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Abstract: Coumarin and its derivatives have significantly attracted the attention of medicinal chemists
and chemical biologists due to their huge range of biological, and in particular, pharmacological
properties. Interesting families of coumarins have been found from marine sources, which has
accelerated the drug discovery process by inspiring innovation or even by the identification of
analogues with remarkable biological properties. The purpose of this review is to showcase the most
interesting marine-derived coumarins from a medicinal chemistry point of view, as well as the novel
and useful synthetic routes described to date to achieve these chemical structures. The references that
compose this overview were collected from PubMed, Mendeley and SciFinder.
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1. Introduction

The ocean can be considered the cradle of living organisms and the first and biggest
ecosystem of our planet. The diversified environments found in different oceanic zones
have been a matter of study since ancient times, as marine natural products have been
used in functional foods, dietary supplements and medicine. The interest in marine phar-
macology to discover organic molecules with active pharmaceutical properties clearly
supposes a renaissance in drug development based on natural products due to the chances
to increase the chemical space from this underexplored ecosystem. Compared with ter-
restrial substances, marine substances have different chemical features with sometimes
better mechanisms of defense. It is very likely that, under the extreme conditions (e.g.,
low levels of oxygen, high pressures, absence of light) in which deep sea organisms live,
they have adapted to this environment undergoing biochemical or physiological transfor-
mations to survive, providing sophisticated organic skeletons with interesting drug-like
properties [1,2].

On the other hand, the design and synthesis of molecules in the drug discovery process
is a real challenge for a medicinal chemist, as a vast number of new chemical entities have
to be prepared from hit identification (Hit Id.) to a late lead optimization (LLO) process. It
is estimated that approximately more than 12 years with a cost of more than one billion
EUR are needed to bring a new drug to the market [3]. An alternative pathway in drug
discovery programs has been the identification of “advanced chemical entities” which can
provide valuable information against a molecular target. In this regard, the development of
drugs based on natural product structures has been investigated for decades, providing a
clear way to reduce both time and cost. Considering marine sources, around 3,000 entities
with biological properties have been identified [4], which would clearly facilitate drug
discovery programs in the search for new therapies [5–7].

Coumarin is considered a privileged scaffold that has extensively attracted the at-
tention of the scientific community in a wide range of applications [8–12]. Chemically,
coumarins belong to the family of lactones (2H-1-benzopyran-2-one, 1,2-benzopyrone or
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benzo-α-pyrone) and consist of fused benzene and α-pyrone rings. A general classification
considering its structure would be simple coumarins, furanocoumarins, pyranocoumarins,
dihydrofurano coumarins, phenylcoumarins and bicoumarins.

They have been used in many research areas, such as cosmetics, food additives,
fluorescent probes and laser dyes, among others [13]. However, coumarin derivatives
have created a major impact in medicinal chemistry, where most of these derivatives have
shown interesting pharmacological properties including anticoagulant, anti-inflammatory,
antiviral, antioxidant, anticancer and inhibitory of enzymes [14–19]. Thus, they have been
used in a variety of biological targets. For instance, acenocoumarol (1) and warfarin (3)
are representative approved drugs with anticoagulatory activity, whose clinical results
were studied on 2111 MPHV patients [20]. Hydroxycoumarins show promising results in
the treatment of inflammation [21,22], and coumarin–chalcone and coumarin–resveratrol
hybrids were studied in the treatment of neurodegenerative diseases [9,23,24]. In addition,
some anticancer activities against HepG2 and HeLa cancer cell lines have been reported for
the combination of simple coumarins with sorafenib (Figure 1) [25,26].
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Figure 1. Representative examples of active coumarin derivatives. 
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Figure 1. Representative examples of active coumarin derivatives.

The distribution of coumarins in nature is ubiquitous. Coumarins may be found
in plant roots, seeds, leaves, flowers, peels and fruits, as secondary metabolites. Their
extraction and isolation from various plant species has been extensively studied due to
their relevant biological activity in many therapeutic areas [27]. Some coumarin structures
have also been identified in marine sources, especially in algae, marine fungi and ascidians.
As shown before, new bioactive molecules from oceans could facilitate the discovery of
chemical analogues with potential applications in drug discovery. For this reason, the
purpose of this review is to exclusively cover coumarin derivatives from marine sources
with a pharmacological interest, as well as the novel or fruitful synthetic routes described
to obtain these privileged scaffolds.
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2. Coumarin Derivatives from Marine World: Synthesis and Activities

The biological properties of coumarin derivatives have been studied in a variety of
fields. The great interest that this family of compounds has attracted along the years is
reflected in the number of research and review papers dedicated to this topic on PubMed
(more than 2000 in just 2022). For marine-derived coumarins, their cytotoxic properties are
by far the most studied.

