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Abstract 

The endoplasmic reticulum (ER) is an intracellular organelle involved, among other 

functions, in the synthesis and secretion of proteins. These processes are tightly 

regulated to control the quality of protein secretion. However, excessive protein load 

can perturb ER homeostasis leading to accumulation of misfolded proteins resulting in 

the activation of the unfolded protein response (UPR). Viral infections including 

SARS-CoV-2, as a positive single stranded RNA (ssRNA) virus, might cause ER stress 

because of the exploitation of the host machinery for viral replication. Endosomal Toll-

like receptors (TLR)7 and TLR8 sense ssRNA associated SARS-CoV-2 virus. 

Recognition of ssRNA by its cognate receptors drives transcription and translation of 

pro-inflammatory genes, which after release into the systemic circulation, may team up 

with the UPR to ignite the cytokine storm (CS) or viral sepsis observed in the severe 

forms of the disease. Our approach aimed to understand the connection between SARS-

CoV-2 infection and the UPR, focusing on the role of the transcription factor spliced 

XBP1 in viral replication and cytokine overproduction. The study encompasses: i) the 

analysis of nasopharyngeal swabs samples and bronchiolo-alveolar aspirates of patients 

undergoing mechanical ventilation due to severe pneumonia hospitalized at the Internal 

Care Unit (ICU), ii) experiments in monocyte derived dendritic cells (MDDCs) 

stimulated via TLR7/8, iii) studies in vivo infection with SARS-CoV-2, and iv) the 

impact of the UPR modulation during the replication cycle in human epithelial cells 

infected with different variants of concern (VOCs). Taken collectively, the study has 

disclosed that the IRE1α-XBP1 branch of the UPR is a host-dependent factor involved 

in SARS-CoV-2 pathogenesis.
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During predoctoral studies, the initial project focused on mitochondrial function, 

since immunometabolism reached central stage in the function of the innate immune 

system. Immune cells metabolize a variety of carbon substrates, which allows proper 

adaptation to changing microenvironments, while the competition for nutrients and the 

adaptive advantage to change fuel sources control the states of quiescence and activation 

of immune cells [1, 2]. These metabolic adaptations are devoted to perform various 

functional outputs, where mitochondria play a key role at the core of signaling, transcription 

and epigenetics [3]. This explains why mitochondria, by producing metabolic intermediates 

have emerged as central regulators of innate sensing and gave room to new approaches for 

the development of therapies directed to manipulate metabolic pathways in different 

diseases [4, 5]. 

The rationale to study oxidative phosphorylation (OXPHOs) in monocyte-derived dendritic 

cells (MDDCs) stimulated by the fungal surrogate zymosan, stemmed from previous results 

where we have shown a metabolic switch characterized by concomitant increase of oxygen 

consumption and extracellular acidification [6]. In line with this, the main goal of the 

project focused on the function of mitochondria in cytokine induction by MDDCs.  

The application of mass spectrometry assays disclosed a metabolic reprogramming 

following the activation of MDDCs by pathogen-associated molecular patterns (PAMPs) 

characterized by decreased levels of pyruvate, citrate, itaconate, and α-ketoglutarate, while 

oxaloacetate, succinate, lactate, oxygen consumption and pyruvate dehydrogenase activity 

showed robust increases (Figure 1).  
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Figure 1. Energetic 

metabolic reprogramming 

in MDDCs stimulated with 

the fungal pattern 

zymosan. Intracellular 

metabolites downregulated 

are shown in red. 

Upregulated metabolites are 

shown in green.  Enzymes 

suitable for pharmacological 

modulation are shown in 

beige. MPC indicates 

mitochondrial pyruvate 

carrier (MPC). ACLY stands for ATP citrate lyase. ACSS2 means acyl-CoA synthetase 

short chain family member 2. PDC, pyruvate dehydrogenase complex. 

 

Acetyl CoA plays a key role in the TCA cycle and exerts other functions, such as the 

opening of chromatin structure through histone acetylation and the biosynthesis of fatty 

acids and the lipid mediator platelet activating factor ((PAF; 1-O-hexadecyl-2-acetyl-sn-

glycero-3-phosphocholine) (Figure 2).  
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Figure 2. Schematic representation of acetyl-CoA functions disclosing the importance 

of this metabolite as a hub of the metabolic-epigenomic axis during the phagocytosis of 

fungal patterns by MDDCs. Zymosan (green) promotes TCA cycle intermediary 

metabolites rewiring. Acetyl-CoA allows the opening of chromatin structure through 

histone acetylation and is a substrate for the biosynthesis of PAF. 

 

Mitochondrial pyruvate and the processing of acetate through acyl-CoA synthetase short 

chain family member 2 (ACSS2) are main sources of acetyl-CoA. Based on this, we 

addressed the correlation of the fluxes of these metabolites with the cytokine signature, 

epigenetic modifications, and lipogenesis. Special attention was paid to the regulation of 

the expression of the cytokines IL-23 and IL-10, which imprint the polarization of T helper 

lymphocytes in the TH17 and Treg phenotypes. We found that expression of IL10 and 

IL23A (the gene encoding the p19 chain of IL-23) depended on pyruvate dehydrogenase 

activity. Mechanistically, pyruvate reinforced histone H3 acetylation, and acetate rescued 

the effect of mitochondrial pyruvate carrier inhibition, most likely because it is a substrate 

for the acetyl-CoA producing enzyme ACSS2. Mice lacking the receptor of the lipid 

mediator PAF showed a reduced production of IL-10 and IL-23 that is explained by the 

requirement of acetyl-CoA for PAF biosynthesis and its ensuing autocrine function. 

Therefore, acetyl-CoA intertwines fatty acid remodeling of glycerophospholipids and 
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energetic metabolism with the process of cytokine induction. These results were published 

in Cell Reports. 

Due to the global COVID-19 pandemic and the expertise of our laboratory in innate 

immunity and inflammation, we had a unique chance to apply our expertise to the major 

public health challenge caused by SARS-CoV-2 infection. Recent studies disclosed that the 

activation of the unfolded protein response (UPR) plays a major role in the modulation of 

cytokine production and inflammatory response [7, 8]. The IRE1α-XBP1 system has been 

found to be a robust enhancer of the production of the proinflammatory cytokine IL-23 

during fungal infections, as reported [6]. This background paved the way to address the 

pathophysiological mechanisms underlying the clinical setting of fever, 

immunosuppression, and cytokine storm (CS) that aggravates the clinical course of 

COVID-19 ailment [9]. Our working hypothesis was that sXBP1 could be involved in the 

pathogenesis of the severe pneumonia and the multiorgan failure characteristic of the severe 

forms of COVID-19 disease. For that purpose, we adapted a portion of our work to address 

the role of the UPR in SARS-CoV-2 infection, with special emphasis in the role of the 

IRE1α-XBP1 arm in the induction of the cytokine storm. 
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The outbreak of COVID-19 pandemic 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes critical 

and often fatal pneumonia in numerous patients. It was declared COVID-19 pandemic by 

WHO in March 2020 and ever since it was associated with a widespread morbidity and 

mortality worldwide. Globalization has increased the likelihood of encounters with 

emerging and re-emerging RNA viruses. Likewise, SARS-CoV-2 caused more than 650 

million cases and 6.6 million deaths in the last three years. Although vaccines are the most 

effective treatment to prevent the spread of infections, the propensity of mutation of SARS-

CoV-2 is a challenge to immunity, even among individuals who have been vaccinated or 

underwent previous infection [10, 11].  

The genomic structure of the ancestral SARS-CoV-2 virus (Figure 3) and its 

subsequent mutations have resulted in the variants of concern (VOCs) across time [12]. 

The most important VOCs reported to date, are wild type (WT) and (D614G) [13], α 

(B.1.1.7), β (B.1.351), γ (P.1), δ (B.1.617.2) and ο (B.1.1.529). Furthermore, SARS-CoV-

2 had a remarkably evolutionary plasticity of mutation and recombination [14, 15]. The 

new emerging VOCs of SARS-CoV-2 stand more transmissible and less pathogenic, which 

makes the majority of  infected patients asymptomatic or showing mild symptoms, although 

some patients still develop severe disease [16]. The rate of developing severe pneumonia 

varies with age [17] and remains a serious threat for patients suffering from comorbidities 

and immunosuppression [18]. 
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Figure 3. Coronavirus genome. Coronavirus genome consists of a positive single-strand 

RNA chain flanked by 3′ and 5′ untranslated regions spanning a range of 26 to 32 kilobases. 

The 2019 coronavirus genome contains 14 open reading frames (ORFs) encoding 27 

proteins, distributed in four structural proteins: spike (S), membrane (M), envelope (E) and 

nucleocapsid (N). Eight accessory proteins (3a, 3b, p6, 7a, 7b, 8b, 9b and ORF14) at the 3’ 

terminus of the genome. The first two ORFs encode non-structural proteins (NSPs). They 

comprised 15 NSPs, which are NSP1-NSP10 and NSP12-16, respectively [19].  

 

SARS-CoV-2 displays several immune evasion mechanisms, not only to counteract 

antiviral response, but also to imbalance the cellular immune response by the 

overproduction of cytokines, which results in viral sepsis as a detrimental hallmark of 

COVID-19 pneumonia [20].  
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SARS-CoV-2 strategies for efficient viral replication and immune evasion 

SARS-CoV-2 virus primarily infects lung cells by interaction with the angiotensin-

converting enzyme (ACE)2 receptor. The ACE2 protein is most abundant in lung alveolar 

epithelial cells, small intestine enterocytes and endothelial cells [21]. Other receptors could 

also mediate viral entry, including CD147, neuropilin-1, AXL, DC-SIGN and FcγR after 

forming immune complexes with antibodies [22-25]. After ACE2 binding, the S protein of 

SARS-CoV-2 promotes host membrane fusion and proteolytic cleavage with the 

cooperation of host proteases such as furin, the cellular transmembrane serine protease 

(TMPRSS)2 and cathepsins. This process is followed by the release of viral RNA into the 

host cytoplasm, where viral RNA uses the host machinery to replicate and assemble new 

viral particles [26, 27]. The interaction of coronavirus with the host creates an optimal 

environment for replication using different strategies to counter host’s antiviral response. 

During the invasion phase, coronavirus infection displays high viral replication, 

followed by an inflammatory response of the host directed to counter disease progression. 

SARS-CoV-2 proliferates, without any associated specific symptoms, mainly in type II 

pneumocytes, ciliated epithelium of nasopharynx, upper respiratory tract, and endothelial 

cells. Only certain types of cells maintain an effective viral replication and release of 

virions. The vast majority of those cells locate in the respiratory tract [28, 29].  

Upon disease progression, virus induce cell damage and release of PAMPs as well as 

damage-associated molecular patterns (DAMPs), which may activate neighbour epithelial 

cells and macrophages [30]. The presence of viral components in other cell types can be 

the result of phagocytic processes, abortive infections, or binding of viral antigens to cell 

surface receptors [31]. Although ACE2 and TMPRSS2 expression were higher in epithelial 
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cells from human nasal exudates of SARS-CoV-2 patients, viral transcripts of SARS-CoV-

2 have also been found in neutrophiles and macrophages [32].  

Plasmacytoid dendritic cells (pDCs) infiltrating the lung sense SARS-CoV-2 and activate 

macrophages through the production of IFN-I [33]. This drives an inflammatory milieu 

optimal to produce cytokines and chemokines by macrophages and paves the way for the 

attraction of T cells to the niche of infection, which enhance the inflammatory response by 

recruiting IFN-γ production [34]. Although the primary goal of these responses is the 

blockade of viral proliferation hyperactivation of innate immune cells could induce an 

unintended CS that increases disease severity.   
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Endoplasmic reticulum as a central hub of coronavirus replication 

Coronavirus are enveloped virus with positive-sense, non-segmented, single-

stranded RNA genome, the replication of which takes place in close association with 

intracellular membrane structures mainly provided by the ER [35]. The formation of viral 

replication-transcription complexes (RTC) and double membrane vesicles (DMVs), the 

massive production and posttranslational modifications of viral proteins, as well as virion 

budding during the replication life cycle (Figure 4), overload the ER folding capacity, 

assembly, and secretion of proteins triggering ER stress response. 

Since only properly folded proteins should exit from the ER to maintain homeostasis, cells 

arrange a response directed to retain and degrade defective proteins. This involves an 

intracellular signaling pathway termed the UPR [36-38]. The UPR includes a down 

regulation of global protein synthesis, the degradation of some proteins, and the 

transcriptional induction of specific genes associated with the activity of its three branches. 

Various studies have documented the activation of one or more of the three arms of the 

UPR during coronavirus replication [39]. 
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Figure 4. Coronavirus life cycle. Coronavirus infection begins when the viral S protein 

attaches to its cognate host receptor. This allows virus entry into the host cell by 

endocytosis or direct fusion of the viral envelop with the cell membrane. (1) Process of 

SARS-CoV-2 virus entry and uncoating. (2) Translation of the viral positive-sense RNA. 

(3) Viral genomic RNA replication and the transcription of subgenomic mRNAs (sg 

mRNAs). (4) Virus-induced massive rearrangement of the intracellular membrane network 

for the biogenesis of viral replication organelles consisting of characteristic perinuclear 

DMVs create a protective micro-environment for sg mRNAs encoding structural and 

accessory proteins. (5) Coronavirus replication occurs within DMVs and transmembrane 

structural proteins (S, M and E) and accessory proteins are synthesized in the ER. (6) 

Translated structural proteins translocate into ER membranes and transit through the ER-

Golgi intermediary compartment (ERGIC), where they interact with the viral 

nucleocapside (N) protein to encapsidate newly produced genomic RNA. (7) New viral 

particles result in budding into the lumen of secretory vesicular compartments which are 

transported to the ERGIC for assembly and exported through secretory pathway in smooth-

wall vesicles, which ultimately fuse with the plasma membrane to release the mature virus. 
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Replication and transcription of the coronavirus genome occurs within the RTC 

anchored in rearranged internal host membranes. These membranes act as a framework for 

viral genome replication by localizing and concentrating the necessary factors, as well as 

for providing protection from host cell defences. In coronavirus, the host membranes 

required for the RTC formation emerge from the ER membranes. The hallmark membrane 

rearrangements observed in coronavirus are DMVs, so named for their distinctive double-

lipid bilayer structure observed in electron micrographs. A recent report indicates that such 

DMVs are the primary site of RNA replication [40]. Such a high demand for host 

membranes formation represents an additional burden on the ER that contributes to trigger 

ER stress. 

UPR activation is associated with certain coronaviral proteins that have previously been 

investigated [41-43]. Recent reports demonstrated that expression of the SARS-CoV-2 S 

or ORF8 proteins is sufficient to induce the three major signalling pathways of the UPR 

[44]. In contrast, E protein of SARS-CoV has been reported to protect from ER stress [45].  

Coronavirus proteins, especially the S protein, are modified by a variety of post-

translational modifications that affect viral replication and pathogenesis [46]. Translated 

structural proteins S, M and E translocate into the ER membranes and transit through the 

ERGIC, where they interact with the N protein-encapsidated newly produced genomic 

RNA. This results in budding into the lumen of secretory vesicular compartments. Finally, 

virions are secreted from infected cells by exocytosis. This virion budding-related ER 

membrane depletion overloads the folding capacity of the ER and, therefore, might be 

another mechanism whereby SARS-CoV-2 trigger ER stress and the UPR.  

Given the various mechanisms involved in viral proliferation that impinge on the ER 

function, it seems likely that SARS-CoV-2 might divert the UPR from its purported role 

devoted to restoring ER homeostasis and take advantage of it for its own benefit. 
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The unfolded protein response 

The accumulation of misfolded proteins activates three sensors of the UPR. The 

response starts by the detachment of the chaperone binding immunoglobulin protein (BiP), 

also called GRP78 and heat shock protein A5 (HSPA5), from the three transmembrane ER 

stress sensors: Inositol-requiring enzyme (IRE) 1α, protein kinase RNA-like ER kinase 

(PERK) and activating transcription factor (ATF) 6. Each sensor initiates an arm of the 

UPR [37, 47]. In case these responses fail to restore homeostasis, autophagy, apoptosis, 

and dysregulated mitochondrial bioenergetics may occur [48-50]. Mechanistically, when 

misfolded proteins accumulate in the ER lumen, BiP is detached from the luminal domains 

of the three sensors where it is bound. This allows the formation of homodimers by PERK 

and IRE1 and full length ATF6 translocate from the ER to the Golgi.  

ATF6 is cleaved by site-1 protease (S1P) and site-2 protease (S2P). This releases a cytosolic 

fragment (ATF6p50), which then transits to the nucleus and contributes to restore 

homeostasis. PERK phosphorylates the α-subunit of eukaryotic translation initiation factor 

2A (eIF2α), resulting in a global reduction of protein synthesis, while the translation of a 

few key proteins is maintained, including, ATF4, which induces expression of the 

transcription factor C/EBP homologous protein (CHOP), as well as genes involved in redox 

homeostasis, amino acid metabolism, protein synthesis, autophagy, and apoptosis. Protein 

synthesis is restored when eIF2α is dephosphorylated by a negative feedback loop of 

growth arrest and DNA damage-inducible protein (GADD34). IRE1 auto-phosphorylates 

to switch on its RNase activity, inducing a process known as regulated IRE1-dependent 

decay (RIDD), in which IRE1 cleaves and leads to the selective degradation of a small set 

of mRNAs and miRNAs. IRE1 also excises a short 26-nucleotide intron from the mRNA 

encoding transcription factor X-box binding protein 1 (uXBP1), generating the spliced 
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XBP1 (sXBP1) mRNA, which is ultimately translated into the transcription factor sXBP1 

that, like ATF4 and ATF6 upregulates genes involved in multiple signaling pathways. 

(Figure 5).  

