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In this paper, we propose a group decision-making procedure to rank alternatives in the 
context of ordered qualitative scales that not necessarily are uniform (the proximities 
between consecutive terms of the scales can be perceived as different). The procedure 
manages two ordered qualitative scales. One of them is used to determine the weights 
of the experts according to their expertise, taking into account the assessments given by 
a decision-maker to the experts. And another one, that is used by the experts to assess 
the alternatives. In order to assign numerical scores to the linguistic terms of the ordered 
qualitative scales, we have introduced and analyzed some scoring functions. They are 
based on the concept of ordinal proximity measure that properly represents the ordinal 
proximities between the linguistic terms of the ordered qualitative scales.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC license (http://creativecommons .org /licenses /by-nc /4 .0/).

1. Introduction

In many decision making situations characterized by subjectivity and imprecision, it seems reasonable that individuals 
express their judgments, preferences and opinions by means of words or linguistic expressions (see [53–55]).

In the literature, many different approaches and models have been proposed to handle linguistic information. Among the 
proposed procedures we can highlight: the fuzzy models associated with fuzzy sets and hesitant fuzzy linguistic information 
(see [34], [37], among others), linguistic procedures based on the 2-tuple model (see [38], [45], among others) and linguistic 
computation models (see [58], [59], among others).

Likewise, many group decision making problems involve the use of linguistic information collected by questionnaires 
based on ordered qualitative scales. Within this context, several authors have proposed many procedures to analyze and 
manage categorical and ordinal data. For example, McCullagh [39] proposes the use of cumulative models for ordinal data, 
Franceschini et al. [11] introduce a new dispersion measure called the ordinal range to handle ordered qualitative scales and 
Gadrich & Bashkansky [14] analyze the dispersion of ordinal data by means of the statistical tool: ORDANOVA (Ordinal data 
analysis of variation). Nonetheless, and although the proposed procedures try to respect and preserve qualitative information 
as much as possible, the assignment of numerical values or scores to each ordinal response category or linguistic term is 
the most popular method to manage linguistic information. In this way, Labovitz [33] analyzes some advantages of using 
scores to represent the terms of ordered qualitative scales.
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These numerical values or scores are used to collect information about a data set, describe and calculate statistical 
indicators and perform statistical tests. Nevertheless, this conversion of qualitative information into quantitative must be 
carried out in an appropriate way, since it can lead to misunderstanding and misinterpretation of the obtained results 
depending on the scores assigned (see [40], [11], [15], among others).

On the other hand, in those decision-making procedures that employ information from ordered qualitative scales, it 
is important to emphasize the role that plays the agents’ perceptions about the scales, since sometimes these scales can 
be considered as non-uniform, in the sense that agents may perceive different proximities between consecutive terms of 
the scale. For instance, in the framework of health-care and medicine, the ordered qualitative scale {poor, fair, good, very 
good, excellent}, used by patients to evaluate self-rated health (see [10]), it could be considered as non-uniform if ‘fair’ 
is perceived closer to ‘good’ than to ‘poor’, or if ‘good’ is perceived closer to ‘very good’ than to ‘fair’, or if ‘very good’ is 
perceived closer to ‘good’ than to ‘excellent’, etc.

In recent years, there is a considerable body of literature that addresses the issue of handling linguistic terms coming 
from ordered qualitative scales which are not uniformly and symmetrically distributed. These types of scales has been 
analyzed by Herrera et al. [27] to propose a representation model for unbalanced linguistic information based on the concept 
of linguistic hierarchy and to develop some consensus models within the issues related to group decision-making (see [7],
[57], among others).

In the context of non-uniform ordered qualitative scales, García-Lapresta & Pérez-Román [21] introduce the notion of 
ordinal proximity measure to represent the information about how agents perceive the proximities between the terms of 
the scales by means of ordinal degrees of proximity. Ordinal proximity measures have been also implemented in some 
decision-making procedures to evaluate a set of alternatives by means of non-necessarily uniform ordered qualitative scales 
(see [23], [16], [24], [20], [19]).

Since, as previously mentioned, sometimes the meaning or the interpretation of linguistic terms may lead to some 
ordered qualitative scales considered as non-uniform, it may seem unreasonable to assign equidistant numerical values to 
consecutive linguistic terms (see, for instance, [33], [8]). For this reason, in this paper we propose and analyze several 
scoring functions which can be applied to decision-making situations in which the linguistic assessments are given through 
non-uniform ordered qualitative scales. To determine the scores of the linguistic terms, the proposed scoring functions are 
based on the notion of ordinal proximity measure introduced by García-Lapresta & Pérez-Román [21].

Although in previous papers (some of them mentioned above) we have used ordinal proximity measures to devise and 
implement several decision-making procedures in a pure ordinal fashion, we realize that they require a good knowledge of 
the notions and techniques developed in those papers.

In the present contribution, we propose a cardinal approach based on the ordinal perceptions on the proximities between 
the terms of the scales by means of appropriate scoring functions. The reason is to facilitate the users that are not familiar 
with ordinal proximity measures the implementation of more simple decision-making procedures, taking into account the 
subjective perceptions about the closeness between the terms of the scales they use in their questionnaires.

Once these perceptions are known, the proposed scoring functions assign a numerical value to each term of the scale, 
preserving the ordinal information as much as possible, and then the usual statistical procedures can be used.

The main novelty of this proposal is that the numerical values assigned to the terms of the scales are not arbitrary, but 
based on ordinal perceptions.

Taking into account these scoring functions, we propose a group decision-making procedure where a group of experts 
evaluates a set of alternatives through an ordered qualitative scale with the purpose of generate a ranking on the set 
of alternatives. The procedure manages two ordered qualitative scales: one of them is applied to determine the experts’ 
weights and the other one is used by the experts to evaluate the alternatives.

In the framework of group-decision making, much of the literature considers that the weight associated with each expert 
is determined by means of hierarchical analysis or mathematical techniques such as the AHP procedure or fuzzy methods 
(see [44], [5], [36], among others).

Assigning different weights to the experts’ opinions is usual when the decision-maker is aware of the experts’ hetero-
geneity, because they have different knowledge and expertise on the issue and the alternatives under evaluation.

In our proposal the importance of the experts is established taking into account the qualitative assessments given by a 
decision-maker to each expert.1

Due to the fact that the group decision-making procedure uses two ordered qualitative scales (which can be considered 
as non-uniform), each scale is equipped with a metrizable ordinal proximity measure (see [17]) that collects the perceptions 
about the scale and assigns a numerical value to each linguistic term by means of a scoring function. Finally, the proposed 
procedure aggregates the weights associated with each expert and the scores assigned to each alternative in order to rank 
the alternatives according to their global score.

