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In this work, doubly extended linearized Reed–Solomon codes 
and triply extended Reed–Solomon codes are generalized. 
We obtain a general result in which we characterize when 
a multiply extended code for a general metric attains 
the Singleton bound. We then use this result to obtain 
several families of doubly extended and triply extended 
maximum sum-rank distance (MSRD) codes that include 
doubly extended linearized Reed–Solomon codes and triply 
extended Reed–Solomon codes as particular cases. To conclude,
we discuss when these codes are one-weight codes.
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1. Introduction

Let Fq denote the finite field of size q, and denote by Fn
q and Fm×n

q the spaces of row 
vectors of length n and matrices of size m ×n, respectively, over Fq, for positive integers 
m and n. We also denote N = {0, 1, 2, . . .} and [n] = {1, 2, . . . , n} for a positive integer 
n. The Hamming metric in Fn

q is given by dH(c, d) = |{i ∈ [n] | ci �= di}|, for c, d ∈ Fn
q .
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Doubly extended Reed–Solomon codes [6, Sec. 5.3] [9, Ch. 11, Sec. 5] are the linear 
codes in Fn+2

q given by the generator matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1 0
a1 a2 . . . an 0 0
a2
1 a2

2 . . . a2
n 0 0

...
...

. . .
...

...
...

ak−2
1 ak−2

2 . . . ak−2
n 0 0

ak−1
1 ak−1

2 . . . ak−1
n 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Fk×(n+2)
q ,

for k ∈ [n] and distinct a1, a2, . . . , an ∈ F∗
q (hence n ≤ q − 1 and n + 2 ≤ q + 1, where 

equalities may be attained). One may show by using conventional polynomial results that 
the doubly extended Reed–Solomon code above is maximum distance separable (MDS). 
See [6, Th. 5.3.4]. In other words, it attains the Singleton bound for the Hamming metric. 
Furthermore, these codes may have length q + 1, which is conjectured to be maximum 
for most values of the code dimension k. This is the well-known MDS conjecture (see [6, 
Sec. 7.4]), which has been proven for q prime [2].

Recently, a generalization of this result was given in [16] for the sum-rank metric, a 
metric that simultaneously generalizes the Hamming metric and the rank metric [4,5,18]. 
The generalization of Reed–Solomon codes to the sum-rank metric is called linearized 
Reed–Solomon codes, introduced in [11], which are maximum sum-rank distance (MSRD) 
codes, i.e., they attain the Singleton bound for the sum-rank metric. More general families 
of linear MSRD codes exist [12,15]. The authors of [16] introduced doubly extended 
linearized Reed–Solomon codes and showed, using geometric tools, that they are also 
MSRD.

In this work, we show how one may extend codes attaining the Singleton bound for 
any metric given by a weight. The metric considered for the extended codes is obtained 
by adding Hamming-metric components, as was done for the sum-rank metric in [16]
(Section 2). In Section 3, we provide necessary and sufficient conditions for multiply 
extended codes to attain the Singleton bound based on the original codes. In Sections 4
and 5, we apply double and triple extensions, respectively, to the general MSRD codes 
obtained in [12], which include linearized Reed–Solomon codes (and therefore classical 
Reed–Solomon codes and Gabidulin codes [5,18]). In Section 6, we study what happens 
when the extended portion is not considered with Hamming-metric components, but by 
considering the rank metric in the whole added block, and show that doubly extended 
codes are no longer MSRD in general. Finally, in Section 7, we investigate when the 
obtained doubly and triply extended MSRD codes are one-weight codes.

We conclude this introduction by remarking that the results in this manuscript have 
several interesting geometric counterparts. First, two-dimensional MSRD codes corre-
spond to the order sets of disjoint scattered linear sets on the projective line [16, Sec. 6]. 
When they reach the classical Singleton bound, MSRD codes correspond to order sets 
of scattered linear sets with respect to hyperplanes [16, Cor. 3.10]. Finally, MSRD codes 
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correspond to order sets of disjoint maximum scattered linear sets when considering 
MSRD codes with certain parameters [19, Th. 7.4].

2. The Singleton bound for sums of metrics

In this manuscript, we consider metrics given by weights. Here, a weight function is 
a function wt : Fn

q −→ N satisfying the following properties:

1. wt(c) ≥ 0, for all c ∈ Fn
q , and it equals 0 if, and only if, c = 0.

2. wt(λc) = wt(c), for all c ∈ Fn
q and all λ ∈ F∗

q .
3. wt(c + d) ≤ wt(c) + wt(d), for all c, d ∈ Fn

q .

Its associated metric is the function d : (Fn
q )2 −→ N given by d(c, d) = wt(c − d), for 

c, d ∈ Fn
q . It is straightforward to prove that a metric given by a weight as above is 

indeed a metric (see [6, Th. 1.4.1]).
As usual, we define the minimum distance of a code C ⊆ Fn

q (a code is just a set) with 
respect to d as

d(C) = min{d(c,d) | c,d ∈ C, c �= d}.

It is well-known that, if C is linear (i.e., an Fq-linear subspace of Fn
q ), then d(C) =

min{wt(c) | c ∈ C \ {0}}, where wt is the weight giving the metric d.
We will say that a metric d satisfies the Singleton bound if

d(C) ≤ n− k + 1, (1)

where k = logq |C|, for any code C ⊆ Fn
q . Any metric given by a weight that is upper 

bounded by the Hamming weight satisfies the Singleton bound. Many examples exist, 
including the Hamming metric itself, the rank metric [4,5], the sum-rank metric [11], the 
cover metric [18] and the multi-cover metric [13], among others.

