
App-based detection of vulnerable implementations of OTP SMS APIs
in the banking sector

Amador Aparicio1 • M. Mercedes Martı́nez-González1 • Valentı́n Cardeñoso-Payo1

Accepted: 10 July 2023
� The Author(s) 2023

Abstract
Two Factor Authentication (2FA) using One Time Password (OTP) codes via SMS messages is widely used. In order to

improve user experience, Google has proposed APIs that allow the automatic verification of the SMS messages without the

intervention of the users themselves. They reduce the risks of user error, but they also have vulnerabilities. One of these

APIs is the SMS Retriever API for Android devices. This article presents a method to study the vulnerabilities of these OTP

exchange APIs in a given sector. The most popular API in the sector is selected, and different scenarios of interaction

between mobile apps and SMS OTP servers are posed to determine which implementations are vulnerable. The proposed

methodology, applied here to the banking sector, is nevertheless simple enough to be applied to any other sector, or to other

SMS OTP APIs. One of its advantages is that it proposes a method for detecting bad implementations on the server side,

based on analyses of the apps, which boosts reusability and replicability, while offering a guide to developers to prevent

errors that cause vulnerabilities. Our study focuses on Spain’s banking sector, in which the SMS Retriever API is the most

popular. The results suggest that there are vulnerable implementations which would allow cybercriminals to steal the users

SMS OTP codes. This suggests that a revision of the equilibrium between ease of use and security would apply in order to

maintain the high level of security which has traditionally characterized this sector.

Keywords SMS � OTP � 2FA � Android � Security � Banking � Apps

1 Introduction

Directive (EU) 2015/2366 of the European Parliament and

of the Council of 25 November 2015 on payment services

in the internal market, also known as Payment Services

Directive (PSD2) establishes the obligation for the banking

sector to use additional strong customer authentication

factors, such as SMS One Time Passwors (SMS OTP)

codes, to ensure the safety of online transactions [1].

2FA systems permit the user’s identity to be verified by

sending an OTP code to their device. Only the user who

receives the OTP code can verifytheir identity. This allows

the user’s identity to be confirmed through the mobile

device, but it also means that the apps have to be able to

access these OTP codes through the SMS service. There-

fore, a bad implementation of 2FA in the apps means that

this authentication scheme becomes vulnerable [2].

In this article, a study is presented that analyzes the

handling of the SMS OTP codes by the APIs in the banking

sector apps. It includes the methods followed to design the

study and to apply it to this sector. The datasets generated

in this study are available with this article. Given that it is

not usual to have access to the SMS OTP servers used by

the banking apps, we have focused our proposal on looking

for bad implementations of the automatic SMS verification

API in the apps. This provides generality and allows the

methodology to be applied to cases, such as ours, when

there is no access to the server of the OTP codes. Our

hypothesis is that it is possible to infer the risks a server is

exposed to by detecting bad implementations on the apps

side with a static analysis.

& Amador Aparicio

amador@infor.uva.es

M. Mercedes Martı́nez-González

mercedes@infor.uva.es

Valentı́n Cardeñoso-Payo

valen@infor.uva.es

1 Departamento de Informática, Universidad de Valladolid,

P.o de Belén, 15, 47011 Valladolid, Spain

123

Wireless Networks
https://doi.org/10.1007/s11276-023-03455-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2546-9246
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-023-03455-w&domain=pdf
https://doi.org/10.1007/s11276-023-03455-w

The rest of the article is organized as follows: Sect. 2

presents the related work; Sect. 3 shows the APIs that

handle the SMS messages used in the banking sector;

Sect. 4 presents a general methodology, applicable to any

sector, for detecting bad implementations of the SMS

Retriever API; Sect. 5 presents the results obtained after

applying the methodology to the most commonly used

banking sector apps in Spain; and Sect. 7 sets out the

conclusions. The Data Availability section includes the

references where the datasets generated can be

downloaded.

2 Related work

OTP SMS based authentication systems provide an addi-

tional security layer which ensures that only the owner of

the device whose phone number is registered on the OTP

server can access the information on the server and interact

with it in order to carry out a transaction. For this reason,

OTPs are widely used by mobile apps as 2FA systems

[3–7]. The banking sector also uses them in its electronic

banking applications.

Research related to malware1 in mobile apps shows that

there is a large number of variants targeting the banking

sector [8–11]. These variants are aimed at accessing and

stealing OTP codes intended for the authorization of

banking transactions. Having these codes would allow

fraudulent transactions to be carried out. Given that the

banking sector represents the largest segment of cyber

attacks, it is of the utmost importance to have mechanisms

for the early detection of misuse by developers of SMS

OTP code management APIs that could impact the OTP

code servers used by apps.

On the other hand, research has shown that SMS OTP

code exchange systems have vulnerabilities that can be

exploited by malware [2, 3, 12]. Vulnerabilities can be due

to several causes. Using a resource such as the SMS inbox

opens up the possibility that any app that has SMS read

permissions can obtain the SMS OTP intended for another

app. This vulnerability is related to the design of the APIs

[2, 6, 13–15]. However, there are other vulnerabilities, due

to developers making bad implementations of the SMS

OTP code API [2, 13]. It is in the latter case where

developers have the greatest ability to prevent risks. The

methods used to detect vulnerabilities in OTP-based 2FA

authentication systems include the use of dynamic analysis

and static analysis. The first approach is to perform a

dynamic analysis to monitor the exchange of messages

between apps and OTP code servers [12, 16]. The limita-

tion of this approach is that they require a specific moni-

toring app to be installed on the same mobile device on

which the app being analyzed is running. This poses a risk

to the privacy of its user that may cause reluctance, which

means it would be difficult to put into practice in real

scenarios. This is even more critical in the case of banking,

since having a bank account with the entity that owns the

OTP server would also be required, something which

seems difficult to obtain for external researchers and

auditors. Another important limitation of this approach in

real scenarios comes from the use of a secure channel for

message exchange. A secure channel implies that it is

actually impossible to know the content of the messages

exchanged, since they travel encrypted.