 

Figure 5. The three branches of the UPR. (Left) ATF6, (middle) PERK and (right) IRE1 

arms. Upon ER stress, the ATF6 branch is activated when ATF6 translocate from the ER 

to the Golgi, where it is cleaved. After cleavage, the amino-terminus of ATF6 (ATF6-Nt) 

translocate to the nucleus to upregulate ER chaperones and XBP1. PERK oligomerises and 

auto-phosphorylates. Activated PERK phosphorylates the α-subunit of eIF2 resulting in a 

general shutdown of protein synthesis. However, translation of ATF4 is increased under 

these conditions leading to the induction of its target genes CHOP and GADD34. Finally, 

a negative feedback loop of GADD34 dephosphorylates eIF2α when homeostasis is 

recovered. Activated IRE1α removes a 26-nt intron from uXBP1 mRNA leading to a 

translational reading frame shift and a longer protein sXBP1, which is an active 

transcription factor that upregulates ER chaperones, endoplasmic-reticulum-associated 

protein degradation (ERAD) pathway and lipid biosynthesis.  
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The IRE1α-XBP1 branch of the UPR 

The IRE1α-XBP1 branch is the most conserved one and is activated by direct 

interaction of misfolded proteins with IRE1α, while BiP acts as a sensitive adjustor for 

stressors [51, 52]. Upon ER stress, IRE1α endoribonuclease domain excides a 26-

nucleotide fragment of the uXBP1 immature mRNA to allow the translation of the potent 

transcription factor sXBP1 [53].  

sXBP1 promotes rapid expression of chaperones, glycosylases, quality control proteins, 

and ERAD components. In addition, sXBP1 regulates the adaptative UPR target genes to 

restore homeostasis, sXBP1 also affects host responses to pathogens since it behaves as a 

transcription factor involved in the regulation of inflammatory proteins, including 

prostaglandin-producing enzymes and cytokines, as well as controlling cell viability during 

ER stress [54, 55], the ubiquitin-like modifier ISG15, and the cytokines IL-6, IL-23, and 

TNFα [6, 56, 57]. Although the goal of the UPR is alleviating ER-stress, the IRE1α-XBP1 

branch contributes to the pathogenesis of many ailments, i.e., cancer, infections, and 

autoimmune diseases [58-60].  

When ER homeostasis is recovered because of UPR activity, UPR branches promote the 

degradation of misfolded proteins and a global reduction of protein synthesis and 

translation through ERAD. Under conditions of excessive ER stress and independently of 

XBP1, hyperactivated IRE1α can also cleave a specific subset of mRNAs connected to the 

translocon of the ER to inhibit further influx of proteins into the ER. These mRNAs encode 

proteins involved in ER homeostasis, cell-to-cell contact, antigen processing and in 

addition to their nearby location, the mRNAs of which contains an expression of cleavage 

sites with a consensus sequence (CUGCAG) and a secondary structure mimicking the IRE1 

recognition stem-loop of XBP1 mRNA by the process termed RIDD.  
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Innate immune sensing of viral components of SARS-CoV-2 by TLRs  

Innate immunity is the first line of antiviral defence and is essential to control virus 

infections. SARS-CoV-2 derived molecules can bind Toll like receptors (TLRs) and 

activate the innate immune response, wherein the IFN system is crucial for controlling viral 

infection. Innate immune response often contributes to viral clearance and disease 

resolution, while dysregulated immune signaling may lead to the detrimental production of 

proinflammatory cytokines and chemokines driving immunopathology.  

Immune cells are characterized by their array of pattern recognition receptors (PRRs). They 

are located on the cell membrane, inside the cell and even secreted. PRRs recognize PAMPs 

and DAMPs and activate inflammatory cascades to produce IFNs and other cytokines [61]. 

TLRs, retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and melanoma 

differentiation-associated protein 5 (MDA5) recognize viral particles and non-self RNA 

molecules [62-64].  

When viruses invade the host, cell surface TLRs recognise viral components to induce 

immune response. In silico studies on SARS-CoV-2 glycoproteins disclosed its ability to 

bind ACE2 receptor as well as cell surface TLRs [65]. The recognition of the SARS-CoV-

2 S protein by TLR4 increased ACE2 expression, thus enhancing viral entry, aberrant 

signaling, and hyperinflammation [66]. Other structural proteins such as, S, E and N 

protein, triggers TLR2 and upregulate the production of proinflammatory cytokines [67-

70]. 

As regards intracellular recognition of PAMPs, the tandem TLR7/8 detects viral 

singled-stranded RNA (ssRNA), TLR3 detects viral double-stranded RNA (dsRNA), while 

TLR9 detects viral deoxyribonucleic acid [71]. The plausible involvement of the tandem 

TLR7/8 in COVID-19 disease stems from its ability to bind positive-sense, ssRNA like 
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SARS-CoV-2 RNA, and from clinical reports showing that loss-of-function variants in X-

chromosomal TLR7 driving impaired type I and II IFN responses associate with severe 

COVID-19 disease in young patients [72].  

The purpose of this study has been addressing whether TLR7/8 engagement and sXBP1 

may contribute to viral sepsis in COVID-19 disease, given that dysregulated TLR responses 

may lead to persistent inflammation and tissue damage [73-75] and intracellular TLRs may 

recognize viral RNA during the replication life cycle of SARS-CoV-2. In addition, TLR7/8 

involvement in COVID-19 pathogenesis was postulated as a target with potential 

therapeutics [76]. 
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Cytokine storm and global immune dysregulation in SARS-CoV-2 disease 

Hyperinflammation was soon recognized as a mechanism driving mortality that 

could proceed after the end of viral proliferation. This resembled the state of immune cell 

hyperactivation observed in various clinical conditions and this explains why the term CS 

was selected to refer to this phase of the disease. In fact, CS has been reported to be more 

damaging than viral infection itself [77] and drives lung damage that causes hypoxemia, as 

well as disseminated intravascular coagulation, and multiorgan failure [78]. Cytokines 

recruit immune cells into the site of infection and pave the way for the activation of the 

adaptative immune response. The purported function of this sequence of mechanisms is the 

cooperation of innate and adaptive immune responses to elicit viral clearance and a gradual 

decay of virus-induced inflammation. 

While CS was simply considered a sudden release of cytokines [79], current views 

stress that the CS is the outcome of the confluence of  genetic and physiological conditions 

[80, 81], as well as the result of the concomitant imbalance between proinflammatory and 

anti-inflammatory cytokines [82], further nuanced by the redundant and pleiotropic actions 

of cytokines, which upon activation of different cell populations can produce a distinct 

spectrum of biological effects [83]. 

Proinflammatory cytokines, chemokines, and immune mediators lead to the recruitment of 

macrophages, T and B cells to the lung [84]. T cells can become depleted when high levels 

of IL-10, TNF, and IL-6 compromise T cell survival and proliferation [85]. In fact, 

lymphopenia has been detected in 60-70% of severe infections [86] and in patients 

requiring treatment in internal care unit (ICU) patients [87]. In early studies, IL-6 levels 

was considered an archetypal cytokine increased in bronchoalveolar lavage fluid of 

deceased patients as compared to the surviving ones [88]. Drugs targeting innate immunity 
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and inflammation are promising since excessive inflammation is a critical sign of poor 

outcome. Several single-centre studies have used IL-6 inhibitors to treat patients with 

COVID-19 with some clinical benefits [89-91] and reported failures in patients receiving 

CAR T cells treatment [92]. 

The hyperinflammation of viral sepsis may lead to immune paralysis, when innate immune 

cells become unresponsive to immune stimulation [93-95]. Since proinflammatory 

cytokines exert key roles in SARS-CoV-2 infection and can be used as biomarkers of 

disease progression, they may also be targets for therapies, and this notion has guided the 

design of biological therapies and the repurposing of drugs well-known for their anti-

inflammatory effects [96, 97]. 
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COVID-19 therapeutic options 

COVID-19 pandemic put an unprecedented pressure to the health systems. A cogent 

point of view suggests the use of antivirals as the first strategy to counter viral load. Some 

antivirals may target viral entry or the replication machinery of coronavirus, while the array 

of immunomodulators includes corticosteroids, cytokine blockers, neutralizing antibodies 

(nAbs), and convalescent plasma (CP) from recovered patients. Despite this, safe and 

effective therapeutics to treat hospitalised patients remain an unmet clinical need, even 

though many cohorts and clinical trial studies demonstrated that the timely administration 

of antivirals at the beginning of the disease, and the use of immunomodulatory drugs on 

severe COVID-19 patients mitigate disease severity, hospital stay and mortality.  

Remdesivir, is an antiviral which target the RNA dependent RNA polymerase 

(RdRp), block the synthesis of viral RNA and counteract viral replication [98-100]. 

Macaques treated with remdesivir showed a reduction in lung viral loads and pneumonia 

symptoms but no reduction in virus shedding. This study disclosed that timely 

administration of remdesivir may be an effective treatment of SARS-CoV-2 infection 

[101]. The 3C-like protease, which hydrolyses viral polyproteins, is indispensable for 

coronavirus replication and has been considered a therapeutic target for COVID-19 

pandemic [102]. In keeping with this fact, nine existing HIV protease inhibitors (nelfinavir, 

lopinavir, ritonavir, saquinavir, atazanavir, tipranavir, amprenavir, darunavir, and 

indinavir) have been evaluated for their antiviral activity in Vero cells infected with SARS-

CoV-2 [103]. Nirmatrelvir, molnupiravir, and remdesivir have shown robust antiviral 

activities against the omicron variant [104]. 

Because of their anti-inflammatory activity, steroids have taken central stage as an 

adjuvant therapy for acute respiratory distress syndrome (ARDS) and CS. However, the 
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broad immunosuppression mediated by corticosteroids entails the possibility of blunting a 

proper anti-viral response. A meta-analysis of SARS-CoV-2 infection assessed 2,636 

patients and found no mortality difference associated with steroid treatment, including a 

subset of patients with ARDS [105]. Other studies have reported associations with delayed 

viral clearance and increased complications in SARS and MERS patients [106]. Another 

retrospective analysis found that patients who received steroids were more likely to either 

being admitted to the ICU or perished. As a caution to a proper construal of these data, the 

corticosteroid-treated group also had significantly more comorbidities [107]. A smaller 

observational study of 31 patients found no association between corticosteroid treatment 

and time to viral clearance, length of hospital stays or symptom duration [108]. Others have 

published perspectives in support of early (K.-Y. Lee, Rhim, & Kang, 2020) and short-

term, low-dose administration [109]. 

Vaccines are being developed to educate a person’s immune system to make their own 

nAbs against SARS-CoV-2. However, there is interest in using adoptive transfer of nAbs 

as a therapeutic approach. The adoptive transfer of nAbs has been found effective against 

SARS-CoV-1 [110-115]. Patients who recovered from SARS-CoV-2 infection are one 

potential source of nAbs [116, 117]. Although recombinant nAbs could provide an effective 

treatment, they will require a significant time investment to develop and escalate production 

before becoming available for widespread use. A faster strategy consists of transferring CP 

from previously infected individuals that have developed high nAbs targeting SARS-CoV-

2.  

Despite the current lack of appropriately controlled trials, some studies and case reports on 

CP therapy for COVID-19 have evaluated the safety and the potential effectiveness of CP 

therapy in patients with severe disease [118-122]. However, with the new emerging VOCs, 

only CP from donors who recovered from COVID-19 infection and are vaccinated provides 
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substantial antibody protection [123]. Nevertheless, SARS-CoV-2 new variants has 

demonstrated a clever evasion from antibody neutralization in vaccinated people [124, 

125].  



INTRODUCTION 
 

42 
 

Repurposing fluvoxamine in SARS-CoV-2 clinical trials 

The global impact of COVID-19 pandemic accelerate drug repurposing efforts to 

manage SARS-CoV-2 infection. This strategy led to the use of approved medicaments to 

fight severe outcomes of COVID-19. SIGMA receptor 1 (SIR1) is a multifunctional inter-

organelle signaling chaperone that plays various roles in cellular survival. Extensive studies 

demonstrate its ubiquitous expression throughout the body tissues [126, 127]. Among their 

pleiotropic functions, SIR1 ligands have been recently explored as therapeutic target in 

COVID-19 [128-130]. The cardioprotective role of SIR1 was associated with the regulation 

of the UPR [131] and more recently was identified as a functional host-dependent factor 

for SARS-CoV-2 disease [132].  

Subsequent studies showed that fluvoxamine, a potent agonist of SIR1, could protect from 

CS through inhibition of the UPR, as demonstrated in a lethal septic shock mice model 

[133]. Fluvoxamine an antidepressant currently used in several mental disorders [134] 

alleviates ER stress via induction of SIR1 [135]. This view has been confirmed in several 

clinical trials showing a beneficial effect in COVID-19 disease [136-138]. Specifically, the 

TOGETHER randomised platform clinical trial disclosed that treatment with fluvoxamine 

of high-risk outpatients reduced the need of hospitalisation [139]. 
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The purpose of this study has been the investigation of COVID-19 pathogenesis, 

focusing on the innate immune response and the role of the UPR as a reinforcing 

mechanism of the inflammatory response and viral replication. The study stems from 

previous work on the role of sXBP1 in the transcriptional regulation of proinflammatory 

cytokines and enzymes involved in the biosynthesis of lipids mediators [6, 55]. In addition, 

sXBP1 is activated by the encounter of PAMPs with TLRs [7, 56] and enhances the 

expression of the IL-23, while concomitantly inhibits the expression of the anti-

inflammatory cytokine IL-10 [6, 140]. This displays an optimal scenario for the CS to 

occur. Previous reports support the notion that modulation of the UPR might be beneficial 

to counteract viral replication in coronavirus infected cell lines [44, 141, 142]. Therefore, 

the possible activation of the UPR during virus-host-cell interactions prompted us to 

investigate the role of the UPR in COVID-19 illness. New SARS-CoV-2 variants show 

increasing infectiveness and a lower ability to induce severe illness, which can be treated 

with new antivirals [143, 144]. Current approaches for the treatment of severe pneumonia 

include the use of immunomodulators, cytokine blockade, and antibody-rich plasma from 

recovered patients, including existing drugs have been repurposed during SARS-CoV-2 

infection. A better understanding of the pathophysiology of SARS-CoV-2 may lead to the 

design of treatments acting on selected targets with a wider scope of application than 

current biological therapies [108, 145].  
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The hypothesis is that the UPR is involved in COVID-19 pathogenesis contributing 

to the replication of coronavirus and underpins the transcriptional activation of cytokines. 

This might contribute to the production of the CS/viral sepsis associated with the severe 

forms of COVID-19 disease.  
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The principal aim of this work is the analysis of the ER stress response during SARS-CoV-

2 infection, focusing on the IRE1α-XBP1 branch to identify host-dependent factors 

involved in the CS and viral replication. The following specific objectives were designed: 

1. Assaying the presence of XBP1 splicing in nasopharyngeal swab samples of 

patients with COVID-19 symptoms. 

2. The investigation of the transcriptomic profile of BAAs from patients under 

mechanical ventilation at ICU due to severe SARS-CoV-2 pneumonia. 

➢ This includes the assay of the arms of the UPR, the cytokine-signature, 

immunometabolic enzymes and markers of the differentiation of the monocyte-

macrophage lineage. 

3. The study of the effect of different ligands of the TLR7/8 system on XBP1 

splicing in MDDCs. 

➢ The assay of the role of sXBP1 in the transactivation of pro-inflammatory 

cytokines. 

4. Assessing the presence of the UPR during SARS-CoV-2 infection in different 

in vivo models.  

➢ Studies in the Ad-hACE2 and K18-hACE2 mice models. 

➢ Analysis of the UPR and the inflammatory response in Syrian hamster. 

➢ Testing the effect of fluvoxamine during SARS-CoV-2 infection, focusing on 

viral replication and cytokine production. 

5. Addressing the role of the UPR in the viral replication cycle. 

➢ Mechanistic analysis of different SARS-CoV-2 VOCs triggering the UPR and 

specific inhibition of XBP1 splicing during infection. 
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Patients and Ethic Statements 

Nasopharyngeal swab samples 

Nasopharyngeal samples were obtained from patients studied in different medical 

departments for symptoms consistent with SARS-CoV-2 infection at Hospital Clínico 

Universitario de Valladolid between July and November 2020. Patients were stratified 

according to the results of SARS-CoV-2 RT-PCR positive or negative tests and the 

correlation of sXBP1 and clinical outcome addressed. 

Bronchiolo-alveolar aspirates 

In the case of patients with mechanical ventilation and endotracheal intubation, samples 

were obtained by endotracheal aspirations to remove respiratory secretions as part of 

clinical care by the attending staff at ICU. Brochiolo-alveolar aspirate (BAA) samples were 

collected from September 2020. Samples were obtained as soon as the patients underwent 

endotracheal intubation and pulmonary secretions aspirated.  

BAAs were directly transferred to the DNA/RNA extraction kit MagMAXTM Pathogen 

RNA/DNA (Applied Biosystems) for the automated extraction machine Kingfisher Flex 

(Thermo Fisher Scientific). Infection diagnosis was carried out using the TaqPath™ 

COVID-19 CE-IVD RT-PCR Kit from Applied Biosystems, which targets ORF-1ab, S 

protein and N protein regions selected with the purpose of having specificity and reducing 

the risk for overlooking mutations. A representative sequence of the SARS-CoV-2 RNA 

prevalent at the time of study can be obtained at NCBI using accession PRJNA894347 to 

the SRA database and temporary submission ID SUB12205626. Resolution of infection 

was confirmed by the analysis of samples collected four days after a positive test. BAAs 
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from patients with infections with other pathogens were obtained from samples collected 

for microbiological diagnosis in patients suffering from bacterial pneumonia requiring 

ventilatory support and endotracheal intubation at ICU. Lung protective ventilation of both 

COVID-19 and non-COVID-19 patients was performed according to the current guidelines 

on mechanical ventilation of ARDS in adult patients, which makes it unlike the induction 

of cytokine expression by mechanical ventilation [146]. The clinical part of the study was 

approved by the Ethics Committee of Area de Salud Valladolid Este (ref. PI-GR-20-2011 

COVID). 
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Cells, Viruses and Reagents 

ACE2-A549, A549-ACE2-TMPRSS2, Vero E6 and HEK-293T 

ACE2-A549 recombinant cells [147] and A549 ACE2-TMPRSS2 [148] were kindly gifts 

from the referred laboratories. Vero E6 cells (ATCC, CRL-1586) and HEK-293T cells 

(ATCC, CRL-11268) were maintained in DMEM (Corning) supplemented with 10% fetal 

bovine serum (FBS) (Peak Serum), 1% non-essential amino acids (Corning, 25-025-CI) 

and penicillin/streptomycin (Corning) at 37ºC and 5% CO2 atmosphere. All cell lines used 

in this study were regularly screened for mycoplasma contamination using MycoStrip™ - 

Mycoplasma Detection Kit (InvivoGen). 