Coumarins from oceans have been mostly found in coastal plants, bacteria, mol-
lusks, invertebrates and sponges [10]. However, extraction from natural sources is time-
consuming and the amount of isolated compound is usually scarce. In this sense, many
efforts have been made to afford fruitful synthetic routes in various operational steps to
achieve the desired derivatives.

In this review, we will simulate showcasing the pharmacological activities and relevant
synthetic routes for specific families of derivatives and their analogues. Novel method-
ologies developed during the last years will also be covered to illustrate new synthetic
opportunities.

Although a general classification of coumarin derivatives has been presented in the
Section 1, a suitable classification of coumarins from the marine world into different
categories would be more appropriate. For simplicity, we will distinguish between simple,
3-substituted (amino- and imino-), tricyclic (benzo- and furo-), pentacyclic and other
coumarin analogues.

2.1. Simple Coumarins

Simple substituted coumarins are the structurally less complex class of coumarins.
The scaffold is constituted by a bicyclic system and different substitution patterns at the C-3,
C-4, C-5, C-6, C-7 and C-8 positions. Due to the already defined biological activity [28,29],
two compounds—umbelliferone (7, R7 = OH) and scopoletin (8, R6 = OCH3 and R7 = OH)
—are highlighted here (Figure 2). These molecules were isolated in 2012 from the leaves of
the mangrove endophytic fungus Penicillium sp. ZH16 from the South China sea [30].
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Umbelliferone (7) shows anti-inflammatory [31] and antitumoral activities [32]. In
2015, Yu et al. reported the anticancer activity of umbelliferone (7) against HepG2 can-
cer cells, inducing apoptosis in cells [33], whereas scopoletin (8) inhibits PC3 prolifera-
tion, a human prostate cancer cell line [34]. Additionally, both compounds exhibit anti-
acetylcholinesterase (AChE) [35,36] and antioxidant activities [37].

As a result of the importance of these scaffolds in organic and medical chemistry,
many synthetic routes to obtain simple substituted coumarins have been explored over the
years [38,39]. The most classical strategies involve Knoevenagel [40], Pechmann [41] and
Perkin [42] condensations, intramolecular [43,44] and intermolecular Wittig reactions [45],
ring-closing metathesis [46], as well as different reactions between the corresponding
salicylaldehydes with ketene [47] or arylacetonitriles (18) [48] (Scheme 1).
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Scheme 1. Synthetic approaches in the preparation of functionalized coumarins.

Over the last few years, transition metal catalysis, involving palladium [49,50],
rhodium [51], iron [52] or cobalt [53], has also been used to synthesize different coumarin
derivatives. In addition, modern methodologies such as microwave irradiation [54,55], flow
chemistry [56], photochemistry [57], ionic liquids [58,59] and organocatalytic reactions [60],
proved to be very effective.

For instance, Y. Li et al. employed the photocatalytic isomerization of ortho-E-hydro
xycinnamates (19) to generate Z isomers, which underwent lactonization to provide
coumarin compounds in high yields (Scheme 2) [61]. A similar strategy was developed by
Shu et al. but using Ir2(ppy)4Cl2 as the catalyst (Scheme 2) [62].
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Scheme 2. Photocatalytic reactions in the synthesis of coumarins.

Au(I)-catalysts have also been screened to synthesize coumarins by the intramolecular
arylation (IMHA) of phenol-derived propiolates (20) [63]. IMHA reactions were carried out
using Echavarren’s catalyst (21), (acetonitrile)[(2-biphenyl)di-tert-butylphosphine]gold(I)
hexafluoroantimonate, to give numerous derivatized compounds in high yields (Scheme 3).

Furthermore, other metal-free methodologies have been reported. In 2016, Lee et al.
reported a TfOH-mediated condensation of phenols (22) with propiolic acids (23), followed
by intramolecular arylation [64], which was applied to obtain natural umbelliferone (7) in
an 81% yield (Scheme 4).
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All 3-iminocoumarins (24–39) reported in the literature have been isolated from man-
grove fungi present in the South China sea, along with tens of other metabolites [65]. To
the best of our knowledge, these compounds do not show relevant biological activity, and
no synthetic approaches have been published to date (Figure 3).
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2.2.2. 3-Amidocoumarins

Trichodermamide A (40), B (41) and aspergillazine A (42) were the first 3-amidocoumarins
isolated at the beginning of the 21st century from different marine-derived fungi, Tricho-
derma virens and Spicaria elegans [66–68]. Spectroscopic analysis and chemical methods (a
modified Mosher’s method) allowed for the determination of the structure and stereochem-
istry of 40 [66] and 42 [69], while the structure of 41 was established by X-ray diffraction
analysis (Figure 4) [66].