Other works of research propose strengthening the SMS

OTP-based authentication schemes [17–26]. Applying

symmetric and public key cryptography to protect the SMS

OTP is one of the proposed measured. However, these

solutions also have vulnerabilities. Both schemes require

the apps receiving the OTP code to know the key to decrypt

the OTP. There is therefore a risk that the key may be

exposed because it is present in the source code of the apps.

In addition, once the SMS OTP has been decrypted, it goes

to the device’s SMS tray. Once in this tray, any app with

SMS reading permissions could have access to the OTP

code if the SMS OTP code management API does not

remove it from the SMS message tray. This problem has

been mentioned above as part of the vulnerabilities due to

API design.

Finally, as an alternative to the use of SMS OTP as 2FA

in sectors such as electronic banking, Aloul, Fadi and

Zahidi, Syed and El Hajj, Wassim [27] propose using the

mobile device as an OTP generator with unique factors that

identify the device, such as IMEI.2 and IMSI.3. However,

access by an app to the IMEI, IMSI values needs the

explicit consent of the user [8]. This again introduces

limitations to the ease of use that the banking industry has

sought through OTP exchange APIs. Granting permissions,

or accessing values such as IMEI or IMSI, are operations

that most electronic banking users are not

comfortable with.

1 Any program or code that harms or makes undesired changes to a

computer system. These programs can steal confidential information,

damage files or systems and even control a device without the user’s

knowledge or permission.

2 International Mobile Equipment Identity Identifies users with

device.
3 Mobile Subscriber Identity Unique number associated with GSM

and Universal Mobile Telecommunications System (UMTS) cell

phone networks. It is stored on the cell phone card (SIM).

Wireless Networks

123

3 One-time password used as 2FA

2FA schemes with OTP are a widely used method in

electronic banking [1, 17]. The OTP is a unique, time-

limited token that is sent to a user device by the OTP

server. Knowing a user’s login password is not enough to

access their account, the OTP that has been sent to their

device is also required. That is, it is necessary to be in

possession of device. Figure 1 shows the basic authenti-

cation process using an OTP.

To free users from this interaction, consisting of col-

lecting the OTP from the SMS tray and entering it in the

app, Google developed the SMS OTP management APIs

[2, 6]. They represent an improvement in the ease of use

over the authentication scheme of Fig. 1. In Fig. 2, the

operation of the SMS Retriever API is shown, highlighting

in blue the key differences with the scheme in Fig. 1. The

SMS Retriever API is the one studied in Sect. 5.2.

With this API, for the server to know which device and

which app it has to send the SMS OTP code to, it needs to

know the telephone number of the mobile device and an

alphanumeric chain (hash) that identifies the receiving app of

the SMSOTPcode.When the server sends theSMSOTPcode

to the device that made the request, it also sends the hash that

identifies the appwhichmust receive the SMSOTP code. This

hash allows the device’s operating system to deliver the SMS

OTP code to the receiving app only, and no other [2, 6]. The

user is not required to get the OTP code.

4 Proposal

A generic working methodology is proposed that allows a

vulnerability study to be applied to any sector where the

exchange of OTP codes by SMS as 2FA is used. In this

work, it has been applied to a specific sector, the banking

sector. The methodology is developed in Sect. 4.1.

Part of this methodology is the design of a set of sce-

narios that cover the possibilities that can occur in an OTP

exchange interaction between client and server apps when

there is a malicious app that tries to pervert this interaction

to appropriate the OTP code. These scenarios are presented

in Sect. 4.2. This section characterizes each type of actor

and the interaction associated with each scenario. In this

way, we can unequivocally identify the risk scenarios and,

consequently, know what type of actor is associated with

these risks. Finally, in Sect. 4.3, we associate the relevant

actions of these interactions with a set of patterns, recog-

nizable in the source code of the apps. In this way, we

associate each type of app with the set of patterns that it

presents, and that we will be able to recognize through a

static analysis of the apps under study.

We start from the premise that benign apps and the

corresponding servers are designed and developed within

the same ecosystem, which in the case of the banking

sector means that it is the same information technology

team that deals with both developments. It is logical to

assume, in this case, that the possible errors in the use of

the OTP exchange APIs have had repercussions on both

sides of the interaction: backend server and client app. Our

hypothesis is therefore that it is possible to recognize the

servers that include design errors by performing a static

analysis of the apps that were developed within the same

ecosystem. This allows an audit of risks in vulnerable

scenarios with an analysis of the apps, without the need to

access the servers.

4.1 The proposed method

Figure 3 graphically represents the methodology used. It is

divided into the following blocks: selection of the category

set (and set of apps) under study, selection of the SMS OTP

code exchange method (API), preparation of the methods

to be applied to characterize the possible uses of the API

selected, and the consistent evaluation of its application to

the apps selected in the first phase. Each of these stages

contains a series of steps, which are explained below. The

rectangles represent actions and the arrows the results of

the actions.

The breakdown of each of these phases into a sequence

of steps leads to the proposal detailed in Fig. 3.