Monocyte-derived dendritic cells 

For in vitro experiments, MDDCs were obtained from human mononuclear cells collected 

from pooled buffy coats of healthy donors provided by Centro de Hemoterapia y 

Hemodonación de Castilla y León Biobank. The study was approved by the Bioethical 

Committee of the Spanish Council of Research (CSIC) and the written informed consent 

of all healthy donors was obtained at Centro de Hemoterapia y Hemodonación de Castilla 

y León Biobank. The researchers received the samples in an anonymous way. The process 

is documented by the Biobank authority according to the specific Spanish regulations. The 

ethics committee approved this procedure before starting the study.  

The differentiation of monocytes was carried out in the presence of GM-CSF and IL-4 for 

5 days. Culture was carried out in RPMI 1640 medium containing 11.1 mM D-glucose and 

4 mM L-glutamine. 10% FBS was maintained during the differentiation process and 

reduced to 2% at the start of experiments (Figure 6). 
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Figure 6. Isolation of monocytes from buffy coat and differentiation to MDDCs. 

Monocytes were isolated from pooled buffy coats by centrifugation in Ficoll. The 

differentiation from monocytes to dendritic cells was carried in the presence of GM-CSF 

and IL-4 for 5-7 days. 

Viruses 

SARS-CoV-2, isolate USA-WA1/2020 (BEI Resources NR-52281) termed as (WA1); 

(lineage B SARS-CoV-2/human/Liverpool/REMRQ0001/2020), was a kind gift from Ian 

Goodfellow, previously isolated by Lance Turtle (University of Liverpool), David 

Matthews and Andrew Davidson (University of Bristol) termed as (UK). Alpha variant 

(B.1.1.7; SARS-CoV-2 England/ATACCC 174/2020) was a gift from G. Towers [149]. 

Lineages B.1.1.617.2 (Delta, GISAID: EPI_ISL_1731019) and B.1.1.529 (Omicron UK 

isolate, G. Screaton) [150, 151] were received as part of the work conducted by G2P-UK 

National Virology Consortium. The mouse adapted (MA-SARS-CoV-2) [152], was also 

used for in vivo experiments (Figure 7). Viruses were used under biosafety level 3 (BSL3) 

containment in accordance with the biosafety protocols developed by the Icahn School of 

Medicine at Mount Sinai and University of Cambridge. 

Viruses were grown in Vero-TMPRSS2 cells (BPS Bioscience; Catalog #78081) for 4-6 d. 

The supernatant was clarified by centrifugation at 4,000 x g for 5 min and aliquots were 
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frozen at -80°C for long term use. Expanded viral stocks were sequence-verified to be the 

identified SARS-CoV-2 and titered on Vero-TMPRSS2 cells before use in all assays. 

 

 

Figure 7. Mouse adapted SARS-CoV-2 strain. Protocol of MA-SARS-CoV-2 strain 

generation as described by [152]. 

Reagents 

Imiquimod (Sigma-Aldrich), ssRNA40/LyoVec™, and its negative control 

ssRNA41/LyoVec™ (InvivoGen) were used as TLR7 and TLR8 as selective ligands in 

MDDCs. The inhibitors MKC8866, KIRA8 IXA4 and CU-CPT9a were from 

MedChemExpress. Fluvoxamine was from Sigma Aldrich. 
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Animal models of SARS-CoV-2 infection experiments 

Hemizygous 6-week-old female K18-hACE2 mice on the C57BL/6J background (Jax 

strain 034860), were compared to age and sex-matched WT C57BL/6J (Jax strain 000664) 

and WT BALB/cJ (Jax strain 000651) mice. Golden Syrian hamsters 10-12 weeks old 

(Envigo RMS, LLC) and the 129S1/SvImJ mice (Strain #002448 from Jackson 

Laboratories) were used for mouse-adapted SARS-CoV-2 infection and treatment with 150 

mg/kg subcutaneous fluvoxamine daily. All animal studies were performed in animal BSL3 

facility at the Icahn school of Medicine in Mount Sinai Hospital, New York City. Animal 

studies were approved by the Institutional Animal Care and Use Committee (IACUC) of 

Icahn School of Medicine at Mount Sinai (ISMMS).  

In vivo delivery of virus  

Mice were housed in a BSL-2 facility for intranasal instillation of non-replicating 

adenoviral vectors before being transferred to a BSL-3 facility at ISMMS for challenge 

with SARS-CoV-2. Mice were housed under specific pathogen-free conditions in 

individually ventilated cages and fed using irradiated food and filtered water. Mice were 

infected with 1×104 Plaque forming units (PFU). Viral seed stocks for non-replicating 

E1/E3 deleted viral vectors based on human adenovirus type-5 (HAdV-C5, referred to as 

Ad throughout without an antigen (Ad-Empty), or expressing the human ACE2 receptor 

(Ad-ACE2) under the control of a CMV promoter, were obtained from Iowa Viral Vector 

Core Facility.  

For in vivo delivery of Ad vectors to the lung, mice were anesthetized by intraperitoneal 

(i.p) injection of ketamine and xylazine diluted in water for injection (WFI; Thermo Fisher 

Scientific, Waltham, MA). Ad-Empty at 2.5×108 PFU, or Ad-hACE2 at a dose of 2.5×108 
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PFU, were instilled intranasally in a final volume of 50 μL sterile PBS. Untreated control 

mice received the same volume of sterile PBS. Mice were transferred to the BSL3 facility 

on day 3 post-Ad for subsequent challenge with SARS-CoV-2 virus on day 5. For SARS-

CoV2 challenge, mice were anesthetized as above and infected with 1×104 PFU in 50 μL 

of PBS. Mice were sacrificed at day 2 and day 5 post-infection by i.p. injection of 

pentobarbital. Lungs were homogenized in 1 ml PBS using ceramic beads. Golden Syrian 

hamsters 10-12 weeks old were infected i.n. with SARS-CoV-2 WA1 in a 50 µl suspension 

containing a targeted dose of 100 PFU and compared to a Mock group. 
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Methods 

Real-time RT-PCR 

Total RNA was obtained by TRIzol/chloroform extraction and used for RT reactions.  RNA 

was reverse transcribed using maxima reverse tanscriptase and oligo-dT (Thermo). The 

resulting cDNA was amplified in a LightCycler 480 equipment using SYBR Green I mix 

containing Hot Start polymerase. Cycling conditions were adapted to each set of primers. 

GAPDH and ACTB was used as a housekeeping gene to assess the relative abundance of 

the different mRNA using the comparative cycle threshold method. 

Quantitative RT–PCR was performed on cDNA using Light-Cycler 480 SYBR Green I 

Master Mix (Roche) on a LightCycler 480 II. For the analysis of Syrian hamster gene 

expression, we use taqman probes Hspa5 (Cg01333324_g1), Ddit3/Chop 

(Cg04519311_g1), Atf4 (Cg04423842_g1), Actb (Cg04424027_gH) and mice probes 

Herpud1 (Mm00445600_m1), Edem1 (Mm00551797_m1), Pdia3 (Mm004333130_m1) 

and Actb (Mm02619580_g1) from (Thermo). Quantitative RT-PCR with probes was 

performed using Light-Cycler 480 TaqMan Real-time master mix (Thermo). 

Protein assay by ELISA and Western Blot 

IL-6 and TNFα proteins were assayed in supernatants of MDDCs stimulated with ssRNA40 

using kits from Elabscience. Protein extract concentration was quantified using the Pierce 

BCA Protein Assay, according to the manufacturer’s instructions. 10 μg of protein extracts 

were resolved in 10% Mini-PROTEAN® TGX Stain-Free™ Protein Gels (Biorad), then 

transferred to nitrocellulose membranes (0.45 μm, Bio-Rad). These lysates were used for 

Western blotting to determine the protein expression of CHOP, GADD34, XBP1, 
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HERPUD1 and viral protein S. Briefly, membranes were incubated with rabbit mAb anti-

XBP-1s (E9V3E, #40435) mouse mAb anti-CHOP (L63F7)mAb β-actin (13E5, #2895,), 

rabbit mAb anti-HRP conjugated  from Cell Signaling (#5125), mouse mAb anti-GADD34 

(ab9869), rabbit mAb anti-HERPUD1 (ab150424), and SARS-CoV-2 viral glycoprotein 

Spike (S) (ab272504) were  from abcam and diluted at 1:1000. The HRP-conjugated anti-

mouse IgG antibody (GTX26820, Genetex) and the HRP-conjugated anti-rabbit IgG 

antibody (GTX26802, Genetex) were used to detect the primaries antibodies at 1:10000. 

HRP was detected using Clarity™ Western ECL Substrate (Biorad). Each protein band was 

quantified by ImageJ and normalized to GAPDH or β-actin levels. IRDye 800CW donkey 

anti-rabbit IgG (H+L), IRDye 680RD goat anti-mouse IgG (H+L), and IRDye 680RD goat 

anti-mouse IgM (μ chain specific) were from Licor. 

XBP1 Splicing Assay  

This was carried out by RT-PCR reactions using primers spanning the unspliced regions 

(Figure X). The PCR conditions were 5 min at 95°C (hot start), 45 cycles of denaturation 

at 95°C for 15 s, annealing at 60°C for 20 s and elongation at 72°C for 1 min. Final 

extension was carried out at 72°C for 5 min. Gel electrophoresis was carried out in 3% 

agarose and spliced XBP1 and unspliced XBP1 bands visualized by GelRed™ staining and 

quantified using GelDoc Go Image System (Bio-Rad). The position of the primers and the 

spliced region in human samples is shown in Figure 8. These correspond to GenBank 

sequence NM_001079539.2, which differs from uXBP1 sequence NM_005080.4 by the 

deletion of 26 nucleotides. For Syrian hamster, PCR product uXBP1 (XM_040746756.1) 

were digested with PstI restriction enzyme (NEB #R040S), for 24 h at 37ºC, following 

manufacturer’s instructions. 
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Figure 8. Sequences of XBP1 mRNA and primers designed for the study of human 

samples. The splicing of 26 nucleotides in NM_005080.4 sequence generates the sequence 

in NM_001079539.2. The position of primers, including the reverse primer spanning the 

spliced sequence is shown. 

Chromatin Immunoprecipitation (ChIP) assay 

Chromatin immunoprecipitation assays were conducted using a rabbit mAb (Cell Signaling 

Technology) against sXBP1. DCs were fixed with 1% formaldehyde and cross-linking was 

finished by 0.125 M glycine. Chromatin sonication was carried out using a Bioruptor™ 

device. The chromatin solution was precleared by adding Protein A/G PLUS-Agarose. 

After preclearing, anti-sXBP1 Ab or irrelevant Ab were added for overnight incubation at 

4°C, and then Protein A/G PLUS-Agarose was added and incubated for an additional period 

of 2 hours at 4°C. Cross-links were reversed by heating and the DNA bound to the beads 

isolated by extraction with phenol/chloroform/isoamylalcohol. Irrelevant Ab and 

sequences of the IL12A promoter were used as control of binding specificity. Results are 

expressed as percentage of input. 
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Whole lung RNA and protein extraction 

Approximately, 25% of lung tissue was homogenized in Trizol (Thermo) and RNA 

extracted using Direct-zol RNA Miniprep Plus kit (Zymo Research). For protein extraction, 

the remaining material was homogenized in PBS with silica glass beads and the supernatant 

mixed 1:1 with RIPA for 15 minutes in the BSL3 facilities prior to UV inactivation 

followed by 10 min centrifugation to eliminate de debris.  

Bioinformatic Analysis 

For the analysis in Golden hamster, the reads from the Illumina paired-end sequencing were 

processed with the Trimmomatic v0.36 program to filter out low-quality reads and to trime 

the adapters. Then, a check of the Trimmomatic results was carried out using FastQC 

v0.11.9 and MultiQC v1.11 was conducted. It was verified that the mean value of the Phred 

Score for all the samples was greater than Q30 and that the rest of the parameters were 

within the normal values for RNA samples. The available assembled genomes of 

Mesocricetus auratus were studied to verify that their corresponding annotation files 

contained the genes of interest for the study. It was concluded that the best assembled and 

annotated genome for our purposes was that of the Baylor College of Medicine Human 

Genome Sequencing Center (RefSeq assembly accession GCF_017639785.1). With said 

reference genome and using the HISAT2 v2.2.1 program, the mapping of the cleaned reads 

was carried out. Using SAMtools v1.12 the SAM files produced in the mapping were 

transformed into ordered BAM files and indexed in a later step. In order to count the reads 

that map against each of the Mesocricetus auratus genes, it was necessary to make a small 

modification to the GTF annotation file. The original GTF file has no gene identifier for 

some gene id in the 9th column. Seeing that in the "product" field it was indicated that these 
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entries were tRNA, and that they were not relevant for our research, it was decided to 

eliminate these entries to carry out the analysis. With the fixed GTF file, the mapping BAM 

files, and the featureCounts v2.0.1 program, the count of the reads that map against each of 

the genes was carried out. When the table of counts was obtained, the differential 

expression analysis was carried out using the DESeq2 and EdgeR programs. Finally, 

volcano plots of the significant genes object of study were represented using the library 

EnhancedVolcano v1.14.0 of R v4.2.0. For further gene sets analysis, Gene onthology (GO) 

enrichment pathways derived from Mus musculus and Rattus norvegicus genome were 

identified instead of Mesocricetus auratus genome, which was not annotated. Thus, 

CAMERA (Correlation Adjusted Mean Rank) method [153] was employed (implemented 

by the R package “Enrichmentbrowser” v2.2.2). We selected differential biological 

processes according to ER function, viral process, inflammation, and cytokines with an 

FDR<0.05, represented as bubble colour, and the number of genes within the GO pathway 

was represented as bubble size using Prism software (GraphPad v 9.0.0). 

Lung viral titres 

129S1/SvImJ female mice 4-week-old specific pathogen-free were used. These mice were 

anesthetized with a mixture of ketamine/xylazine before each intranasal infection with MA-

SARS-CoV-2 and compared to a group treated with 150 mg/Kg fluvoxamine. At day 3 

post-infection, animals were humanely euthanized. Weight data were transformed into 

body weight percentage. Lungs were harvested for viral titration and histopathology. Whole 

lung was homogenized and then frozen at -80°C for viral titration via TCID50. Briefly, 

infectious supernatants were collected at 48 h post-infection and frozen at -80 °C until later 

use. Infectious titres were quantified by limiting dilution titration using Vero TMPRS2 

cells. Briefly, Vero-TMPRS2 cells were seeded in 96-well plates at 20,000 cells/well. Next 
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day, SARS-CoV-2-containing supernatant was applied at serial 10-fold dilutions ranging 

from 10-1 to 10-8 and, after 4 d, viral cytopathic effect was detected by staining cell 

monolayers with crystal violet. 

Immunohistopathology 

Mice were euthanized with pentobarbital and death confirmed by exsanguination following 

severing of the femoral artery. After death, the trachea was exposed, and lungs inflated with 

1.5 mL of 10% formalin using a 21G needle fitted to a 3 mL syringe. Lungs were removed 

intact, trimmed carefully, and loaded into a tissue embedding cassette. Tissue was fixed 

overnight in 10% formalin, transferred to PBS after 24 h and sent for processing and 

paraffin embedding at the Biorepository and Pathology Core at ISMMS. Paraffin-

embedded lung tissue blocks for mouse lungs were cut into 5 μm sections, which were 

stained with H&E and analyzed by Histowiz (Brooklyn, NY). Digital light microscopic 

scans of whole lung processed were examined by an experienced veterinary pathologist. 

H&E-stained sections from 129S1 mice were examined by implementing a semi 

quantitative, 5-point grading scheme (0 - within normal limits, 1 - mild, 2 - moderate, 3 - 

marked, 4 - severe), which considered four different histopathological parameters: 1) 

perivascular inflammation, 2) bronchial or bronchiolar epithelial degeneration or necrosis, 

3) bronchial or bronchiolar inflammation, and 4) alveolar inflammation. 

Analysis of peripheral blood cytokines 

Cytokine levels in serum of mice infected with MA-SARS-CoV-2 were measured in 

samples inactivated as described [154]. Sera were collected after centrifugation at 3000 x 

g for 5 minutes, deactivated by UV, and stored at -80°C. Cytokine analysis was performed 
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at Eve Technologies (Calgary, AB) using the Mouse Cytokine Array/Chemokine Array 44-

Plex (MD44) immunoassay. 

ACE2-A549 viral RNA and protein extraction 

A549 cells were seeded at 1×106 cells per well in BSL2 in DMEM supplemented with 10% 

FBS, 1% non-essential amino acids, and penicillin/streptomycin at 37ºC and 5% CO2 

atmosphere. The day of the experiment, cells were transferred to BSL3 and media were 

replaced by complete DMEM with 2% FBS containing SARS-CoV-2 WA1 at 0,1 and 1 

MOI. Cells were harvested at 4, 8, 16 and 24 h post infection using RIPA lysis and 

extraction buffer (Thermo) with protease inhibitor cocktail (P8340, Sigma). RNA extracted 

from 1×10*6 A549 cells were used for retro transcription (150-500ng total RNA input). 