Compounds 40 and 42 proved to display a weak cytotoxic activity against an HL-60 cell
line (IC50 = 89 and 84 Mm, respectively) [67]. By contrast, as a result of the presence of the
chlorohydrin group in 41, it displays in vitro cytotoxicity against HCT-116 colorectal cancer
cells (IC50 = 0.32 µg/mL) [66] and HeLa cells (IC50 = 3.1 µM), by breaking double-stranded
DNA [70]. Moreover, weak antimicrobial activities have been reported [68].
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Recently, four new 3-amido compounds have been isolated (Figure 5). On the one hand,
long-term static fermentation of the strain of Trichoderma sp. TPU199 (cf. Trichoderma brevi-
compactum) induced the production of dithioaspergillazine A (43), which possesses a disul-
phide bridge by comparison with spectroscopic data. In contrast to aspergillazine A (42),
the compound inhibits the proliferation of the colon cancer HCT-15 cell line (IC50 = 13 µM)
and Jurkat leukemia cells (IC50 = 1.3 µM) [71]. On the other hand, trichodermamide C (44)
and hatsumamide A (45) and B (46) were isolated from the deep sea-derived fungus Penicil-
lium steckii FKJ-0213 by physicochemical (PC) screening [72]. The structure of 44, which also
contains a 1,2-oxazine system, was previously established by NMR, UV, IR, MS and X-ray
diffraction data. It shows moderate cytotoxic effects towards human colorectal carcinoma
HCT116 (IC50 = 0.68 µg/mL) and human lung carcinoma A549 (IC50 = 4.28 µg/mL) [73].
The structure and stereochemistry of 45 and 46 were elucidated by mass spectrometry, 1D
and 2D NMR data (COSY, HMQC, HMBC and ROESY) and by comparing data with other
already known compounds. No biological activity of 46 has been reported. However, 45
presents antimalarial activity against the K1 and FCR3 strains of Plasmodium falciparum,
with IC50 values of 27.2 an 27.9 µM, respectively, and cytotoxicity against five human tumor
cell lines, HeLa S3 (IC50 = 15.0 µM), HT29 (IC50 = 6.8 µM), A549 (IC50 = 13.7 µM), H1299
(IC50 = 18.7 µM) and Panc1 (IC50 = 12.9 µM) [72].
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Trichodermamides 40, 41 and 44 could be disconnected into two fragments: an oxazine
ring moiety 47 and an aminocoumarin 48 (Scheme 5). Different synthetic strategies have
been developed in order to afford the 4H-5,6-dihydro-1,2-oxazine fragment 47.
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In 2008, Joullié and Wan described the total synthesis of 40 and 41 [74]. Thus, the
advanced intermediate 52, obtained in 18 linear steps from (–)-quinic acid 49, was treated
with hydroxylamine to obtain an oxime, which in situ underwent an intramolecular epoxide
ring opening upon addition of NaOH. Oxazine 53, obtained as a single diastereomer, was
then converted (over four reaction steps) into enone 54. A Luche reduction followed by
selective primary alcohol oxidation provided acid 55 in a good yield (Scheme 6).
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The coupling reaction between carboxylic acid 55 and aminocoumarin B (obtained in
three steps from 3,4-trimethoxy-benzaldehyde) was performed using EDCI in 30% pyri-
dine/dichloromethane. Compound 40 was obtained after coupling and two deprotection
steps in a 53% yield, while 41 required an additional treatment with mesyl chloride in
order to obtain the corresponding allylic chloride (32% over four reaction steps). The total
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enantioselective syntheses were achieved in 31/32 reaction steps, with an average of an
85% yield for each reaction step (Scheme 7) [74].
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More recently, a new concise total synthesis of trichodermamides A, B and C has been
described [75]. A 1,2-addition of an αC-lithiated O-silyl ethyl pyruvate oxime 57 to benzo-
quine 58, followed by an oxa-Michael ring closure was applied to accomplish the formation
of the cis-fused 1,2-oxazadecaline core 59 in a 92% yield. A modified Luche reduction and
treatment with Pd(PPh3)4 in the presence of N,O-bis-(trimethylsilyl)acetamide (BTSA) was
carried out to give dienol 60 in a high yield, a common intermediate in the synthesis of the
three natural products (Scheme 8).
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Scheme 8. Methodology for the preparation of fragment 60.