The orientation of this design is to focus the study on

those apps that account for most of the market in the sector

and on the most popular method, that is, to focus during the

following steps on an authentication method (API). The

breakdown of each of these phases into a sequence of steps

leads to the proposal detailed in Fig. 3. The first two steps

are the selection of a repository, followed by the selection

of a category of apps. We have worked with the official

market of Android, that is, Google Play. For the selection

of a category we propose using the metadata provided by

the market to select the apps under study. Next, in step 3,

the most popular ones in the repository are selected. Sub-

sequently, in step 4, a static analysis is carried out to know

which automatic verification method of SMS messages is

used in each of them. The most popular one is filtered in

step 5. This implies a second filter: only the apps that use

this API will be used in the evaluation. Once the method or

API has been decided, its scenarios are designed and the

behavior patterns that characterize each of them are iden-

tified. The scenarios collect the possible interactions during

an OTP SMS request This is step 6. The next step is pat-

tern design, to formalize these actions as source code

patterns that can be recognized in apps. A well-imple-

mented app is one whose actions correspond to a good use

Wireless Networks

123

of the API, according to the guidelines provided by Google

in [2] for the verification method under study. A poorly

implemented or failed app is one that deviates from this

ideal behavior. They can be characterized with the static

analysis carried out in step 7, during which the code pat-

terns that characterize each of them are searched. The

Evaluation phase starts with this step. The conclusions are

obtained when the last step, results analysis is performed.

4.2 Scenarios

After the analysis of the apps carried out in step 5 of the

methodology, the most widely used OTP SMS code auto-

matic management API is obtained. In our case, the most

used API is SMS Retriever. The normal interaction between

an app and the corresponding server with this API, when

there are no malicious apps trying to steal the OTP, is the

one shown in Fig. 2 of Sect. 3.

A set of scenarios is proposed to obtain the patterns that

characterize the interactions of banking apps that request

an OTP. The situation with which we have worked is one in

which a malicious app, installed on the same device as the

benign app, tries to obtain the OTP code. Since both the

benign app and the malicious app are installed on the same

mobile device, they share the same phone number. To

facilitate the understanding of the scenarios, the interven-

tion of an additional app is proposed, an attacking app,

which acts in coordination with the malicious app. This app

can be the same malicious app, or some other app or ele-

ment installed on a different device, depending on the type

of malware with which the malicious app is associated.

However, what is relevant to our investigation are the

messages it exchanges with the server, the device from

which it intervenes being irrelevant. There are six possible

scenarios. They compile the set of possible interactions

between apps and bank servers.

In these scenarios, the intervention of four actors is

proposed: 1) The OTP code server; 2) The benign app

developed to interact with the server; 3) A malicious app

whose goal is to receive the OTP code; and 4) An attacking

app, part of the same ecosystem as the malicious app, that

tries to cause the OTP code to be sent to the malicious app.

For both the server and the benign app, two types are

considered: the well-developed server/app, that is, follow-

ing the recommendations given by Google for the correct

use of the API [7], as reflected in Fig. 2, and the poorly

developed server/app, that is, deviating from Google’s

recommendations. We refer to well-developed servers and

apps as SB and APPB, respectively. In the case of badly

Fig. 1 A typical scenario using OTP SMS for 2FA

Fig. 2 Authentication process for SMS Retriever

Wireless Networks

123

designed or failed ones, we call them SF and APPF . As far

as the attacking app is concerned, we refer to it as APPA.

Table 1 classifies the actors based on their location, mobile

device (frontend) or server (backend). Table 2 compiles the

name and legend for each of the actors presented above.

Bad implementations of banking apps and servers cor-

respond to the vulnerabilities detected by researchers when

the SMS Retriever API was studied [2, 13]. As for the app,

a bad implementation consists of sending the app identifier

(hash) to the SMS OTP server. After studying the source

codes of various applications, it has become clear that this

may happen because the hash appears in the source code of

the app or because the app itself generates it dynamically.

As for the server, a bad implementation consists of

accepting the reception the hash of the app, which indicates

that the server did not generate it or did not have it regis-

tered. A well designed server stores the hashcodes that

identify the apps to which OTP codes are beign sent. That

is, it does not accept hashcodes if OTP requests are sent. In

turn, an app designed as indicated by the recommendations

for the use of this API will only send the phone number in

its request (Fig. 4).

Table 3 summarizes the scenarios, the actors that par-

ticipate in each of them, and the result of the interaction in

terms of OTP theft. All the possibilities have been con-

sidered, for the aim of completeness, even those in which

the benign app and the server are not designed within the

same ecosystem, despite we insist this is not what should

be expected in a banking environment. These scenarios are

scenarios 2 and 3, in Figs. 5 and 6 respectively. The sce-

nario 1 covers the interaction between a well designed app,

APPB, and a well designed server, SB. Its interaction is

shown in Fig. 4. What is relevant is that a well designed

server will always send the OTP to the app whose hashcode

it stores. This guarantees that no other application will be

able to get access to it. This is the situation in scenario 1, 3

and 5 (indeed, the interaction in scenario 5 is very similar

to the interaction in scenario 3: identical step 2 onwards).

As for the other scenarios, scenarios 2, 4, and 6, where the

poorly designed server intervenes, the success of an OTP

theft attack will depend on the other actors that interact

with the server. In scenario 2 it fails. The well designed

app, APPB, does not send a hashcode. Therefore, the server

does not know what app it should send the OTP to. As a

consequence, it does not send anything.

It is interesting to pay attention to scenario 4, in Fig. 7,

which looks ideal for the theft attack to succeed. However,

it does not. Despite the server sending the OTP to the app

whose hashcode it receives with the OTP request, this

hashcode is the one of the benign app, APPF , not the one of

the malicious one, APPM . Therefore, only the benign app,

APPF , receives the hashcode. The only opportunities for

the attack to succeed would be vulnerabilities in the

hashcode generation, or in the SMS OTP API, such as

those referred to in [2, 13]. However, we do not go into

these in any detail, as these types of vulnerabilities are

beyond the scope of this study.

