos propuestos en la tesis doctoral, no incluyéndose

aquellos que se utilizaron a efectos comparativos. Tras los métodos de procesado

de señal se detallan las métricas de rendimiento, la metodoloǵıa estad́ıstica y las

estrategias de validación que se utilizaron en este trabajo. Por último, se explican

los métodos y estrategias para desarrollar nuestra plataforma BCI.

En el análisis de señales EEG, el pre-procesado es un paso importante que

ayuda a limpiar y preparar los datos brutos para su posterior análisis. Las señales

de EEG suelen contener ruido y artefactos, como interferencias eléctricas, actividad

muscular y movimientos oculares. Las técnicas de pre-procesado ayudan a eliminar

o reducir estos artefactos, mejorando la calidad y fiabilidad general de los datos

de EEG. En este trabajo se aplicaron dos técnicas de pre-procesamiento para

mejorar las señales de EEG: filtrado frecuencial y filtrado espacial. Con el filtrado

frecuencial se eliminaron las frecuencias fuera de la banda de interés, que fueron

diferentes en cada estudio. Posteriormente, se aplicó un filtro espacial de referencia

de media común (CAR) para mejorar la detección de ERP y aumentar la resolución

espacial de la señal. Este método permite reducir los artefactos comunes a todos

los electrodos, como las interferencias de potencia.

En el campo del aprendizaje automático, las caracteŕısticas son propiedades

medibles de un fenómeno que sirven como datos de entrada al modelo de clasifi-

cación. En el ámbito del EEG, las caracteŕısticas más básicas son los valores de

amplitud de la señal en cada electrodo en función del tiempo. Posteriormente, estos

pueden transformarse para obtener información más significativa para el análisis.

La elección de las caracteŕısticas es crucial en el desarrollo de modelos EEG, ya

que tiene un impacto significativo en el rendimiento y la precisión del método.

En esta investigación, se utilizaron caracteŕısticas basadas en análisis temporal,

espectral y de correlación. Las primeras estaban directamente relacionadas con

los valores de amplitud del EEG, tras aplicar un proceso de decimado y enven-

tanado de esta señal para extraer épocas de un segundo de duración por cada

est́ımulo del RCP (Santamaŕıa-Vázquez et al., 2019a, 2020b). Las caracteŕısticas

espectrales se basaban en el cálculo de un ratio de potencia entre dos bandas de

frecuencia del EEG para detectar picos a la frecuencia de estimulación del RCP
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(Santamaŕıa-Vázquez et al., 2019a). Por último, las caracteŕısticas extráıdas a

partir del método de análisis de correlación canónica (CCA) permit́ıan detectar

patrones de actividad estables a una determinada frecuencia (Santamaŕıa-Vázquez

et al., 2019a). Únicamente en el primer estudio del compendio se aplicó un proceso

de selección de 60 caracteŕısticas mediante el algoritmo de regresión paso-a-paso

(SW) con criterios de inclusión y exclusión: p < 0,10 y p > 0,15, respectivamente

(Santamaŕıa-Vázquez et al., 2019a).

La fase de clasificación de caracteŕısticas de un sistema BCI utiliza algoritmos

de aprendizaje automático para detectar patrones en los datos de EEG y decodi-

ficar las intenciones del usuario. En esta tesis, se utilizaron dos modelos basados

en aprendizaje supervisado por su mayor robustez. Como técnica de aprendizaje

automático clásico, utilizamos el análisis discriminante lineal (LDA), un algorit-

mo de clasificación que calcula un hiperplano de separación entre las dos clases

maximizando la distancia interclase y minimizando la varianza intraclase (Bishop

and Nasrabadi, 2006). Por otro lado, diseñamos y desarrollamos una nueva red

convolucional (CNN) llamada EEG-Inception, basada en técnicas de aprendiza-

je profundo. Esta CNN fue propuesta para tareas de clasificación de EEG. Se

compone de múltiples capas que extraen representaciones jerárquicas de los datos

de entrada. El modelo incorpora conceptos del campo de la visión por ordena-

dor, como los módulos Inception, para realizar un análisis multiescala de la señal

de entrada, teniendo en cuenta la estructura espaciotemporal del EEG para me-

jorar su procesamiento. El modelo también incorpora otras técnicas como batch

normalization, funciones de activación no lineales y regularización dropout para

aumentar su rendimiento. La arquitectura de EEG-Inception se divide en tres blo-

ques principales: el primer módulo realiza un primer análisis temporal y espacial

por separado, el segundo módulo realiza un segundo análisis que combina toda la

información temporal y espacial disponible, y el último bloque de salida se encarga

de la clasificación final de la señal de entrada (Santamaŕıa-Vázquez et al., 2020b).