The rest of the paper is organized as follows. Section 2 recalls some important notions related to ordinal proximity mea-
sures. Section 3 presents several scoring functions which are applied in the proposed decision-making procedure. Section 4
discusses the main features, pros and cons of our proposal. Section 5 introduces the group decision-making procedure. 

1 This idea was already considered by [12, Subsect. 3.3], where one of the paradigms to determine the experts’ importance is based on ordinal proximity 
measures.
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Section 6 includes a illustrative case study. Section 7 shows how to extend the procedure of Section 5 to multiple criteria. 
Finally, Section 8 contains some concluding remarks.

2. Preliminaries

Let us consider an ordered qualitative scale (OQS) L = {l1, . . . , lg}, with g ≥ 2 and l1 ≺ · · · ≺ lg .
To measure the ordinal proximities between linguistic terms of an OQS we use the notion of ordinal proximity measure 

(OPM) introduced by García-Lapresta & Pérez-Román [21].
An OPM is a mapping that assigns an ordinal degree of proximity to each pair of linguistic terms of an OQS L. The 

ordinal degrees of proximity belong to a linear order � = {δ1, . . . , δh}, with δ1 � · · · � δh . It is important noticing that 
the members of � are not numbers, but ordinal degrees: δ1 represents the maximum proximity, δ2 the second degree of 
proximity, etc., and δh the minimum proximity.

Definition 1. ([21]) An ordinal proximity measure on L with values in � is a mapping π : L × L −→ �, where π(lr, ls) = πrs

represents the degree of proximity between lr and ls , satisfying the following conditions:

1. Exhaustiveness: For every δ ∈ �, there exist lr, ls ∈L such that δ = πrs .
2. Symmetry: πsr = πrs , for all r, s ∈ {1, . . . , g}.
3. Maximum proximity: πrs = δ1 ⇔ r = s, for all r, s ∈ {1, . . . , g}.
4. Monotonicity: πrs � πrt and πst � πrt , for all r, s, t ∈ {1, . . . , g} such that r < s < t .

Every OPM π :L ×L −→ � can be represented by a g × g symmetric matrix with coefficients in �, where the elements 
in the main diagonal are πrr = δ1, r = 1, . . . , g:

⎛
⎜⎜⎜⎝

π11 · · · π1s · · · π1g

· · · · · · · · · · · · · · ·
πr1 · · · πrs · · · πrg

· · · · · · · · · · · · · · ·
πg1 · · · πgs · · · πgg

⎞
⎟⎟⎟⎠ .

The above matrix is called proximity matrix associated with π .
In García-Lapresta et al. [17] is introduced a prominent class of OPMs: the metrizable OPMs which are based on linear 

metrics on OQSs.

Definition 2. ([17]) A linear metric on L is a mapping d : L × L −→ R satisfying the following conditions for all r, s, t ∈
{1, . . . , g}:

1. Positiveness: d(lr, ls) ≥ 0.
2. Identity of indiscernibles: d(lr, ls) = 0 ⇔ lr = ls .
3. Symmetry: d(ls, lr) = d(lr, ls).
4. Linearity: d(lr, lt) = d(lr, ls) + d(ls, lt) whenever r < s < t .

Definition 3. ([17]) An OPM π : L × L −→ � is metrizable if there exists a linear metric d : L × L −→ R such that 
πrs � πtu ⇔ d(lr, ls) < d(lt , lu), for all r, s, t, u ∈ {1, . . . , g}. We say that π is generated by d.

We note that for g = 2 the only OPM that exists is metrizable; for g = 3 there are 3 OPMs, and all of them are metrizable; 
for g = 4 there are 51 OPMs, but only 25 of them are metrizable (see [17]). In turn, for g = 5 there are 716 metrizable 
OPMs; and for g = 6 there are 18,262 metrizable OPMs.

The metrizable OPMS for g = 2, 3, 4 are collected in the Annex. The subindices of the matrices A’s correspond to the 
subindices of the δ’s which appear just over the main diagonal, π12, π23, . . . , π(g−1) g .

Definition 4. ([17]) An OPM π :L ×L −→ � is uniform if πr (r+1) = πs (s+1) for all r, s ∈ {1, . . . , g − 1}, and totally uniform if 
πr (r+t) = πs (s+t) for all r, s, t ∈ {1, . . . , g − 1} such that r + t ≤ g and s + t ≤ g .

We note that if π : L × L −→ � is a uniform metrizable OPM on L, then it is also totally uniform (see [17, Prop. 3]). 
Additionally, for each OQS L, there exists one and only one totally uniform OPM on L (see [17, Remark 6]).

Remark 1. If π : L × L −→ � is the totally uniform OPM on L, then h = g and πr (r+s) = δs+1 for all r, s ∈ {1, . . . , g − 1}
such that r + s ≤ g . In particular, we have πr (r+1) = δ2, πr1 = δr and πrg = δg−r+1, for every r ∈ {1, . . . , g − 1}.
3
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3. Scoring functions

The assignment of numerical scores to the linguistic terms of the scales is one of the most popular method to manage 
data coming from OQSs. Nevertheless, the main problem of this method is the subjectivity in which numerical values 
represent qualitative information (see [46]).

On the other hand, if the linguistic terms of an OQS are labeled with numbers, individuals’ perceptions about the prox-
imities between the terms can be influenced, even misleaded, by this twofold semantics. If these numerical values are 
consecutive integer numbers, then individuals can believe that the terms of the scale are equispaced (see [11]).

In addition, they may cause a misinterpretation of the obtained results depending on how the linguistic terms are coded 
(see [47], [11], among others).

Some of these drawbacks are presented and discussed by Franceschini et al. [11] through an example in which two 
different numerical conversions are applied to the OQS {reject, poor quality, medium quality, good quality, excellent quality}: 
{1, 2, 3, 4, 5} and {1, 3, 9, 27, 81}.

To overcome these problems, this section is addressed to determine numerical scores by means of several scoring 
functions based on metrizable OPMs. These scoring functions consider how individuals perceive the proximities between 
linguistic terms and generate scores accordingly.

To do that, first we introduce the notion of scoring function on an OQS. It assigns a score to each linguistic term of 
an OQS satisfying two simple conditions: the higher term, the higher score; and in totally uniform OPMs the scores are 
equidistant.