Once the oxazadecaline 60 was obtained, similar chemical steps, but arranged in
different order, provided the three natural compounds. In these syntheses, the two key
steps are the amide coupling, mediated by HATU in the presence of sym-collidine, and a
final selenoxide [2,3]-sigmatropic rearrangement with H2O2 in pyridine [76], which was
previously used by Zakarian and Lu [77]. Trichodermamides 40, 41 and 44 have been
obtained after 9, 12 or 13 steps, respectively, in moderate yields (Scheme 9).

To the best of our knowledge, no synthetic approach for 42, 43, 45 and 46 has been
reported yet.
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2.3. Tricyclic Coumarins
2.3.1. Furocoumarins

First, furocoumarins (also called psoralenes) are described as coumarin derivatives
with a fused furan ring with important biological activities, such as photoreactivity with
DNA [78]. Four structures of furo[g]coumarins (66–69) were found in the endophytic
fungus Penicillium sp. ZH16 from the South China sea (Figure 6) [30].
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isolated in 1834, it was not until 1936 when the first synthetic approach was described. 
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min et al. reported a new synthesis of 67 in a higher isolated yield (55%) compared to the 
reported methodologies. Following known methodologies, phloroglucinol was used as 
the starting material to construct benzofuran-3-one 72 (by monomethylation and Pech-
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From this series, the derivative 68 was tested against KB and KBV200 cells demon-
strating relevant cytotoxicity (IC50 of 5 and 10 µg/mL, respectively). In addition, 69 shows
interesting photochemotherapeutic effects under near UV and blue light photosensitization
(LD50 of 2 nM and 12 nM, respectively). These cytotoxic studies suggest the possibility of
furocoumarins being involved in the high incidence of cancer in Nigeria [79].

The synthesis of furocoumarins has been known for a long time. However, novel
methodologies have been developed during the last decades for the effective preparation
of these compounds, many of which involve metal-catalyzed transformations that provide
new structural diversity [80,81].

One such example has been the preparation of bergaptene (67). Although it was first
isolated in 1834, it was not until 1936 when the first synthetic approach was described. Then,
other methodologies were developed during the next decades [82]. Recently, Zhimin et al.
reported a new synthesis of 67 in a higher isolated yield (55%) compared to the reported
methodologies. Following known methodologies, phloroglucinol was used as the starting
material to construct benzofuran-3-one 72 (by monomethylation and Pechmann reactions).
Various conventional steps (acetylation, deacetylation) provided the intermediate 75 from
which a fused lactone ring was constructed by acetylation and Pechmann condensation. A
final dehydrogenation step with DDQ provided the final product 67 (Scheme 10).
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2.3.2. Benzo[c]coumarins

Benzocoumarins are π-extended structures in which the coumarin core is fused with a
benzene ring at different positions. Four benzo[c]coumarins (77–80, 3,4-benzocoumarins or
alternariol derivatives) have been found from ocean sources, produced by the mangrove
endophytic fungus No. 2240, from the South China sea coast (Figure 7) [83]. The structures
were determined by spectroscopic analysis using NMR, IR and UV experiments and by
comparison with the literature data.
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More recently, the most common techniques in the synthesis of general benzo[c]cou-
marins have been the oxidative cyclization of biphenyl-2-carboxylic acid compounds [87] 
and Hurtley condensation [88]. However, other strategies that generate chemical diversity 
have been applied to obtain highly functionalized benzco[c]coumarins. For instance, Bod-
well et al. prepared a set of benzo[c]coumarins by an inverse electron demand Diels–Alder 
reaction [89]. Later on, a multicomponent version (9, 84 and 85) comprising 6 reaction 
steps and increasing chemical diversity was disclosed by the same groups (Scheme 12) 
[90].  
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Alternariol (77, R1 = R2 = OH) and its derivatives (78–80) have demonstrated mu-
tagenic properties against the human epidermoic carcinoma KB and KBv200 cell lines.
In particular, 77 and 80 show stronger IC50 values (3.17, 3.12 and 4.82, 4.94 µg/mL, re-
spectively) in both cell lines, in comparison with the weaker activities found for the other
compounds (IC50 > 50 µg/mL).

The construction of benzocoumarins depends on the location of hydroxyl and formyl
groups on the starting material, which is normally hydroxynaphthaldehyde. Many com-
plementary strategies have been reported for the general synthesis of benzo[c]coumarin
derivatives, which are based on carbon–carbon and carbon–oxygen bond formation strate-
gies or cyclization reactions [84].