Some of these metrics, e.g., the sum-rank metric, the multi-cover metric or the Ham-
ming metric itself, are given by sums of other metrics. In general, given weights wti in 
Fni
q , for i ∈ [�], we may define their sum as

wtsum(c) = wt1(c1) + wt2(c2) + · · · + wt�(c�),

for c = (c1, c2, . . . , c�) ∈ Fn
q , where n = n1 + n2 + · · · + n� and ci ∈ Fni

q , for i ∈ [�]. 
Clearly, wtsum is a weight. We denote similarly the corresponding associated metric. It 
is easy to see that dsum satisfies the Singleton bound if so do the metrics di, for i ∈ [�].

In the remainder of the manuscript, we will only consider metrics d : (Fn
q )2 −→ N

given by weights and satisfying the Singleton bound (1).
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3. Multiply extended codes

In this section, we give a definition of multiply extended codes for general metrics and 
show that they attain the Singleton bound if so do certain codes related to the original 
code and the metric is extended by adding a Hamming-metric component. In Sections 4
and 5, we will particularize these results to construct doubly and triply extended MSRD 
codes. In the following, 〈·〉Fq

denotes linear span over Fq.

Theorem 1. Let g1, g2, . . . , gk ∈ Fn
q be linearly independent, and let t ∈ [k]. Consider the 

k-dimensional linear code Ce ⊆ Fn+t
q with generator matrix

Ge =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 1 0 . . . 0
g2 0 1 . . . 0
...

...
...

. . .
...

gt 0 0 . . . 1
gt+1 0 0 . . . 0

...
...

...
. . .

...
gk 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Fk×(n+t)
q .

Define also the linear codes CI = 〈{gi | i ∈ I}〉Fq
+ 〈gt+1, . . . , gk〉Fq

, and set dI = d(CI), 
for I ⊆ [t]. Then it holds that de(Ce) = min{dI + |I| | I ⊆ [t]}, where the metric 
de : (Fn+t

q )2 −→ N is given by

de((c1, c2), (d1,d2)) = d(c1,d1) + dH(c2,d2),

for c1, d1 ∈ Fn
q and c2, d2 ∈ F t

q.

Proof. Let e1, e2, . . . , et ∈ F t
q denote the canonical basis. A codeword in Ce is of the form

c =

⎛
⎝∑

i∈I

λigi +
k∑

j=t+1
λjgj ,

∑
i∈I

λiei

⎞
⎠ ,

where I ⊆ [t], λi ∈ F∗
q , for i ∈ I, and λj ∈ Fq, for j = t + 1, . . . , k. Note that possibly 

I = ∅. Since λi �= 0 for i ∈ I, we deduce that

wte(c) = wt

⎛
⎝∑

i∈I

λigi +
k∑

j=t+1
λjgj

⎞
⎠ + wtH

(∑
i∈I

λiei

)

= wt

⎛
⎝∑

i∈I

λigi +
k∑

j=t+1
λjgj

⎞
⎠ + |I|

≥ d + |I|.
I
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Therefore, we have that de(Ce) ≥ min{dI + |I| | I ⊆ [t]}.
We now prove the reversed inequality. Consider a subset J ⊆ [t] such that

min{dI + |I| | I ⊆ [t]} = dJ + |J |,

and take d =
∑

i∈J λigi +
∑k

j=t+1 λjgj ∈ CJ such that wt(d) = dJ , where λi ∈ Fq for 
i ∈ J ∪ {t + 1, . . . , k}. Setting

c =
(

d,
∑
i∈J

λiei

)
∈ Ce,

we conclude that

de(Ce) ≤ wte(c) ≤ dJ + |J | = min{dI + |I| | I ⊆ [t]},

therefore de(Ce) ≤ min{dI + |I| | I ⊆ [t]} and we are done. �
We now deduce the following result on multiply extended codes that attain the Sin-

gleton bound.

Corollary 1. With notation as in Theorem 1, the code Ce attains the Singleton bound for 
de if, and only if, so do the codes CI for d, for all I ⊆ [t].

Proof. Note that dim(Ce) = k and dim(CI) = k + |I| − t, for I ⊆ [t]. Hence CI attains 
the Singleton bound for d if, and only if,

dI = n− (k + |I| − t) + 1 = (n + t) − k − |I| + 1.

We also have that Ce attains the Singleton bound if, and only if,

de(Ce) = min{dI + |I| | I ⊆ [t]}
= (n + t) − k + 1

= min{(n + t) − k − |I| + 1 + |I| | I ⊆ [t]},

and the result follows. �
Remark 2. Setting t = k and d = dH (i.e., de = dH), then Corollary 1 recovers the 
well-known characterization of systematic generator matrices of MDS codes from [9, Ch. 
11, Th. 8]. In other words, when t = k and d = dH , Corollary 1 states that Ce is MDS if, 
and only if, every square submatrix of G is invertible, where G is the matrix whose rows 
are g1, g2, . . . , gk ∈ Fn

q . Corollary 1 extends this result to any t ∈ [k] and any metric d
given by a weight satisfying the Singleton bound.
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Finally, we note that we have a lattice of linear codes CI ⊆ Fn
q , for I ⊆ [t], with 

respect to inclusions or, equivalently, unions and intersections, i.e., we have the following 
inclusion graph:

CI∪J

↗ ↖
CI CJ

↖ ↗
CI∩J .

By taking systematic generator matrices, we deduce that the existence of a linear code 
in Fn+t

q attaining the Singleton bound for de is equivalent to the existence of a lattice 
of linear codes CI ⊆ Fn

q , for I ⊆ [t], as above, attaining the Singleton bound for d. This 
property also holds for the dual codes, as stated in the following proposition. Here, we 
define the dual of a linear code C ⊆ Fn

q as usual: C⊥ = {d ∈ Fn
q | c · dᵀ = 0, ∀c ∈ C}.