Definition 5. Given an OQS L = {l1, . . . , lg}, a scoring function on L is a function S : L −→R satisfying the following condi-
tions for all r, s ∈ {1, . . . , g}:

1. S(lr) < S(ls) ⇔ r < s.
2. If π is the totally uniform OPM on L, then there exists d > 0 such that S(lr) = S(l1) + (r − 1) · d.

Remark 2. Many organizations and data providers implicitly aggregate qualitative information by means of grouping the 
two highest linguistic terms of the scales. This is the case of some reports published by EUROSTAT, the statistical office 
of the European Union,2 the Asian Barometer Survey, institution that collects public opinion across Asia on issues such 
as political values, democracy, and governance,3 the Arab Barometer, the central resource for quantitative research on the 
Middle East,4 the Sociological Research Center of Spain (CIS in Spanish)5 or the Pew Research Center of United States,6 as 
well as some companies specialized in market and consumer data such as Statista,7 Nielsen8 or IPSOS,9 among many others. 
It is important to note that this practice does not fulfill the first condition of scoring functions: it is equivalent to allocate a 
null score to the terms l1, . . . , lg−2 and one point to the terms lg−1 and lg .

We now introduce two normalizations of scoring functions that are also scoring functions (see [32] for different normal-
ization procedures).

Proposition 1. If L = {l1, . . . , lg} is an OQS and S : L −→ R is a scoring function on L such that S(lg) > 0, then the function 
S ′ :L −→R defined as

S ′(lr) = S(lr)

S(lg)

is also a scoring function on L.

Proof. Since S(lg) > 0, we have S ′(lr) < S ′(ls) ⇔ S(lr) < S(ls) ⇔ r < s. Thus, the first condition is satisfied.
Let π be the totally uniform OPM on L. Since S(lr) = S(l1) + (r − 1) · d for some d > 0, we have

S ′(lr) = S(l1) + (r − 1) · d

S(lg)
= S(l1)

S(lg)
+ (r − 1) · d

S(lg)
= S ′(l1) + (r − 1) · d

S(lg)
.

Hence, the two conditions of scoring functions are satisfied. �
2 www.ec .europa .eu /eurostat.
3 www.asianbarometer.org.
4 www.arabbarometer.org.
5 http://www.cis .es.
6 www.pewresearch .org.
7 www.statista .com.
8 www.www.nielsen .com.
9 www.ipsos .com.
4
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Note that S ′(lg) = 1 and S ′(lr) > 0 ⇔ S(lr) > 0, for every r ∈ {1, . . . , g}.

Proposition 2. If L = {l1, . . . , lg} is an OQS and S :L −→R is a scoring function on L, then the function S ′′ :L −→R defined as

S ′′(lr) = S(lr) − S(l1)

S(lg) − S(l1)

is also a scoring function on L.

Proof. Since S(lg) > S(l1), we have

S ′′(lr) < S ′′(ls) ⇔ S(lr) − S(l1) < S(ls) − S(l1) ⇔ S(lr) < S(ls) ⇔ r < s.

Thus, the first condition is satisfied.
Let π be the totally uniform OPM on L. Since S(lr) = S(l1) + (r − 1) · d for some d > 0, we have

S ′′(lr) = S(l1) + (r − 1) · d − S(l1)

S(l1) + (g − 1) · d − S(l1)
= r − 1

g − 1
= (r − 1) · 1

g − 1
.

Hence, the two conditions of scoring functions are satisfied. �
Note that S ′′(l1) = 0, S ′′(lg) = 1 and, consequently, S ′′(lr) ∈ [0, 1] for every r ∈ {1, . . . , g}.
We now justify that any convex combination of two scoring functions on an OQS is also a scoring function.

Proposition 3. If L = {l1, . . . , lg} is an OQS and S1 : L −→ R and S2 : L −→ R are two scoring functions on L, then the function 
Sλ :L −→R defined as

Sλ(lr) = λ · S1(lr) + (1 − λ) · S2(lr)

is also a scoring function on L for every λ ∈ [0, 1].

Proof. We now prove the first condition.
⇒) Suppose Sλ(lr) < Sλ(ls) and r ≥ s.
If r = s, then Sλ(lr) = Sλ(ls), contrary to the hypothesis.
If r > s, then S1(lr) > S1(ls) and S2(lr) > S2(ls). Hence, for every λ ∈ (0, 1) we have λ · S1(lr) > λ · S1(ls) and 

(1 − λ) · S2(lr) > (1 − λ) · S2(ls). Thus, we have

Sλ(lr) = λ · S1(lr) + (1 − λ) · S2(lr) > λ · S1(ls) + (1 − λ) · S2(ls) = Sλ(ls),

contrary to the hypothesis.
If λ = 0, then Sλ(lr) = S2(lr) > S2(ls) = Sλ(ls), contrary to the hypothesis.
If λ = 1, then Sλ(lr) = S1(lr) > S1(ls) = Sλ(ls), contrary to the hypothesis.
⇐) If r < s, then S1(lr) < S1(ls) and S2(lr) < S2(ls). Hence, for every λ ∈ (0, 1) we have λ · S1(lr) < λ · S1(ls) and 

(1 − λ) · S2(lr) < (1 − λ) · S2(ls). Thus, we have

Sλ(lr) = λ · S1(lr) + (1 − λ) · S2(lr) < λ · S1(ls) + (1 − λ) · S2(ls) = Sλ(ls).

If λ = 0, then Sλ(lr) = S2(lr) < S2(ls) = Sλ(ls).
If λ = 1, then Sλ(lr) = S1(lr) < S1(ls) = Sλ(ls).
Thus, the first condition is satisfied.
In order to prove the second condition, let π be the totally uniform OPM on L. Since S1 and S2 are scoring functions 

on L, there exist d1, d2 > 0 such that S1(lr) = S1(l1) + (r − 1) · d1 and S2(lr) = S2(l1) + (r − 1) · d2. Then,

Sλ(lr) = λ · S1(lr) + λ · (r − 1) · d1 + (1 − λ) · S2(l1) + (1 − λ) · (r − 1) · d2 =
λ · S1(l1) + (1 − λ) · S2(l1) + (r − 1) · (λ · d1 + (1 − λ) · d2) =
Sλ(l1) + (r − 1) · (λ · d1 + (1 − λ) · d2).