Quantitative PCR was run as described below. Then, viral RNA was calculated by 

quantification of N gene expression normalized to GAPDH. 

siRNA knockdown of TLR8, CHOP, GADD34 and XBP1 

To knockdown TLR8, MDDCs were transfected with ON-TARGETplus human TLR8 

(Dharmacon 51311, J-004715- 05) using Dharmafect reagent (Horizon, T.2001.02) 

according to the manufacturer’s protocol and as described in [155]. Ambion Silencer™ 

Select Negative control siRNA (Ambion, 4390844) was used as negative control siRNA. 

ACE2-A549 cells were transfected with 20 nM siRNA against human CHOP (J-004819-

06-0002), human GADD34 (J-004442-05-0002) and human XBP1 (J-009552-07-0002), 

DharmaconTM. A negative control siGENOME non-targeting siRNA (D-001206-13-05, 

DharmaconTM) was used at the same concentrations of the siRNA described above. Gene 

knockdown was performed using 1×106 cells per well using Lipofectamine RNAiMAX 
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Transfection Reagent following manufacturer’s protocol for A549 cells (Invitrogen). 

Tunicamycin 10 µM was used as a positive control of UPR activation for 6 h. After 24 h 

post-transfection, plates were transferred into the BSL3 facility, transfection media was 

removed, and cells were infected with SARS-COV2 at MOI of 1 for 2 h, infectious media 

was removed and replaced to a new media and cells were harvested at 16 h post infection 

for Western blot analysis and supernatants used for plaque assay. 

Plaque assay 

Plaque assays were performed using Vero E6 cells as previously described [156]. Briefly, 

Vero E6 cells seeded in 12-well plate format were infected with serial ten-fold dilutions of 

supernatants from ACE2-A549 cells used in siRNA experiments. Virus absorption was 

carried out for 1 h using an inoculum of 200 µL and rocking the plates every 10-15 min. 

After 1 hour, the inoculum was removed and the cells incubated with an overlay composed 

of MEM with 2% FBS and 0.7% OxoidTM agar for 72 hours at 37°C with 5% CO2 

atmosphere. The plates were subsequently fixed using 5% formaldehyde and immuno-

stained using a monoclonal anti-SARS-CoV-NP antibody (Creative-Biolabs; NP1C7C7). 

In brief, plates were blocked (3% skim-milk TBS with 0.1% 591 Tween20 for 1 h), stained 

for 90 min with anti-NP antibody (mAb 1C7, diluted 1:1000 in 1% skim592 milk TBS with 

0.1% Tween20), and finally secondary-stained with anti-mouse-HRP (antibody diluted 

1:5000 in 1% skim-milk TBS with 0.1% Tween20 for 45 min). Plates were incubated for 

10 min with KPL TrueBlue peroxidase substrate (Seracare) to reveal staining.  

Plate-based cytometer image 

Two thousand ACE2-A549 cells (BPS Bioscience) were seeded into 96-well plates in 

DMEM (10% FBS) and incubated for 24 hours at 37°C in 5% CO2 atmosphere. Gene 
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knockdown was performed using 20 nM siRNA using Lipofectamine RNAiMAX 

Transfection Reagent following manufacturer’s protocol for A549 cells (Invitrogen). After 

24 h, plates were transferred into the BSL3 facility and 0,1 or 0,2 MOI were added in 50 

μL of DMEM supplemented with 2% FBS. After 2 hours, the inoculum was removed and 

plates incubated for 24 and 48 hours at 37°C. After infection, supernatants were removed, 

and cells were fixed with 4% formaldehyde for 24 hours before being removed from the 

BSL3 facility. The cells were then immunostained for the viral N protein (an in house mAb 

1C7, provided by Dr. Thomas Moran) with DAPI counterstain. Infected cells and total cells 

were quantified using the Celigo (Nexcelcom) imaging cytometer. Infectivity was 

measured by the accumulation of viral N protein. Percent infection was quantified as 

(Infected cells/Total cells – Background) and the DMSO control was set to 100% infection 

for analysis. 

Plasmids and transfection 

All SARS-CoV-2 S protein VOCs plasmids (a kind gift of Dr. Thomas Peacock and Prof. 

Wendy Barclay, Imperial College London) were human codon-optimised with the Δ19 

mutation (K1255*stop codon), which increases cell surface expression. To express the full-

length protein, the stop codon was corrected by standard site-directed mutagenesis using 

the following primers (5´- GGCAGCTGCTGCAAGTTCGACGAGG and 5´- 

CCTCGTCGAACTTGCAGCAGCTGCC).  

HEK-293T cells were transiently transfected with full-length pcDNA3.1-SARS-CoV-2-S 

protein VOCs plasmids, namely WT (D614G), beta (B1.351), gamma (P.1), delta 

(B1.617.2), and omicron (BA.1 and BA.2) using a commercial liposome method (TransIT-

LT1, Mirus). Transfection mixtures containing plasmid DNA, serum-free medium (Opti-

MEM; Gibco-BRL), and liposomes were set up as recommended by the manufacturer and 
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added dropwise to the tissue culture growth medium. Cells were harvested at 36 h post-

transfection. 

A549-ACE2/TMPRSS2 VOCs infection experiments 

A549 cells were seeded at 5x105 cells per well in DMEM supplemented with 10% FBS, 

1% non-essential amino acids and penicillin/streptomycin at 37ºC, at 5% CO2 atmosphere 

in a BSL2 containment laboratory. The day of the experiment, cells were transferred to a 

BSL3 containment laboratory and infected with SARS-CoV-2 WT, B.1.1.7 (alpha), 

B.1.617.2 (delta), and B.1.1.529 (omicron) VOCs at MOI 0.1. After the adsorption hour, 

media were replaced with complete DMEM supplemented with 10% FBS. 10 µM KIRA8 

(MedChemExpress) was added to the DMEM-10% FBS immediately after the virus 

adsorption period and maintained in the medium. Cells were harvested at 16 h post infection 

using Laemmli’s buffer for protein extraction and RNeasy kit (Qiagen) for RNA extraction. 

Viral RNA in SARS-CoV-2 infected cells was quantified by N gene expression normalized 

to RPL19. SARS-CoV-2 viral titres were assessed using a TCID50 assay in Vero E6 cells. 

Supernatant derived from infected A549-ACE2/TMPRSS2 cells was subjected to 10-fold 

serial dilutions. At 72 hours post-infection (hpi), cells were fixed and stained. Wells 

showing any sign of cytopathic effect (CPE) were scored as positive. 

Quantification and Statistical Analysis 

Data are represented as the mean ± SEM and were analysed with the Prism 9.0 statistical 

program. Repeated-measures one-way and two-way ANOVA analyses were performed. 

When data did not follow normal distribution nor had equal variances, log-transformation 

was applied before analysis. Comparison between experimental groups was carried out 

using unpaired or paired two-tailed Student’s t test, Wilcoxon signed-rank test, and Mann-
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Whitney. Kruskal-Walli’s test and Friedman tests were used for multiple comparison in the 

case of non-normally distributed samples. Differences were considered significant for p < 

0.05. Data is shown as relative expression (2−ΔCt relative to Actb). sXBP1 was measured by 

the equation sXBP1/XBP1T(uXBP1+sXBP1). TCID50/ml were calculated using the method 

of Reed and Muench). 
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Table I. Sequences of primers used for RT-PCR and ChIP assays in human samples 

and experiments in MDDCs 

GENE Forward primer Reverse primer 

XBP1 5'- TGAGCTGGAACAGCAAGTGG -3' 5'- ATACCGCCAGAATCCATGGGGA -3' 

sXBP1 5'- TGAGCTGGAACAGCAAGTGC -3' 5'- CTGCACCTGCTGCGGACTCA -3' 

DDIT3 5'- GCAGAGATGGCAGCTGAGTC -3' 5'- AGCCAAGCCAGAGAAGCAGGGT -3' 

ERDJ4 5´-AGCAAAATTCAGAGAGATTGCAGA-3´ 5´-ACTTCCACTACCTCTTTGTCCT-3´ 

EDEM1 5´-TGACTCTTGTTGATGCATTGGA-3´ 5´-CTCAAAGACTTGGACGGTGGA-3´ 

HERPUD1 5´- CGGCATGTTTTGCATCTGGT-3´ 5´- CCTCAGGATACTGTCCCCGA-3´ 

HSPA5 5´-ACGTGGAATGACCCGTCTG-3´ 5´-CTTTGTTTGCCCACCTCCAAT-3´ 

ASNS 5´-TGTGGCTCTGTTACAATGGTG-3´ 5´-ACAAATGCAAACACACCATCCA-3´ 

CTH 5´-GCTTCAGGTTTAGCAGCCAC-3´ 5´-TGCCACTTGCCTGAAGTACC-3´ 

IL1B 5'- ATGATGGCTTATTACAGTGGCAA -3' 5'- GTCGGAGATTCGTAGCTGGA -3' 

TNF  5`-GTTGTAGCAAACCCTCAAGC-3´ 5`-TTGAAGAGGACCTGGGAGTA-3´ 

IL6 5'- TTCGGTACATCCTCGACGGC -3' 5'- TCTGCCAGTGCCTCTTTGCT -3' 

CXCL8 5'- ATTTCTGCAGCTCTGTGTGAA -3' 5'- AACTTCTCCCGACTCTTAAGT -3' 

IL10 5´-GAGAACAGCTGCACC CAC TT-3´ 5´-GGCCTTGCTCTTGTT TTCAC-3´ 

IL23A 5`- GTTCCCCATATCCAGTGTGG -3' 5'- TTAGGGACTCAGGGTTGCTG -3' 

IL12B 5'- CATGGGCCTTCATGCTATTT -3' 5'- TTTGCATTGTCAGGTTTCCA -3' 

IFNB1 5’- TCTAGCACTGGCTGGAATGAG- 3’ 5’- GTTTCGGAGGTAACCTGTAAG-3’ 

IFNG 5′-CCAACGCAAAGCAATACATGA-3’ 5′-CCTTTTTCGCTTCCCTGTTTTA-3’ 

N Gene 5'- CAATGCTGCAATCGTGCTAC -3' 5'- GTTGCGACTACGTGATGAGG -3' 

COX2 5'- TTCAAATGAGATTGTGGGAA -3' 5'- AGATCATCTCTGCCTGAGTA -3' 

GLUT1 5'- GAAGAGAGTCGGCAGATGAT- 3' 5'- AATAGAAGACAGCGTTGATGC -3' 

HIF1A 5´-AGTGTACCCTAACTAGCCGA-3´ 5´-GTGCAGTGCAATACCTTCC-3´ 

HK2 5'- TAGGGCTTGAGAGCACCTGT -3' 5'- CCACACCCACTGTCACTTTG -3' 

PDK4 5’- CCCGCTGTCCATGAAGCAGC -3’  5’-CCAATGTGGCTTGGGTTTCC-3’  

MDH2 5'- TCGGCCCAGAACAATGCTAAA -3' 5'- GCGGCTTTGGTCTCGATGT -3' 

SDHA 5'- CAGCATGTGTTACCAAGCT -3' 5' -GGTGTCGTAGAAATGCCAC -3' 

SLC25A11 5'- ACACCGTCCTCACCTTCATC -3' 5'- CAGGGGGTAGAACAGACCAA -3' 

IRG1 5'- GTTCCTGGGAACCACTACG -3' 5'- GATGTCTGGCTGACCCCAA -3' 

TLR7 5´-CTTGGCACCTCTCATGCTCT-3' 5`-GTCTGTGCAGTCCACGATCA-3' 

TLR8 5' -GCTGACCTGCATTTTCCTGC-3` 5`-CCGTTTGGGGAACTTCCTGT-3´ 

HLA-DRB1 5’ -TTCCTGTGGCAGCCTAAGAG-3’  5’ -AACCCCGTAGTTGTGTCTGC-3’  

CD300E 5’ -AGAGAAGGTGGAGAGGAATGG-3’  5’ -AGGAAGATGGGAGGTGTGG-3’  

CCR2 5’- CCCCAACGAGGCATAGA -3' 5'- AAGAGTCTCTGTCACCTGCG -3' 

MMP9 5’ -CGTCTTCCCCTTCACTTTCC-3 5’ -CCCCACTTCTTGTCGCTGT-3’  

BATF3 5’ -AGGAAGGTCCGAAGGAGAGA-3’  5’ -GAGGCACTGGCACAAAGTTC-3’  

MX1 5’ -CTGGGATTTTGGGGCTTT-3’  5’ -GGGATGTGGCTGGAGATG-3’  

OAS1 5’ - TCAGAAATACCCCAGCCAAA-3’  5’ -GAGCCACCCTTTACCACCTT-3’  

ACTB 5`-CTGTCTGGCGGCACCACCAT-3’ 5’-GCAACTAAGTCATAGTCCGC-3’ 

 ChIP Assays Primers  

PROMOTER Forward Primer Reverse Primer 

IL1B Proximal 5`-TAGTTTGCTACTCCTTGCCCT-3´ 5`-AGGAAAGGGGAAAAGAGTATTGGT-3´ 

IL1B Medial 5`-TGAATGAAGAAAAGTATGTGCATGT-3´ 5`-AAATACTGGATTTTCCCACGTTAG-3´ 
IL6 Proximal 5`-AGCCTCAATGACGACCTAAGC-3 5`-GGGTGGGGCTGATTGGAAA-3` 
IL6 Medial 5`-ACCTTCTTCATAATCCCAGGC-3´ 5´-AGGCTAGAATTTAGCGTTCCAGT-3´ 

TNF Proximal 5`-ATGCTTGTGTGTCCCCAACT-3´ 5`-CAGCGGAAAACTTCCTTGGTG-3´ 

TNF Medial 5`-GACCCAAACACAGGCCTCA-3` 5`-ACTAGAACTGGGAGGGGCTT-3´ 

TNF Distal 5`-GTCCAGGGCTATGGAAGTCG-3´ 5`-CCCAGTGTGTGGCCATATCTT-3´ 

 

 

Table II. Sequences of primers used for RT-PCR in animal samples and experiments 

in HEK293T and ACE2-A549   
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Species Transcript Primer direction Sequence 5’-3’ Purpose 

mouse Xbp1 Forward ACACGCTTGGGAATGGACAC Splicing assay 

    Reverse CCATGGGAAGATGTTCTGGG   

mouse Actb Forward CTCAGGAGGAGCAATGATCTTGAT RT-qPCR 

    Reverse TACCACCATGTACCCAGGCA   

mouse Gapdh Forward AGGTCGGTGTGAACGGATTTG RT-qPCR 

  Reverse TGTAGACCATGTAGTTGAGGTCA  

mouse sXbp1 Forward AAGAACACGCTTGGGAATGG RT-qPCR 

   Reverse CTGCACCTGCTGCGGAC   

mouse Ddit3/Chop Forward GTCCCTAGCTTGGCTGACAGA RT-qPCR 

    Reverse TGGAGAGCGAGGGCTTTG   

mouse Hspa5/BiP Forward TCATCGGACGCACTTGGAA RT-qPCR 

    Reverse CAACCACCTTGAATGGCAAGA   

mouse Dnajb9/ERdj4 Forward TAAAAGCCCTGATGCTGAAGC RT-qPCR 

    Reverse TCCGACTATTGGCATCCGA   

mouse Sec61a1 Forward CTATTTCCAGGGCTTCCGAGT RT-qPCR 

    Reverse AGGTGTTGTACTGGCCTCGGT   

mouse Atf4 Forward GAGCTTCCTGAACAGCGAAGTG RT-qPCR 

   Reverse TGGCCACCTCCAGATAGTCATC   

mouse Erp44  Forward GCTGAAACGACACCAGTCAG RT-qPCR 

   Reverse CAGATGCTCCTTGCTGCTC   

mouse Rpn1  Forward GTTTCCACAACGACCGAGAT RT-qPCR 

   Reverse CCTAGGCGTGCAGATAAAGG   

mouse Hgsnat Forward CTGATGACTGTTACCAATGCACC RT-qPCR 

    Reverse GCACCAAAAGGGAATAGTTTCCA   

mouse  Tapbp Forward GGAGGGTGTCTACCTGGCTA RT-qPCR 

  Reverse AACGGGTGCTGGTGTTAGAG  

mouse Bloc1s1 Forward GAAGCGTTGGTGGATCACCT RT-qPCR 

  Reverse TCACCTCATGGTCCAGCTTTC  

mouse Tnf Forward ACGGCATGGATCTCAAAGAC RT-qPCR 

  Reverse AGATAGCAAATCGGCTGACG  

mouse Il10 Forward GCTCTTACTGACTGGCATGAG RT-qPCR 

  Reverse CGCAGCTCTAGGAGCATGTG  

mouse Il1β Forward GCAACTGTTCCTGAACTCAACT RT-qPCR 

  Reverse ATCTTTTGGGGTCCGTCAACT  

mouse Ifnβ Forward GAGGAAAGATTGACGTGGGA RT-qPCR 

  Reverse CTGAAGATCTCTGCTCGGAC  

mouse Il12a Forward ATGACCCTGTGCCTTGGAC RT-qPCR 
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  Reverse TCTCCCACAGGAGGTTTCTG  

mouse Il23a Forward AGGGAACAAGATGCTGGATT RT-qPCR 

  Reverse AGTAGATTCATATGTCCCGCT  

mouse Cxcl9 Forward GTTCGAGGAACCCTAGTGAT RT-qPCR 

  Reverse TTTGTAGTGGATCGTGCCTC  

Syrian hamster Xbp1 Forward CAGAGTCCAAGGGAAATGGA Splicing assay 

  Reverse AGATCGGCAGATTCTGGGGA  

Syrian hamster sXbp1 Forward CAGAGTCCAAGGGAAATGGA RT-qPCR 

  Reverse CTGCACCTGCTGCGGACTCA  

Syrian hamster Gadd34 Forward TGTGGAAGTTTGCATGCGTG RT-qPCR 

  Reverse CAGCCCTGTCAAGACTCCTG  

human Rpl19  Forward ATGTATCACAGCCTGTACCTG RT-PCR 

  Reverse TTCTTGGTCTCTTCCTCCTTG  

human Xbp1 Forward TGAGCTGGAACAGCAAGTGG Splicing assay 

   Reverse ATACCGCCAGAATCCATGGGGA  

SARS-CoV-2 N Forward TCACCGCTCTCACTCAACAT RT-PCR 

  Reverse CTGGCCCAGTTCCTAGGTAG  
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Expression of XBP1 in nasopharyngeal swabs of patients with symptoms of COVID-

19 illness 

Initial assays were conducted in nasopharyngeal samples from patients receiving 

medical assistance for symptoms consistent with COVID-19 disease. 119 samples of 

nasopharyngeal swabs were randomly collected from different medical departments at 

Hospital Clínico Universitario of Valladolid. The demographic analysis of patients with 

SARS-CoV-2 RT-PCR positive assays showed older distribution than those with a negative 

assay. The same trend was observed when the analysis was carried out in cohorts stratified 

by sex; however, statistical significance was not observed in this case, what can be 

explained by the lower number of patients included in each cohort (Figure 9). 