A total synthesis of 77 was described independently by the Podlech and Kim groups [85,86].
The key step in both protocols was a Suzuki–Miyaura cross-coupling of boronic acid 81
with a brominated aldehyde 82 to obtain an advanced precursor 83. A final cyclization step
was needed to obtain the final product 77 (Scheme 11).
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More recently, the most common techniques in the synthesis of general benzo[c]coumarins
have been the oxidative cyclization of biphenyl-2-carboxylic acid compounds [87] and
Hurtley condensation [88]. However, other strategies that generate chemical diversity have
been applied to obtain highly functionalized benzco[c]coumarins. For instance, Bodwell
et al. prepared a set of benzo[c]coumarins by an inverse electron demand Diels–Alder
reaction [89]. Later on, a multicomponent version (9, 84 and 85) comprising 6 reaction steps
and increasing chemical diversity was disclosed by the same groups (Scheme 12) [90].
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Later, Lee’s group reported the reaction of hydroxychalcones (86) and β-ketoesters
(87), in the presence of a base, in sequential Michael addition/intramolecular aldol conden-
sation/oxidative aromatization/lactonization processes (Scheme 13) [91].
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2.4. Other Tricyclic Coumarins

In addition to the previously mentioned groups, other tricyclic coumarins have been
found in marine organisms. The limited number of their structural features does not allow
for their classification in a particular group. Two pyrano[g]coumarins were isolated from
Streptomyces violans bacteria and Ascomycete Leptosphaeria oraemaris fungi (compounds 87
and 88, respectively). In addition, iotrochotazine A (89) was found in the marine sponge
Iotrochota sp. in Australia, and it is used as chemical probe to study Parkinson’s disease [92].
A series of dihydrocoumarins (90–95) was also found in Rhizophora stylosa mangrove trees in
Okinawa, Japan. These compounds present DPPH free radical scavenging properties (EC50
4.6–10.3 µM) and serve as traditional medicine for the local people due to their antioxidant
activities (Figure 8) [93,94].
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To the best of our knowledge, there are not many protocols reported for the preparation
of each of these scaffolds. For instance, cinchonain derivatives 92 and 93 were successfully
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synthetized by the Kadota group, in a one-pot regioselective procedure involving a dienone–
phenol rearrangement followed by a Michael-type reaction (Scheme 14) [95].
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Considering 89, a total synthesis was developed in 2014 through a one-pot enamine
formation/intramolecular conjugate addition/oxidation sequence. The confirmation of the
natural product allowed for subsequent biological investigations (Scheme 15) [92].
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3. Pentacyclic Coumarins
3.1. Aflatoxins

These heterocyclic compounds are difurocoumarin derivatives consisting of a highly
reactive bifuran ring and a five-membered lactone fused to the coumarin nucleus. Different
aflatoxins (101–106) were found endogenously in Aspergillus flavus 092008 and in different
algae in Putian Pinghai, China [96–98] (Figure 9).
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Aflatoxins are toxic and described as among the most carcinogenic substances. They
can be present as contaminants in food. Once in the body, they pass through the liver to
generate a reactive epoxide intermediate, or they are hydroxylated to generate the less
harmful aflatoxin M1. On the other hand, 101 has been analyzed against A549, K562
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and L-02 cell lines, and a weak activity has been described (IC50 values 8.1, 2.0 and 4.2,
respectively).

Due to the important implications of aflatoxins in human health and the problems
associated with their extraction from natural sources, much progress has been made
towards the total synthesis of both its racemic and asymmetric versions [99].

Outstanding contributions in the total synthesis were carried out by the Büchi group,
such as the first total synthesis of 101 in a racemic version [100]. Considering this derivative
as an example, an asymmetric total synthesis was developed for the first time by Trost
et al. [101]. The synthesis of the key precursor 107 was carried out via a Pechmann reaction
starting from 5-methoxy-m-catechol and β-keto ester. Then, the chiral center of the B
ring was achieved in a high yield and ee through an allyl–palladium intermediate. Once
synthetized, an intramolecular Heck reaction under standard conditions gave the new BC
ring. A similar strategy allowed the construction of the final ring, which through acylation
and pyrolysis generated the desired aflatoxin 101 (total yield in 9 steps of 1.6%) (Scheme 16).

Mar. Drugs 2022, 20, x  14 of 24 
 

 

Aflatoxins are toxic and described as among the most carcinogenic substances. They 
can be present as contaminants in food. Once in the body, they pass through the liver to 
generate a reactive epoxide intermediate, or they are hydroxylated to generate the less 
harmful aflatoxin M1. On the other hand, 101 has been analyzed against A549, K562 and 
L-02 cell lines, and a weak activity has been described (IC50 values 8.1, 2.0 and 4.2, respec-
tively). 