Fig. 3 Graphic representation of the methodology

Table 1 Actors that are related in the different scenarios

Mobile apps (frontend) OTP SMS code servers (backend)

APPB, APPF , APPM , APPA SB, SF

Table 2 Actors/scenarios that are related in the different scenarios

Actor Legend

APPB App well (B) programmed

APPF Failed app (F), poorly implemented

APPM Malicious app (M)

APPA Attacker app (A)

SB OTP SMS server well (B) implemented

SF SMS OTP server failed (F), poorly implemented

Wireless Networks

123

The only scenario in which the theft attack is successful

is scenario 6, described in Fig. 8, the one in which the

attacker app, APPA, intervenes. A poorly designed server,

SF , receives a request from APPA, which refers to the

hashcode of its collaborator, APPM . In such a case, the

server will send the OTP to the malicious app, APPM . It is

worth noting the difference with scenario 5, in which the

APPA also intervenes. However, in this scenario, a well

designed server guarantees that the attack fails.

4.3 Patterns

The patterns characterize benign apps and they can be

obtained from Google’s instructions for the use of the API

and the scenarios designed in the previous stage.

In this first design phase, the patterns are independent of

the language or platform used to develop the apps, they are

behavior patterns (behavioral). Section 4.3.1 is dedicated

to them. In the next phase, we associate these behavior

patterns with code patterns that can be recognized in an

app’s source code. First of all, in Sect. 4.3.2, the patterns

that allow us to know which APIs are used by the apps are

presented. These patterns are applied in step 4 of the

methodology. Next, in Sect. 4.3.3, the characteristic pat-

terns of the SMS Retriever API that should appear in any

application are dealt with. Finally, in Sect. 4.3.4, patterns

that indicate some of the undesirable behavior patterns,

characteristic of a poorly designed app, are collected:

examples include generating its hashcode, and sending the

hashcode in the OTP request.

4.3.1 Behavioral patterns

The different actions of an app that uses the SMS Retriever

API, whether well or badly designed, are: Declare the SMS

OTP API used; Get the phone number of the device on

which it is installed; Prepare to retrieve the OTP SMS that

the server sends; Send the phone number; Receive the SMS

OTP; and, Send the OTP to the server. The correspon-

dences with code patterns follow in Sects. 4.3.2 and 4.3.3.

Up to here, these are actions that a benign app must per-

form in any case and that we extract from Google’s rec-

ommendations for this API. The actions that represent a

Fig. 4 Interaction diagram for

scenario 1

Table 3 Scenarios, actors and results of the attempted theft of the

OTP

Scenario Actors Theft OTP

1 APPB, APPM , SB No

2 APPB, APPM , SF No

3 APPF , APPM , SB No

4 APPF , APPM , SF No

5 APPA, SB No

6 APPA, SF , APPM Yes

Wireless Networks

123

Fig. 5 Interaction diagram for

scenario 2

Fig. 6 Interaction diagram for

scenario 3

Wireless Networks

123

Fig. 7 Interaction diagram for

scenario 4

Fig. 8 Interaction diagram for

scenario 6

Wireless Networks

123

deviation from the standard behavior indicated by Google

for this API are listed below; thus they are characteristic of

poorly designed apps, APPF. They are: Generation of

hashcode that identifies it within the app itself; and,

Shipment of hashcode to the server.

4.3.2 Declaration of the SMS OTP API being used

Table 4 shows code fragments that must be used to

implement the different SMS verification APIs in the

apps.4 Any of them is considered an indicator of the use of

the corresponding API.

4.3.3 Patterns associated with the use of SMS Retriever API

Table 5 shows the code patterns5 that can be associated

with the use of the SMS Retriever API. For each behavior

pattern, the corresponding code patterns are collected. The

appearance of any of them is an indicator of the associated

behavior or action.

4.3.4 Patterns associated with generating and sending
a hash

Generating and sending a hash in the app a deviation from the

normal use intended for this API. Any possible technique for

generating and sending hashes can be used; they are not tied

to the use of an API for sending SMS OTP codes.

Table 6 lists the steps of the pattern in the generation of

a hash. Each of these steps requires the use of a package or

class, which must be declared initially. The code pattern

will be the joint appearance of two subpatterns: the one that

declares the use of the class or package and the one cor-

responding to the method invocation.

Table 7 shows the last pattern, P12, which corresponds

to the sending of a hash. The sending is done through an

HTTPS request [7] and a JSON object in which the

message includes the hash generated, as occurs in the OTP

code sending pattern, P6, and in the telephone number

sending pattern, P4.

5 Evaluation and results

In this section, we present the results obtained in the

application of our methodology to the apps of the banking

sector.

5.1 Selection of app category and SMS OTP API

Our category for searches in the Google Market repository

in step 2 is ‘‘Finance’’. In the case of this study, the cate-

gory is ‘‘finance’’ from Google Play6. Next, we searched

the most used apps in Spain for Android devices in this

category. They are six, shown in Table 8.

In step 5, after carrying out the static analysis of the apps

mentioned above7, we detected that the most used APIs for

managing SMS OTP codes are SMS Retriever and One-Tap

SMS verification API. To do this, we checked the appear-

ance of the characteristic strings of the use of the SMS

management APIs described in Table 4. The result was that

four of them, those corresponding to the banks CaixaBank,

Bankia, Banco Santander and Caja Rural, use the SMS

Retriever API; while the remaining two, BBVA and ING,

use the API One-Tap SMS verification. Column 2 in

Table 9 shows the code chain used by each app. We

detected that two of the apps analyzed use the One-Tap

SMS verification API. Column 2 of Table 10 shows the

code chain used by these apps.