Hence, the two conditions of scoring functions are satisfied. �
We now introduce four specific scoring functions. The first one, Sb , is based on the comparison between each linguistic 

term and the best linguistic term, lg (see Fig. 1). Under a different approach to the present paper, these comparisons are in 
the basis of the group decision-making procedure introduced and analyzed by García-Lapresta & Pérez-Román [23].
5
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l1 l2 · · · lr−1 lr lr+1 · · · lg−1 lg

Fig. 1. Scoring function Sb .

l1 l2 · · · lr−1 lr lr+1 · · · lg−1 lg

Fig. 2. Scoring function S w .

Proposition 4. If L = {l1, . . . , lg} is an OQS equipped with a metrizable OPM π : L × L −→ �, then the function Sb : L −→ R
defined as

Sb(lr) = h − ρ(πrg),

where ρ(δk) = k, is a scoring function on L.

Proof. Since π is monotonic, we have

r < s ⇔ πsg � πrg ⇔ ρ(πsg) < ρ(πrg).

Then,

Sb(lr) < Sb(ls) ⇔ h − ρ(πrg) < h − ρ(πsg) ⇔ ρ(πsg) < ρ(πrg) ⇔ r < s.

Thus, the first condition is satisfied.
If π is the totally uniform OPM on L, taking into account Remark 1, we have

Sb(lr) = h − ρ(πrg) = ρ(π1g) − ρ(πrg) = g − (g − r + 1) = r − 1.

Hence, the two conditions of scoring functions are satisfied. �
Note that Sb(l1) = 0, Sb(lg) = h − 1 and, consequently, Sb(lr) ∈ [0, h − 1] for every r ∈ {1, . . . , g}.
The next scoring function, S w , is based on the comparison between each linguistic term and the worst linguistic term, 

l1 (see Fig. 2).

Proposition 5. If L = {l1, . . . , lg} is an OQS equipped with a metrizable OPM π : L × L −→ �, then the function S w : L −→ R
defined as

S w(lr) = ρ(πr1) − 1,

where ρ(δk) = k, is a scoring function on L.

Proof. Since π is monotonic, we have

r < s ⇔ πr1 � πs1 ⇔ ρ(πr1) < ρ(πs1).

Then, S w(lr) < S w(ls) ⇔ r < s and, consequently, the first condition is satisfied.
If π is the totally uniform OPM on L, taking into account Remark 1, we have

S w(lr) = ρ(πr1) − 1 = r − 1.

Hence, the two conditions of scoring functions are satisfied. �
Note that S w(l1) = 0, S w(lg) = h − 1 and, consequently, S w (lr) ∈ [0, h − 1] for every r ∈ {1, . . . , g}.
The next scoring function, Sbw , is based on the comparison between each linguistic term and the best and worst lin-

guistic terms, lg and l1 (see Fig. 3). This approach is related to the TOPSIS method (see [31]) and the Best Worst Method 
(see [42]).
6
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l1 l2 · · · lr−1 lr lr+1 · · · lg−1 lg

Fig. 3. Scoring function Sbw .

l1 l2 · · · lr−1 lr lr+1 · · · lg−1 lg

Fig. 4. Scoring function Sa .

Proposition 6. If L = {l1, . . . , lg} is an OQS equipped with a metrizable OPM π : L × L −→ �, then the function Sbw : L −→ R
defined as

Sbw(lr) = Sb(lr) + S w(lr)

2
= h + ρ(πr1) − ρ(πrg) − 1

2
,

where ρ(δk) = k, is a scoring function on L.

Proof. From Proposition 3, taking λ = 0.5 we obtain that Sbw is a scoring function on L. �
Note that Sbw(l1) = 0, Sbw(lg) = h − 1 and, consequently, Sbw(lr) ∈ [0, h − 1] for every r ∈ {1, . . . , g}.
The next scoring function, Sa , is based on the comparison between each linguistic term and all linguistic terms (see 

Fig. 4).

Proposition 7. If L = {l1, . . . , lg} is an OQS equipped with a metrizable OPM π : L × L −→ �, then the function Sa : L −→ R
defined as

Sa(lr) = (g + 2) · (g − 1)

2
+

∑
s<r

ρ(πsr) −
∑
s>r

ρ(πrs),

where ρ(δk) = k, is a scoring function on L.

Proof. The first condition is satisfied because if r < s, then

{lk ∈ L | k < r}� {lk ∈ L | k < s} and {lk ∈ L | k > s} � {lk ∈ L | k > r}.
If π is the totally uniform OPM on L, taking into account Remark 1, we have

Sa(lr) = (g + 2) · (g − 1)

2
+ (2 + · · · + r) − (2 + · · · + g − r + 1) =

(g + 2) · (g − 1)

2
+ (r + 2) · (r − 1)

2
− (g − r + 3) · (g − r)

2
= (r − 1) · (g + 2).

Hence, the two conditions of scoring functions are satisfied. �
Remark 3. The scoring function Sa can assign negative scores to the lowest linguistic terms of the OQS, depending on the 
OPM used to represent the perception on the OQS.10 Note that in the context of Social Choice, Copeland [9]; Black [3]; 
Young [52] assign negative scores to some alternatives in the Borda and Copeland voting systems.

Remark 4. When g = 2, i.e., L = {l1, l2}, there exists only one OPM: the associated with the proximity matrix A2 (see the 
Annex). Obviously, that OPM is metrizable and totally uniform. The scoring functions Sb , S w , Sbw , S ′

b , S ′
w , S ′

bw , S ′
a , S ′′

b , S ′′
w , 

S ′′
bw and S ′′

a give scores 0 and 1 to l1 and l2, respectively; moreover, Sa(l1) = 0 and Sa(l2) = 4. This situation corresponds to 
the dichotomous case, as in approval voting (see [4]), where the set of alternatives is divided in acceptable and unacceptable.

10 For g = 3, 4, only Sa(l1) is negative, for all OPMs except those associated with the proximity matrices A22 and A222, where Sa(l1) is positive.
7



J.L. García-Lapresta and R. González del Pozo International Journal of Approximate Reasoning 161 (2023) 109004
Remark 5. Let L = {l1, . . . , lg} be an OQS equipped with a metrizable OPM π : L ×L −→ �. For g = 3, the scores obtained 
from the three metrizable OPMs, those with associated proximity matrices A22, A23 and A32 (see the Annex), are equal for 
the scoring functions Sb , S w , Sbw , S ′

b , S ′
w , S ′

bw , S ′′
b , S ′′

w and S ′′
bw . However, for g > 3 the complexity increases and the scores 

obtained can be different depending on the scoring function applied.

