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Abstract: Ribosome-inactivating proteins (RIPs) are known as RNA N-glycosylases. They depurinate
the major rRNA, damaging ribosomes and inhibiting protein synthesis. Here, new single-chain
(type-1) RIPs named sodins were isolated from the seeds (five proteins), edible leaves (one protein)
and roots (one protein) of Salsola soda L. Sodins are able to release Endo’s fragment when incubated
with rabbit and yeast ribosomes and inhibit protein synthesis in cell-free systems (IC50 = 4.83–79.31 pM).
In addition, sodin 5, the major form isolated from seeds, as well as sodin eL and sodin R, isolated
from edible leaves and roots, respectively, display polynucleotide:adenosine glycosylase activity and
are cytotoxic towards the Hela and COLO 320 cell lines (IC50 = 0.41–1200 nM), inducing apopto-
sis. The further characterization of sodin 5 reveals that this enzyme shows a secondary structure
similar to other type-1 RIPs and a higher melting temperature (Tm = 76.03 ± 0.30 ◦C) and is non-
glycosylated, as other sodins are. Finally, we proved that sodin 5 possesses antifungal activity against
Penicillium digitatum.

Keywords: antifungal activity; agretti; cytotoxicity; edible plants; protein purification; rRNA
N-glycosylases

Key Contribution: Here, we reported the isolation and characterization of seven type-1 RIPs named
sodins from Salsola soda, known for its edible leaves (agretti in Italian). Furthermore, we focused our
attention on their biological and antifungal activities.

1. Introduction

Ribosome-inactivating proteins (RIPs) are a group of ribotoxic enzymes which act on
ribosomes in a highly specific and irreversible manner. They are N-glycosylases (EC 3.2.2.22)
capable of hydrolyzing the N-glycosidic bond of a specific adenosine in the sarcin ricin loop
(SRL) of major rRNA (A4324, rat liver 28S rRNA numbering) [1]. The consequent formation
of an apurinic site prevents the interaction of prokaryotic or eukaryotic elongation factors
(EF-G or EF-2, respectively) with ribosomes, blocking mRNA-tRNA translocation and
thus inhibiting protein synthesis and inducing the apoptotic pathway [2]. In addition,
these enzymes possess polynucleotide:adenosine glycosylase (PNAG) activity on different
polynucleotide substrates (e.g., viral RNA and herring sperm DNA) [3–5]. On the other
hand, other enzymatic activities such as DNAse [6,7], RNAse [8], chitinase [9], phosphatase,
lipase [10] and superoxide dismutase properties [11–13] have also been attributed to RIPs,
although some authors ascribe these activities to possible contamination [4,14]. RIPs are
mostly found in flowering plants [15,16], few are found in fungi [17] and bacteria [18] and
one is found in alga [19].
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Based on the presence or absence of a quaternary structure, there are two main groups
of RIPs: single-chain proteins (type-1 RIPs), with a molecular weight of ~30 kDa and basic
pI, and two-chain proteins (type-2 RIPs), with a molecular weight of ~60 kDa and neutral
pI. The latter consist of an enzymatic active A-chain linked through a disulphide bridge
to a lectinic B-chain, which allows for the entry into the cell. For this reason, type-2 RIPs
are more toxic with respect to type-1 RIPs. In addition, a third group of non-canonical
single-chain RIPs (type-3 RIPs) was found only in Poaceae, including JIP60 isolated from
barley [20,21] and b-32 isolated from maize [22], made of a type-1-like N-terminal domain
with N-glycosylase activity, covalently linked to a C-terminal domain with an unknown
function [23].

Although their physiological role is still unknown, RIPs have a broad spectrum of
activities, including antiviral, antibacterial and antifungal action, as well as anticancer
properties [24–26]. Thus, the potential applications of RIPs span many fields, from agricul-
ture (e.g., toxicity to pests and antifungal activity) [27] to biomedicine for the construction
of antibody-RIPs conjugates (i.e., immunotoxins) against target cancer cells [28]. From
the foregoing, it is clear that continuing the study of RIPs distribution in higher plants
(including edible species) can contribute to expanding the availability on novel potential
biotechnological and pharmacological tools.