La validación de los métodos propuestos se realizó a través de distintas métri-

cas, incluyendo la precisión en la detección del estado de control, la precisión en

la decodificación de comandos y la tasa de transferencia de información (ITR).

También se aplicaron test estad́ısticos para realizar comparaciones equitativas en-

tre grupos de resultados y extraer conclusiones del análisis. En esta tesis se han

utilizado el test de Wilcoxon y la prueba U de Mann-Whitney para comparaciones

pareadas y no pareadas, respectivamente (Narsky and Porter, 2013). Cuando se

realizaron múltiples comparaciones, se aplicó la técnica de Benjamini-Hochbert

para corregir la tasa de falsos descubrimientos (FDR) (Benjamini and Hochberg,
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1995). También se utilizó leave-one-subject-out (LOO) como técnica de validación

cruzada para evaluar la capacidad de generalización de los resultados obtenidos

por los métodos propuestos.

Por último, las técnicas que se usaron para desarrollar MEDUSA©, nuestra

nueva plataforma de BCI para acelerar la investigación en BCI y neurociencia son:

(1) modularidad, con una arquitectura formada por dos componentes independien-

tes: MEDUSA© Kernel y MEDUSA© Platform; (2) flexibilidad, ya que la plata-

forma permite implementar experimentos BCI y algoritmos de procesado de señal

de forma rápida y eficiente; (3) escalabilidad, gracias a su diseño espećıfico que

permite incrementar las funcionalidades fácilmente; y (4) desarrollo en Python, un

lenguaje de programación de código abierto muy popular tanto en la investigación

como en la industria por su facilidad de uso y la gran cantidad de herramientas

y bibliotecas especializadas desarrolladas por la comunidad, como SciPy, Numpy,

Scikit-learn y Tensorflow, para procesamiento de datos, aprendizaje automático y

aprendizaje profundo.

C.5 Resultados y discusión

En primer lugar se analizó la señal de EEG en cinco sujetos de control durante

los estados de control y no control del paradigma RCP con el objetivo de encon-

trar caracteŕısticas que permitieran discriminar con precisión estos estados y aśı

proporcionar un control aśıncrono de nuestro sistema BCI (Santamaŕıa-Vázquez

et al., 2019a). Concretamente, el objetivo era investigar los mecanismos subyacen-

tes y las caracteŕısticas del SSVEP provocado por patrón de estimulación del RCP

partiendo del estudio de Pinegger et al. (2015), que observó por primera vez es-

te fenómeno. El estudio consistió en dos experimentos. El primero examinó cómo

variaban las caracteŕısticas del SSVEP en función de la frecuencia de estimula-

ción, probando seis valores de frecuencia. Los resultados mostraron que con tasas

de estimulación más bajas se obteńıa una mayor potencia del SSVEP. El estudio

también analizó la distribución espacial de estos potenciales encontrando que, a

frecuencias más bajas, la potencia del SSVEP era mayor en los electrodos situados

en la ĺınea media de las regiones frontal y parietal. Sin embargo, a medida que au-

mentaba la frecuencia, la potencia se desplazaba hacia los electrodos más cercanos

al lóbulo occipital. En cuanto al segundo experimento, este teńıa como objetivo

investigar el origen de la SSVEP utilizando diferentes matrices de estimulación y

diferentes modos de est́ımulos visuales. El análisis de los datos obtenidos permitió

concluir que el fenómeno estudiado está provocado por los est́ımulos no objetivo
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del paradigma de estimulación recibidos a través del campo visual periférico. A

partir de los resultados obtenidos en estos dos experimentos, se estableció la fre-

cuencia óptima de funcionamiento del RCP (i.e., 5.71 Hz) y la distribución de los

electrodos para los experimentos de detección del estado de control y la adquisición

de la base de datos de asincrońıa (Santamaŕıa-Vázquez et al., 2019a).