We now introduce the notion of compatibility of an OPM with a scoring function. It implies that if the ordinal proximity 
between to pairs of linguistic terms is the same, then the absolute difference between their scores should be also the same.

Definition 6. If L = {l1, . . . , lg} is an OQS equipped with a metrizable OPM π : L × L −→ � and S : L −→ R is a scoring 
function on L, we say that π is compatible with S if

πrs � πtu ⇒ |S(ls) − S(lr)| < |S(lu) − S(lt)|,
for all r, s, t, u ∈ {1, . . . , g}.

Remark 6. Let L = {l1, . . . , lg} be an OQS equipped with a metrizable OPM π :L ×L −→ �.

1. If π is compatible with S , then

πrs = πtu ⇔ |S(ls) − S(lr)| = |S(lu) − S(lt)|,
for all r, s, t, u ∈ {1, . . . , g}.

2. If π is compatible with S , then it is also compatible with S ′ and S ′′ .

We now show that for g = 2, 3 all the OPMs are compatible with all the scoring functions appearing in this section. 
However, for g = 4 not all the metrizable OPMs are compatible with those scoring functions.

Remark 7. Let L = {l1, . . . , lg} be an OQS.

1. For g = 2, the only metrizable OPM is compatible with Sb , S w , Sbw and Sa .
2. For g = 3, the three metrizable OPMs are compatible with Sb , S w , Sbw and Sa .
3. For g = 4, 16 out of the 25 metrizable OPMs are compatible with Sb and S w .

The metrizable OPMs associated with the proximity matrices A′
234, A235, A322, A323, A′

324, A325, A423, A′
423 and A′

432
are not compatible with Sb .
The metrizable OPMs associated with the proximity matrices A223, A234, A′

234, A322, A323, A324, A′
324, A′

432 and A523
are not compatible with S w .

4. For g = 4, 19 out of the 25 metrizable OPMs are compatible with Sbw .
The metrizable OPMs associated with the proximity matrices A223, A234, A322, A324, A423 and A432 are not compatible 
with Sbw .

5. For g = 4, 23 out of the 25 metrizable OPMs are compatible with Sa .
The metrizable OPMs associated with the proximity matrices A223 and A322 are not compatible with Sa .

We note that, for g = 4, Sa behaves better than Sbw , and Sbw better than Sb and S w : 92% of the metrizable OPMs are 
compatible with Sa , 76% of the metrizable OPMs are compatible with Sbw , and 64% of the metrizable OPMs are compatible 
with Sb and S w .

4. Discussion

In some decision-making procedures, it can be necessary to convert qualitative information into quantitative one by 
using numerical values, intervals, fuzzy sets, etc. For this purpose, some methods and procedures have been proposed. One 
of the most popular is the 2-tuple linguistic model of Herrera & Martínez [29]. This model uses a 2-tuple (s, α), where s
is a linguistic term and α is a number that represents the symbolic translation within the range [−0.5, 0.5). Agents show 
their opinions on the alternatives through a uniform OQS and it is after an aggregation process over the subindices of the 
linguistic terms (consecutive integer numbers) when the 2-tuples are applied.

In our proposal, OQSs are non-necessarily uniform. We note that in this framework several decision-making proce-
dures have been devised in a pure ordinal fashion, without using numbers, by means of OPMs: García-Lapresta & Pérez-
Román [23], García-Lapresta & González del Pozo [16], García-Lapresta et al. [20] and García-Lapresta & Marques Pereira [19], 
among others.

The aim of the proposed scoring functions is to simplify the management of qualitative information, avoiding the use 
of fuzzy membership functions or numerical values that do not consider the individuals’ perceptions of the scales. The 
considered scoring functions are based on the notion of OPM, in a way that the scores assigned to the terms of OQSs try to 
8
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collect, as faithfully as possible, the individuals’ perceptions on the ordinal proximities between the linguistic terms of the 
OQSs.

The proposed scoring functions are based on pairwise comparisons between the corresponding term and: a single pole, 
the best term (Sb) or the worst one (S w ); two poles, both the best and worst linguistic terms (Sbw ); and g − 1 poles, the 
remaining terms of the OQS (Sa).

The choice of a scoring function depends on the decision-maker and the nature of the problem. For example, the scoring 
function Sbw requires fewer comparisons than the scoring function Sa , which simplifies its calculation. In addition, since Sbw
takes into account the comparison between each linguistic term and the best and worst linguistic terms, the information 
provided is more complete than that obtained with the scoring functions Sb and S w .

Another factor to consider when selecting a scoring function is its compatibility. As discussed in Remark 7, not all 
metrizable OPMs are compatible with the proposed scoring functions. For example, when g = 4, Sa is compatible with 
more metrizable OPMs than Sbw , and the last one is compatible with more metrizable OPMs than Sb and S w . Taking into 
account these drawbacks, if the metrizable OPM that best represents the perceptions on the proximities between the terms 
of the OQS has been obtained, a good strategy could be to select a scoring function so that the OPM will be compatible 
with it.

An important issue is how to determine the metrizable OPM that will be used. Clearly, different agents may have distinct 
perceptions about the OQS. García-Lapresta et al. [17] introduce an aggregation procedure that generates a collective metriz-
able OPM from the individuals’ metrizable OPMs. They also provide a procedure that generates metrizable OPMs through 
suitable sequences of 2-4 questions for the case of OQSs with four linguistic terms (the case of three linguistic terms only 
requires a single question). When the OQS has more than four linguistic terms, that procedure is difficult to put in practice 
due to the number of questions and their complexity. In order to solve this problem, García-Lapresta et al. [18] introduce 
a visual procedure, managed through sliders, for obtaining the proximities between the terms of the OQS. An appropriate 
software generates the metrizable OPM which represents the ordinal arrangement of the proximities among terms.

5. The procedure

In multi-attribute group decision making, different approaches have been proposed to manage linguistic information (see 
[1], [56], [16], [48], [20], among others).

Many papers in the literature tackle with decision-making problems where experts’ importance may be not necessarily 
the same for all of them. In some of these procedures, a numerical weight is assigned to each expert (see [2], [25], [35],
among others), while in other cases the proposals are just based on hierarchies in which the relative weight of each expert 
is unknown (see [51], [13], among others). Likewise, Franceschini & García-Lapresta [12, Subsect. 3.3] introduce an approach 
in which the importance of each expert is based on the assessments provided by a decision-maker to the experts through 
an OQS equipped with an OPM.