Salsola soda L., commonly known as barilla plant or ‘agretti’ in Italy, is an annual,
edible halophytic plant that is widespread in south Europe, mostly near the coast. In
the past, the plant was used for the production of an impure sodium carbonate named
‘barilla’ from the sodium chloride in the soil (e.g., to make soap and glass) [29]. The plant
tissues are rich in alkaloids, saponins, coumarins and sterols, as well as flavonoids with
anti-inflammatory and antidiabetic potential [30]. According to the taxonomy, S. soda
belongs to Caryophyllales [31], a plant order known as a source of RIPs [32]. The plant is an
Amaranthacea with succulent leaves, small sessile hermaphrodite flowers and indehiscent
fruits. It is known that the isoforms of these ribonucleolytic enzymes can be found in
different tissues of the same plant [33–35] or in the same plant tissue [36]. However,
little information about the distribution of RIPs in plant organs and tissues is available
in the literature, especially with regard to edible plants, considering that they are often
consumed raw [37].

In this framework, we report the purification and characterization of seven novel
RIPs named sodins: five from the seeds, one from the roots and one from the edible
leaves of S. soda. We describe the distribution of both N-glycosylase and PNAG activity
in the different tissues of S. soda. Moreover, considering the high expression of sodins
in the seeds, we further characterized the major form (i.e., sodin 5) by evaluating some
structural features, the cytotoxic effect in cancer cell lines and the antifungal activity against
Penicillium digitatum.

2. Results and Discussion
2.1. Purification of Type-1 RIPs from Salsola soda Seeds

The crude extract from S. soda seeds, obtained by homogenizing seeds (50 g) in 500 mL
of phosphate-buffered saline, pH 7.2, possessed the ability to depurinate the hsDNA sub-
strate (data not shown) [38]. Thus, to ascertain the presence of type-1 RIPs, the total crude
extract was subjected to acid precipitation following a protocol for the extraction of basic
proteins [34]. The supernatant was subjected to step-wise cation exchange chromatography,
and eluted basic proteins were separated by gel-filtration. Pooled fractions with a molec-
ular weight around 29 kDa were further subjected to cation exchange chromatography
on the CM-Sepharose column, eluted with a linear NaCl gradient (0–0.17 M) in 5 mM
Na-phosphate buffer. As shown in Figure 1A, five protein peaks with PNAG activity
were detected, confirming the presence of various PNAG-enzymes (isoforms), which is a
common feature in plant RIP expression [15].
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Figure 1. (A) Elution profile after cation exchange chromatography on the CM-Sepharose column,
showing five peaks (peaks 1–4 and sodin 5) with PNAG activity (arbitrary units). (B) SDS-PAGE
analysis of 194–201 fractions (5.0 µg) from sodin 5 obtained after cation exchange chromatography (A).
M, molecular weight markers. SDS-PAGE in the presence of β-mercaptoethanol was carried out in
12% polyacrylamide separating gel and then stained with Coomassie brilliant blue.

In this framework, we decided to first characterize the main protein peak, eluted at a
higher ionic strength (peak 5). In particular, the fractions from 194 to 201, corresponding to
the main peak (hereafter, sodin 5), were evaluated by SDS-PAGE, showing a single protein
band with an electrophoretic migration of ~29 kDa (Figure 1B). Thus, the fractions were
pooled, dialyzed and used for further enzymatic and structural characterization.

The purification yield obtained by this procedure was of about 2.9 ± 0.15 mg/100 g of
seeds for sodin 5.

2.2. Enzymatic and Structural Features of Sodin 5

In order to ascertain that the in vitro protein synthesis inhibition and the PNAG
activity of sodin 5 were due to N-β-glycosylase action (characteristic enzymatic hallmark
of RIPs from plants), we tested the β-fragment release by incubating the protein with rabbit
ribosomes (Endo’s assay) [32]. As shown in Figure 2A, sodin 5 is able to deadenylate
rRNA from rabbit reticulocyte lysate, releasing the β-fragment after aniline treatment.
Furthermore, as demonstrated by the PNAG activity assay, sodin 5 is ~1.8-fold less active
than quinoin, a type-1 RIP isolated from Chenopodium quinoa seeds and used as a reference
PNAG-enzyme (Figure 2B) [39].

In addition, sodin 5 purified from S. soda seeds inhibited protein synthesis in a rabbit
reticulocyte lysate system, with an IC50 value of 4.83 pM (0.14 ng/mL). This value is similar
to that of quinoin (IC50= 5.08 pM; 0.15 ng/mL) and ~7.7-fold lower than that of saporin S6
(IC50 = 37 pM; 1.09 ng/mL) type-1 RIP isolated from Saponaria officinalis seeds [40]. On the
other hand, the IC50 value of sodin 5 is of keen interest considering that type-1 RIPs have
values of IC50 between 10 and 4000 pM [41].