 

 

FIGURE 9. Stratification of 

patients involved in the 

analysis of nasopharyngeal 

swabs. (Upper panel) Medical 

departments involved in the 

obtention of nasopharyngeal 

swabs and (lower panel) 

demographic data.  

 

 

 

The extracted RNA used for the diagnosis of SARS-CoV-2 infection by RT-PCR assay in 

the Microbiology Department, was also utilized for the assay of sXBP1 by PCR. This 

entails the separation of the PCR products by electrophoresis in agarose gel and 
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densitometric analysis of GelRed stained bands. sXBP1 is distinguished from uXBP1 by its 

faster migration due to the loss of 26-nucleotide. The presence of uXBP1 and sXBP1 is 

shown in a random selection array of RT-PCR negative and positive samples (Figure 10A). 

The presence of three bands in some cases is explained by the formation of heteroduplexes 

[157]. The splicing was confirmed by separate sequencing of the bands on both strands, 

which showed the GenBank sequences NM_001079539.2 and NM_005080.4, for sXBP1 

and uXBP1 respectively. The former sequence differs from the later by the deletion of 26 

nucleotides (Figure 10B). 

 

 

FIGURE 10. Analysis of RT-PCR products and sequences of XBP1 mRNA transcripts 

in nasopharyngeal samples. (A) Agarose gel electrophoresis of XBP1 showing the sXBP1 

and uXBP1 products in a series of samples from COVID-19 negative and positive patients. 

The presence of three bands in some cases is due to the formation of heteroduplexes. (B) 

Amplicon sequencing showing the splicing of 26 nucleotides in NM_005080.4 sequence 

that generates the sequence in NM_001079539.2. 
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The extent of sXBP1 was quantitated by the ratio (sXBP1/XBPT) and showed higher values 

in COVID-19 positive patients than in those showing negative tests (Figure 11). 

 

Figure 11. Densitometry quantification of 

XBP1 PCR products in nasopharyngeal swab 

samples. Quantification of sXBP1 in COVID-19 

positive and negative samples. *p < 0.05 paired 

(two tail). 

 

 

 

 

RT-PCR infection tests showed negative results in 59 patients and positive in 60 

patients. sXBP1 was detected in 17.91% of SARS-CoV-2 negative and in 40.32% of SARS-

CoV-2 positive patients (Figure 12A). A demographic survey showed that the presence of 

sXBP1 was higher in older SARS-CoV-2 positive patients (Figure 12B), while no 

significant difference was observed between female and male patients (Figure 12C). 

Mortality was observed in four patients who showed a degree of splicing above 10% of 

total XBP1 (Figure 12D). 
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Figure 12. Demographic results of patients with sXBP1. (A) Distribution of patients 

according to the presence or absence of sXBP1 in SARS-CoV-2 positive and negative 

patients. (B) Age distribution of patients with sXBP1. (C) Quantitation of sXBP1 in males 

and females. (D) Quantitation of sXBP1 according to the outcome in SARS-CoV-2 positive 

and negative patients. *p < 0.05, ***p< 0.005 paired (two tail). 

 

These findings show a higher incidence of sXBP1 in nasopharyngeal exudates from patients 

with active SARS-CoV-2 infection, particularly in dying patients. 
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Transcriptomic profile of BAA samples in patients under mechanical ventilation due 

to severe SARS-CoV-2 pneumonia  

In view of the previous results in nasopharyngeal swabs, further studies were carried 

out using RNA extracted from BAAs of patients under mechanical ventilation and 

endotracheal intubation. Ventilatory support and endotracheal intubation were indicated 

because of acute hypoxemic respiratory failure despite high-flow nasal oxygen therapy or 

non-invasive ventilation at the ICU. BAA samples were collected according to the protocol 

shown in Figure 13A. Patients were assigned to the different cohorts as indicated (Figure 

13B). The study involved 85 patients and demographic data showed older distribution in 

non-COVID patients, while mortality was found higher in post-COVID patients showing 

sXBP1 and non-COVID patients with uXBP1. COVID-19 patients received a standard and 

proved useful treatment for the hyperinflammatory state consisting of 6 mg dexamethasone 

daily or 50 mg of IV hydrocortisone every 8 hours for up to 10 days, while this protocol 

was not routinely used in non-COVID-19 patients.  

 

 

Figure 13. Stratification of patients involved in the study of BAAs. (A) Scheme of 

sample collection. Day 0 indicates the time at which the last RT-PCR SARS-CoV-2 

positive test was recorded. Day 4 indicates that the sample was RT-PCR SARS-CoV-2 

negative and is referred as post-COVID. (B) Patient were assigned to the different cohorts 

according to SARS-CoV-2 RT-PCR test diagnosis, including active COVID-19 infection, 

post-COVID-19 infection and non-COVID infection. Demographic data of the different 

cohorts showing age, mortality and steroid treatment.  
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Analysis of the UPR genes in BAAs 

The evolution of XBP1 splicing and viral load in a patient under respiratory control 

for 16 days is shown in Figure 14A. The extent of sXBP1 was higher in SARS-CoV-2 

pneumonia patients than in those with respiratory failure due to other conditions and 

decreased after COVID-19 tests turned negative (Figure 14B). Moreover, sXBP1 rate 

showed higher values than those observed in nasopharyngeal swabs. 

The PERK-eIF2α-ATF4-CHOP branch of the UPR was explored assaying DDIT3/CHOP 

gene expression. DDIT3/CHOP expression decreased after SARS-CoV-2 tests turned 

negative, while there was no significant difference of expression between non-COVID-19 

and COVID-19 pneumonia patients (Figure 14C). 

 

Figure 14. Expression 

of XBP1 and 

DDIT3/CHOP in 

BAAs. (A) Evolution 

of XBP1 splicing and 

viral load in BAAs of a 

patient with SARS-

CoV-2 infection under 

respiratory control for 

16 days. (B-C) sXBP1 

quantification and 

DDIT3/CHOP 

expression in the 

different cohorts. 

Results are expressed 

as mean ± SEM. *p < 0.05, **p < 0.01. †Ordinary one-way ANOVA with the Tukey's 

multiple comparisons test. ‡Kruskal-Wallis U test. 
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Next, we evaluated different UPR-target genes. The higher values of sXBP1 

observed in active COVID-19 infection was accompanied by an increased expression of 

the sXBP1 downstream gene ER DNAJ family-4 (ERDJ4). Moreover, the expression of 

ER degradation enhancing α-mannosidase like protein 1 (EDEM1) did not reach statistical 

significance as compared to non-COVID-19 pneumonia, although it decreased after 

infection turned negative (Figure 15A). 

The expression of the ATF4-dependent genes asparagine synthetase (glutamine-

hydrolyzing) (ASNS) and cystathionine γ-lyase (CTH) was higher in COVID-19 patients 

than in non-COVID-19 infection (Figure 15B), which agrees with early reports on the 

activation of PERK branch by coronavirus [158, 159]. The ATF6 target genes 

homocysteine inducible ER protein with ubiquitin like domain 1 (HERPUD1) and HSPA5 

did not show significant difference between non-COVID-19 and COVID-19 pneumonia 

(Figure 15C). 
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Figure 15. UPR target genes 

expression in BAAs samples. 

(A) mRNA expression of the 

sXBP1-dependent genes ERJD4 

and EDEM1 in the different 

cohorts. (B) mRNA expression of 

the ATF4-dependent genes ASN 

and CTH. (C) mRNA expression 

encoding the AT6-dependent 

genes HERPUD1 and HSPA5. 

Results are expressed as mean ± 

SEM. *p < 0.05, **p < 0.01. 

#Welch’s test. 
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Analysis of the cytokine signature in BAAs 

Given the role assigned to the CS in SARS-CoV-2 infection (Figure 16A), the 

expression of cytokine mRNAs was assayed in BAAs. During viral proliferation, IL1B and 

IL6 mRNA levels were significantly lower than those detected in non-COVID-19 patients. 

Cytokine mRNA did not show a trend to decrease after SARS-CoV-2 tests were negative 

(Figure 16B-C). In contrast, IL10 expression was higher in SARS-CoV-2 infection than in 

non-COVID pneumonia and continued elevated after COVID-19 tests turned negative 

(Figure 16D).  

 

Figure 16. Cytokine 

profile in BAAs from 

ICU patients. (A) 

Scheme showing the 

mechanism leading to 

SARS-CoV-2 

induced pneumonia 

and CS after viral 

invasion of the 

alveoli. (B-D) 

Expression of the 

mRNA encoding 

IL1B, IL6, and IL10 in 

BAAs. Data are 

presented as mean ± SEM. *p < 0.05, **p < 0.01. †Ordinary one-way ANOVA with the 

Tukey’s multiple comparisons test. ‡Kruskal-Wallis U test. 

 

However, TNF, IL8, IL12B and IL23A mRNA expression did not reach any statistical 

significance difference between cohorts (Figure 17A-D).  
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Figure 17. Cytokine profile in 

BAAs from ICU patients. (A-D) 

Expression of the mRNA 

encoding TNF, IL8, IL12B and 

IL23A in BAAs. 

 

 

 

 

 

 

 

 

 

The analysis of IFNs and IFN stimulated genes (ISGs) showed a trend of IFNB to 

increase during COVID-19 pneumonia as compared to non-COVID infection. IFNG 

showed a trend to be increased in COVID-19, although statistical significance was not 

observed (Figure18A-B). The assay of ISGs showed decreased levels of MX1 and OAS1 

mRNA during COVID-19 active infection, and their recovery after resolution of viral 

infection (Figure 18C-D).  
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Figure 18. Expression of IFNs and ISGs in BAAs from ICU patients. (A-D) mRNA 

expression of IFNB, IFNG, MX1, and OAS1. Data are presented as mean ± SEM. *p < 0.05, 

**p < 0.01, ****p < 0.001. ‡Kruskal-Wallis U test. ††Welch and Brown-Forsythe ANOVA 

test. 

 

Overall, these results show that the levels of cytokine expression were higher in non-

COVID-19 pneumonia compared to COVID-19 pneumonia. The high expression of IL10 

mRNA suggests a parallel activation of an archetypal anti-inflammatory cytokine that 

might counter the inflammatory response. The increased expression of IFNB1 mRNA is 

consistent with its involvement in viral sepsis. The low expression of MX1 agrees with the 

reported association of single nucleotide polymorphisms within TMPRSS2 and near MX1 

gene with severe COVID-19 disease [160]. A cogent explanation for the low MX1 

expression could be an evasive strategy of SARS-CoV-2 to avoid and/or shut down type I 

IFN signaling [161].  
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To further analyse the involvement of sXBP1 in CS, SARS-CoV-2 patients were 

stratified according to the presence or absence of both active infection and sXBP1. Figure 

19A shows viral load in samples collected during SARS-CoV-2 infection and four days 

after recording the last RT-PCR COVID-19 positive test. PTGS2, TNF and IL1B mRNAs 

were higher in patients with sXBP1 both during infection and after negativization of the 

RT-PCR test (Figure 19B-D). IL6 mRNA increased in patients with sXBP1 and active 

infection (Figure 19E). CXCL8 mRNA was expressed at lower levels than those encoding 

other cytokines and showed lower values after RT-PCR tests turned negative in patients 

without sXBP1, which suggests some contribution of sXBP1 to CXCL8 expression and 

agrees with the low induction of CXCL8 mRNA observed upon infection of primary nasal 

epithelial cells and pluripotent stem cell-derived alveolar type II cells by SARS-CoV-2 

[159] (Figure 19F). IL10 mRNA was higher in SARS-CoV-2 positive patients who did not 

show sXBP1 and remained elevated in patients showing sXBP1 after resolution of the 

infection. (Figure 19G). In contrast, IL12B and IL23A were not influenced by either sXBP1 

or viral load (Figure 19H-I). 
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Figure 19. Association of sXBP1 with cytokine expression in BAAs. (A) Viral load in 

samples obtained at the time of SARS-CoV-2 positive and negative tests (B-I) Patients 

were stratified in cohorts according to the presence of sXBP1 and the presence or absence 

of viral load as deemed from RT-PCR test for SARS-CoV-2 infection. The mRNA of 

PTGS2 and various cytokines was assayed in the extracted RNA and the statistical 

significance of the results was assayed using ordinary one-way ANOVA with Tukey´s post-

hoc multiple comparison test. Data are presented as mean ± SEM. *p<0.05, **p<0.01, 

***p<0.005. §One-sample Wilkoxon signed rank test. ¶Unpaired (two-tail) t test. #Welch’s 

test. 
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These results show a high expression of the mRNA of PTGS2 and several 

proinflammatory cytokines in patients with sXBP1, which may persist after SARS-CoV-2 

test become negative. Together, the results agree with the reported role of sXBP1 in the 

transcriptional activation of COX2, TNFα, IL-1β and IL-6. 
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Analysis of enzymes involved in immunometabolic reprogramming in BAAs 

Lymphocytes and myeloid cells respond to PAMPs with a robust rewiring of their 

energetic metabolism, characterized by a reinforcement of glycolysis (Figure 20A). The 

impairment of O2 supply due to pneumonia further explains the resort to glycolysis and 

agrees with reports showing that SARS-CoV-2-induced metabolic reprogramming 

enhances the production of proinflammatory cytokines and IFNs by monocytes, and 

concomitantly inhibits T cell function [162, 163]. Consistent with this notion, the 

expression of GLUT1 mRNA, a glucose transporter and HIF1A mRNA, which encodes a 

subunit of a transcription factor involved in the regulation of glycolytic enzymes, were 

increased during active infection. However, there was no difference as compared to non-

COVID-19 pneumonia (Figure 20B-C). The mRNA encoding hexokinase II (HK2), 

pyruvate dehydrogenase kinase IV (PDK4) and malate dehydrogenase (MDH) 2 increased 

during active infection as compared to both non-COVID-19 pneumonia and post-COVID 

infection (Figure 20D-F). Proteins involved in mitochondrial function also increased 

during active COVID-19 pneumonia, including, succinate dehydrogenase (SDH) subunit 

A, the 2-oxoglutarate-malate transporter (SLC25A11), and cis-aconitate dehydrogenase 

(IRG1 gene) (Figure 20G-I).  
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Figure 20. Expression of enzymes involved in glycolysis and mitochondrial proteins. 

(A) Diagram of glycolytic and mitochondrial proteins assayed in BAAs. (B-I) BAAs of 

patients with controlled respiration were used for RNA extraction and RT-PCR assay of 

mRNA expression of genes encoding for proteins involved in glycolysis, response to 

hypoxia, and mitochondrial function. GLUT1, glucose transporter 1. HIF1A, hypoxia-

inducible factor 1α. HK2, hexokinase 2. PDK4, pyruvate dehydrogenase kinase. MDH2, 

malate dehydrogenase 2. SDHA, succinate dehydrogenase protein subunit A. SLC25A11, 

mitocondrial 2-oxoglutarate-malate carrier. IRG1/ACOD1, immunoresponsive gene 1-

aconitate decarboxylase. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p 

< 0.005. ‡Kruskal-Wallis U test. †Ordinary one-way ANOVA. ¶Paired or unpaired (two-

tail) t test. 
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Together, these data show a resort to glycolysis during active SARS-CoV-2 infection that 

seems supported by the activity of HIF1 and elements of the malate-aspartate shuttle such 

as MDH2 and SLC25A11, which buttress the NAD+/NADH redox balance necessary for 

the progression of glycolysis at the glyceraldehyde 3-phosphate-dehydrogenase step.  
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Analysis of monocyte-macrophages differentiation markers in BAAs 

The characterization of the monocytic-macrophage lineage was addressed assessing 

the expression of several well-known differentiation markers. HLA-DRB1, which encodes 

a protein involved in antigen presentation, and BATF3 showed a reduced expression during 

active COVID-19 infection (Figure 21A-B). CD300E a gene associated with survival 

signals, the chemokine receptor CCR2, and the migration receptor MMP9 showed a 

reduced expression associated with the detection of SARS-CoV-2 RT-PCR positive tests 

(Figure 21C-E).  

 

Figure 21. Expression of 

markers involved in the 

differentiation of the 

monocyte-macrophage 

lineage. (A-E) mRNA 

expression of HLA-

DRB1, BATF3, CD300E, 

CCR2 and MMP9. Data 

are presented as mean ± 

SEM. *p < 0.05, **p < 

0.01, ***p < 0.005, 

****p < 0.001. †Ordinary 

one-way ANOVA. 

‡Kruskal-Wallis U test. 