Due to the important implications of aflatoxins in human health and the problems 
associated with their extraction from natural sources, much progress has been made to-
wards the total synthesis of both its racemic and asymmetric versions [99].  

Outstanding contributions in the total synthesis were carried out by the Büchi group, 
such as the first total synthesis of 101 in a racemic version [100]. Considering this deriva-
tive as an example, an asymmetric total synthesis was developed for the first time by Trost 
et al. [101]. The synthesis of the key precursor 107 was carried out via a Pechmann reaction 
starting from 5-methoxy-m-catechol and β-keto ester. Then, the chiral center of the B ring 
was achieved in a high yield and ee through an allyl–palladium intermediate. Once syn-
thetized, an intramolecular Heck reaction under standard conditions gave the new BC 
ring. A similar strategy allowed the construction of the final ring, which through acylation 
and pyrolysis generated the desired aflatoxin 101 (total yield in 9 steps of 1.6%) (Scheme 
16). 

 
Scheme 16. Synthesis of aflatoxin B2a (104) in 8 steps and aflotoxin B1 (101) in 9 steps. 

2.4.2. Lamellarins 
Most commonly, most of the coumarin derivatives extracted from marine sources 

correspond to lamellarins. This group of alkaloids, with an unprecedented chemical struc-
ture in the natural world, has been found in a plethora of marine invertebrates (sponges, 
tunicates and mollusks). Lamellarins A–D were first isolated in 1985 from the mollusk 
Lamellaria sp. in Palau, and over other 70 lamellarins have been isolated since then [102]. 
As shown in Figure 10, their structure contains a 3,4-diarylpyrrole moiety, similarly to the 
previously mentioned ningalin derivatives [103].  

Scheme 16. Synthesis of aflatoxin B2a (104) in 8 steps and aflotoxin B1 (101) in 9 steps.

3.2. Lamellarins

Most commonly, most of the coumarin derivatives extracted from marine sources
correspond to lamellarins. This group of alkaloids, with an unprecedented chemical
structure in the natural world, has been found in a plethora of marine invertebrates
(sponges, tunicates and mollusks). Lamellarins A–D were first isolated in 1985 from
the mollusk Lamellaria sp. in Palau, and over other 70 lamellarins have been isolated
since then [102]. As shown in Figure 10, their structure contains a 3,4-diarylpyrrole moiety,
similarly to the previously mentioned ningalin derivatives [103].

With respect to their biological activity, many lamellarins have been tested in a number
of cancer cell lines. Thus, important anticancer activities have been described with IC50
values from the nanomolar to the micromolar ranges. In this series, lamellarins D (113a,
R1 = R4 = R6 = R7 = H, R2 = R3 = R5 = Me), M (113b, R1 = R4 = H, R2 = R3 = R5 = R6 =
Me, R7 = OH) and K (114a, R1 = R4 = R8 = H, R2 = R3 = R5 = R6 = Me, R7 = OH) may be
highlighted because of their cytotoxicity (38–110 nM). Other analogues such as lamellarin
N (113c, R1 = R3 = R6 = R7 = H, R2 = R4 = R5 = Me), X (113d, R1 = R3 = H, R2 = R4 = R5 =
R6 = Me, R7 = OH) and J (114b, R1 = R6 = R7 = R8 = H, R2 = R3 = R4 = R5 = Me) proved to
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be even more potent and could be potential candidates for an anticancer drug discovery
program [1].

Mar. Drugs 2022, 20, x  15 of 24 
 

 

 
Figure 10. General structures 113 and 114 of lamellarins extracted from marine sources. 

With respect to their biological activity, many lamellarins have been tested in a num-
ber of cancer cell lines. Thus, important anticancer activities have been described with IC50 
values from the nanomolar to the micromolar ranges. In this series, lamellarins D (113a, 
R1 = R4 = R6 = R7 = H, R2 = R3 = R5 = Me), M (113b, R1 = R4 = H, R2 = R3 = R5 = R6 = Me, R7 = 
OH) and K (114a, R1 = R4 = R8 = H, R2 = R3 = R5 = R6 = Me, R7 = OH) may be highlighted 
because of their cytotoxicity (38–110 nM). Other analogues such as lamellarin N (113c, R1 
= R3 = R6 = R7 = H, R2 = R4 = R5 = Me), X (113d, R1 = R3 = H, R2 = R4 = R5 = R6 = Me, R7 = OH) 
and J (114b, R1 = R6 = R7 = R8 = H, R2 = R3 = R4 = R5 = Me) proved to be even more potent 
and could be potential candidates for an anticancer drug discovery program [1].  