The high amount of sodin 5 obtained from seeds of S. soda allowed us to perform
a study on its secondary structure by Circular Dichroism (CD-) analysis. The far UV
CD-spectrum of sodin 5 suggested that the periodic secondary structure of the protein is
partially dominated by the α-helix, with a predicted percentage of ~30% (~25% β-strand)
(Figure 3A). Therefore, these data show that sodin 5 has a secondary structure content
similar to other RIPs, sharing a common 3D fold (RIP fold) consisting of a β-sheet N-
terminal domain and an α-helix-rich C-terminal domain [42,43]. Subsequently, the thermal
denaturation curve of sodin 5 was obtained using UV-spectroscopy by measuring the
increment of absorbance at 278 nm, increasing the temperature. The melting temperature
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(Tm) of sodin 5 was 76.03 ± 0.30 ◦C (Figure 3B). The thermal unfolding curve at pH 7.2
shows that this type-1 RIP is a highly stable protein. In particular, the Tm value of sodin 5
is higher than that of both quinoin (68.2 ◦C [39]) and saporin S6 (58.0 ◦C) [44]. Both quinoin
and saporin S6 have been isolated from Caryophyllales, the same plant order of S. soda.
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Figure 2. (A) rRNA N-glycosylase activity on rabbit ribosomes. Quinoin from C. quinoa seeds (3.0 µg;
lanes 3 and 4) as a positive control and sodin 5 (3.0 µg; lanes 5 and 6) were incubated with ribosomes.
Then, rRNA was extracted, treated with acid aniline and separated as described in the Materials
and Methods section. (+) and (−) indicate with and without aniline treatment. ‘β-frag’ indicates
the position of Endo’s fragment released by the aniline treatment of rRNA from rabbit ribosomes.
(B) Polynucleotide:adenosine glycosylase activity of BSA (negative control) or quinoin and sodin 5
type-1 RIPs. Proteins (3.0 µg) were assayed on salmon sperm DNA as described in the Materials and
Methods section. The mean results ± SD of three experiments performed in triplicate are reported.
The data were compared to the control and analyzed by one-way ANOVA with Dunnett’s post hoc
test (****, p < 0.0001).
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Finally, considering that several type-1 RIPs are N-glycosylated, a specific analysis for
glycoproteins detection was carried out. When analyzed by SDS-PAGE and sugar staining,
sodin 5 appeared to be non-glycosylated (Figure S1).

2.3. Minor Forms of Type-1 RIPs from Salsola soda Seeds

To obtain information on minor peaks 1–4 (Figure 1A), showing PNAG activity and
eluted at a lower ionic strength with respect to sodin 5, the fractions of each protein peak
were analytically re-chromatographed by FPLC on an AKTA Purifier System from cation
exchange chromatography using a Source 15S PE 4.6/100 column (Figure S2A). Each eluted
peak displayed a single band of ~29 kDa by SDS-PAGE analysis (Figure S1A).

The pooled fractions of peaks 1–4, (hereafter sodins 1–4) were able to release the
β-fragment similarly to sodin 5 as a consequence of the RIPs action (Figure S3). Therefore,
sodins 1–4, with a molecular weight of ~29 kDa and specific N-β-glycosylase activity, can be
considered type-1 RIPs. Moreover, among type-1 RIPs from S. soda seeds, sodin 1 displayed
the higher PNAG activity (~2.3-fold more active than sodin 5), while sodins 2, 3 and 4
are, respectively, ~1.3-, 2.0- and 1.8-fold less active than sodin 5 (Figure S2B). These data
agreed with the documented different ability of type-1 RIPs to deadenylate nucleic acid
substrates [3].

In addition, the specific analysis for glycoproteins detection after SDS-PAGE was
carried out. Similar to sodin 5, the analysis shows that these enzymes are non-glycosylated
(Figure S1B).

The purification yield obtained by this procedure was of about 0.37 ± 0.01, 0.45 ± 0.02,
0.47 ± 0.01 and 0.67 ± 0.02 mg/100 g of seeds for sodins 1–4, respectively.

2.4. Type-1 RIPs from Edible Leaves and Roots of Salsola soda

In order to evaluate the RIPs distribution in the tissues of S. soda, the same protocol
used for the purification of sodins from S. soda seeds was also applied on the edible
leaves and roots of this plant. The approach, coupled with the detection of enzymatic
activity, allowed for the purification of two different type-1 RIPs from S. soda edible leaves
and roots, respectively. However, considering the lower number of raw basic proteins,
after cation step-wise chromatography and gel-filtration (see Section 4.2), the pools of basic
proteins from the edible leaves and roots with a molecular weight of 29 kDa were separately
subjected to analytical cation exchange chromatography using a Source 15S PE 4.6/100
column on AKTA Purifier System (Figure 4A).