In this section, we present a new decision-making procedure to rank alternatives that are evaluated by a group of 
experts with different knowledge. The procedure manages two different OQSs: one to determine the weights of experts in 
the procedure according to their expertise, and another one to assess the alternatives by the experts. These scales can be 
distinct and even they can be formed by a different number of linguistic terms.

The proposed procedure assigns scores to the linguistic terms of the scales taking into account the ordinal proximities 
between the terms of each scale through appropriate metrizable OPMs. The assignment is carried out through scoring 
functions. The decision-making procedure is illustrated by a flowchart in Fig. 5.

To rank the alternatives the procedure is divided in six steps.

1. A decision-maker (DM) evaluates a set of experts E = {e1, . . . , em} by means of an OQS Le = {
le1, . . . , lege

}
equipped with 

a metrizable OPM11

π e : Le ×Le −→ �e =
{
δe

1, . . . , δ
e
he

}
.

.
With vk ∈Le we denote the assessment obtained by the expert ek ∈ E .

2. A weight wk ∈ [0, 1] is assigned to each expert ek ∈ E through a scoring function Se :Le −→R as follows:

wk = Se(vk)

Se(v1) + · · · + Se(vm)
. (1)

Note that w1 + · · · + wm = 1.
3. The experts of E evaluate a set of alternatives X = {x1, . . . , xn} through an OQS La = {

la1, . . . , laga

}
equipped with a 

metrizable OPM

11 This OPM can be obtained from the perceptions about the scale provided by the DM. In turn, the assessments given by the DM can be based on 
objective information on the experts.
9



J.L. García-Lapresta and R. González del Pozo International Journal of Approximate Reasoning 161 (2023) 109004
A DM evaluates a set of experts

OQS: Le

OPM: π e

Scoring function on Le : Se

Weights of experts

Experts evaluate a set of alternatives

OQS: La

OPM: πa

Scoring function on La: Sa

Global score of each alternative

Ranking of the alternatives

Fig. 5. Flowchart of the procedure.

πa : La ×La −→ �a =
{
δa

1, . . . , δ
a
ha

}
.

The experts’ opinions on the alternatives are collected in a matrix of m rows and n columns with coefficients in La:⎛
⎜⎜⎜⎜⎝

v1
1 · · · v1

i · · · v1
n· · · · · · · · · · · · · · ·

vk
1 · · · vk

i · · · vk
n· · · · · · · · · · · · · · ·

vm
1 · · · vm

i · · · vm
n

⎞
⎟⎟⎟⎟⎠ ,

where vk
i ∈La is the linguistic assessment given by the expert ek ∈ E to the alternative xi ∈ X .

4. A score is assigned to each linguistic term of the OQS La through a scoring function Sa :La −→ [0, 1].
5. A global score is assigned to each alternative xi ∈ X through the function U : X −→ [0, 1] defined as

U (xi) =
m∑

k=1

wk · Sa
(

vk
i

)
. (2)

6. Finally, the alternatives are ranked through the weak order  defined as

xi  x j ⇔ U (xi) ≥ U (x j).

Remark 8. In group decision-making it is desirable to reach as much consensus as possible before applying the procedure 
that generates the outcome. In this way, consensus reaching processes are a useful tool that have been widely studied in the 
literature: Herrera et al. [28], Herrera-Viedma et al. [30], Wu & Chiclana [50] and Cabrerizo et al. [6], among many others.
10
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Table 1
OQS used to evaluate the 
experts.

Linguistic terms in Le

le1 Low

le2 Moderate

le3 High

le4 Very high

Table 2
Assessments given by the decision-
maker to the experts.

e1 e2 e3 e4

le2 le3 le4 le3

le1 le2
δe

5 le3
δe

3 le4
δe

2

Fig. 6. Metrizable OPM associated with the proximity A532.

In the setting of OQSs, García-Lapresta & Pérez-Román [22] propose a consensus reaching process that takes into account 
the perceptions of the closeness between the terms of the scale by means of OPMs. Once agents evaluate the alternatives, 
the consensus is measured through medians of ordinal proximities between the assessments provided by the agents. Given 
an ordinal threshold, the procedure selects the set of alternatives where the degrees of consensus are lower than the overall 
degree of consensus. For each of these alternatives, a moderator invites the agents whose assessments are greater or lower 
than the median assessment to modify their opinions in order to increase the consensus in the group.

In the framework of the present paper, it is possible to implement the consensus reaching process of García-Lapresta & 
Pérez-Román [22] in each criterion. But, it is also possible to apply a conventional process if the numerical scores generated 
by a scoring function are considered, instead of the original qualitative assessments.

6. Case study

In order to illustrate how the proposed procedure works, we present an illustrative case study. We have considered a set 
of four experts, E = {e1, . . . , e4}, that assess a set of five alternatives X = {x1, . . . , x5}.

In the first step of the procedure, a DM evaluates the experts’ expertise by means of the 4-term OQS Le = {le1, le2, le3, le4}
contained in Table 1, whose linguistic terms are commonly used to measure agents’ abilities and knowledge about certain 
aspects in different areas (see [26], [43], among others).

Table 2 shows the linguistic assessments given by the DM to the four experts according their expertise.
To apply the proposed procedure, we need to establish an appropriate OPM that collects how the proximities between 

the four linguistic terms are perceived. In this case, we have considered that the 4-term OQS Le is equipped with the 
metrizable OPM π e associated with the proximity matrix A532:

A532 =

⎛
⎜⎜⎜⎝

δe
1 δe

5 δe
6 δe

7

δe
1 δe

3 δe
4

δe
1 δe

2

δe
1

⎞
⎟⎟⎟⎠

which can be visualized in Fig. 6.
To determine the scores of the OQS used to evaluate the experts’ expertise, it can be applied any of the scoring functions 

proposed in Section 3. In this case study, we have considered the scoring function Sbw , whose scores are collected in Table 3. 
This scoring function is the arithmetic mean of the scoring functions Sb and S w , so it provides more complete information 
than the formers. In addition, the scoring function Sa can be also considered. In the case of the metrizable OPM associated 
with the proximity matrix A532, we obtain a negative score for the linguistic term l1.12

Then, taking into account the assessments given by the DM to the experts (see Table 2), we determine the experts’ 
weights by means of Eq. (1). These weights are presented in Table 4.