Basándonos en los resultados de los experimentos anteriores, propusimos un

nuevo método basado en ingenieŕıa de caracteŕısticas denominado oddball stedy-

state response detection (OSRD) para detectar el estado de control del usuario en

el RCP (Santamaŕıa-Vázquez et al., 2019a). El método OSRD detecta el SSVEP

provocado por el patrón de estimulación de este paradigma, proporcionando una

salida binaria y ∈ {0, 1} que se corresponde con los estados de no control y control,

actuando como interruptor automático del sistema. El método OSRD incluye fil-

trado FIR de paso de banda, filtrado espacial CAR y extracción de caracteŕısticas

basadas en análisis espectral y de correlación, que luego se clasificaron mediante

LDA. También se propuso un enfoque novedoso para crear observaciones sintéti-

cas de no control, lo que reduce el tiempo de calibración. El método se probó con

15 sujetos en experimentos offline y online. En el experimento offline se validó

el enfoque basado en observaciones sintéticas. Posteriormente, el rendimiento del

método se evaluó en la sesión online, alcanzando una alta precisión final del 95,5%

y una ITR de 12.4 bits/min. Los resultados también mostraron que el método es

más fiable a la hora de detectar el estado de no control, lo que es importante para

evitar acciones no deseadas en aplicaciones como el control de sillas de ruedas.

El rendimiento global del sistema, incluidas las fases de detección del estado de

control y decodificación de comandos fue también satisfactorio, alcanzando una

precisión media del 92,5%. Los resultados se compararon con enfoques anteriores

en deletreadores aśıncronos basados en ERP, mostrando que el método OSRD los

supera en términos de precisión, velocidad de selección y tiempo de calibración.

Con el método OSRD dispońıamos de un sistema totalmente aśıncrono basado

en extracción y clasificación de caracteŕısticas. El siguiente paso en esta investiga-

ción fue mejorar el rendimiento de nuestro deletreador basado en ERP mediante

técnicas aprendizaje profundo (Santamaŕıa-Vázquez et al., 2020b). Para ello, pro-

pusimos una arquitectura CNN para el procesado de señales EEG, denominada

EEG-Inception, con el fin de mejorar la precisión de decodificación de comandos

de nuestro deletreador aśıncrono basado en ERP. Las principales caracteŕısticas de

EEG-Inception eran la integración de módulos Inception, combinados con técnicas

de procesado de imagen y EEG. El modelo también aplica técnicas como convo-

luciones depthwise, regularización dropout, batch normalization y average pooling,
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con una estructura especialmente diseñada para evitar el efecto de sobreentre-

namiento. Además, la optimización de los hiperparámetros y la metodoloǵıa de

entrenamiento de la red también fueron contribuciones destacables del estudio. El

conjunto de datos utilizado para la evaluación de EEG-Inception estaba formado

por las tres bases de datos presentadas en la sección C.3, contando con un to-

tal de 42 sujetos sanos y 31 sujetos con grave discapacidad. Los sujetos sanos se

asignaron a los conjuntos de entrenamiento y validación, mientras que los suje-

tos con grave discapacidad se asignaron al conjunto de test. El modelo propuesto

se validó simulando un escenario realista, donde la cantidad de datos de entre-

namiento de un único sujeto es limitada, y teniendo en cuenta que los usuarios

reales de los deletreadores basados en ERP son personas con grave discapacidad.

El modelo se comparó con cinco métodos anteriores (i.e., EEGNet, DeepConvNet,

CNN-BLSTM, xDAWN+RG, y rLDA), mostrando un rendimiento en el conjunto

de test significativamente mayor en términos de precisión (84.6%) y ITR (25.64

bits/min). Para interpretar correctamente estos resultados en comparación con los

estudios anteriores, debe tenerse en cuenta que el modelo se evaluó en un grupo he-

terogéneo de 31 sujetos con grave discapacidad. Esta población presenta una gran

variabilidad provocada por problemas f́ısicos y cognitivos asociados a las distintas

patoloǵıas (e.g., déficit de atención, movimientos involuntarios), lo que demues-

tra la importancia de probar estos métodos en esta población para obtener una

mejor estimación del rendimiento del modelo en un entorno real. En este sentido,

EEG-Inception demostró una mayor robustez a la variabilidad intersujeto que los

anteriores modelos.