The single protein peaks from edible leaves and roots were analyzed by SDS-PAGE to
verify the purity and integrity. As reported in Figure 4B, both protein peaks showed the
presence of a single band with an electrophoretic migration of ~29 kDa. These two-novel
type-1 RIPs from edible leaves and roots were named sodin eL and sodin R, respectively.

The purification yield obtained by this procedure was of about 17.5 ± 0.61 µg/100 g
of edible leaves and 27.8 ± 0.87 µg/100 g of roots for sodin eL and sodin R, respectively,
confirming the low number of type-1 RIPs in edible leaves and roots compared to the
quantity found in seeds.

In addition, the specific analysis for glycoproteins detection after SDS-PAGE shows
that these enzymes are non-glycosylated, like both sodin 5 and sodins 1–4 from S. soda
seeds (Figure S4).

Finally, the N-β-glycosylase action (characteristic enzymatic hallmark of RIPs from
plants) of sodin eL and sodin R has been tested. As shown in Figure 5A, both proteins
release the β-fragment by incubating the protein with rabbit ribosomes (Endo’s assay)
following aniline treatment, similarly to sodin 5 from S. soda seeds. In addition, type-1 RIPs
from S. soda roots and edible leaves also displayed PNAG activity. In particular, as shown
in Figure 5B, sodin eL and sodin R displayed a PNAG activity that was ~2.2- and 2.9-fold
higher than that of sodin 5.
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described in the Materials and Methods section. (+) and (−) indicate with and without aniline
treatment. ‘β-frag’ indicates the position of Endo’s fragment released by the aniline treatment of
rRNA from rabbit ribosomes. (B) Polynucleotide:adenosine glycosylase activity of BSA (negative
control) or sodin 5, sodin eL and sodin R type-1 RIPs. Proteins (3.0 µg) were assayed on salmon
sperm DNA as described in the Materials and Methods section. The mean results ± SD of three
experiments performed in triplicate are reported. Data were compared to the control and analyzed
by one-way ANOVA with Dunnett’s post hoc test (****, p < 0.0001).

In addition, since the rRNA N-glycosylase activity might play a role in plant defense,
we assayed the effect of sodin 5, sodin eL and sodin R, as well as quinoin, on ribosomes
from yeasts (Saccharomyces cerevisiae) homologous to ribosomes from the putative fungal
pathogens of plants. As shown in Figure 6, these RIPs displayed rRNA N-glycosylase
activity on yeast ribosomes, as indicated by the release of a diagnostic β-fragment identical
to that reported for BE27 from Beta vulgaris L. (sugar beet) and type-1 RIPs from Phytolacca
dioica L. [45,46].
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Finally, sodin eL and sodin R inhibited protein synthesis in a rabbit reticulocyte
lysate system, with IC50 values of 79.31 pM (2.3 ng/mL) and 65.52 pM (1.9 ng/mL),
respectively. These values are ~15-fold higher with respect to the IC50 of sodin 5 isolated
from S. soda seeds.

2.5. Cytotoxic Effects of Sodins from S. soda Tissues in Cell Cultures

RIPs are cytotoxic toward several human cell lines (normal and malignant), although
type-1 RIPs are usually less cytotoxic than type-2 RIPs due to the lack of a B-chain, which
improves the entry of the A-chain in the cells. Indeed, typical IC50 values of toxic type-2
RIPs on cultured animal cells are in the range of 0.3–17,000 pM, while IC50 values of type-1
RIPs are in the range of 170–3300 nM [41]. Thus, we decided to verify the cytotoxic effects
of sodins or quinoin on both HeLa and COLO 320 cell lines.

Table 1 lists the IC50 values (concentration of protein causing the death of 50% of cells)
of sodin 5, sodin eL and sodin R from S. soda seeds, edible leaves and roots, respectively,
compared with the IC50 of quinoin. Type-1 RIPs from both S. soda tissues and C. quinoa
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seeds were toxic to HeLa and COLO 320 cells, exhibiting IC50 values ranging from 0.41
to 1200 nM.

Table 1. Cytotoxicity of sodins and quinoin. HeLa or COLO 320 cells were grown in RPMI
1640 medium and incubated with different RIP concentrations for 48 or 72 h, and cell viability
was evaluated by a colorimetric assay, as indicated in Section 4.6 of the Materials and Methods section.
When reported, cells were pre-treated with Z-VAD for 3 h (see Materials and Methods) and then
incubated with different RIP concentrations. Data represent the mean of three experiments performed
in triplicate.