Proposition 3. Let CI ⊆ Fn
q , for I ⊆ [t], be a family of linear codes such that the map 

I �→ CI is a lattice isomorphism. Define now the linear codes DI = (CIc)⊥ ⊆ Fn
q , for 

I ⊆ [t], where Ic = [t] \ I denotes the complement of I in [t]. Then the map I �→ DI is 
also a lattice isomorphism.

Proof. Simply notice that, for I, J ⊆ [t], we have

DI + DJ = (CIc)⊥ + (CJc)⊥ = (CIc ∩ CJc)⊥ = (CIc∩Jc)⊥ = (C(I∪J)c)⊥ = DI∪J ,

DI ∩ DJ = (CIc)⊥ ∩ (CJc)⊥ = (CIc + CJc)⊥ = (CIc∪Jc)⊥ = (C(I∩J)c)⊥ = DI∩J .

In both lines, we use in the third equality that I �→ CI is a lattice isomorphism. �
Assume that d is a metric such that a linear code attains the Singleton bound if, and 

only if, so does its dual code. In such a case, Proposition 3 states that we do not need to 
check the conditions in Corollary 1 for both the primary and dual codes, but only for one 
of them. This is the case of the sum-rank metric [10, Th. 5], and thus of the Hamming 
and rank metrics in particular.

4. Doubly extended MSRD codes

In this section, we generalize the construction of doubly extended linearized Reed–
Solomon codes from [16] to the general family of MSRD codes from [12]. Using Corol-
lary 1, we will show that such doubly extended MSRD codes are again MSRD.

Recall that the sum-rank metric [17] in Fn
qm over Fq for the length partition (g, r) is 

defined as a sum of rank metrics, i.e., sum-rank weights are given by
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wtSR(c) =
g∑

i=1
wtR

(
c(i)

)
,

for c =
(
c(1), c(2), . . . , c(g)) ∈ Fn

qm , where c(i) ∈ Fr
qm , for i ∈ [g], and n = gr. Recall 

that rank weights in Fr
qm are given by wtR(d) = dimFq

(〈d1, d2, . . . , dr〉Fq
), for d =

(d1, d2, . . . , dr) ∈ Fr
qm .

We now give the definition of extended Moore matrices from [12, Def. 3.4].

Definition 4 (Extended Moore matrices [12]). Fix positive integers � and η. Let a =
(a1, a2, . . . , a�) ∈ (F∗

qm)� be such that NFqm/Fq
(ai) �= NFqm/Fq

(aj) if i �= j, where 

NFqm/Fq
(a) = a · aq · · · aqm−1 , for a ∈ Fqm . For any β = (β1, β2, . . . , βη) ∈ Fη

qm and 

k ∈ [�η], we define the extended Moore matrix Mk(a, β) ∈ Fk×(�η)
qm by Mk(a, β) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 . . . βη . . . β1 . . . βη

βq
1a1 . . . βq

ηa1 . . . βq
1a� . . . βq

ηa�

βq2

1 a
q2−1
q−1

1 . . . βq2

η a
q2−1
q−1

1 . . . βq2

1 a
q2−1
q−1
� . . . βq2

η a
q2−1
q−1
�

...
. . .

...
. . .

...
. . .

...

βqk−1

1 a
qk−1−1

q−1
1 . . . βqk−1

η a
qk−1−1

q−1
1 . . . βqk−1

1 a
qk−1−1

q−1
� . . . βqk−1

η a
qk−1−1

q−1
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and we denote by Ck(a, β) ⊆ F �η
qm the k-dimensional linear code generated by Mk(a, β)

(i.e., the rows of Mk(a, β) generate the vector space Ck(a, β)).

The following result [12, Th. 3.12] characterizes when a code with an extended Moore 
matrix as generator or parity-check matrix is MSRD.

Theorem 2 ([12]). Let a = (a1, a2, . . . , a�) ∈ (F∗
qm)� be as in Definition 4. Let β =

(β1, β2, . . . , βμr) ∈ Fμr
qm , for positive integers μ and r, and set g = �μ. Define the Fq-

linear subspace

Hi =
〈
β(i−1)r+1, β(i−1)r+2, . . . , βir

〉
Fq

⊆ Fqm , (2)

for i ∈ [μ]. Given k ∈ [gr], the code Ck(a, β) from Definition 4 is MSRD over Fq for the 
length partition (g, r) if, and only if, the following two conditions hold for all i ∈ [μ]:

1. dimFq
(Hi) = r, and

2. Hi∩
(∑

j∈Γ Hj

)
= {0}, for any set Γ ⊆ [μ], such that i /∈ Γ and |Γ| ≤ min{k, μ} −1.

Several constructions of MSRD codes based on Theorem 2 were obtained in [12]. These 
include linearized Reed–Solomon codes [11] by taking μ = 1 (in that case, Condition 2 
is empty and Condition 1 means that β1, β2, . . . , βr are Fq-linearly independent).
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For our purposes, we also need to consider the k-dimensional linear codes Dk(a, β) ⊆
F �η
qm with generator matrices M ′

k(a, β) =
⎛
⎜⎜⎜⎜⎜⎜⎝

βq
1a1 . . . βq

ηa1 . . . βq
1a� . . . βq

ηa�

βq2

1 a
q2−1
q−1

1 . . . βq2

η a
q2−1
q−1

1 . . . βq2

1 a
q2−1
q−1
� . . . βq2

η a
q2−1
q−1
�

...
. . .

...
. . .

...
. . .

...