 

 

These results disclose a differentiation profile during COVID-19 infection characterized by 

a low expression of markers associated with antigen presentation and survival signals, as 

well as CCR2 and MMP9 involved in chemotaxis and migration functions.  
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TLR7/8 expression in BAAs and MDDCs 

TLR7 and TLR8 expression were assayed given their involvement in the 

recognition of viral RNA. TLR8 mRNA was expressed to a far greater extent than TLR7 

mRNA both in BAAs and in MDDCs (Figure 22A-B), which agrees with the decay of 

TLR7 expression during the differentiation of monocytes to MDDCs [162]. 

 

 

Figure 22. Expression of TLR7 and TLR8 mRNA in BAAs from ICU patients and 

MDDCs. (A) Expression of TLR7 and TLR8 mRNA in patients with active SARS-CoV-2 

infection and after negative tests. (B) Expression of the mRNA encoding TLR7 and TLR8 

in MDDCs. 

 

 

Because SARS-CoV-2 is a positive ssRNA virus, we posited that TLR7/8 might shape the 

innate immune response, given their endosomal location and accessibility to intracellular 

viral RNA.
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Effect of TLR7 and TLR8 ligands in MDDCs 

The high expression of TLR8 and the low expression of TLR7 mRNA singles out 

TLR8 as the main receptor involved in the recognition of ssRNA by MDDCs. The 

morphology of MDDCs stimulated with the TLR7 agonist imiquimod and the TLR8 ligand 

ssRNA40 (20-mer phosphorothioate protected single-stranded RNA oligonucleotide 

containing a GU-rich sequence) was assessed using conventional microscopy after four 

hours of stimulation. An overt elongated phenotype was observed in ssRNA40 stimulated 

MDDCs. This morphological change was construed as the spreading required for MDDC 

migration following activation [164]. In contrast, this phenotype was not found in 

imiquimod-treated MDDCs (Figure 23), which agrees with the notion that recognition of 

ssRNA by TLRs in MDDCs is mediated by TLR8 and may play a role in viral recognition. 

 

Figure 23. Effect of imiquimod and ssRNA40 in MDDCs. MDDCs were stimulated at 

the concentration indicated with the different ligands for 4 hours before analysis of the 

morphologic phenotype by conventional microscopy. Unstimulated cells (left panel), 

imiquimod (medium panel) and ssRNA40 (right panel) stimulated cells. 

 

The activation of the UPR by imiquimod and ssRNA was assayed by measuring 

XBP1 mRNA in agarose gel electrophoresis and qPCR using specific oligonucleotides 

flanking the splicing regions of sXBP1. Imiquimod showed a low extent of XBP1 splicing, 
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even in real-time RT-PCR assays (Figure 24A-B). Consistent with the potentiating effect 

of palmitate on the splicing of XBP1 reported in mice [165] and the enhancing effect of 2-

deoxyglucose [6], combination of imiquimod with these compounds induced sXBP1 to a 

higher extent (Figure 24A-B). In contrast to the limited effect of imiquimod, the TLR8 

agonist ssRNA40, induced a robust degree of XBP1 splicing, which in turn was blocked by 

the IRE1α RNase inhibitors MKC8866 (Figure 24C-D). 

 

Figure 24. Assay of XBP1 in MDDCs stimulated by imiquimod and ssRNA40. (A-D) 

MDDCs were stimulated with imiquimod and ssRNA40 for 4 hours, and then RNA was 

collected for the assay of XBP1 splicing by RT-PCR followed by agarose analysis and 

qPCR. The palmitate and 2-DG priming experiments were conducted adding the priming 

agents 1 hour before imiquimod. Data are presented as mean ± SEM. *p < 0.05 paired t 

test. 

 

Given that IFN teams up with TNF to induce mortality in mice during SARS-CoV-

2 infection [166] and IFN has been associated with the development of CS [167-170], the 

expression of type I IFNs and ISGs was assayed in MDDCs, in the presence of MKC8866 

and the SIR1 agonist fluvoxamine [133]. MKC8866 and fluvoxamine did not influence the 
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expression of IFNs and the ISGs MX1 and OAS1 mRNA in imiquimod stimulated MDDCs 

(Figure 25A), while the expression of MX1 and OAS1 mRNA decreased in ssRNA40 

treated MDDCs (Figure 25B). Thus, suggesting a direct effect of sXBP1 on MX1 and OAS1 

expression, rather than an indirect effect mediated by IFNs. 

 

 

Figure 25. IFN and ISG expression induced by imiquimod and ssRNA40. (A-B) 

MDDCs were stimulated with imiquimod or ssRNA40 in the presence and absence of 

MKC8866 and fluvoxamine added 1 hour before stimulation. Data are presented as mean 

± SEM. *p < 0.05, paired, (two-tail) Student’s t test. ‡Kruskal-Wallis U test. ††Welch and 

Brown-Forsythe ANOVA test. ¶Paired t test two-ways.  

 

Since imiquimod showed a limited capacity to induce sXBP1, it was posited that 

association with the IRE1α activator IXA4 could exert a synergistic effect. Combination of 
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IXA4 and imiquimod induced sXBP1 (Figure 26A); however, this did not influence 

cytokine expression (Figure 26B). 

 

 

Figure 26. Effect of the IRE1α activator IXA4 on the expression of the mRNA of IL1B, 

TNF, and IL6 mRNA elicited by imiquimod. (A) Effect of IX4A on sXBP1 splicing. 

MDDCs were preincubated in the presence and absence of IXA4 for 30 min and then 

stimulated with 5 µg/ml imiquimod for 1 hour. At the end of this time, RNA was extracted 

and used for the assay of XBP1. (B) Effect of the pretreatment with IXA4 for one hour on 

the expression of proinflammatory cytokines induced by imiquimod. The stimulation with 

imiquimod was maintained for four hours before RNA extraction. Data are presented as 

mean ± SEM** p < 0.01 ratio paired t test, * p < 0.05 paired t test. 

 

Conversely, IXA4 increased the expression of IL1B and TNF mRNA induced by 

ssRNA40 (Figure 27A), which agrees with the synergistic effect of sXBP1 on cytokine 

trans-activation induced by TLR2 and TLR4 [56]. In keeping with our previous report [6], 

sXBP1 protein was detected in nuclear extracts of MDDCs even in the absence of 

stimulation (Figure 27B). This suggests that in addition to the expression of sXBP1 protein, 

posttranslational modifications and/or assembly with other factors are required for 

transcription to start. In fact, p38 MAPK- and IKKβ-dependent phosphorylation have been 

found to underpin sXBP1 effect on glucose homeostasis [171, 172], and these routes are 

key components of TLR signaling. 
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Figure 27. Effect of the 

IRE1α activator IXA4 on 

the expression of the 

mRNA of IL1B, TNF, and 

IL6 mRNA elicited by 

ssRNA40. (A) MDDCs 

were incubated with IXA4 

for 30 min and then 

stimulated with 2 µg/ml 

ssRNA40 for 4 hours. After 

this time, RNA was 

extracted and used for the 

RT-PCR assay of cytokine 

mRNA. *p < 0.05, paired 

(two-tail) t test.  (B) sXBP1 

protein in cytoplasm and 

nuclear extracts from MDDCs stimulated with ssRNA40 for 1 and 4 hours as indicated. 

TATA-box-binding protein (TBP) was used for normalization of the densitometric 

scanning. 

 

Given that sXBP1 may play a role in the transcriptional activation of 

proinflammatory cytokines. ChIP assays were carried out after 1 h of stimulation with 

ssRNA40 to explore the binding of sXBP1 to cytokine promoters. A significant binding of 

sXBP1 to the promoters of IL1B, IL6, and TNF was observed in areas containing consensus 

cis-regulatory elements associated with position weight matrices discovered in sXBP1 

target promoters (Figure 28A-C). The sequences are CCACG boxes, ACGT cores, and 

UPRE A or UPRE B sites [173]. 
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Figure 28. XBP1 binding to IL6, TNF, and IL1B promoters. (A-C) Effect of ssRNA40 

on the binding of sXBP1 to the promoters of IL1B (left), IL6 (middle) and TNF (right). The 

captions below the graphs indicate the distance from transcription start to the nucleotide 

positions where PCR primers were selected. The defined sXBP1 binding sites included in 

the regions spanned by the primers are indicated. Samples were obtained after one hour 

stimulation by 2 μg/ml ssRNA40. Data are presented as mean ± SEM. *p < 0.05. ††Ratio 

paired t test. 

 

The inhibition of the RNAse activity of IRE1 with MKC8866 and fluvoxamine 

reduced the production of IL-6 and TNFα protein in MDDCs treated with ssRNA40, which 

confirms the involvement of sXBP1 in the trans-activation of these genes (Figure 29A-B). 

IL-1β was not detected in ELISA assays of MDDCs supernatants, thus suggesting that 

ssRNA40 does not activate the inflammasome and that an additional signal(s) is required 

for IL-1β secretion. Of note, the expression of pro-IL-1β was countered by MKC8866 

(Figure 29C). 
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Figure 29. Effect of MKC8866 and fluvoxamine on the expression of IL-6, TNFα, and 

pro-IL-1β protein. (A-B) MDDCs were preincubated with MKC8866 and fluvoxamine 

for one hour and then stimulated overnight with ssRNA40. At the end of this period, 

supernatants were collected for cytokine ELISA assay. (C) Induction of the expression of 

pro-IL-1β by ssRNA40 and effect of MKC8866. β-actin was used for normalization. *p < 

0.05, paired (two-tail) t test. 

 

ssRNA41, a ssRNA40 derivative wherein uracil nucleotides are replaced with 

adenosine and does not activate TLR8-dependent signaling, did not activate cytokine 

expression and induced sXBP1 to a low extent (Figure 30A-D). MKC8866 also inhibited 

the expression of IL1B, IL6, and TNF mRNA in ssRNA40 stimulated cells (Figure 30B-

D). 
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Figure 30. Comparison of ssRNA40 and ssRNA41 effects on sXBP1 expression and 

TLR8-dependent signaling. (A) Effect of zymosan, ssRNA40, ssRNA41, and IRE1α 

endoribonuclease inhibitors on sXBP1. The RNA was collected after one hour of 

preincubation with 10 µM MKC8866 or 20 µM 4µ8C, and one hour of stimulation with 2 

μg/ml of either zymosan, ssRNA40, or ssRNA41 and used for the assay of uXBP1 and 

sXBP1 mRNA. (B-D) Effect of 10 μM MKC8866 on the mRNA expression of IL1B, TNF, 

and IL6 mRNA. MDDCs were maintained for one hour in the presence of MKC8866 and 

then stimulated with ssRNA40 or ssRNA41 for 4 hours, prior to the extraction of the RNA 

for cytokine assays. *p < 0.05, **p < 0.01. §Wilcoxon matched-pairs signed-rank test. 

¶Paired t test two-ways. 

 

The involvement of TLR8 in the effect of ssRNA40 was confirmed by the complete 

inhibition of the expression of IL1B, TNF, and IL6, as well as XBP1 splicing in the presence 

of the TLR8 antagonist CU-CPT9a (Figure 31A-B). Moreover, knocking down TLR8 

mRNA with siRNA also inhibited IL1B mRNA expression (Figure 31C). 
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Figure 31. Pharmacological inhibition and siRNA of TLR8 in MDDCs stimulated with 

ssRNA40. (A-B) Effect of the TLR8 antagonist CU-CPT9a on the expression of the mRNA 

of cytokines and XBP1 splicing induced by ssRNA40. ***p < 0.005, paired (two-tail) t test. 

(C) Effect of TLR8 knockdown with siRNA on the expression of TLR8 and IL1B mRNA 

in response to ssRNA40. *p < 0.05, paired (two-tail) t test. 

 

These results show that PAMPs acting on TLR8 induce a cytokine signature like that 

observed in BAAs and point to the central involvement of MDDCs in the innate immune 

response to SARS-CoV-2. The presence of sXBP1 in nasopharyngeal swabs and BAAs, its 

induction by ssRNA40 in MDDCs, the effect of IRE1α RNase inhibition on the cytokine 

induction produced by ssRNA40, and the demonstration of sXBP1 binding to the IL1B, 

IL6, and TNF promoters suggest that TLR8-induced sXBP1 may contribute to the CS 

observed in severe COVID-19 disease. 
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In vivo SARS-CoV-2 infection induces UPR activation in K18-hACE2 

Ancestral SARS-CoV-2 virus cannot infect wild-type laboratory mice, which 

makes it necessary the use of engineered mice to perform studies. The delivery of an 

adenovirus expressing the human ACE2 receptor (Ad-hACE2) or the use of the K18 

transgenic hACE2 (K18-hACE2) mouse provide suitable models. While Ad-hACE2 model 

produces a moderate ailment, lethal infection is the outcome of the K18-hACE2 disease. 

Indeed, Ad-hACE2 infection reported viral titres in the lungs and nasal turbinates, while 

K18-hACE2 disclosed spreading of the virus to other organs, such as brain, spleen, and gut 

[174]. 

Analysis of RNA extracted from homogenized whole lungs of C57BL/6 and Balb/c mice 

transduced in vivo with Ad-hACE2 prior to infection with with 1×104  PFU of the WA1 

strain of SARS-CoV-2 (Figure 32), showed a similar pattern of sXbp1 under all conditions 

of treatments, i.e., PBS, Ad-empty and Ad-hACE2 at 2 and 5 days post-infection (dpi) 

(Figure 33). Only infection in Ad-hACE2 transduced Balb/c mice increased sXbp1 

measured by qPCR at 5 dpi. 
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Figure 32. Experimental design used in C57/BL6 and Balb/c mice during Ad-hACE2 

SARS-CoV-2 infection. C57BL/6 and Balb/c mice were transduced with 2.5×108 PFU of 

Ad-empty, Ad-hACE2, or PBS. On day 5 post-Ad administration mice were infected with 

1×104 PFU of SARS-CoV-2 (WA1) before lungs harvesting for RNA extraction according 

to the indicated timeline. 

 

 

Figure 33. Xbp1 analysis in C57/BL6 and Balb/c mice during Ad-hACE2 SARS-CoV-

2 infection. Analysis by qPCR of the mRNA expression of sXbp1 and agarose gel 

electrophoresis of the XBP1 amplicons. C57BL/6 (left panel) Balb/c (right panel). Data are 

presented as mean ± SEM. *p < 0.05. Ordinary one-way ANOVA. 
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Lung expression of Hspa5, Atf4, and Ddit3/Chop did not show any change, thus ruling out 

global activation of UPR genes dependent on the Atf6 and Perk arms in C57BL/6 and 

Balb/c mice (Figure 34). These data suggest that this mice model shows a sole activation 

of the Ire1α-Xbp1 branch upon SARS-CoV-2 infection. 

 

 

Figure 34. UPR analysis in C57/BL6 and Balb/c mice during Ad-hACE2 SARS-CoV-

2 infection.  Analysis by of qPCR the mRNA expression of Hspa5, Atf4 and Chop in 

C57BL/6 (upper panel) and Balb/c mice (lower panel). 

 

Ad-hACE2 mice were compared with K18-hACE2 mice infected with the WA1 strain of  

SARS-CoV-2 at 104 PFU. As shown in Figure 35A-C, there is a strong induction of sXbp1 
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at 2 dpi in comparison with animals at 5 dpi or uninfected mice at RNA and protein levels. 

Hspa5 paralleled the pattern of sXbp1 at 2 dpi, which agrees with the reported role of the 

chaperone Hspa5 as a host-cell receptor for SARS-CoV-2 [142, 175]. In contrast, the genes 

of the Perk pathway, Atf4 and Ddit3/CHOP were not affected, nor CHOP protein expression 

(Figure 35B-C). 

 

 

Figure 35. UPR analysis in K18-hACE2 mice during SARS-CoV-2 infection. K18-

hACE2 mice were infected with 1×104 PFU of SARS-CoV-2 before lung harvesting for 

RNA and protein extraction according to the indicated timeline. (A) Analysis of Xbp1 by 

PCR and resolution in agarose gel. Densitometry quantification of sXBP1 versus total XBP1 

(sXBP1/XBP1T) of three independent animals per condition. (B) Analysis of the mRNA of 

sXbp1, Hspa5, Atf4, and Ddit3/CHOP. (C) Western blot of sXBP1 and CHOP. Data are 

presented as mean ± SEM. *p < 0.05, **p < 0.01. Ordinary one-way ANOVA. 
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The mRNA extracted from mice lungs showed an increased expression of Tnf and 

Il10 at 2 dpi, while the expression of Il1b showed a trend to increase that did not show 

statistical significance. Ifnb, Il12a, and Il23a mRNA decreased in mice infected at 2 and 5 

dpi, while Cxcl9 was unnafected (Figure 36). These data suggest a dysregulation of host 

immune response and antiviral defense, as deemed by the higher levels of Tnf, Il1b, and 

Il10, as well as by the lower levels of Ifnb, Il12a, and Il23a mRNA. 

 

Figure 36. Cytokine signature 

analysis in K18-hACE2 mice 

during SARS-CoV-2 infection. 

Tnf, Il10, Il1b, Ifnb, Il12a, Il23a, 

and Cxcl9 mRNA expression. 

Data are presented as mean ± 

SEM. *p < 0.05, **p < 0.01, ***p 

< 0.005, ****p < 0.001. Ordinary 

one-way ANOVA. 

 

Viral replication of SARS-CoV-2 could affect cellular ER proteins and activate 

different UPR-target genes. We found an increased expression of the canonical sXbp1-

target gene Dnajb9 but not of Sec61a1. Gene expression analysis of the other UPR target 

genes such as Herpud, Edem1 and Pdia3 was not modified (Figure 37A). RIDD is 

responsible for the direct degradation of a number of mRNAs, since the IRE1α RNAse 

activity not only catalyzes the sequence-specific cleavage of 26 nucleotides of XBP1 

mRNA, but also a small set of mRNAs sharing the common consensus sequence 

CUGCAG, located in the stem loop structure [36]. RIDD dependent genes Rpn1, Tapbp, 

ERp44, Hgsnat, and Bloc61a1 did not show any sign of activation in both low and high 
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multiplicity of infection (MOI) of SARS-CoV-2 WAI challenge at 2 and 5 dpi (Figure 

37B). 