Tras demostrar las ventajas de EEG-Inception para la tarea de decodificación

de comandos en los sistemas BCI basados en ERP, el siguiente objetivo era me-

jorar el rendimiento del control aśıncrono en nuestro deletreador RCP utilizando

también técnicas de aprendizaje profundo. Mientras que el método OSRD alcanzó

una alta precisión, sospechábamos que los SSVEP provocados por la estimulación

del RCP no eran los únicos patrones EEG que pod́ıan utilizarse para detectar

el estado de control del usuario. Por ejemplo, en Mart́ınez-Cagigal et al. (2019b)

demostramos que los mecanismos de atención implicados en el uso del sistema au-

mentaban la complejidad del EEG, medida con la entroṕıa muestral multiescala.

Por tanto, los modelos de aprendizaje profundo, capaces de discriminar este tipo de

patrones mediante la optimización automática de caracteŕısticas, podŕıan aumen-

tar el rendimiento de los anteriores métodos. En este sentido, EEG-Inception era

un candidato perfecto debido a su arquitectura y enfoque multiescala, que podŕıa

ser especialmente óptimo para detectar distintos patrones de actividad. Por esta
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razón, propusimos un nuevo método que empleaba este modelo para la tarea de

detección del estado de control en deletreadores ERP (Santamaŕıa-Vázquez et al.,

2022). Este enfoque fue validado con la base de datos de asincrońıa, siguiendo

una metodoloǵıa similar al estudio de validación de EEG-Inception. Los resulta-

dos alcanzados fueron muy favorables, mostrando que EEG-Inception era capaz de

incrementar la precisión (e.g., más del 90% de precisión con una secuencia de esti-

mulación), la velocidad de selección y el tiempo de calibración en comparación con

las propuestas anteriores, incluido el método OSRD. En este sentido, cabe desta-

car que este fue el primer estudio que implementó un sistema BCI basado en ERP

aśıncrono completamente basado técnicas de aprendizaje profundo, por lo que los

resultados alcanzados en esta tesis doctoral representan un avance significativo del

estado del arte de los deletreadores RCP.

Durante el desarrollo de la investigación presentada en los estudios anteriores,

nos dimos cuenta de que las herramientas software disponibles para la investiga-

ción de la BCI no se adaptaban totalmente a nuestras necesidades. Por esta razón,

decidimos crear una nueva plataforma BCI llamada MEDUSA© implementada

en Python (Santamaŕıa-Vázquez et al., 2023). Este trabajo se realizó de manera

consistente a lo largo de todo el desarrollo de la tesis doctoral. El objetivo inicial

era implementar las funciones necesarias para desarrollar y probar nuestro sistema

RCP. Sin embargo, a medida que avanzaba la investigación y desarrollábamos pro-

yectos en paralelo, el objetivo se hizo más ambicioso. Se incluyeron nuevos métodos

de procesado de señal, paradigmas BCI y experimentos de neurociencia cogniti-

va, aśı como funcionalidades para fomentar un investigación más transparente y

colaborativa en este campo. En concreto, MEDUSA© Kernel es una libreŕıa que

incluye un amplio conjunto de métodos para el procesamiento de señales, entre

los que se incluyen filtros frecuenciales, filtros espaciales, métricas de activación

local, métricas de conectividad y modelos para paradigmas BCI basados en ERP,

paradigmas MI, paradigmas basados en c-VEP y neurofeedback, incluyendo todos

los presentados en este documento como OSRD o EEG-Inception. Por otro lado,

MEDUSA© Platform es un programa de escritorio con una arquitectura flexible

y adaptable, que puede utilizarse para una amplia gama de experimentos de BCI

y neurociencia. Su arquitectura consta de tres módulos: adquisición de señales,

gráficos en tiempo real y aplicaciones. Además, las funcionalidades de estos módu-

los se pueden controlar a través de una intuitiva interfaz gráfica. El módulo de

adquisición de señales utiliza el protocolo lab-streaming layer (LSL) para imple-

mentar funciones avanzadas de adquisición de datos, como la compatibilidad con

cualquier dispositivo biomédico y la capacidad para gestionar múltiples entradas
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de datos a la vez. El módulo de gráficos en tiempo real implementa visualiza-