In addition, lamellarin D (113a) is able to inhibit the enzyme topoisomerase I, and it 
has been tested against human prostate and leukemia cell lines [104]. Finally, a series of 
lamellarins has been tested in vitro against colorectal cancer cells (COLO-205) with IC50 
values up to 0.0056 μM [105]. Other natural analogues have allowed for SAR studies, by 
demonstrating the interaction with P-glycoprotein (P-gp) and opening new avenues in the 
development of non-cytotoxic P-gp inhibitors for human colon cancers [106].  

For decades, many efforts have been made to develop efficient synthetic routes for 
these structures [107]. Within the strategies most recently described for the construction 
of the skeleton, we can find 1,3-dipolar cycloaddition [108], aza-Nazarov reactions [109] 
or Grob-type coupling [110].  

Okano et al. also described the total synthesis of some lamellarins using a one-pot 
lithiation/Negishi coupling methodology [111,112]. In addition, novel technologies such 
as photocatalysis and electrosynthesis also proved to be effective in the construction of 
the core [113]. For instance, a photocatalytic tungsten-catalyzed [3 + 2] cycloaddition reac-
tion provided a family of pyrrolo [2,1-a]isoquinolines (Scheme 17) [114]. 

 
Scheme 17. Construction of a lamellarin core through a photocatalytic pathway. 

In general, most approaches are based on the functionalization of the commercially 
available pyrrole enroute to the natural product or the construction of a functionalized 
pyrrole to continue the synthesis. In any case, there is still no reported chemical synthesis 

Figure 10. General structures 113 and 114 of lamellarins extracted from marine sources.

In addition, lamellarin D (113a) is able to inhibit the enzyme topoisomerase I, and it
has been tested against human prostate and leukemia cell lines [104]. Finally, a series of
lamellarins has been tested in vitro against colorectal cancer cells (COLO-205) with IC50
values up to 0.0056 µM [105]. Other natural analogues have allowed for SAR studies, by
demonstrating the interaction with P-glycoprotein (P-gp) and opening new avenues in the
development of non-cytotoxic P-gp inhibitors for human colon cancers [106].

For decades, many efforts have been made to develop efficient synthetic routes for
these structures [107]. Within the strategies most recently described for the construction of
the skeleton, we can find 1,3-dipolar cycloaddition [108], aza-Nazarov reactions [109] or
Grob-type coupling [110].

Okano et al. also described the total synthesis of some lamellarins using a one-pot
lithiation/Negishi coupling methodology [111,112]. In addition, novel technologies such
as photocatalysis and electrosynthesis also proved to be effective in the construction of the
core [113]. For instance, a photocatalytic tungsten-catalyzed [3 + 2] cycloaddition reaction
provided a family of pyrrolo [2,1-a]isoquinolines (Scheme 17) [114].
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In general, most approaches are based on the functionalization of the commercially
available pyrrole enroute to the natural product or the construction of a functionalized
pyrrole to continue the synthesis. In any case, there is still no reported chemical synthesis
for some of these derivatives and some retrosynthetic efforts have been made to increase
their diversity.

Khan’s group demonstrated a scalable total synthesis of lamellarins S, Z, G, L, N and
D in 5 or 6 steps (20–27% of overall yield). A retrosynthetic analysis was based on a double
Pd-mediated cross dehydrogenative coupling (CDC) which would construct the desired
core after oxidation. Then, a coupling of the carboxylic acid 120 with phenols would
account for the introduction of the new ring. Finally, a [3 + 2] cycloaddition strategy of
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aziridine-2-carboxylates (121) and β-bromo-β-nitrostyrenes (122) would afford the desired
pyrrole ring (Scheme 18) [115].
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4. Ningalins

Ningalin derivatives contain one or two coumarin scaffolds fused to a pyrrol ring.
Some of these structures have been found from marine sources, containing penta- and
tricyclic scaffolds. Particularly, ningalins A (123), B (124), F (125) and E (126) have been
isolated from the ascidian Didemnun and/or sponge Iotrochota baculifera in the Ningallo reef
region in Australia, giving the name to this family (Figure 11) [116,117]. One of the most
remarkable activities of ningalin analogues is their ability to suppress HIV replication. In
this regard, the structures in Figure 11 have been able to act as potent inhibitors against
the HIV-1 IIIB virus in both MT4 and MAGI cell lines [117,118]. In addition, they also
show potent inhibition against kinases related with neurodegenerative diseases, such as
cyclic-dependent kinase 5 (CDK5), glycogen synthase kinase 3b (GSK3b) and casein kinase
I (CD1d) [116].

Mar. Drugs 2022, 20, x  17 of 24 
 

 

 
Figure 11. Ningalin derivatives from marine sources. 