12 Since it seems not be reasonable to assign a negative score to the experts, the scoring function Sa has not been considered at this step of the procedure. 
However, it is important to note that the normalized scoring function S ′′

a never assigns negative scores. Therefore, S ′′
a could be applied to the mentioned 

metrizable OPM.
11
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Table 3
Sbw scores for each linguistic 
term in Le obtained from the 
metrizable OPM associated with 
the proximity matrix A532.

Term Sbw

le1 0

le2 3.5

le3 5

le4 6

Table 4
Experts’ weights.

Expert Weight

e1 0.17949

e2 0.25641

e3 0.30769

e4 0.25641

Table 5
OQS used to evaluate the 
alternatives.

Linguistic terms in La

la1 Poor

la2 Fair

la3 Good

la4 Very good

la5 Excellent

la1 la2
δa

4 la3
δa

3 la4
δa

3 la5
δa

2

Fig. 7. Metrizable OPM associated with the proximity matrix A4332.

Table 6
Assessments given the experts to the alterna-
tives.

x1 x2 x3 x4 x5

e1 la1 la4 la2 la2 la2
e2 la2 la2 la2 la3 la5
e3 la2 la3 la2 la4 la3
e4 la3 la5 la3 la5 la4

On the other hand, the experts evaluate the alternatives through the 5-term OQS La = {
la1, la2, la3, la4, la5

}
contained in 

Table 5. This is a typical scale for Quality of Experience (QoE) measurement (see [41], [49], among others).
Taking into account the meaning of the linguistic terms shown in Table 5, we have considered that the 5-term OQS is 

equipped with the metrizable OPM πa associated with the proximity matrix A4332:

A4332 =

⎛
⎜⎜⎜⎜⎜⎜⎝

δa
1 δa

4 δa
7 δa

9 δa
10

δa
1 δa

3 δa
6 δa

8

δa
1 δa

3 δa
5

δa
1 δa

2

δa
1

⎞
⎟⎟⎟⎟⎟⎟⎠

that can be visualized in Fig. 7.
The assessments given by the experts to the alternatives are collected in Table 6.
12
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Table 7
Scores for each linguistic term in 
La obtained from the metrizable 
OPM associated with the proxim-
ity matrix A4332.

Term Sa S ′′
a

la1 -16 0

la2 1 0.30909

la3 16 0.58182

la4 30 0.83636

la5 39 1

Table 8
Global scores of the alternatives.

Alternative U (xi)

x1 0.32354

x2 0.66480

x3 0.37902

x4 0.71841

x5 0.70536

To obtain the scores corresponding to the metrizable OPM associated with the proximity matrix A4332, we use the 
scoring function Sa whose scores have been normalized between 0 and 1 through the scoring function S ′′ (see Proposition
2), i.e., S ′′

a .
Then, from the experts’ weights and the scores assigned to each linguistic term of the 5-term OQS, we calculate the 

global score for each alternative by means of Eq. (2). These final scores are contained in Table 8.
Finally, we rank the alternatives according to their global scores:

x4 � x5 � x2 � x3 � x1.

Taking into account the global scores of the alternatives shown in Table 8, the scores of the linguistic terms in Table 7
and the meaning of the linguistic terms in Table 5, we can also provide the range of their linguistic global assessments: x1, 
between fair and good; the rest of alternatives, between good and very good.

7. Extension to multiple criteria

The proposed procedure can be extended to more general scenarios. We now consider a set of experts E = {e1, . . . , em}
that evaluate a set of alternatives X = {x1, . . . , xn} regarding a set of criteria C = {c1, . . . , cq} by means of OQSs 
Lp =

{
lp
1 , . . . , lp

gp

}
equipped with metrizable OPMs

π p : Lp ×Lp −→ �p =
{
δ

p
1 , . . . , δ

p
hp

}
,

for each criterion cp ∈ C .
The opinions given the experts to all the alternatives regarding the criterion cp ∈ C are collected in a matrix of m rows 

and n columns with coefficients in Lp :
⎛
⎜⎜⎜⎜⎝

v1,p
1 · · · v1,p

i · · · v1,p
n

· · · · · · · · · · · · · · ·
vk,p

1 · · · vk,p
i · · · vk,p

n
· · · · · · · · · · · · · · ·

vm,p
1 · · · vm,p

i · · · vm,p
n

⎞
⎟⎟⎟⎟⎠ ,

where vk,p
i ∈Lp is the assessment given by the expert ek ∈ E to the alternative xi ∈ X with respect to the criterion cp ∈ C .

Since criteria may have different importance in decision-making procedures, they can have different weights. Although 
usually a DM provides the weights of the criteria, we propose to allow experts to evaluate the importance of each criterion 
through an OQS Lc = {

lc1, . . . , lcgc

}
equipped with a metrizable OPM

π c : Lc ×Lc −→ �c =
{
δc

1, . . . , δ
c
h

}
.

c

13
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If uk
p ∈ Lc is the assessment given by the expert ek ∈ E to the criterion cp ∈ C , a weight wk

p ∈ [0, 1] is assigned to cp by 
ek as follows:

wk
p = Sc

(
uk

p

)
Sc

(
uk

1

) + · · · + Sc
(
uk

q
) ,

where Sc is one of the scoring functions introduced in Section 3.
Note that wk

1 + · · · + wk
q = 1 for every expert ek ∈ E .

In accordance with the Step 5 of the procedure proposed in Section 5, the criteria weights are considered to obtain the 
global score of each alternative through the function Uc : X −→ [0, 1] defined as

Uc(xi) =
m∑

k=1

q∑
p=1

wk · wk
p · Sa

(
vk,p

i

)
∈ [0,1],

where wk is obtained by means of Eq. (1) from the assessments given by a DM to the experts, as in the Steps 1 and 2 of 
the procedure proposed in Section 5.

Finally, the alternatives are ranked through the following weak order

xi  x j ⇔ Uc(xi) ≥ Uc(x j).

8. Concluding remarks

In this paper, we have introduced a new group decision-making procedure to rank a set of alternatives based on the 
opinions of a group of experts with different knowledge. In our proposal, experts and alternatives are evaluated by means 
of OQSs equipped with metrizable OPMs, which are considered to assign a numerical score to each linguistic term through 
appropriate scoring functions.

To deal with qualitative information coming from OQSs, it is quite common the use of equidistant numerical scores13 or 
even, as we have seen in Remark 2, the practice carried out by several organizations and data providers of grouping the 
highest linguistic terms of the scales. Therefore, it is important to note that the results obtained by means of these methods 
should be interpreted with a great care and attention.