βqk

1 a
qk−1
q−1

1 . . . βqk

η a
qk−1
q−1

1 . . . βqk

1 a
qk−1
q−1
� . . . βqk

η a
qk−1
q−1
�

⎞
⎟⎟⎟⎟⎟⎟⎠

,

for k ∈ [�η]. Observe that we have the following inclusion graph:

Ck(a,β)
↗ ↖

Ck−1(a,β) Dk−1(a,β)
↖ ↗

Dk−2(a,β).

The codes Ck(a, β) are MSRD given Conditions 1 and 2 in Theorem 2. We now show 
that the same conditions turn the codes Dk(a, β) into MSRD codes.

Lemma 5. Let �, μ and r be positive integers, let a = (a1, a2, . . . , a�) ∈ (F∗
qm)� and 

β = (β1, β2, . . . , βμr) ∈ Fμr
qm as in Theorem 2, and set g = �μ. For k ∈ [gr], Ck(a, β) is 

MSRD if, and only if, so is Dk(a, β), in both cases over Fq for the length partition (g, r).

Proof. For a, β ∈ Fqm and a positive integer i, we have that

βqia
qi−1
q−1 = βqiaq

i−1 · · · aq · a =
(
βqi−1

aq
i−2 · · · aq · a

)q

a =
(
βqi−1

a
qi−2−1

q−1

)q

a.

Hence it holds that

M ′
k(a,β) = Mk(a,β)qdiag(a1, . . . , a1| . . . |a�, . . . , a�),

where Mk(a, β)q means that we raise every entry of Mk(a, β) to the qth power, and 
diag(·) denotes diagonal matrix. In particular, the same holds for the corresponding 
codes, i.e.,

Dk(a,β) = Ck(a,β)qdiag(a1, . . . , a1| . . . |a�, . . . , a�),

where Ck(a, β)q means that we raise every component of every codeword of Ck(a, β) to 
the qth power. Now, observe that the map φ : Fgr

qm −→ Fgr
qm given by

φ
(
c1, . . . , cμr| . . . |c(�−1)(μr)+1, . . . , c�(μr)

)
=

(
cq1a1, . . . , c

q
μra1| . . . |cq a�, . . . , c

q a�

)

(�−1)(μr)+1 �(μr)
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is a semilinear isometry for the sum-rank metric over Fq for the length partition (g, r), 
since ai �= 0, for i ∈ [�] (see [1, Cor. 3.8]). Hence the result follows. �
Remark 6. Using the skew polynomial description of the previous codes (see, e.g., [11,
14]), Dk(a, β) is exactly as Ck(a, β), except that skew polynomial powers go from 0 to 
k− 1 in Ck(a, β), and they go from 1 to k in Dk(a, β). The proof of the previous lemma 
implicitly relies on this fact.

Therefore, we are in the situation of Corollary 1 for the sum-rank metric. For this 
reason, we define the following codes.

Definition 7. Let a = (a1, a2, . . . , a�) ∈ (F∗
qm)� be as in Definition 4. Let β =

(β1, β2, . . . , βη) ∈ Fη
qm be arbitrary, for a positive integer η. For k = 2, 3, . . . , �η, we 

define the doubly extended Moore matrix Me
k(a, β) ∈ Fk×(�η+2)

qm by Me
k(a, β) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 . . . βη . . . β1 . . . βη 1 0
βq

1a1 . . . βq
ηa1 . . . βq

1a� . . . βq
ηa� 0 0

βq2

1 a
q2−1
q−1

1 . . . βq2

η a
q2−1
q−1

1 . . . βq2

1 a
q2−1
q−1
� . . . βq2

η a
q2−1
q−1
� 0 0

...
. . .

...
. . .

...
. . .

...
...

...

βqk−1

1 a
qk−1−1

q−1
1 . . . βqk−1

η a
qk−1−1

q−1
1 . . . βqk−1

1 a
qk−1−1

q−1
� . . . βqk−1

η a
qk−1−1

q−1
� 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and we denote by Ce
k(a, β) ⊆ F �η+2

qm the k-dimensional linear code generated by Me
k(a, β).

Thus, by Corollary 1 and Lemma 5, we deduce the following.

Corollary 8. Let �, μ and r be positive integers, define g = �μ and n = gr, and let 
a = (a1, a2, . . . , a�) ∈ (F∗

qm)� and β = (β1, β2, . . . , βμr) ∈ Fμr
qm as in Theorem 2. For 

k = 2, 3, . . . , n, Ck(a, β) ⊆ Fn
qm is MSRD (i.e., Conditions 1 and 2 in Theorem 2 hold) 

if, and only if, Ce
k(a, β) ⊆ Fn+2

qm is MSRD for the extended sum-rank metric

de((c, cn+1, cn+2), (d, dn+1, dn+2)) = dSR(c,d) + dH((cn+1, cn+2), (dn+1, dn+2)),

for c, d ∈ Fn
qm and cn+1, cn+2, dn+1, dn+2 ∈ Fqm , where dSR denotes the sum-rank metric 

in Fn
qm over Fq for the length partition (g, r).

In particular, if � = q − 1 and β = (β1, β2, . . ., βμr) ∈ Fμr
qm satisfies Conditions 1 and 

2 in Theorem 2, then the doubly extended code Ce
k(a, β) ⊆ Fn+2

qm is MSRD as in the 
corollary above, where n = (q− 1)μr and where we consider in Fn

qm the sum-rank metric 
over Fq for the length partition (g, r), g = (q − 1)μ. See [12] for seven concrete explicit 
families of MSRD codes constructed in this way. All of them can be doubly extended as 
mentioned in this paragraph while preserving their MSRD property.
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In particular, choosing μ = 1, Corollary 8 recovers [16, Th. 4.6] as a particular case 
for linearized Reed–Solomon codes, which in turn recovers the classical result [6, Th. 
5.3.4] for classical Reed–Solomon codes.