5.2 Evaluation of the use of the SMS Retriever
API

Knowing that the API SMS Retriever is the most used by

the apps selected in step 3, the static analysis in step 8 of

our methodology is performed on the apps described in

Table 10. During this analysis, the patterns described in

Table 7 are applied to see which of them are found in the

Table 4 Strings of code that

identify the use of the SMS

verification API

SMS verification API Code chains

SMS Retriever SmsRetriever.API | SmsRetrieverClient | SmsRetriever.getClient

SMS Token createAppspecificToken() | WithPackageInfo()

SMS Tokenþ createAppspecificSmsToken | WithPackageInfo()

SMS Token sendSMS()

4 We use the character ‘‘|’’ to indicate the alternative between several

strings of code. The appearance of any of the strings will indicate the

use of the SMS verification API. The character ‘‘|’’does not appear in

the SMS verification API source code.
5 We use the character ‘‘|’’ to indicate the alternative between several

strings of code. The appearance of any of the strings will indicate the

presence of that pattern. The character ‘‘|’’ does not appear in the

source code of the analyzed app.

6 https://play.google.com/store/apps/category/FINANCE?hl=es &gl=

ES
7 The apps are available for download and analysis in the URL:

https://doi.org/10.5281/zenodo.7655968

Wireless Networks

123

https://play.google.com/store/apps/category/FINANCE?hl=es%20&gl=ES
https://play.google.com/store/apps/category/FINANCE?hl=es%20&gl=ES
https://doi.org/10.5281/zenodo.7655968

source code of the apps. This allowed us to know how the

app sends the parameters to the server. If any of them is the

hash, it will allow a bad implementation by the app

developers to be detected. Column 2 of Table 11 shows

which patterns, indicative of the use of the API SMS

Retriever (patterns in Table 7), are present in the source

code of the analyzed apps.

It can be seen that the app ‘‘Nueva San-

tander_8.1.1_apkcombo.com.apk’’ is the only one that

presents all the patterns described in Table 6. The P2 and

P6 patterns (obtaining the user’s phone number, sending

the OTP code to the server) do not appear in the rest of the

apps analyzed. Another objective of this static analysis is to

detect the patterns that show the generation of the hash in

Table 5 Patterns associated with the use of SMS Retriever API

Behaviour patterns: SMS Retriever

API actions

Code patterns

#Pattern Description

P1 Use of the SMS Retriever

API

SmsRetriever.API

P2 Get user’s phone number setPhoneNumberIdentifierSupported(true) | getParcelableExtra(Credential.EXTRA_KEY)

P3 Start of OTP SMS recovery SmsRetriever.getClient

P4 Sending phone number to

the server

With an HTTPS request by POST[2] to a JSON object: JSONObject postData = new

JSONObject()| postData.put(‘‘tel’’, nTel) | postData.put(‘‘id’’)

P5 Reception of the OTP SMS

code

SmsRetriever.SMS_RETRIEVED_ACTION | SmsRetriever.EXTRA_STATUS |

SmsRetriever.EXTRA_SMS_MESSAGE | com.google.android.gms.auth.api.phone.

internal.ISmsRetrieverApiService

P6 Sending the OTP to the

server

With an HTTPS request by POST[2] to a JSON object: JSONObject postData = new

JSONObject()| postData.put(‘‘tel’’, nTel) | postData.put(‘‘hash’’, ‘‘nXzGtk7rNLW’’) |

jSONObject.put(‘‘tokenId

Table 6 Patterns associated with the generation of a hashcode from an app

Behaviour patterns: Generation of hash Code patterns

#Pattern Description step Package/Class Method

P7 Step 1: Get the package name android.content.
ContextWrapper

getPackageName()

P8 Step 2: Obtaining the signing certificate android.content.pm.
Signature

toCharsString()

P9 Step 3: Calculation of the SHA256 of the concatenation of

the package name and the signing certificate

MessageDigest
digest

MessageDigest. getInstance(‘‘SHA256’’) |

digest.digest((message ? appSigna-

ture).getBytes

P10 Step 4: Step 4: Coding the hash SHA256 en Base64 android.util.Base64 encodeToString()

P11 Step 5: Obtaining the hash: the first 11 characters of the

summary obtained by applying the SHA256 function

java.util.Arrays copyOfRange()

Table 7 Patterns associated with sending a hashcode from an app

Behaviour patterns: Send of

hash

Code patterns

#Pattern Description

P12 Shipment of hash to

server

With an HTTPS request by POST[2] to a JSON object: JSONObject postData = new JSONObject ()

postData.put(‘‘hash’’, ‘‘nXzGtk7rNLW’’)

Wireless Networks

123

the apps, which demonstrates that the developer of the app

has not carried out a correct implementation of the SMS

Retriever API. Column 2 of Table 12 shows the patterns

collected in Table 7 that are present in the source code of

the selected apps. Blank cells mean that no evidence of the

appearance of any of them has been found.

It can be seen that the app ‘‘Nueva San-

tander_8.1.1_apkcombo.com.apk’’ is the only one where

most of the patterns described in Table 8 appear within the

same scope. Figure 9 shows a screen-shot of the code

snippet where they appear.

6 Discussion

Our proposal has focused on looking for bad implemen-

tations of the automatic SMS verification APIs in the apps.

In this section, the advantages and limitations of our

approach are discussed.

Our proposal is characterized by using a static analysis

of the applications, where certain patterns are sought. In

turn, the patterns are defined in two phases or levels of

abstraction. The advantage of this approach is that future

changes at the development level would only affect this last

Table 8 Most popular online

banking apps in Spain present in

Google Play

Bank Version Downloads Evaluations Stars

CaixaBank 5.41.0 ?10 M ?500 4,5

BBVA Varies according to device ?10 M ?100K 4,4

Bankia Varies according to device ?5 M ?200K 4,2

Banco Santander 8.6.13 ?5 M$?90K 3,6

ING 3.6.1 ?1 M ?70K 4

Caja Rural 5.0.3 ?1 M 10K 2,9

Table 9 Banking apps that use

the SMS Retriever API
APP Chain of the SMS Retriever API

caixabanknow.apk SmsRetriever.API

bankia.apk SmsRetriever.API

Nueva Santander_8.1.1_apkcombo.com.apk SmsRetriever.API

ruralvia.apk SmsRetriever.API

Table 10 Banking apps that use the API One-Tap SMS verification

APP Chain of the API One-Tap SMS verification

bbva.apk sendSMS(String phoneNumber, String body) sendSMSFromUri(‘‘smsto:’’ ? phoneNumber, body)