Type-1 RIP
HeLa 48 h COLO 48 h COLO 72 h

– +Z-VAD
Pretreatment –

quinoin 1.9 × 10−9 1.0 × 10−7 1.0 × 10−6 3.9 × 10−7

sodin 5 2.0 × 10−9 2.5 × 10−7 1.2 × 10−6 3.3 × 10−7

sodin eL 1.3 × 10−9 – – >1.2 × 10−7

sodin R 4.1 × 10−10 – – 1.6 × 10−7

The most sensitive were HeLa cells, with IC50 values from 0.41 to 2.0 nM after 48 h of
treatment, while COLO 320 cells have values between 160 - >120 nM after 72 h of treatment
(Figure 7A). These data agree with those previously reported for other type-1 RIPs, such as
type-1 RIPs isolated from P. dioica, which exhibit IC50 values ranging from 1.0 to 1000 nM
against the same cell lines [45]. On the other hand, the cytotoxicity of sodin 5 and quinoin
is similar, with IC50 values 103-fold higher for COLO 320 cells with respect to Hela cells.

There are important differences in toxicity among type-1 RIPs based on their capability
to reach the ribosomes of target cells. Based on the above studies, sodins and quinoin
display a considerable toxicity against HeLa cells for type-1 RIPs. To see if sodin 5 and
sodin R can reach and inactivate the ribosomes after being endocytosed, we analyzed the
rRNA from HeLa cells after 48 h of RIP treatment. Figure 7B displayed that the ribosomes
were depurinated, as proved by the detection of a diagnostic β-fragment following RNA
treatment with acid aniline. Thus, both sodin 5 and sodin R can reach the ribosomes of
target cells, inhibiting protein synthesis.

Several studies highlight that RIP cytotoxicity in the cells is associated with their ability
to induce apoptosis [12]. Apoptosis might be a consequence of the ribotoxic stress induced
by the RIP after entry into the cytosol, or both processes could run in parallel. Apoptosis
is characterized by cell shrinkage, nuclear condensation, changes in the cell membrane
and mitochondria, DNA fragmentation into 200 base oligomers and protein degradation
by caspases. In this framework, in order to ascertain if the observed cytotoxic effects of
both sodin 5 and quinoin were mediated via apoptosis, we evaluated the sensitivity to the
pan-caspase inhibitor Z-VAD or the cleavage of chromosomal DNA into oligonucleosomal
fragments, considered a late-stage apoptosis hallmark. In particular, HeLa cells were pre-
treated and maintained in 100 µM Z-VAD for 48 h, and the cell viability was determined for
different sodin 5 and quinoin concentrations. As shown in Figure 7A, the presence of Z-VAD
improved cell survival. In particular, in the presence of Z-VAD, viability increased from 14
to 49% in 4.3 × 10−7 M sodin 5-treated cells and from 14 to 46% in 5.7 × 10−7 M quinoin-
treated cells. On the other hand, when COLO 320 cells were treated for 72 h with RIP
concentrations close to their IC50, the breakdown of the nuclear DNA into oligonucleosomal
fragments was clearly observed (Figure 7C).
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Figure 7. Induction of cytotoxicity and apoptosis on HeLa and COLO 320 cells by sodins and
quinoin (A). Effect of sodins or quinoin on the viability of HeLa (left panel) and COLO 320 (right
panel) cells. Cells were grown in RPMI 1640 medium and incubated with different type-1 RIP
concentrations for 48 h (HeLa) and 72 h (COLO 320), and cell viability was evaluated by a colorimetric
assay, as indicated in Section 4.6 of the Materials and Methods section. To investigate the effect of
Z-VAD on the viability of HeLa cells, the cells were preincubated for 3 h with Z-VAD and then
incubated with different concentrations of sodin 5 or quinoin for 48 h, and cell viability was evaluated.
Data represent the mean ± SD of two experiments performed in duplicate. (B) rRNA N-glycosylase
activity of sodin 5 and sodin R on RNA from HeLa cells. rRNA N-glycosylase activity was evaluated
as reported in the Materials and Methods section. Each lane contained 2.0 µg of RNA isolated
from either untreated cells (C, control) or cells incubated with 8 nM of sodin 5 or 5 nM of sodin R
for 48 h. The arrow indicates the RNA fragment released as a result of RIP action upon the acid
aniline treatment. Numbers indicate the size of the standards (M) in nucleotides. (C) Effect of sodin 5
and quinoin on internucleosomal DNA fragmentation. COLO 320 cells were incubated in the absence
(C, control) or presence of 0.4 µM of sodin 5 or 0.6 µM of quinoin (Q) for 72 h. The DNA was isolated,
and 4.0 µg was electrophoresed, as indicated in Section 4.7. The numbers indicate the corresponding
size of the standards (M) (λDNA HindIII/EcoRI) in Kb. (+) and (−) indicate with and without
aniline treatment.
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Overall, our data suggested that the apoptotic pathway was implicated in the cell
death mediated by sodin 5 and quinoin, as already proved for other type-1 RIPs [41].