5. Triply extended MSRD codes

In contrast to the case of doubly extended MSRD codes (Section 4), triply extended 
MSRD codes are not always MSRD, as we show in this section. We will only consider 
3-dimensional codes.

We start with cases where triple extension preserves the MSRD property. Notice that 
the case of (3-dimensional) classical Reed–Solomon codes and the Hamming metric in 
characteristic 2 [9, p. 326, Ch. 11, Th. 10] is recovered from the following theorem by 
taking m = μ = r = 1 and β1 = 1.

Theorem 3. Let m be odd, let q be even, and set n = (q − 1)μr for positive integers 
μ and r. Let β = (β1, . . . , βμr) ∈ Fμr

qm satisfy Conditions 1 and 2 in Theorem 2. Let 
a = (a1, a2, . . . , aq−1) ∈ (F∗

qm)q−1 be such that NFqm/Fq
(ai) �= NFqm/Fq

(aj) if i �= j. The 
triply extended code Ce ⊆ Fn+3

qm with generator matrix

Ge =

⎛
⎜⎝ β1 . . . βμr . . . β1 . . . βμr 1 0 0

a1β
q
1 . . . a1β

q
μr . . . aq−1β

q
1 . . . aq−1β

q
μr 0 1 0

aq+1
1 βq2

1 . . . aq+1
1 βq2

μr . . . aq+1
q−1β

q2

1 . . . aq+1
q−1β

q2

μr 0 0 1

⎞
⎟⎠ ∈ F3×(n+3)

qm

is MSRD for the extended sum-rank metric

de((c, c′), (d,d′)) = dSR(c,d) + dH(c′,d′),

for c, d ∈ Fn
qm and c′, d′ ∈ F3

qm , where dSR denotes the sum-rank metric in Fn
qm over Fq

for the length partition (g, r), where g = (q − 1)μ.

Proof. By Corollary 1 and Lemma 5, we only need to show that the code with generator 
matrix

G =
(

β1 . . . βμr . . . β1 . . . βμr

aq+1
1 βq2

1 . . . aq+1
1 βq2

μr . . . aq+1
q−1β

q2

1 . . . aq+1
q−1β

q2

μr

)
∈ F2×n

qm

is MSRD over Fq for the length partition (g, r).
First, since q is even, then if a, b ∈ Fq are such that a �= b, then a2− b2 = (a − b)2 �= 0, 

hence a2 �= b2. Therefore if i �= j, since NFqm/Fq
(ai) �= NFqm/Fq

(aj), we deduce that

NFqm/Fq
(aq+1

i ) = NFqm/Fq
(ai)2 �= NFqm/Fq

(ai)2 = NFqm/Fq
(aq+1

j ).

Second, since m is odd, then τ : Fqm −→ Fqm given by τ(a) = aq
2 , for a ∈ Fqm , is 

a field automorphism such that {a ∈ Fqm | aq2 = a} = Fq. In particular, NFqm/Fq
(a) =
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aτ(a) · · · τm−1(a), for a ∈ Fqm . Hence the generator matrix G is an extended Moore 
matrix (Definition 4) satisfying the conditions in Theorem 2, and therefore the code it 
generates is MSRD and we are done. �

On the other hand, when m is even or q is odd, a triply extended (full-length) linearized 
Reed–Solomon code is never MSRD.

Proposition 9. Let β1, β2, . . . , βm ∈ Fqm be Fq-linearly independent and let a = (a1, a2, 
. . ., aq−1) ∈ (F∗

qm)q−1 be such that NFqm/Fq
(ai) �= NFqm/Fq

(aj) if i �= j. Set n = (q−1)m. 
If m is even or q is odd, then the triply extended code Ce ⊆ Fn+3

qm with generator matrix

Ge =

⎛
⎜⎝ β1 . . . βm . . . β1 . . . βm 1 0 0

a1β
q
1 . . . a1β

q
m . . . aq−1β

q
1 . . . aq−1β

q
m 0 1 0

aq+1
1 βq2

1 . . . aq+1
1 βq2

m . . . aq+1
q−1β

q2

1 . . . aq+1
q−1β

q2

m 0 0 1

⎞
⎟⎠ ∈ F3×(n+3)

qm

is not MSRD for the extended sum-rank metric

de((c, c′), (d,d′)) = dSR(c,d) + dH(c′,d′),

for c, d ∈ Fn
qm and c′, d′ ∈ F3

qm , where dSR denotes the sum-rank metric in Fn
qm over Fq

for the length partition (q − 1, m).

Proof. We first consider the case where m is even. Since Fq2 ⊆ Fqm in this case, 
there exists an invertible matrix A ∈ Fm×m

q such that the first two components of 
(β1, β2, . . . , βm)A ∈ Fm

qm lie in Fq2 . Since such a multiplication constitutes a linear sum-
rank isometry, we may assume that β1, β2 ∈ Fq2 without loss of generality. Let

G =
(

β1 . . . βm . . . β1 . . . βm

aq+1
1 βq2

1 . . . aq+1
1 βq2

m . . . aq+1
q−1β

q2

1 . . . aq+1
q−1β

q2

m

)
∈ F2×n

qm . (3)

Since βi − βq2

i = 0 (βi ∈ Fq2), for i = 1, 2, we conclude that the codeword (aq+1
1 , −1)G

has sum-rank weight at most n − 2, hence the code generated by G is not MSRD over 
Fq for the length partition (q− 1, m). Thus the code generated by Ge is not MSRD with 
respect to de by Corollary 1.