The main contribution of this paper is the introduction of a new methodology that assigns a score to each linguistic 
term of an OQS, taking into account the proximities between the linguistic terms of the OQS by means of the concept 
of metrizable OPM. To do that, this paper proposes and analyzes several scoring functions that are based on the ordinal 
proximities between the considered linguistic term and the best, the worst, the best and the worst, and the rest of linguistic 
terms of the OQS: Sb , S w , Sbw and Sa , respectively (Propositions 4, 5, 6 and 7). Additionally, we have proposed two 
normalization procedures of scoring functions, S ′ and S ′′ (Propositions 1 and 2). All these scoring functions can be used in 
different decision-making problems where agents evaluate a set of alternatives by means of OQSs.

On the other hand, the procedure introduced in this paper does not consider the possible uncertainty when the DM 
evaluates the experts or when the experts evaluate the alternatives. For that reason, regarding further research, it could be 
interesting to extend the proposed procedure to situations in which the DM or experts are allowed to select two consecutive 
linguistic terms if they hesitate (see [16]).
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Appendix A. Metrizable OPMs for g = 2, g = 3 and g = 4

Metrizable OPM for g = 2:

A2 =
(

δ1 δ2
δ1

)
.

Metrizable OPMs for g = 3:

A22 =
⎛
⎝ δ1 δ2 δ3

δ1 δ2
δ1

⎞
⎠ , A23 =

⎛
⎝ δ1 δ2 δ4

δ1 δ3
δ1

⎞
⎠ , A32 =

⎛
⎝ δ1 δ3 δ4

δ1 δ2
δ1

⎞
⎠ .

Metrizable OPMs for g = 4:

A222 =

⎛
⎜⎜⎝

δ1 δ2 δ3 δ4
δ1 δ2 δ3

δ1 δ2
δ1

⎞
⎟⎟⎠ , A223 =

⎛
⎜⎜⎝

δ1 δ2 δ4 δ6
δ1 δ2 δ5

δ1 δ3
δ1

⎞
⎟⎟⎠ ,

A′
223 =

⎛
⎜⎜⎝

δ1 δ2 δ3 δ5
δ1 δ2 δ4

δ1 δ3
δ1

⎞
⎟⎟⎠ , A224 =

⎛
⎜⎜⎝

δ1 δ2 δ3 δ6
δ1 δ2 δ5

δ1 δ4
δ1

⎞
⎟⎟⎠ ,

A232 =

⎛
⎜⎜⎝

δ1 δ2 δ4 δ5
δ1 δ3 δ4

δ1 δ2
δ1

⎞
⎟⎟⎠ , A233 =

⎛
⎜⎜⎝

δ1 δ2 δ4 δ6
δ1 δ3 δ5

δ1 δ3
δ1

⎞
⎟⎟⎠ ,

A234 =

⎛
⎜⎜⎝

δ1 δ2 δ5 δ7
δ1 δ3 δ6

δ1 δ4
δ1

⎞
⎟⎟⎠ , A′

234 =

⎛
⎜⎜⎝

δ1 δ2 δ4 δ6
δ1 δ3 δ5

δ1 δ4
δ1

⎞
⎟⎟⎠ ,

A235 =

⎛
⎜⎜⎝

δ1 δ2 δ4 δ7
δ1 δ3 δ6

δ1 δ5
δ1

⎞
⎟⎟⎠ , A243 =

⎛
⎜⎜⎝

δ1 δ2 δ5 δ7
δ1 δ4 δ6

δ1 δ3
δ1

⎞
⎟⎟⎠ ,

A322 =

⎛
⎜⎜⎝

δ1 δ3 δ5 δ6
δ1 δ2 δ4

δ1 δ2
δ1

⎞
⎟⎟⎠ , A′

322 =

⎛
⎜⎜⎝

δ1 δ3 δ4 δ5
δ1 δ2 δ3

δ1 δ2
δ1

⎞
⎟⎟⎠ ,

A323 =

⎛
⎜⎜⎝

δ1 δ3 δ4 δ5
δ1 δ2 δ4

δ1 δ3
δ1

⎞
⎟⎟⎠ , A324 =

⎛
⎜⎜⎝

δ1 δ3 δ5 δ7
δ1 δ2 δ6

δ1 δ4
δ1

⎞
⎟⎟⎠ ,

A′
324 =

⎛
⎜⎜⎝

δ1 δ3 δ4 δ6
δ1 δ2 δ5

δ1 δ4
δ1

⎞
⎟⎟⎠ , A325 =

⎛
⎜⎜⎝

δ1 δ3 δ4 δ7
δ1 δ2 δ6

δ1 δ5
δ1

⎞
⎟⎟⎠ ,

A332 =

⎛
⎜⎜⎝

δ1 δ3 δ5 δ6
δ1 δ3 δ4

δ1 δ2
δ1

⎞
⎟⎟⎠ , A342 =

⎛
⎜⎜⎝

δ1 δ3 δ6 δ7
δ1 δ4 δ5

δ1 δ2
δ1

⎞
⎟⎟⎠ ,

A422 =

⎛
⎜⎜⎝

δ1 δ4 δ5 δ6
δ1 δ2 δ3

δ1 δ2
δ

⎞
⎟⎟⎠ , A423 =

⎛
⎜⎜⎝

δ1 δ4 δ6 δ7
δ1 δ2 δ5

δ1 δ3
δ

⎞
⎟⎟⎠ ,
1 1
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A′
423 =

⎛
⎜⎜⎝

δ1 δ4 δ5 δ6
δ1 δ2 δ4

δ1 δ3
δ1

⎞
⎟⎟⎠ , A432 =

⎛
⎜⎜⎝

δ1 δ4 δ6 δ7
δ1 δ3 δ5

δ1 δ2
δ1

⎞
⎟⎟⎠ ,

A′
432 =

⎛
⎜⎜⎝

δ1 δ4 δ5 δ6
δ1 δ3 δ4

δ1 δ2
δ1

⎞
⎟⎟⎠ , A523 =

⎛
⎜⎜⎝

δ1 δ5 δ6 δ7
δ1 δ2 δ4

δ1 δ3
δ1

⎞
⎟⎟⎠ ,

A532 =

⎛
⎜⎜⎝

δ1 δ5 δ6 δ7
δ1 δ3 δ4

δ1 δ2
δ1

⎞
⎟⎟⎠ .
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