ciones en tiempo y frecuencia para representar las señales recibidas a través del

módulo de adquisición. Por último, las aplicaciones son componentes que ponen

en funcionamiento paradigmas BCI al tiempo que proporcionan realimentación en

tiempo real y monitorizan una o varias señales a la vez. El diseño de este módulo

permite la independencia entre las aplicaciones y otros módulos, posibilitando el

desarrollo de nuevos componentes sin precisar cambios en el código base, lo que

aumenta la escalabilidad de nuestra solución. La plataforma admite aplicaciones

basadas en Qt y Unity para manejar la parte gráfica de la aplicación y actualmente

ofrece seis aplicaciones listas para usar: recorder, deletreador RCP, deletreador c-

VEP, Paradigma de imaginación motora, Neurofeedback y pruebas de evaluación

neuropsicológica. Con estas funcionalidades y los métodos de desarrollo utiliza-

dos, MEDUSA© es una de las plataformas BCI más completas que existen en la

actualidad, siendo la única alternativa viable en Python.

C.6 Conclusiones

El análisis y la discusión de los resultados anteriores permiten formular las princi-

pales conclusiones de esta tesis doctoral:

1) Los sistemas BCI basados en ERP deben incorporar una etapa de detección

del estado de control para evitar la selección accidental de comandos. Esto

es especialmente importante en las aplicaciones asistenciales para permitir a

los usuarios manejar el sistema sin supervisión, fomentando aśı la autonomı́a

personal.

2) La caracterización de los patrones de EEG relacionados con los estados de

control o no control en un sistema BCI proporciona información valiosa que

puede utilizarse para implementar sistemas aśıncronos. En particular, el RCP

provoca un SSVEP a la frecuencia de estimulación del sistema.

3) El método OSRD proporciona una detección robusta del estado de control en

deletreadores basados en ERP. Este método se caracteriza por su indepen-

dencia de la etapa de descodificación de comandos, aśı como por su potencial

para alcanzar un alto rendimiento. Además, este método no requiere ampliar

el tiempo de calibración del sistema gracias al uso de observaciones sintéticas.

4) Los modelos basados en aprendizaje profundo superan a los enfoques clási-

cos de ingenieŕıa de caracteŕısticas en las etapas de detección del estado de
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control y decodificación de comandos de los sistemas BCI basados en ERP.

El desarrollo de arquitecturas de red espećıficamente adaptadas al procesado

de EEG es clave para mejorar el rendimiento de estos modelos.

5) La red EEG-Inception ha sido validada como un clasificador altamente efi-

caz para las etapas de detección del estado de control y decodificación de

comandos en deletreadores basados en ERP. Esta CNN se caracteriza por

la integración de módulos de Inception para procesar el EEG en diferentes

escalas, sus eficaces técnicas de regularización y su eficiencia para aprovechar

la ganancia de un entrenamiento con pocas observaciones de calibración.

6) El rendimiento de las personas con grave discapacidad es significativamente

inferior al de los sujetos sanos. Esto es debido a problemas de control aten-

cional, movimientos involuntarios o deterioro cognitivo, entre otros. Por lo

tanto, los sistemas BCI asistenciales deben probarse con usuarios reales para

garantizar su viabilidad en un entorno real.

7) Hacen falta herramientas software especializadas que faciliten la realización

de experimentos de neurotecnoloǵıa, especialmente en los campos de BCI

y la neurociencia cognitiva. Estas herramientas podŕıan acelerar la experi-

mentación, reducir los costes de los proyectos y permitir la participación

de investigadores sin los conocimientos técnicos necesarios para desarrollar

dichas herramientas.

8) MEDUSA© implementa una amplia variedad de herramientas para acelerar

la investigación en el campo de los sistemas BCI y la neurociencia cognitiva.

Sin embargo, su consolidación como plataforma ĺıder en estos ámbitos estará

ligada a la participación de una comunidad más amplia de desarrolladores y

creadores de contenidos.
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Santamaŕıa-Vázquez, E., Martinez-Cagigal, V., Vaquerizo-Villar, F., Hornero, R., 2020b. EEG-

Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-based Brain-

Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering

28 (12), 2773–2782.

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., Wolpaw, J. R., 2004. BCI2000:

A general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical

Engineering 51 (6), 1034–1043.
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