We now consider the case where both q and m are odd. By assumption, we have that 
{NFqm/Fq

(ai) | i ∈ [q − 1]} = F∗
q . Since q is odd, there exist 1 ≤ i < j ≤ q − 1 such that 

NFqm/Fq
(ai) = −NFqm/Fq

(aj). In particular,

NFqm/Fq
(aq+1

i ) = NFqm/Fq
(ai)2 = NFqm/Fq

(ai)2 = NFqm/Fq
(aq+1

j ).

Consider the matrix G as in (3). Since NFqm/Fq
(aq+1

i ) = NFqm/Fq
(aq+1

j ) and 2 and m

are coprime, there exists β ∈ F∗
qm such that aq+1

i β = aq+1
j βq2 by Hilbert’s Theorem 90 
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[7, p. 288, Th. 6]. Now, there exist invertible matrices Ai, Aj ∈ Fm×m
q such that 1 is the 

first component of (β1, β2, . . . , βm)Ai and β is the first component of (β1, β2, . . . , βm)Aj . 
Let Al = Im for l ∈ [q − 1] \ {i, j}. Denoting

diag (A1, A2, . . . , Aq−1) =

⎛
⎜⎜⎜⎜⎝

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Aq−1

⎞
⎟⎟⎟⎟⎠ ∈ Fn×n

q ,

we deduce that G · diag (A1, A2, . . . , Aq−1) contains the submatrix

(
1 β

aq+1
i aq+1

j βq2

)
,

which is not invertible since aq+1
i β = aq+1

j βq2 . Since multiplying by the invertible block 
diagonal matrix diag (A1, A2, . . . , Aq−1) ∈ Fn×n

q constitutes a linear sum-rank isometry, 
we deduce that the code generated by G is not MSRD over Fq for the length partition (q−
1, m). Thus the code generated by Ge is not MSRD with respect to de by Corollary 1. �
Remark 10. Notice that Proposition 9 works with the same proof in more general cases. 
Consider the sum-rank metric in Fn

qm , n = gr, for the length partition (g, r), g = �μ, 
� arbitrary with 1 ≤ � ≤ q − 1, a vector a = (a1, a2, . . . , a�) ∈ (F∗

qm)� such that 
NFqm/Fq

(ai) �= NFqm/Fq
(aj) if i �= j, and β = (β1, . . . , βμr) ∈ Fμr

qm satisfying Condi-
tions 1 and 2 in Theorem 2. Proposition 9 works under the following assumptions: 1) 
m is even and Fq2 ⊆ Hi for some i ∈ [μ]; or 2) q and m are odd, 

⋃μ
i=1 Hi = Fqm

and there exist i �= j such that NFqm/Fq
(ai) �= −NFqm/Fq

(aj), which necessarily holds if 
� ≥ (q−1)/2. Here, we define Hi, for i ∈ [μ], as in (2). Since the linearized Reed–Solomon 
code case is μ = 1, both conditions on the (single) subspace H1 hold when m is even or 
q and m are odd.

6. A negative result in the sum-rank metric

Up to this point, we have studied extensions of a metric d by adding a Hamming-
metric component dH . The reader may wonder if the results in Section 3 also hold if 
we extend d by adding another metric, for instance, the rank metric. In this section, 
we give a negative answer to this question by trying to doubly extend MSRD codes as 
in Theorem 2 (for the largest value of �, i.e., � = q − 1) by adding a non-trivial rank-
metric block and showing that the resulting code is not MSRD even if the conditions in 
Corollary 1 hold.
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Proposition 11. Let a1, a2, . . . , aq−1 ∈ F∗
qm be such that NFqm/Fq

(ai) �= NFqm/Fq
(aj) if 

i �= j. Let β = (β1, β2, . . . , βμr) ∈ Fμr
qm and Hi = 〈β(i−1)r+1, . . . , βir〉Fq

⊆ Fqm , for i ∈ [μ], 
satisfy Conditions 1 and 2 in Theorem 2. Consider the extended sum-rank metric

de((c, cn+1, cn+2), (d, dn+1, dn+2)) = dSR(c,d) + dR((cn+1, cn+2), (dn+1, dn+2)),

for c, d ∈ Fn
qm and cn+1, cn+2, dn+1, dn+2 ∈ Fqm , where dSR denotes the sum-rank metric 

in Fn
qm over Fq for the length partition (g, r), where g = (q − 1)μ and n = gr. Let 

a, b, c, d ∈ Fqm with (0, 0) /∈ {(a, c), (b, d), (a, b), (c, d)}. Then the extended 2-dimensional 
code Ce with generator matrix

Ge =
(

β1 . . . βμr β1 . . . βμr . . . β1 . . . βμr a c

a1β
q
1 . . . a1β

q
μr a2β

q
1 . . . a2β

q
μr . . . aq−1β

q
1 . . . aq−1β

q
μr b d

)

is MSRD for de if, and only if,

−τ−1 /∈
q−1⋃
i=1

⎧⎨
⎩aiβ

q−1

∣∣∣∣∣∣β ∈
μ⋃

j=1
Hj \ {0}

⎫⎬
⎭ ,

for every τ ∈ F∗
qm such that a + τb and c + τd are Fq-linearly dependent. In particular, 

if 
⋃μ

j=1 Hj = Fqm , then Ce is not MSRD for all a, b, c, d ∈ Fqm .

Proof. First of all, the reader may verify that there exists τ ∈ F∗
qm such that a + τb and 

c + τd are Fq-linearly dependent, since (0, 0) /∈ {(a, c), (b, d), (a, b), (c, d)}.
Let g1, g2 ∈ Fn

qm be the first and second rows of Ge, respectively, projected on the 
first n coordinates. If τ ∈ F∗

qm is such that a + τb and c + τd are Fq-linearly independent, 
then we have that

wte(g1 + τg2, a + τb, c + τd) ≥ n + 1.