Figure 37. UPR and RIDD 

target genes in K18-hACE2 

mice during SARS-CoV-2 

infection. (A) Analysis by 

qPCR of the UPR-target genes 

expression of Dnajb9, Sec61a1, 

Herpud, Edem1, and Pdia3 

mRNA expression. (B) 

Analysis of the expression of 

the RIDD genes Rpn1, Tapbp, 

Erp44, Hgsnat, and Bloc1s1. 

Data are presented as mean ± 

SEM. **p < 0.01. Ordinary 

one-way ANOVA 

 

 

 

 

 

In short, K18-hACE2 mice showed a strong activation of the UPR as compared to Ad-

hACE2 infection, specially of the  Ire1α-Xbp1 pathway, which correlates with high viral 

replication in the lungs. These data disclose that the Ire1α-Xbp1 branch is the preferential 

element of the UPR activated during the acute phase of infection.  
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SARS-CoV-2 infection drives activation of the Ire1α-Xbp1 arm in Syrian hamsters  

Experiments in the Syrian hamster model were conducted, in view of the clinical 

course of the infection, which includes severe pneumonia and extrapulmonary damage 

around 5 dpi followed by complete resolution by day 14 [176, 177]. This poses an adequate 

model to study acute pneumonia, instead of the exacerbated extrapulmonary manifestations 

observed in the K18 mice model [178]. 

A systematic bioinformatic analysis to address pathways related to ER function was carried 

out in RNA extracted from lung samples obtained at day 6 dpi. GO enriched pathways 

analysis showed upregulation of chaperone mediated function and protein folding, N-

linked and O-linked glycosylation during infection, including cellular response to stress 

and endoplasmic reticulum unfolded protein response (Figure 38). 

  

Figure 38. GO analysis of ER stress during SARS-CoV-2 infection in Syrian hamster. 

Syrian hamsters were infected with SARS-CoV-2 WA1 in a 50 µl suspension containing a 

targeted dose of 102 PFU, before lung harvesting for bioinformatic analysis of RNA 

extracted from the lungs. GO enriched pathways analysis and differential biological 

processes related to ER function at 6 dpi are shown. Data are represented as bubble colour 

with FDR<0.05, and the number of genes within the GO pathway was represented as bubble 

size. 
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We next evaluated the expression of different genes that could be involved in the activation 

of the UPR at 2, 4 and 6 dpi. All the UPR-target genes analysed increased over time (Figure 

39). 

 

Figure 39. Heat map of ER stress genes during SARS-CoV-2 

infection in Syrian hamster. Heat map of UPR target genes 

comparing Mock with 2, 4 and 6 dpi. Differential expression 

analysis was carried out by DESeq2 and data are represented as 

Log2FoldChange.  

 

 

 

 

Upregulation of Xbp1, Hspa5, and Hspa8 was observed, as well as various UPR-target 

genes, including Calr, Pdia4, Tor1b, Sec61b, Hsp90ab1 and Asns. In contrast, Atf4, Chop 

and Gadd34 were not significantly upregulated at 6 dpi (Figure 40). 

 

Figure 40. Volcano plot of ER 

stress genes during SARS-CoV-

2 infection in Syrian hamster at 

6 dpi. Significant genes are 

represented with a cut-point of 1 

in Log2FoldChange and -Log10P. 
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RT-qPCR analysis confirmed the bioinformatic data. In fact, the mRNA expression 

of Hspa5 was upregulated at 6 dpi, while Atf4, Chop, and Gadd34 did not reach any 

significant change (Figure 41). This reinforces the idea that SARS-CoV-2 infection 

promotes activation of the Ire1α-Xbp1 arm, while it eludes the Perk/Atf4/Chop-Gadd34 

branch, also observed in K18-hACE2 mice.  

 

Figure 41. Analysis of genes 

involved in the ER stress during 

SARS-CoV-2 infection in Syrian 

hamster by RT-PCR.  The mRNA 

expression of Hspa5, Atf4, Chop 

and Gadd34. Data are presented as 

mean ± SEM. **p < 0.01. Ordinary 

one-way ANOVA. 

 

 

 

 

RT-PCR assays using primers flanking the Xbp1 gene sequence to amplify the 

unspliced (uXbp1, XM_040746756.1) and the spliced version (sXbp1, XM_005067933.4) 

followed by resolution of the PCR products by agarose gel electrophoresis did not show 

any significant change of expression between uninfected (Mock) and infected Syrian 

hamsters at 2, 4 and 6 dpi (Figure 42A). Then, we spanned both sequences to find out a 

restriction enzyme PstI, that cleaves the DNA at the recognition sequence 5’-CTGCA/G-

3’ only present in the uXbp1. To confirm this fact, we digested the PCR product with PstI. 

Although, 24 h of incubation did not fully digest uXbp1, we found both fragmented 
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products of uXbp1 (Figure 42B). The analysis suggested that Xbp1 splicing was increased 

at day 2, 4 and 6 in comparison with Mock, which was confirmed using primers flanking 

the spliced region of Xbp1, where sXBP1 expression increased at 2, 4 and 6 dpi as compared 

to Mock (Figure 42C).  

 

 

Figure 42. Analysis of the Ire1α-Xbp1 branch of the UPR during SARS-CoV-2 

infection in Syrian hamster. Assay of Xbp1 restriction analysis by PstI in uXbp1 

(XM_040746756.1) and sXbp1 (XM_005067933.4). (A) PCR product resolution in agarose 

gel of uXbp1 and sXBP1. (B) 24 h digestion assay by Pst1 of uXBP1. (C) sXBP1 gene 

expression in RNA extracted from harvested lungs at dpi 2, 4 and 6 analysed by qPCR. 

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01. Ordinary one-way ANOVA. 

 

Protein harvested from whole lungs confirmed that sXbp1 increased while CHOP was not 

modified at 6 dpi (Figure 43).  
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Figure 43. Expression of sXBP1 and CHOP 

during SARS-CoV-2 infection in Syrian hamster. 

Western blot of sXBP1 and CHOP at 6 dpi and 

densitometric quantification in lung samples of five 

animals. Data are presented as ratio of protein of the 

interest/-ACTIN. *p < 0.05. Ordinary one-way 

ANOVA. 

 

 

 

Taken together, these findings show that SARS-CoV-2 infected Syrian hamsters upregulate 

pathways related to ER function and activate the Ire1α-Xbp1 branch. 
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Bioinformatic analysis of Syrian hamster revealed cytokine storm during SARS-CoV-

2 infection 

A bioinformatic analysis focusing on GO enriched pathways related to global viral 

defense and inflammatory response mediated by TLRs was carried out in SARS-CoV-2 

infected Syrian hamsters at 6 dpi. Upregulation in nine GO pathways related to viral 

defence, response to virus, viral replication and viral entry among others (Figure 44).  

 

 

Figure 44. Syrian hamster viral defense during SARS-CoV-2 infection. GO enriched 

pathways analysis and differential biological processes related to viral defence at 6 dpi. 

Data are represented as bubble colour with FDR<0.05. The number of genes within the GO 

pathway is represented as bubble size. 

 

Six different GO inflammatory pathways were also activated during infection, including 

TLR2, TLR3 and TLR7 pathways (Figure 45). TLR2 locates at the cell surface, which 

suggests its involvement in the recognition of structural proteins of SARS-CoV-2, while 

TLR3 and TLR7 are endosomal receptors involved in the recognition of dsRNA and 

ssRNA, respectively. 
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Figure 45. Syrian hamster triggers inflammatory response upon SARS-CoV-2 

infection. (A-B) GO enriched pathways analysis and differential biological processes 

related to inflammation at 6 dpi. Data are represented as bubble colour with FDR<0.05. 

The number of genes within the GO pathway is represented as bubble size. 

 

TLR signaling elicits canonical antiviral response involving IFN,  interferon regulatory 

factor (IRF) and signal transducer and activator of transcription (STAT) families  [179]. 

Differential gene expression analysis in the Syrian hamster at 2, 4 and 6 dpi showed an 

increase of Irf1-9, especially Irf-7 (Figure 46A). In addition, STAT family analysis showed 

increased expression of Stat1-2, but not the other STAT family components (Figure 46B). 

Next, IFN family analysis showed increased expression of Ifnb1, Ifng, Ifnl3, Isg15-20, Mx1 

and Oas1-2. However, Ifnk and the IFN receptors Ifnar1-2 and Ifngr1-2 decreased during 

infection (Figure 46C). These findings suggest that IFN-mediated signaling through 

canonical receptors is blunted upon infection. 
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Figure 46. Syrian 

hamster triggers 

inflammatory 

response upon 

SARS-CoV-2 

infection. (A-C) 

Heat map of IRF, 

STAT, and IFN 

family gene comparing Mock with 2, 4 and 6 dpi. Differential expression analysis was 

carried out by DESeq2, and data are represented as Log2FoldChange. 

 

Twenty-nine different GO pathways related to signaling, regulation, and production of 

cytokines, including, IL1b, IL4, IL6, IL7, IL10, IL12, IL17, TNF related pathways and 

chemokines were upregulated at 6 dpi (Figure 47).  
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Figure 47. Syrian hamster shows an inflammatory response during SARS-CoV-2 

infection that mimics cytokine storm. GO enriched pathways related to cytokine 

signature at 6 dpi with FDR<0.05. Data are represented as bubble colour for -Log10P and 

the number of genes within the GO pathway is represented as bubble size.  

 

The assay of cytokine production, showed maximal expression at 6 dpi and 

therefore, maximal chance for cytokine storm (Figure 48).  
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Figure 48. Infection of Syrian hamster drives an inflammatory response that mimics 

cytokine storm. Deseq2 analysis of differential expression genes between Mock and 2, 4, 

and 6 dpi. Volcano plot of the significant cytokines at 2, 4, and 6 dpi. Significant genes are 

represented with a cut-point of 1 in Log2FoldChange and -Log10P. 

 

Together, these results indicate that SARS-CoV-2 infected Syrian hamster show innate 

immune activation dependent on signaling routes driving viral defence and overproduction 

of cytokines. 
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Effect of fluvoxamine on viral replication and cytokine storm during MA-SARS-CoV-

2 infection 

Several clinical studies reported the beneficial effect of fluvoxamine in COVID-19 

disease [136-138] and even  proposed its use for the control of inflammation [180, 181], 

but only very recently its effect on the UPR has been associated with its capacity to counter 

CS in bacterial sepsis [133]. Based on this, we posited that fluvoxamine could target the 

UPR-dependent cytokine induction. 

129S1 mice were infected with 104 PFU of MA-SARS-CoV-2 and then treated daily with 

150 mg/kg of fluvoxamine for three days prior to harvesting lungs and collecting blood to 

analyse viral titres, immunohistopathology, and cytokine assays (Figure 49). This 

recombinant virus has several mutations, mostly at the S protein, that allows its recognition 

by mouse ACE2 [152]. 

 

Figure 49. Representative 

diagram of the 

experimental design of 

fluvoxamine treatment in 

mice infected with MA-

SARS-CoV-2. Mice 129S1 

were infected with MA-

SARS-CoV-2 at 104 MOI and treated daily with 150 mg/Kg subcutaneous of fluvoxamine, 

prior to lung harvesting at 3 dpi for the analysis of viral titres, protein expression, lung 

histopathology, and peripheral blood cytokines.  

 

Over the course of the experiment, the weight of the animals did not show any significative 

change between the infected and treated group (Figure 50A). The analysis of lung viral 
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titres at 3 dpi failed to show any significant changes in mice treated with fluvoxamine. 

Remdesivir (100 mg/Kg) was used as a positive control of antiviral activity [101, 182] and 

showed a decrease of viral titres measured by TCID50 (Figure 50B). 

 

Figure 50. Body 

weight and viral titres 

analysis in 129S1 mice 

infected with MA-

SARS-CoV-2. (B) 

Body weight 

monitoring during the 

experiment. (C) Viral 

titres measured by TCID50. Mice treated with 100 mg/Kg of remdesivir were used as an 

antiviral positive control. 

 

Despite fluvoxamine did not show any effect on viral replication at early stages of 

mice infection, it was suggested that its effect as an agonist of SIR1 might modulate the 

UPR and therefore cytokine induction. Cytokine multiplex assays showed increased levels 

of IL-6 and TNFα that decreased upon fluvoxamine treatment. In addition, the increased 

levels of growth factors G-CSF and VEGF observed during infection were countered by 

fluvoxamine treatment. Moreover, the increased of the levels of MIP1α and CXCL1 were 

also counteracted by fluvoxamine treatment (Figure 51A-C).  This data agrees with other 

reports showing that IL-6 [161, 183] and G-CSF [183, 184] are critical host factors 

increased by SARS-CoV-2 infection. In contrast, fluvoxamine did not exert any significant 

change in the levels of IL-10, IL-4, IFNβ and IFNγ (Figure 51D-E). 
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Figure 51. Cytokine profile in peripheral blood of 129S1 mice infected with MA-

SARS-CoV-2. (A-E) Concentration of blood cytokines from 129S1 mice at 3 dpi using the 

MD44 MultiplexTM assay comparing Mock, untreated and mice treated with fluvoxamine. 

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. 

Ordinary one-way ANOVA. 

 

The effect of fluvoxamine in lung injury was addressed using digital light 

microscopic scans of mice lung slices. Infected and treated mice exhibited typical 

histopathological lesions of interstitial pneumonia as judged from haematoxylin and eosin 

(H&E) staining (Figure 52A). The semi-quantitative implementation for total pathology 

score increased in infected group and in treated mice. (Figure 52B). This was not 

unexpected because fluvoxamine treated animals showed high lung viral titres at 3 dpi. 
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Figure 52. Histological analysis of 129S1 mice infected with MA-SARS-CoV-2. (A) 

H& E-stained sections of lung from 10-week-old female 129S1 mice at 3 dpi. (B) Total 

pathology score was examined by implementing a semi-quantitative, 5-point grading 

scheme that considered four different histopathological parameters. Results showed 

differences between uninfected, vehicle, and treated groups. 

 

These data show that fluvoxamine counters the increased production of proinflammatory 

cytokines in peripheral blood during SARS-CoV-2 infection, although at early stages of 

infection fluvoxamine does not exert any effect on viral replication and lung damage.  
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The UPR arms during SARS-CoV-2 replication in human epithelial cells 

Based on the in vivo results, experiments were designed to analyse the global UPR 

activation during infection with SARS-CoV-2 WA1 in ACE2-A549 cells at different MOI 

and timepoints. Along infection, ACE2-A549 cells increased viral RNA, which correlated 

with the MOI and timepoint measured (Figure 53A). Similar results were observed 

regarding the protein expression of sXBP1, CHOP and GADD34 at 4, 8, 16, and 24 hours 

post-infection (hpi). Increased levels of sXBP1 were observed up to 16 hpi, followed by a 

decrease at later times, independently of the MOI used (Figure 53B). These data agreed 

with the results reported by Nguyen et al, (2022), who found partial activation of IRE1α 

but not sXBP1 after 24 hpi using a higher MOI of infection. The proteins of the PERK arm 

CHOP and GADD34 showed the same pattern observed for sXBP1 activation, increasing 

early after infection, and decreasing after 24 hpi. (Figure 53C-D).  

 

Figure 53. Time 

course expression 

of sXBP1, CHOP 

and GADD34 

during SARS-

CoV-2 infection 

in ACE2-A549 

human epithelial 

cells. ACE2-A549 

human epithelial 

cells were infected with SARS-CoV-2 according to the indicated MOI and timeline. (A) 

Viral load measured by qPCR. (B-D) sXBP1, CHOP and GADD34 protein expression. 
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To analyse the role of the UPR in viral replication, the experimental conditions to 

knockdown of CHOP, GADD34, and XBP1 RNA expression were set up. 20 nM siRNA 

was used for transfection for 24 h, prior to stimulation with 10 µM of tunicamycin. While 

tunicamycin increased CHOP, GADD34, and XBP1 protein expression, the siRNA 

treatment reduced the expression of these proteins (Figure 54). 

 

Figure 54. siRNA 

knockdown of 

CHOP, GADD34 

and sXBP1.  (A) 20 

nM siRNA was used to knockdown of CHOP, GADD34, and XBP1 for 24 h, and then cells 

were stimulated with 10 µM tunicamycin for 6h, before analysis of protein expression by 

Western blot. 

 

Subsequently, ACE2-A549 cells transfected with the corresponding siRNAs were infected 

with SARS-CoV-2 at MOI 1 for 16 h. Although, the use of siRNAs could decrease the 

expression of the targeted cellular proteins (Figure 55A), the expression of the viral S 

protein (Figure 55A), and therefore, viral titres (Figure 55B) did not reach any significant 

change. 
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Figure 55. siRNA 

knockdown of 

CHOP, GADD34 

and sXBP1 during 

SARS-CoV-2 

replication. (A) 

siRNA knockdown 

of CHOP, GADD34 

and XBP1 for 24h 

and infection with 

SARS-CoV-2 1MOI for 16h. (B) Plaque assay in Vero E6 with supernatant from ACE2-

A549 siRNA experiment infected with SARS-CoV-2 at 1MOI for 16h. 

 

Hence, infection of ACE2-A549 at low 0.1 and 0.2 MOI for 24 and 48 h were 

measured by immunostaining of N protein. Results showed that XBP1 knockdown 

decreased the percent of infection in all the conditions, including CHOP at 0.1 and 0.2 MOI 

for 48 hpi and GADD34 at 0.2 MOI for 48 hpi (Figure 56). 