ING.apk sendSMS(String phoneNumber, String body) tas_client_info.setClientKey(key_cliente)

Table 11 Patterns of use of the

SMS Retriever API in selected

apps

APP Patterns of SMS Retriever API

caixabanknow.apk P1, P3, P4, P5

bankia.apk P1, P3, P4, P6

Nueva Santander_8.1.1_apkcombo.com.apk P1, P2, P3, P4, P5, P6

ruralvia.apk P1, P3, P4, P5

Table 12 Patterns of use of the

SMS Retriever API in selected

apps

APP Patterns of SMS Retriever API

caixabanknow.apk

bankia.apk

Nueva Santander_8.1.1_apkcombo.com.apk P9, P10, P11

ruralvia.apk

Wireless Networks

123

phase: it would be enough to conveniently extend the set of

code patterns considered in Tables 5, 6 and 7.

As explained in Sect. 4, during the presentation, this

proposal is applicable in cases where there is no access to the

OTP code servers. This is the situation of external auditors

looking for a methodology to analyze the security of apps

exchanging OTP codes. The proposal is also useful for

researchers interested in developing security risk analysis

methodologies for mobile app development. However, it is

also useful for developers who use these OTP exchange

APIs. They can use it to knowwhich errors they should avoid

in their developments. As the research the use of OTP

exchange APIs mentioned in Sect. 3 indicates, these errors

aremuchmore frequent than onemight initially assume. This

may be because developers are not fully aware that some

practices actually involve bugs that lead to security vulner-

abilities that impact the users of their developments. Works

such as ours offer a guide to avoid them.

The question arises as to why a dynamic analysis has not

been proposed. As mentioned in Sect. 2, a dynamic anal-

ysis requires the possibility of viewing the requests that an

app sends to an OTP code server, as well as having a

customer account in the bank of the app under analysis.

That is, to be able to observe an interaction between an app

and the associated banking server. This interaction must be

done through a secure channel8, which makes it very dif-

ficult to access the information sent from the app to the

SMS server, as it travels encrypted. However, apps are

more readily available to any researcher or analyst, as they

are available in the markets.

The limitations of this approach stem from the difficulties

in locating the code patterns presented in Sect. 4. Thismay be

due to several reasons. First, it is possible that certain code

fragments may appear obfuscated during static analysis. In

some cases, as can be seen in the study presented in Sect. 5,

this implies that there are signs of the appearance of the pat-

terns sought, although no definitive conclusions can be drawn.

It is also possible that the patterns appear in different files

when the code is deployed. This is particularly relevant when

looking for hash generation, an operation performed in several

steps. In our study,we decided to use the scope as reference, so

we only consider a sign to be sufficient when the patterns

appear in the same scope.Workingwith evidence is, however,

common in external audits.

There are several possibilities to reuse the proposed

methodology. Thefirst is to adapt the scenarios for otherAPIs,

or other methods of exchanging OTPs. The second is to adapt

them for othermalware variants. Here, we have considered an

app that captures the OTP because it is the recipient of the

SMSmessage. Thismalware variant has been chosen because

it is one of the most common and exploited vulnerabilities

when using the SMS Retriever API. However, there exists

malware that exploits other vulnerabilities, such as the

aforementioned vulnerability that makes SMS messages

accessible to any application with access to this tray. Any

adaptation would begin with the design of the scenarios.

7 Conclusions and future work

We have proposed a method to find out if an SMS OTP

server that uses the SMS Retriever API is vulnerable. The

originality of the proposal is that the method is based on a

static analysis of the apps, which provides a generality that

Fig. 9 Hash generation in the

banking app of the Banco

Santander

8 Request SMS verification in an Android app. https://developers.

google.com/identity/sms-retriever/request?hl=es-419.

Wireless Networks

123

https://developers.google.com/identity/sms-retriever/request?hl=es-419
https://developers.google.com/identity/sms-retriever/request?hl=es-419

methods based on analyses of the servers lack. Gaining

access to the apps is much easier for anyone interested in

this research than attempting to access the servers.

We have seen that the most commonly used method for

the automatic verification of SMS OTP messages in the

analyzed apps belonging to Spain’s banking sector is the

SMS Retriever API. Moreover, we have found indications

suggesting that some apps do not implement this API

correctly. This points to the question of whether using this

API is the most appropriate decision for this sector. The

results obtained lead us to question whether the balance

between the use of using banking apps and their security

could be better. Security has historically been a hallmark of

the banking sector, and it should be the same with the use

of online banking apps.

We propose as future work the extension to other OTP

code verification APIs, as well as the application of the

proposed methodology to authentication methods other

than SMS OTP.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Data availability The datasets generated during and/or analyzed

during the current study are available in the ZENODO repository:

Android Apps banking sector: https://doi.org/10.5281/zenodo.