2.6. Effect of Sodin 5 and Quinoin on the Growth of P. digitatum

A potential role for RIPs as plant defense proteins has been proposed based on their
enzymatic activity, which can act by either inactivating pathogen ribosomes or their own
ribosomes, causing cell death [27]. Antifungal activity has been attributed to several RIPs.
In particular, a strong antifungal activity against P. digitatum has been described for the
apoplastic type-1 RIP beetin 27 (BE27) from sugar beet and for the type-1 RIPs PD-S2 and
dioicin 2 from P. dioica [45,47]. P. digitatum is a necrotrophic fungus responsible for the
postharvest decay of citrus, an economically important crop worldwide. Therefore, we
carried out experiments to evaluate the effects of sodin 5 from S. soda seeds and quinoin
from C. quinoa seeds on the growth of P. digitatum. Thus, conidia of P. digitatum were grown
in PDB medium for 24 h before exposure to different RIP concentrations, continuing the
treatment for a further 46 h. As shown in Figure 8, sodin 5 and quinoin reduced the fungal
growth in a concentration-dependent manner. Both RIPs induced a strong decrease in
the growth at 40 µg/mL. Thus, 40, 10 and 4.0µg/mL of sodin 5 resulted in 70%, 34% and
6% growth inhibition, respectively, after 70 h of growth. Similar results were obtained for
quinoin, with 61%, 27% and 10% growth inhibition at the same concentrations. Sodin 5
and quinoin added from the beginning to the conidia as starting material inhibited fungal
growth to the same extent as RIPs added at 24 h (once conidial germination occurred;
data not shown), suggesting that sodin 5 and quinoin affect mycelial growth rather than
conidial germination. As shown in Figures 2 and 6, sodin 5 and quinoin exhibited rRNA
N-glycosylase activities against mammalian and fungal ribosomes, respectively. Thus, the
antifungal activities of sodin 5 and quinoin against P. digitatum could be mediated by the
inhibition of protein synthesis together with the ability to cross the membrane and enter
into the fungal cells, as has been postulated for other type-1 RIPs [45,47].
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Figure 8. Antifungal activity of sodin 5 (left panel) and quinoin (right panel) against Penicillium
digitatum, measured in a microtiter plate bioassay. Conidia of P. digitatum were grown in Potato
Dextrose Broth (PDB) for 24 h before exposure to different RIP concentrations. Fungal growth was
followed for 70 h and measured as an increase in absorbance at 650 nm. The curves represent the
buffer control or different amounts (µg/mL) of both toxins. The mean results ± SE of two experiments
performed in triplicate are reported.
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3. Conclusions

In conclusion, we have isolated seven type-1 RIPs from the different tissues of S. soda
(‘agretti’ in Italian): five type-1 RIPs from seeds (sodins), one from edible leaves (sodin
eL) and one from roots (sodin R). All these enzymes are able to release the β-fragment
following incubation with rabbit or yeast ribosome and exhibit PNAG activity.

Sodin 5, the major form expressed in seeds (2.9 ± 0.15 mg/100 g of seeds), with respect
to other type-1 RIPs from S. soda tissues, exhibits an α+β structure typical of type-1 RIPs
with a high melting temperature (Tm = 76.03 ± 0.30 ◦C) and is non-glycosylated, as the
other six sodins. Furthermore, sodin 5, sodin eL and sodin R show cytotoxic effects towards
the HeLa and COLO 320 cell lines, inducing apoptosis. In addition, since fungi are among
the most important plant pathogens, we tested the antifungal properties of both sodin 5
and quinoin against P. digitatum, finding that both RIPs possess concentration-dependent
antifungal activity.

Overall, this research aims to revisit RIPs in edible plants in light of their possible use
as antiviral, antifungal and antipathogenic tools in agri-food, overcoming the preconception
about transgenic plants, as these enzymes are physiologically present in edible plants.