Therefore Ce is not MSRD if, and only if, wtSR(g1 + τg2) = n − 1, for some τ ∈
F∗
qm such that a + τb and c + τd are Fq-linearly dependent. Fix one such τ . We have 

wtSR(g1 + τg2) = n −1 if, and only if, there exist λ1, . . . , λr ∈ Fq, not all zero, such that

r∑
k=1

λkβ(j−1)r+k + τai

r∑
k=1

λkβ
q
(j−1)r+k = 0,

for some j ∈ [μ] and some i ∈ [q − 1]. Let β =
∑r

k=1 λkβ(j−1)r+k ∈ Hj \ {0}. Then the 
equation above is simply −τ−1 = aiβ

q−1. This is possible for some i ∈ [q − 1] and some 
β ∈ Hj \ {0} if, and only if,

−τ−1 ∈
q−1⋃
i=1

⎧⎨
⎩aiβ

q−1

∣∣∣∣∣∣β ∈
μ⋃

j=1
Hj \ {0}

⎫⎬
⎭ ,
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and we are done.
Finally, assume that 

⋃μ
j=1 Hj = Fqm . For τ ∈ F∗

qm , there exists i ∈ [q − 1] such 
that NFqm/Fq

(−τ−1) = NFqm/Fq
(ai). By Hilbert’s Theorem 90, there exists β ∈ F∗

qm =⋃μ
j=1 Hj \ {0} such that −τ−1 = aiβ

q−1 and we conclude that Ce is not MSRD when ⋃μ
j=1 Hj = Fqm . �
In the case where (β1, β2, . . . , βμr) is constructed using field reduction (as in the 

following lemma, see also [12, Sec. 4.1]), we have the following easy criterion to determine 
when 

⋃μ
j=1 Hj = Fqm . Note that this lemma basically states that Fqm can be a union 

of μ Fq-linear subspaces of dimension r with pair-wise zero intersection if, and only if, 
μ = (qm − 1)/(qr − 1); or equivalently, F∗

qm is as disjoint union of μ cosets of F∗
qr if, and 

only if, μ = (qm − 1)/(qr − 1).

Lemma 12. Let m = rρ, for positive integers r and ρ, and let (β(j−1)r+1, . . . , βjr) =
γj(α1, . . . , αr), for j ∈ [μ], where α1, . . . , αr ∈ Fqr are Fq-linearly independent, and 
γ1, . . . , γμ ∈ F∗

qm are such that γi and γj are Fqr -linearly independent if i �= j. Define 
Hj = 〈β(j−1)r+1, . . . , βjr〉Fq

⊆ Fqm , for j ∈ [μ]. In this setting, we have 
⋃μ

j=1 Hj = Fqm

if, and only if, μ = (qm − 1)/(qr − 1).

Proof. In this case, the condition 
⋃μ

j=1 Hj = Fqm holds if, and only if, {[γ1], . . . , [γμ]} =
PFqr

(Fqm), where [γ] = {λγ | λ ∈ F∗
qr} is the projective point associated to γ ∈ F∗

qm over 
Fqr . Now since γi and γj are Fqr -linearly independent if i �= j, then [γ1], . . . , [γμ] are 
distinct projective points. Therefore they form the whole projective space if, and only if, 
there are (qm − 1)/(qr − 1) of them. �

This implies that Proposition 11 holds for 2-dimensional (full-length) linearized Reed–
Solomon codes (the case r = m and μ = ρ = 1, see [12, Sec. 4.2]) and the more general 
family of MSRD codes obtained from Hamming codes given in [12, Sec. 4.4], which are 
the longest known 2-dimensional linear MSRD codes. In other words, those two families 
of 2-dimensional MSRD codes may not be doubly extended as in Proposition 11. In the 
case of linearized Reed–Solomon codes, this could also be deduced from the results in 
[16]. In the case r = 2, it was known that the family of MSRD codes obtained from 
Hamming codes could not be doubly extended as in Proposition 11. This is because 
their number of blocks (the parameter g = (q − 1)μ) attains the upper bound from [3, 
Th. 6.12] since g = (q− 1)(qm − 1)/(qr − 1) − 1 in this case. The fact that it may not be 
doubly extended for r ≥ 3 is new.

We recall that this latter family of MSRD codes can be explicitly constructed as 
in Definition 4, where β1, β2, . . . , βμr ∈ Fqm are explicitly constructed as follows (see 
also [12, Sec. 4.4]). Choose positive integers m = ρr, μ = (qm − 1)/(qr − 1) and let 
γ ∈ F∗

qm be a primitive element. Set γi = γ(i−1)(qr−1), for i ∈ [μ]. Then [γ1], [γ2], . . . , [γμ]
form the whole projective space PFqr

(Fqm) (for instance, by combining [11, Prop. 43]
and [14, Th. 2.12]). Finally, set (β(j−1)r+1, . . . , βjr) = γj(α1, . . . , αr), for j ∈ [μ], where 
α1, . . . , αr ∈ Fqr form a basis of Fqr over Fq.
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7. One-weight codes

In this section, we give necessary and sufficient conditions for the doubly extended 
MSRD codes from Corollary 8 to be one-weight codes (or constant-weight codes), that 
is, such that all of their codewords have the same weight (thus equal to the minimum 
distance of the code). The next proposition recovers [16, Th. 4.9] for linearized Reed–
Solomon codes by taking μ = 1.