7655968 Screenshots Android API OTP SMS: https://doi.org/10.

5281/zenodo.7656663

References

1. Authority, E. B. (2015). Directive (EU) 2015/2366 of the European

Parliament and of the Council of 25 November 2015 on payment

services in the internal market, amending Directives 2002/65/EC,

2009/110/EC and 2013/36/EU and Regulation (EU) No 1093/2010,

and repealing Directive 2007/64/EC (Text with EEA relevance)

(2015). https://eur-lex.europa.eu/eli/dir/2015/2366/oj

2. Lei, Z., Nan, Y., Fratantonio, Y., Bianchi, A., & Talos, C. (2021).

On the insecurity of SMS one-time password messages against

local attackers in modern mobile devices. Network and Dis-
tributed System Security Symposium. https://doi.org/10.14722/

ndss.2021.24212

3. Zhou, Y., Hu, L., & Chu, J. (2017). An enhanced SMS-based

OTP scheme. In Proceedings of the 2017 2nd international
conference on automation, mechanical control and computa-
tional engineering (AMCCE 2017), pp. 1091– 1094. Atlantis

Press, (2017/03). https://doi.org/10.2991/amcce-17.2017.196

4. Aloul, F., Zahidi, S., & El-Hajj, W. (2009). Two factor authen-

tication using mobile phones. In 2009 IEEE/ACS international
conference on computer systems and applications, pp. 641– 644.

https://doi.org/10.1109/AICCSA.2009.5069395

5. Eldefrawy, M. H., Alghathbar, K., & Khan, M. K. (2011). Otp-

based two-factor authentication using mobile phones. In 2011
eighth international conference on information technology: new
generations, pp. 327– 331. https://doi.org/10.1109/ITNG.2011.64

6. Developers, G. Automatic SMS Verification with the SMS

Retriever API. https://developers.google.com/identity/sms-retrie

ver/overview

7. Developers, G. One-tap SMS verification with the SMS User

Consent API. SMS Verification APIs. https://developers.google.

com/identity/sms-retriever/user-consent/overview

8. Mayrhofer, R., Stoep, J. V., Brubaker, C., & Kralevich, N.

(2021). The android platform security model. ACM Transactions
on Privacy Security. https://doi.org/10.1145/3448609

9. Bojjagani, S., & Sastry, V. N. (2017). Vaptai: A threat model for

vulnerability assessment and penetration testing of android and

IOS mobile banking apps. In 2017 IEEE 3rd international con-
ference on collaboration and internet computing (CIC), pp. 77–
86 (2017). https://doi.org/10.1109/CIC.2017.00022

10. Kazi, M. A., Woodhead, S., & Gan, D. (2023). An investigation

to detect banking malware network communication traffic using

machine learning techniques. Journal of Cybersecurity and Pri-
vacy, 3(1), 1–23. https://doi.org/10.3390/jcp3010001

11. Zimba, A., Chen, H., & Wang, Z. (2019). Bayesian network

based weighted apt attack paths modeling in cloud computing.

Future Generation Computer Systems, 96, 525–537. https://doi.
org/10.1016/j.future.2019.02.045

12. Ma, S., Feng, R., Li, J., Liu, Y., Nepal, S., Diethelm, Bertino, E.,

Deng, R.H., Ma, Z., & Jha, S. (2019). An empirical study of SMS

one-time password authentication in android apps. In Proceed-
ings of the 35th annual computer security applications confer-
ence. ACSAC ’19, pp. 339– 354. Association for Computing

Machinery. https://doi.org/10.1145/3359789.3359828

13. Aparicio, A., Martı́nez, M. M., & Cardeñoso, V. (2023). Vul-

nerabilities of the SMS retriever API for the automatic verifica-

tion of SMS OTP codes in the banking sector. In Proceedings of
the international conference on ubiquitous computing & ambient
intelligence (UCAmI 2022), pp. 983– 994. Springer. https://doi.

org/10.1007/978-3-031-21333-5_99

14. Developers, A. Manifest.permission. https://developer.android.

com/reference/android/Manifest.permission

15. Muthumanickam, K., & Senthil Mahesh, P. (2020). A collabo-

rative policy-based security scheme to enforce resource access

controlling mechanism. Wireless Networks, 26(4), 2537–2547.

https://doi.org/10.1007/s11276-019-01984-x

16. Li, Z., & Feng, G. (2020). Inter-language static analysis for

android application security. In 2020 IEEE 3rd international
conference on information systems and computer aided education
(ICISCAE), pp. 647– 650. https://doi.org/10.1109/ICIS

CAE51034.2020.9236807 . IEEE

17. Dmitrienko, A., Liebchen, C., Rossow, C., & Sadeghi, A.-R.

(2014). On the (in) security of mobile two-factor authentication.

In Financial cryptography and data security: 18th international

conference, FC 2014, Christ Church, Barbados, March 3-7, 2014,

Revised Selected Papers 18, pp. 365– 383. https://doi.org/10.

1007/978-3-662-45472-5_24 . Springer

18. Peeters, C., Patton, C., Munyaka, I.N., Olszewski, D., Shrimpton,

T., & Traynor, P. (2022). SMS OTP security (SOS) hardening

Wireless Networks

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.7655968
https://doi.org/10.5281/zenodo.7655968
https://doi.org/10.5281/zenodo.7656663
https://doi.org/10.5281/zenodo.7656663
https://eur-lex.europa.eu/eli/dir/2015/2366/oj
https://doi.org/10.14722/ndss.2021.24212
https://doi.org/10.14722/ndss.2021.24212
https://doi.org/10.2991/amcce-17.2017.196
https://doi.org/10.1109/AICCSA.2009.5069395
https://doi.org/10.1109/ITNG.2011.64
https://developers.google.com/identity/sms-retriever/overview
https://developers.google.com/identity/sms-retriever/overview
https://developers.google.com/identity/sms-retriever/user-consent/overview
https://developers.google.com/identity/sms-retriever/user-consent/overview
https://doi.org/10.1145/3448609
https://doi.org/10.1109/CIC.2017.00022
https://doi.org/10.3390/jcp3010001
https://doi.org/10.1016/j.future.2019.02.045
https://doi.org/10.1016/j.future.2019.02.045
https://doi.org/10.1145/3359789.3359828
https://doi.org/10.1007/978-3-031-21333-5_99
https://doi.org/10.1007/978-3-031-21333-5_99
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://doi.org/10.1007/s11276-019-01984-x
https://doi.org/10.1109/ICISCAE51034.2020.9236807
https://doi.org/10.1109/ICISCAE51034.2020.9236807
https://doi.org/10.1007/978-3-662-45472-5_24
https://doi.org/10.1007/978-3-662-45472-5_24

SMS-based two factor authentication. In Proceedings of the 2022
ACM on Asia Conference on Computer and Communications
Security, pp. 2– 16. https://doi.org/10.1145/3488932.3497756

19. Varghese, A., & Mathews, D. (2014) Securing SMS-based

approach for two factor authentication. International Journal of

Research in Computer and Communication Technology, 3(3)

20. Zhou, Y., Hu, L., & CHu, J. (2017). An enhanced sms-based otp

scheme. In 2017 2nd international conference on automation,
mechanical control and computational engineering (AMCCE
2017), pp. 1091– 1094. https://doi.org/10.2991/amcce-17.2017.