4. Materials and Methods
4.1. Materials

The chemicals for chromatography were previously reported [39,48,49]. Single-stranded
salmon sperm DNA was obtained from Sigma-Aldrich (St. Louis, MO, USA). Quinoin from
the seeds of C. quinoa and PD-L4 from the leaves of P. dioica were isolated as previously
reported [34,39]. The nuclease-treated rabbit reticulocyte lysate system was purchased
from Promega (Madison, WI, USA).

The medium and the other chemicals were from Sigma Chemical Co. (St. Louis, MO,
USA). The RPMI 1640 medium, fetal bovine serum (FBS), penicillin, streptomycin and
trypsin were purchased from GIBCO BRL (Barcelona, Spain). The Z-VAD-fmk (pan-caspase
inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone) named Z-
VAD was purchased from R&D Systems (Abingdon, UK).

Buffer A: 5 mM Na-phosphate, pH 7.2, containing 0.14 M NaCl; buffer B: 10 mM
Na-acetate, pH 4.0; and buffer C: 5 mM Na-phosphate, pH 7.2.

4.2. Purification of Type-1 RIPs from Seeds, Roots and Edible Leaves of S. soda

Type-1 RIPs from S. soda were purified with the same protocol used for quinoin,
type-1 RIP from C. quinoa seeds, as reported by Landi et al., 2021 [39]. Briefly, the crude
extract in buffer A was first subjected to acid precipitation at pH 4.0 and cation step-wise
chromatography using a SP-Streamline resin [column L × I.D. 20 cm × 30 mm, flow
rate 3.0 mL/min; Cytiva, Buccinasco (MI) Italy]. Subsequently, the basic proteins, eluted
with 1.0 M NaCl in buffer C, were gel-filtrated [HiLoad® 26/60 Superdex® column L × I.D.
60 cm × 26 mm, flow rate 2.5 mL/min (range 100–10 kDa); Cytiva] to separate the proteins
by molecular weight, and then, basic proteins with a molecular weight of about 29 kDa
were subjected to cation exchange chromatography on CM-Sepharose fast flow (Cytiva;
column L × I.D. 25 cm × 16 mm) equilibrated in buffer C and eluted with a NaCl gradient
up to 0.17 M (buffer C, 500 mL, buffer C containing 0.17 M NaCl, 500 mL; total volume 1 L
using a peristaltic pump).

However, when the number of basic proteins after gel-filtration was lower (less
than 200 µg), CM-Sepharose chromatography was replaced by FPLC on an AKTA Pu-
rifier System (Amersham Pharmacia; Milan, Italy) using a Source 15S PE 4.6/100 column,
equilibrated in buffer C and eluted by a linear gradient from 0 to 50% of buffer C containing
NaCl 0.3 M over 60 min (flow rate 1.0 mL/min). The same chromatographic step (Source
15S column) was carried out for minor forms of type-1 RIPs from the seeds of S. soda after
cation exchange chromatography on the CM-Sepharose column.
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4.3. Enzymatic Assays
4.3.1. rRNA N-Glycosylase Activity of RIPs on Rabbit Ribosomes

The rRNA N-glycosylase assay was conducted as previously described [45]. Rabbit
reticulocytes lysate (40 µL) was incubated with RIP (3.0 µg) at 37 ◦C for 1 h. After treatment,
the RNA was extracted by phenolization, treated with 1 M aniline acetate (pH 4.5) and
precipitated with cold ethanol. Purified RNA was analyzed by polyacrylamide gel in
denaturing conditions [7 M urea/5% acrylamide (w/v)] and stained with ethidium bromide.

4.3.2. rRNA N-Glycosylase Activity of RIPs on Yeast Ribosomes

The preparation of the 30,000 g (S30) supernatants from yeast was performed as
described elsewhere [46]. The rRNA N-glycosylase activity was assayed in 50 µL samples
of S30 supernatant from yeast, which was incubated with 5.0 µg of sodin 5, 0.7 µg of
sodin eL, 1.5 µg of sodin R or 5.0 µg of quinoin for 1 h at 30 ◦C. After treatment, the RNA
was extracted with phenol and treated with aniline for 10 min at 23 ◦C. The RNA samples
were separated on a polyacrylamide gel in denaturing conditions [7 M urea/5% acrylamide
(w/v)] and stained with Gel Red nucleic acid staining [50].

4.3.3. Polynucleotide: Adenosine Glycosylase Activity on Salmon Sperm DNA

The adenine release was measured as previously reported [45], incubating salmon
sperm DNA (10 µg) with RIPs (3.0 µg) in 300 µL 50 mM magnesium acetate (pH 4.0)
containing 100 mM KCl, at 30 ◦C for 1 h. After incubation, the DNA was precipitated with
cold ethanol and centrifuged. Adenine release was determined spectrophotometrically,
reading the supernatant at 260 nm. On the other hand, to evaluate arbitrary units of PNAG
activity on single fractions from S. soda seeds after CM-Sepharose chromatography, an
equal volume was tested.