Proposition 13. Let a1, a2, . . . , aq−1 ∈ F∗
qm be such that NFqm/Fq

(ai) �= NFqm/Fq
(aj) if 

i �= j. Let β = (β1, β2, . . . , βμr) ∈ Fμr
qm and Hi = 〈β(i−1)r+1, . . . , βir〉Fq

⊆ Fqm , for i ∈ [μ], 
satisfy Conditions 1 and 2 in Theorem 2. Consider the extended sum-rank metric

de((c, cn+1, cn+2), (d, dn+1, dn+2)) = dSR(c,d) + dH((cn+1, cn+2), (dn+1, dn+2)),

for c, d ∈ Fn
qm and cn+1, cn+2, dn+1, dn+2 ∈ Fqm , where dSR denotes the sum-rank metric 

in Fn
qm over Fq for the length partition (g, r), where g = (q − 1)μ and n = gr. Then the 

extended 2-dimensional MSRD code Ce with generator matrix

Ge =
(

β1 . . . βμr β1 . . . βμr . . . β1 . . . βμr 1 0
a1β

q
1 . . . a1β

q
μr a2β

q
1 . . . a2β

q
μr . . . aq−1β

q
1 . . . aq−1β

q
μr 0 1

)

is a one-weight code for de if, and only if, 
⋃μ

i=1 Hi = Fqm .

Proof. Let g1, g2 ∈ Fn+2
qm be the first and second rows of Ge, respectively. Since de(Ce) =

n + 1, we need to show that wte(g1 + λg2) = n + 1, for all λ ∈ F∗
qm . Fix λ ∈ F∗

qm . We 
need to show that there exist λ1, λ2, . . . , λr ∈ Fq, not all zero, such that

r∑
k=1

λkβ(j−1)r+k + λai

r∑
k=1

λkβ
q
(j−1)r+k = 0,

for some j ∈ [μ] and some i ∈ [q − 1]. Let β =
∑r

k=1 λkβ(j−1)r+k ∈ Hj \ {0}. Then the 
equation above is simply −λ−1 = aiβ

q−1. This is possible for all λ ∈ F∗
qm if, and only if,

F∗
qm =

q−1⋃
i=1

⎧⎨
⎩aiβ

q−1

∣∣∣∣∣∣β ∈
μ⋃

j=1
Hj \ {0}

⎫⎬
⎭ . (4)

Since βq−1 = γq−1 holds for β, γ ∈ F∗
qm if, and only if, β/γ ∈ F∗

q , it is easy to see that 
(4) holds if, and only if, 

⋃μ
i=1 Hi = Fqm , and we are done. �

In the case where β is constructed using field reduction as in Lemma 12, we see that 
the extended 2-dimensional MSRD code Ce is a one-weight code for de if, and only if, 
μ = (qm − 1)/(qr − 1).
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In other words, 2-dimensional doubly extended linearized Reed–Solomon codes and 
the doubly extended MSRD codes based on Hamming codes as in [12, Sec. 4.4] are all 
one-weight codes for the extended metric de.

Finally, we show that triply extended MSRD codes are never one-weight codes for 
q = 2. Due to the results from Section 5, we only consider the case where m is odd. 
Notice that in this case the vector a is of length one and we may simply consider it as 
a = (1).

Proposition 14. Let q = 2, let m ≥ 3 be odd and set n = μr for positive integers μ and 
r. Let β = (β1, β2, . . . , βμr) ∈ Fμr

2m satisfy Conditions 1 and 2 in Theorem 2. The triply 
extended code Ce ⊆ Fn+3

2m with generator matrix

Ge =

⎛
⎜⎝ β1 β2 . . . βμr 1 0 0

β2
1 β2

2 . . . β2
μr 0 1 0

β4
1 β4

2 . . . β4
μr 0 0 1

⎞
⎟⎠ ∈ F3×(n+3)

2m

is MSRD but not a one-weight code for the extended sum-rank metric

de((c, c′), (d,d′)) = dSR(c,d) + dH(c′,d′),

for c, d ∈ Fn
2m and c′, d′ ∈ F3

2m , where dSR denotes the sum-rank metric in Fn
2m over F2

for the length partition (μ, r).

Proof. The fact that Ce is MSRD for de is Theorem 3. Now, since de(Ce) = n − 2, it is 
enough to show that there exists a codeword c ∈ Ce with wte(c) = n. For λ, ν ∈ F∗

2m , let

cλ,ν = (λβ1 + νβ2
1 + β4

1 , . . . , λβμr + νβ2
μr + β4

μr, λ, ν, 1) ∈ Ce.

Since λ �= 0 �= ν, it holds that wte(cλ,ν) < n if, and only if, there exists an index i ∈ [μ]
and scalars λ1, λ2, . . . , λr ∈ F2, not all zero, such that

r∑
j=1

λj

(
λβ(i−1)r+j + νβ2

(i−1)r+j + β4
(i−1)r+j

)
= 0.

By considering β =
∑r

j=1 λjβ(i−1)r+j ∈ F∗
qm , we have that wte(cλ,ν) < n if, and only 

if, there exists an index i ∈ [μ] and β ∈ Hi = 〈β(i−1)r+1, β(i−1)r+2, . . . , βir〉F2 \ {0} such 
that λβ + νβ2 + β4 = 0, that is, β3 + νβ + λ = 0.

Now, since by [8, Th. 3.25] there are (23m − 2m)/3 > 2 · 22m monic irreducible poly-
nomials in F2m [x] of degree exactly 3, then there is at least one irreducible polynomial 
f = x3 + ax2 + bx + c ∈ F2m [x] such that b �= a2 and b �= 1. Furthermore, c �= 0 since f
is irreducible. Define g = f(x + a) = x3 + (a2 + b)x + c(b + 1), which is irreducible since 
so is f . Let ν = a2 + b and λ = c(b + 1), which satisfy λ �= 0 �= ν. Since g is irreducible 
of degree 3, there is no β ∈ F2m such that g(β) = β3 + νβ + λ = 0. In other words, the 
codeword cλ,ν ∈ Ce as above satisfies wte(cλ,ν) = n, and we are done. �
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