196 . Atlantis Press

21. Kurniawan, D. E., Iqbal, M., Friadi, J., Hidayat, F., & Per-

matasari, R. D. (2021). Login security using one time password

(OTP) application with encryption algorithm performance.

Journal of Physics Conference Series, 1783, 012041. https://doi.
org/10.1088/1742-6596/1783/1/012041

22. Shesashaayee, A., & Sumathy, D. (2014). Otp encryption tech-

niques in mobiles for authentication and transaction security.

International Journal of Innovative Research in Computer and
Communication Engineering, 2(10), 6192–6201.

23. Bojjagani, S., & Sastry, V. (2017). A secure end-to-end SMS-

based mobile banking protocol. International Journal of Com-
munication Systems, 30(15), 3302. https://doi.org/10.1002/dac.

3302

24. Luo, H., Wen, G., & Su, J. (2020). Lightweight three factor

scheme for real-time data access in wireless sensor networks.

Wireless Networks, 26, 955–970. https://doi.org/10.1007/s11276-
018-1841-x

25. Chen, J., Guo, L., Shi, Y., Shi, Y., & Ruan, Y. (2021). An edge

computing oriented unified cryptographic key management ser-

vice for financial context. Wireless Networks. https://doi.org/10.
1007/s11276-021-02831-8

26. Gosavi, S., & Shyam, G. K. (2020). A novel approach of OTP

generation using time-based OTP and randomization techniques.

In Data Science and Security: Proceedings of IDSCS 2020 (pp.

159-167). Springer Singapore. https://doi.org/10.1007/978-981-

15-5309-7_16

27. Aloul, F.A., Zahidi, S., & El-Hajj, W. (2009). Two factor

authentication using mobile phones. In 2009 IEEE/ACS interna-
tional conference on computer systems and applications,
pp. 641–644. https://doi.org/10.1109/AICCSA.2009.5069395

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Amador Aparicio is a member of

the Department of Computer

Science at the University

ofValladolid, Spain. His

research areas are Security and

Privacy. He is professor in sev-

eral Masters andCybersecurity

subjects.https://www.mypu

blicinbox.com/

AmadorAparicio.

M. Mercedes Martı́nez-González
is an Associate Professor in the

Department of Computer

Science of the University of

Valladolid, Spain. She obtained

her Ph.D. in Computing Science

from theUniversity of Val-

ladolid andthe INRIA institute

(France). Her research areas

include Semantic Web, Data

Engineering, Law andTechnol-

ogy, and Privacy Engineering.

She is a teacher of data engi-

neering and Semantic Web

topics.She has participated, and

coordinated, several publications and symposiums about Law

andTechnology. She coordinates LexDatum, an annual meeting about

Law and Information Technology.http://www.infor.uva.es/

*mercedes.

Valentı́n Cardeñoso-Payo Ph.D.

in physics in 1984 and 1988,

both from the University of

Valladolid, Valladolid, Spain.

Since 1998, he has been the

ECA-SIMM Group Director

with the University of Val-

ladolid. His researchinterests

include machine learning tech-

niques applied to human lan-

guage technologies,cybersecu-

rity and human–computer

interaction and biometric person

recognition. He has been

theadvisor of ten Ph.D. works in

speech synthesis and recognition, online signature verification, and-

structured parallelism for high-performance computing.

Wireless Networks

123

https://doi.org/10.1145/3488932.3497756
https://doi.org/10.2991/amcce-17.2017.196
https://doi.org/10.2991/amcce-17.2017.196
https://doi.org/10.1088/1742-6596/1783/1/012041
https://doi.org/10.1088/1742-6596/1783/1/012041
https://doi.org/10.1002/dac.3302
https://doi.org/10.1002/dac.3302
https://doi.org/10.1007/s11276-018-1841-x
https://doi.org/10.1007/s11276-018-1841-x
https://doi.org/10.1007/s11276-021-02831-8
https://doi.org/10.1007/s11276-021-02831-8
https://doi.org/10.1007/978-981-15-5309-7_16
https://doi.org/10.1007/978-981-15-5309-7_16
https://doi.org/10.1109/AICCSA.2009.5069395
https://www.mypublicinbox.com/AmadorAparicio
https://www.mypublicinbox.com/AmadorAparicio
https://www.mypublicinbox.com/AmadorAparicio
http://www.infor.uva.es/~mercedes
http://www.infor.uva.es/~mercedes

	App-based detection of vulnerable implementations of OTP SMS APIs in the banking sector
	Abstract
	Introduction
	Related work
	One-time password used as 2FA
	Proposal
	The proposed method
	Scenarios
	Patterns
	Behavioral patterns
	Declaration of the SMS OTP API being used
	Patterns associated with the use of SMS Retriever API
	Patterns associated with generating and sending a hash

	Evaluation and results
	Selection of app category and SMS OTP API
	Evaluation of the use of the SMS Retriever API

	Discussion
	Conclusions and future work
	Data availability
	References