4.3.4. Cell-Free Protein Synthesis Inhibition

The effect of RIPs on protein synthesis was determined through a coupled transcription-
translation in vitro assay using a rabbit reticulocytes lysate system, as described else-
where [51]. Samples of RIPs were diluted and added to the reaction mixture as previously
described [51]. Three experiments were conducted in duplicate, and IC50 (concentration
that inhibits 50% protein synthesis) values were calculated by linear regression.

4.4. Analytical Procedures

The proteins’ homogeneity was evaluated by SDS-PAGE with a Mini-Protean II (Bio-
Rad; Milan, Italy) using a 6% stacking and 12% separating polyacrylamide gel under
reducing conditions; a precision plus protein kit (Bio-Rad) was used as the reference
proteins. The protein concentration was determined by a Pierce BCA Protein Assay Kit
(Life Technologies Italia Fil., Monza, Italy). The glycosylation analysis was performed
in gel after SDS-PAGE by using the Pro-Q™ Emerald 300 Glycoprot Probes Kombo (Life
Technologies Italia). Glycosylated proteins were visualized by a ChemiDocTM XRS system.

4.5. Circular Dichroism and Thermal Stability Determination

The far-UV CD spectrum of sodin 5 was determined at 25 ◦C on a Jasco J-815 dichro-
graph [Jasco Europe, Cremella (LC) Italy]. A protein concentration of 0.15 mg/mL (5.15 µM)
in 10 mM Na-phosphate, pH 7.2 (path-length quartz cuvette of 0.1 cm), was used for the
far-UV spectrum measurements. DichroWeb (online analysis for protein Circular Dichroism
spectra; http://dichroweb.cryst.bbk.ac.uk/html/home.shtml (accessed on 8 June 2022); [52])
was used to estimate the percentages of secondary structural elements.

Protein (~0.15 mg/mL) in 10 mM sodium phosphate, pH 7.2, was subjected to heat-
induced denaturation, as previously reported [39].

http://dichroweb.cryst.bbk.ac.uk/html/home.shtml
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4.6. Cell Viability Assays

The COLO 320 (human colon adenocarcinoma) and HeLa cell lines used in this study
were obtained from the European Collection of Cell Cultures (ECACC). The cells were
grown in RPMI 1640 medium (GIBCO BRL, Barcelona, Spain) supplemented with 10%
fetal bovine serum (FBS), 100 U mL−1 penicillin and 0.1 mg mL−1 streptomycin under 5%
CO2 at 37 ◦C. Cell viability was determined as previously reported [45]. The concentration
of RIPs causing a 50% reduction in viability (IC50) was calculated by linear regression
analysis. Sodin 5 and quinoin toxicity was also evaluated using HeLa cells pre-treated
with 100 µM of the pan-caspase inhibitor Z-VAD. The reagent was added to cells 3 h before
RIP administration, and the cell viability was determined for different RIP concentrations.

4.7. DNA Fragmentation Analysis

COLO 320 cells (1 × 106/plate) were incubated for 72 h in the presence of RIP
(~0.5 µM). After treatment, cells were harvested by centrifugation (1000× g for 5 min).
The pellets were lysed in 50 mM Tris Cl, pH 8.0, containing 10 mM EDTA and 0.5% SDS,
and the DNA was isolated following the manufacturer’s instructions [Genomic Prep Cells
and Tissue DNA Isolation Kit (GE Healthcare, Madrid, Spain)]. DNA electrophoresis was
carried out as previously reported [45].

4.8. Antifungal Activity Measurements

The growth inhibition assays of sodin 5 from S. soda seeds and quinoin from C. quinoa
against P. digitatum were performed in 96-well microtiter plates. The conidia of P. digitatum
(100 spores/well), obtained as indicated [47], were incubated at 26 ◦C in 150 µL PDB
medium for 24 h to allow for conidia germination. The incubation was continued in the
presence or in the absence of different RIP concentrations for a further 46 h. Fungal growth
was followed for 70 h and measured as an increase in absorbance at 650 nm. Fungal
growth was monitored spectrophotometrically using a microtiter plate reader (ELISA
reader Multiskan) after 0, 24, 45, 56 and 70 h of incubation. The absorbance of cultures
without cells was subtracted as the background.
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cleotide:adenosine glycosylase activity of sodins 1–4; Figure S3: rRNA N-glycosylase activity of
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