To illustrate the synthetic approaches of this family, we chose 124 as a representative 
example. In this sense, many of the most recent strategies developed have been based on 
describing a new synthetic methodology and applying it to the preparation of the ninga-
lin. For instance, Okano et al. developed a convergent total synthesis starting from a di-
bromopyrrole derivative [111]. A double Suzuki–Miyaura coupling generated the corre-
sponding diarylated pyrrole 129. Then, removal of the SEM group via an intramolecular 
cyclization step gave rise to the tricyclic analogue 130. The desired product 124 was ob-
tained under Mitsunobu conditions and hydrogenolysis, in a 97% yield (Scheme 19). 

 
Scheme 19. Synthetic methodology for the preparation of ningalin B (124). 

Figure 11. Ningalin derivatives from marine sources.



Mar. Drugs 2023, 21, 37 17 of 23

To illustrate the synthetic approaches of this family, we chose 124 as a representative
example. In this sense, many of the most recent strategies developed have been based
on describing a new synthetic methodology and applying it to the preparation of the
ningalin. For instance, Okano et al. developed a convergent total synthesis starting from
a dibromopyrrole derivative [111]. A double Suzuki–Miyaura coupling generated the
corresponding diarylated pyrrole 129. Then, removal of the SEM group via an intramolec-
ular cyclization step gave rise to the tricyclic analogue 130. The desired product 124 was
obtained under Mitsunobu conditions and hydrogenolysis, in a 97% yield (Scheme 19).
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Moreover, a one-pot multistep methodology for the construction of this core was re-
ported in 2019 by Yang and colleagues. This methodology, comprising coupling, hydrolysis,
reduction and cyclization steps, generated the derivative 134. Subsequent N-alkylation in
the presence of a base and final demethylation gave rise to 124 with an overall yield of 42%
(Scheme 20) [119].
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5. Other Coumarin Derivatives: Bicoumarins and Tetracyclics

Many of the coumarin derivatives already shown are constituted by 3- or 5- fused
cycles and have been classified considering this criterion. Nevertheless, other scaffolds
have been found in different types of Aspergillus in Australia, which have been identified as
dimers of coumarin, demethylkotanin (136) and bicoumanigrin (137) or with a tetracyclic
core, aspergiolide A (138) and B (139) [120–122] (Figure 12). The antiproliferative activity
and pharmacokinetic properties of 138 and 139 have been measured against several cancer
cell lines. The best results have been displayed in A-549 and HL-60, with IC50 = 0.13 and
0.28 µM for 138, and IC50 = 0.24 and 0.51 µM for 139, respectively. Moreover, an in silico
analysis of aspergiolide B (139) indicated a low binding free energy in the active site, which
could be a potential EGFR-TK inhibitor [123].
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To the best of our knowledge, the total synthesis of 138 and 139 has not yet been
described. However, Li, Liu and colleagues developed a strategy for the preparation of
the main core in 2019 [124]. Moreover, a library of simplified analogues was synthetized
and evaluated against various cell lines. The core structure (143) was constructed in a two-
step procedure based on the Knoevenagel condensation and transesterification sequence,
followed by an intramolecular Friedel–Crafts acylation. This protocol implies an advance
in the underdeveloped synthesis of aspergiolides (Scheme 21).
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assays. Particularly, some of these derivatives and analogues have been highlighted be-
cause of their antitumor, antioxidant, antimicrobial and/or enzymatic inhibitory properties.
For instance, psoralene and alternariol derivatives show promising cytostatic and pho-
tochemotherapeutic properties against KB and KBV200. Ningalins act as potent inhibitors
against the HIV-1 virus and kinases related with neurodegenerative diseases (CDK5, GSK3b,
CD1d). Lamellarins have been tested in a number of cell lines, demonstrating cytotoxic and
antitumor effects, and being the most interesting due to their pharmacological properties.
Although the extraction of coumarin derivatives from oceans is tedious, and low quantities
are normally obtained, many synthetic efforts have been made to achieve efficient syn-
thetic methodologies. Classical strategies involving Knoevenagel, Pechmann and Perkin
condensations, as well as Wittig or ring-closing metathesis, have been used to construct
the coumarin core. The total syntheses of trichodermamides, aflatoxins and lamellarins
have been extensively carried out during the last decades. Moreover, transition metal
catalysis, photocatalysis or even multicomponent approaches have been used as convenient
strategies to expand the chemical space of coumarin derivatives. We envision that chemical
modifications of marine-derived coumarins may improve their pharmacological properties
and provide a step forward in the development of new therapies.
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