Figure 56. siRNA knockdown of CHOP, GADD34 and sXBP1 during SARS-CoV-2 

replication. 20 nM siRNA were used to knockdown CHOP, GADD34 and XBP1 before 

infection with SARS-CoV-2 according to the indicated MOI and timeline before 

Immunostaining of NP. Percent infection was quantified as ((Infected cells/Total cells) − 

Background) × 100, and the DMSO control was then set to 100% infection for analysis. 

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. 

Ordinary two-way ANOVA. 
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Overall, infection of human epithelial cells with SARS-CoV-2 mimics the in vivo findings, 

although the role of sXBP1 on viral replication is context-dependent.  
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Analysis of the effect of different SARS-CoV-2 VOCs on the UPR and viral replication 

SARS-CoV-2 VOCs have evolved in humans since the beginning of the pandemic 

COVID-19. This dictated the need to move on to study of different VOCs, since S protein 

on its own can activate the three branches of the UPR [41, 185]. 

HEK-293T cells were transfected for 36 h with plasmids encoding for different VOCs S 

proteins: WT-D614G [186], β (B1.351), γ (P.1), δ (B1.617.2), and ο (BA.1 and BA.2). UPR 

target proteins HERPUD1 and sXBP1 were probed and tunicamycin was used as a positive 

control for UPR activation. Results support the notion that all the S VOCs tested increased 

the UPR, as judged from the levels of HERPUD1 and sXBP1 (Figure 57A). Moreover, 

sXBP1 increased in tunicamycin treated cells, as well as during the overexpression of the 

different VOCs S proteins (Figure 57B). It should be noted that omicron S protein BA.1 

and BA.2 seem to increase sXBP1 to a higher extent as compared to the other S VOCs 

tested. 
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Figure 57.  Mechanistic 

analysis of UPR 

activation by SARS-

CoV-2 Spike protein 

VOCs.  HEK-293T cells 

were transfected with 

plasmids encoding SARS-

CoV-2 Spike VOCs and 

harvested at 36 hpt. (A) 

Western blot analysis of 

Spike, sXBP1, HERPUD, 

and GAPDH. The 

Immunoblot is 

representative of three 

independent biological 

replicates. (B) Analysis of 

XBP1 by PCR and 

resolution in agarose gel.  

 

Although transfection of the different VOCs of the S protein could induce the 

IRE1α-XBP1 branch of the UPR, it should be noted that this might not reflect what could 

happen during virus replication. Therefore, we decided to infect ACE2-A549/TMPRSS2 

cells at 0.1 MOI for 16 h with different SARS-CoV-2 VOCs (i.e., WT-D614G, α, δ, and 

omicron BA.2), following the addition of the specific inhibitor of the IRE1α-XBP1 arm 

KIRA8, to assess virus replication. 

The expression of the S protein decreased in most of the infected cells treated with KIRA8, 

especially in the case of WT-D614G, δ and ο (Figure 58A). The expression of HERPUD1 

protein level was not affected by KIRA8 treatment and, surprisingly, seemed to decrease 

in cells infected with the α and δ (Figure 58B). KIRA8 produced the disappearance of the 
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sXBP1 band observed in infected cells (Figure 58C). Viral RNA, measured as SARS-CoV-

2 N gene expression, was reduced by KIRA8 (Figure 58D), concomitantly with the 

detection of lower viral titres in treated cells (Figure 58E), especially in the case of the δ 

variant. Surprisingly, viral RNA and titres in cells infected with the α variant were not 

reduced by KIRA8. These findings suggest that there might be a differential activation of 

the UPR in VOCs-infected cells, most likely due to differences in replication kinetics or 

protein expression.  
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 Figure 58. Specific inhibition of IRE1α-XBP1 branch of the UPR during SARS-CoV-

2 replication. ACE2-A549-TMPRSS2 cells were infected with SARS-CoV-2 VOCs at 0.1 

MOI. Infected cells were treated with 10 µM KIRA8 immediately after the virus absorption 

period and the inhibitor was maintained in the medium until cell collection 16 h later. (A-

B) Representative western blot of S protein and GAPDH. (C) Analysis of Xbp1 by PCR 

and resolution in agarose gel. (D) Viral RNA. (E) Viral titres measured by TCID50. Data 

are presented as mean ± SEM. *p < 0.05. Paired Student t test. 

 

In summary, the pharmacological manipulation of the IRE1α-XBP1 branch significantly 

inhibits SARS-CoV-2 replication with different VOCs. This indicates that the IRE1α-

XBP1 branch might be a critical cellular pathway in the replication cycle of SARS-CoV-2 

infection.  
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Bacterial, fungal, and viral pathogens may trigger the UPR 

SARS-CoV-2 virus manipulate host signaling pathways to ensure viral replication, 

where different strategies were developed to take advantage of the ER stress response for 

optimal propagation [44, 141]. The possible activation of the UPR during SARS-CoV-2 

infection prompted us to address the role of the UPR and its potential capacity to reinforce 

the inflammatory response as well as a host mechanism driving viral replication.  

Bacterial and fungal pathogens can trigger the UPR. This is the case of TLR2 and 

TLR4, as main receptors involved in fungal and bacterial pattern recognition, activation of 

XBP1 is a mechanism necessary to sustain the production of proinflammatory cytokines in 

macrophages, in the absence of an archetypal ER-stress response [56, 187].  

Bacterial toxins may also trigger the UPR. This has been previously reported for Brucella 

abortus [188, 189], Streptococcus pneumoniae [190] and Pseudomonas aeruginosa [191], 

which trigger the IRE1α-XBP1 arm of the UPR in immune and epithelial cells. In contrast, 

other respiratory pathogens can block the UPR. This is the case of Legionella pneumophila, 

an intracellular pathogen that replicates in an ER-associated compartment and selectively 

inhibits the IRE1 branch of the UPR by blocking host translation elongation. This seminal 

finding has allowed the characterization of a set of pathogens that block protein synthesis 

specifically at elongation as a common strategy used to limit the innate immune response 

by interfering with the UPR [192].  

As regards viral infection, respiratory syncytial virus and other paramyxoviruses 

that replicate in cytoplasmic stress granule/inclusion bodies, drive a massive production of 

glycoproteins, which compete with host proteins for processing and induce an increased 

burden on ER/Golgi trafficking. This leads to a UPR response characterized by ATF6-
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dependent trans-activation and IRE1α-dependent XBP1 splicing, in the absence of a 

concomitant detection of PERK activation [193]. 

Flavivirus [194], Zika virus [195], hepatitis virus [196] and West Nile Virus [197] can also 

cause stress and activate the IRE1α-XBP1 arm of the UPR. Likewise, influenza A virus, a 

negative stranded RNA virus, also activates IRE1 with little activation of PERK and ATF6, 

leading to inflammation and apoptosis of primary human bronchial epithelial cells [198]. 

Similar responses can be assigned to coxsackievirus A16 [199], SARS-CoV-1 [200] and 

SARS-CoV-2 infection [201-203]. 

Based on these data, the principal aim of this work was to assess the activation of the UPR 

in SARS-CoV-2 infection. For this purpose, an approach involving several steps was 

implemented. Initial assays of samples of nasopharyngeal swabs and BAAs were studied 

to address the presence of sXBP1, the cytokine-signature, enzymes involved in energetic 

metabolism and the expression of monocytic lineage cell markers. After obtaining a profile 

of the transcriptional landscape, experiments were performed to address the transcriptional 

pattern of MDDCs stimulated with TLR7 and TLR8 agonists, as endosomal receptors 

involved in the recognition of ssRNA. These experiments were designed taking into 

account the notion that the hyperinflammatory response induced by SARS-CoV-2 depends 

on the presence of high levels of proinflammatory cytokines [184, 204-207]. Thereafter, 

experiments were performed in several experimental models of SARS-CoV-2 infection in 

vivo to confirm the findings observed in human samples. Finally, in vitro infections of 

human epithelial cells were performed to reveal the interface between the UPR and the viral 

life cycle, since at different steps of the replication process there are interactions with the 

ER to ensure the formation of the replication complex, and the efficient folding and transit 

of different structural proteins [35]. 
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Innate immune mechanisms involved in SARS-CoV-2 infection 

The analysis of BAAs led to the identification of myeloid-lineage differentiation 

footprints considered key players in innate immune response. BAAs from patients with 

active infection showed a low expression of markers associated with antigen presentation, 

survival signals during active infection. It was remarkable the low expression of HLA-

DRB1 mRNA, the gene encoding the most prevalent β-subunit of HLA-DR. This agrees 

with the decreased expression of HLA-DR in peripheral blood monocytes of COVID-19 

patients, which drives hyperinflammation and defective antigen presentation mediated by 

IL-6 [208]. 

The mechanism whereby SARS-CoV-2 activates immune cells is the subject of 

intensive research. Immune cells do not express ACE2 or TMPRSS2, although they may 

contain even more viral RNA sequences than epithelial cells [209]. Likewise, monocytes 

can be induced during SARS-CoV-2 infection to express proinflammatory cytokines by an 

indirect mechanism initiated by SARS-CoV-2 spike protein binding to platelet CD42b that 

entails activation of P-selectin and CD40L and drives monocyte signaling through P-

selectin glycoprotein ligand-1 and CD40 [210].  
This is reminiscent of the integrin-mediated adhesion, transfer of DNA-containing virions 

to pDCs, which drives the recognition of RNA and DNA through TLR7 and TLR9, 

respectively, in what is termed interferogenic synapse [211, 212]. Moreover, direct 

interaction of conventional dendritic cells (cDCs) with SARS-CoV-2 downregulates the 

expression of genes involved in antigen presentation and upregulates a proinflammatory 

response, thus mimicking the immune exhaustion and the hyperinflammation observed in 

patients [213].  
The role of pDCs in SARS-CoV-2 infection has been the subject of intensive 

scrutiny because they are ideal candidates to protect against viral infection. Of the 23 
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articles that quantified pDCs in peripheral blood during COVID-19, 19 observed a 

significant reduction in circulating pDCs, and the prevailing notion was that pDC count 

declines in peripheral blood during severe disease, resulting in a phenomenon dubbed ‘‘the 

pDC desert’’ based on correlations between cell numbers and disease severity, as well as 

studies assessing the function of pDCs isolated from COVID-19 patients [214]. Although 

the mechanisms underlying the induction of the ‘‘pDC desert’’ are unclear, an akin 

condition has been reported during infection with other RNA viruses, such as HIV and 

hepatitis virus. Tellingly, a recent study disclosed that pDCs are the main cell type sensing 

SARS-CoV-2 in the blood via TLR7. This produces IFNα and drives macrophages 

hyperactive after contacting infected epithelial cells and in response to different stimuli, 

including the TLR8 agonist ORN8L [33]. 
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Sensing of viral components by immune cells during SARS-CoV-2 infection 

The analysis of the activation of the innate immune system of Syrian hamsters 

infected with SARS-CoV-2 showed the involvement of TLR activation. Specifically, cell 

surface TLR2 can recognize S protein of SARS-CoV-2 [215] and envelope (E) protein and 

induce the production of proinflammatory cytokines [68, 70]. 

A characteristic feature of SARS-CoV-2 is the capacity to shield dsRNA in DMVs to avoid 

TLR3 sensing [216, 217]. In fact, viral RNA capping mediated by several NSPs activities 

is a critical step to prevent PRR sensing during the replication cycle of SARS-CoV-2 [218]. 

Mechanistically, NSP13, NSP14 and NSP16 mediate the addition of a 7- methylguanyalte 

cap at the 5’ end of viral RNA in order to elude RIG-I and MDA5 recognition, thus 

mimicking host RNA [219, 220]. 

TLR7 and TLR8 are tandem duplicated genes on the X-chromosome, the function 

of which shows both commonalities and specificities. TLR8 is not functional in mice and 

TLR7 expressed in pDCs and monocytes yields type I IFN-driven CS in severe murine 

influenza model [221]. Bioinformatic studies support the notion that TLR7/8 could detect 

nucleic acids from invading pathogens, such as SARS-CoV, SARS-CoV-2 and MERS-

CoV genomes and induce acute lung injury because of hyperactivation of immune system 

[222]. In particular, spike peptide (aminoacid sequence 241-300) can form heterodimeric 

complex with human TLR8 [223]. While TLR7 is present in monocytes, macrophages, and 

pDCs, TLR8 expression is a hallmark of human MDDCs [162]. A pioneering study on the 

pathophysiology of SARS-CoV-1 outbreak showed a unique ability of SARS-CoV-1 GU-

rich RNA sequences to induce proinflammatory cytokines through TLR7 in mice and TLR8 

in human leukocytes [224]. This notion was extended in a recent report by comparing the 

effect of GU-rich RNAs from SARS-CoV-1, SARS-CoV-2, HIV-1 and ssRNA40 on 
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inflammasome activation and proinflammatory cytokine production. GU-rich RNA from 

the SARS-CoV-2 spike protein triggered the greatest inflammatory response in human 

macrophages via TLR8 as compared to the HIV-derived ssRNA40. Notably, SARS-CoV-

2-derived ssRNA activated the inflammasome and yielded IL-1β secretion [225]. Another 

study compared the effect of SARS-CoV-2 ssRNA sequences in pDCs and MDDCs. While 

pDCs showed a robust production of IFNα, MDDCs produced five-fold as much TNFα as 

pDCs, thus suggesting a primary role of pDCs in the antiviral response, versus the 

involvement of MDDCs in inflammation [226]. This agrees with our BAAs and in vitro 

results showing TLR8 as a central element in the recognition of ssRNA virus and suggests 

a unique involvement of MDDCs and TLR8 in the induction of sXBP1 and 

hyperinflammation. Comparison of ssRNA40 with ssRNA41 effects and the modulation of 

TLR8 confirms the involvement of TLR8-dependent signaling and sXBP1 in cytokine 

expression.  

Imiquimod induced a limited set of MDDC responses, although it induced MX1 and 

OAS1 mRNA expression at levels like those produced by ssRNA40, while IFN1B mRNA 

was induced to a lower extent. The effect on proinflammatory cytokines and sXBP1 was 

negligible and only reached significant values in the presence of palmitate. Of note, 

combination with IXA4 induced sXBP1 but did not increase cytokine expression, which 

suggests sXBP1 exerts it function on cytokine expression in combination with other factors. 

A recent study showed that while some TLR7 variants exhibit a robust loss-of-function on 

type I IFNs production, other variants only have a marginal effect, thus suggesting that 

TLR7 shapes the anti-viral response through additional mechanisms [227]. Unfortunately, 

our study does not answer open questions regarding the actual role of TLR7 in SARS-CoV-

2 defence and immunopathology. 
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Cytokine storm as a mechanism involved in SARS-CoV-2 severe pneumonia 

Our findings showed a higher extent of sXBP1 in COVID-19 disease than in patients 

with non-SARS-CoV-2 infection, although the mRNA levels of proinflammatory cytokines 

were higher in patients with other associated pneumonia. This was not fully unexpected, 

since viral sepsis depends on genetics and physiological conditions [80, 81] and COVID-

19 patients received steroids in a regular schedule. However, stratification of patients 

showing active infection and sXBP1 disclosed the association of sXBP1 with higher levels 

of cytokine expression. 

The association of T-cell deficiencies with systemic hyperinflammation driven by 

virus-host cell interaction [228] explains why in the evolution of SARS-CoV-2 pneumonia 

it may be distinguished an initial influenza-like syndrome with fever and unproductive 

cough that can be followed in some cases by severe respiratory insufficiency and 

multiorgan failure, which may proceed after viral proliferation has come to an end. 

Therefore, the delicate balance between antiviral and innate immune programs is a key 

determinant of clinical evolution and a proper understanding of the pathophysiological 

mechanism will be essential to develop effective biomarkers and therapeutics.  CS has been 

observed in distinct clinical conditions driving an overactivated immune system, for 

instance, infections by cytomegalovirus [229], Epstein-Barr virus [230], group A 

streptococcus [231], H5N5 avian influenza virus [232], and SARS-CoV [166, 167].  

In the context of COVID-19 disease, IL-6 was found significantly elevated in the 

serum of infected patients [233, 234] and was considered a major driver of CS [235]. The 

first study referred to this fact included a cohort of 20 COVID-19 patients treated with a 

single administration of tocilizumab, along with lopinavir, methylprednisolone, and oxygen 

therapy [89]. A second report described the association of tocilizumab treatment with a 

reduced chance of ICU admission and ventilatory support. However, a retrospective study 
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in 30 declining patients with severe COVID-19 pneumonia did not report significant 

improvement in mortality on weighted analysis [236].  
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Notions emerging from the analysis of human samples 

The analysis of the cohort of patients with severe pneumonia showed an overall 

mortality lower than that observed in bacterial pneumonia. In the last case, steroid 

administration was occasional. The heterogeneous response among patients suggests a 

variety of factors dictating clinical outcome, mainly referred to the expression of the SARS-

CoV-2 receptor ACE2 [237], the immune status, and the presence of comorbidities. The 

extent of ER stress and UPR could represent an additional factor. 

The study of respiratory secretions has been a useful approach for the identification 

of pathogens and to give pathogenetic cues [238, 239]. This approach has been applied 

according to seminal studies, where bronchoscopy and lavage were used to identify 

immune cell types in the respiratory tract [88, 240]. Our study focussed on patients under 

mechanical ventilatory support whose samples were obtained during routine care by 

attending staff [241-243] and is in line with the use of tracheal aspirates to assess the 

transcriptional profiling of the lower respiratory tract in critically ill COVID-19 patients 

[244]. 

Our study has limitations because the collection of BAA samples depended on the 

time at which endotracheal intubation was carried out. This entails different COVID-19 

disease stages before the first evidence of acute hypoxemic respiratory failure. The use of 

samples with a primary indication for microbiological diagnosis impeded comparison with 

patients without pneumonia and/or steroid treatment. The presence of covariates associated 

with genetics, lifestyle, microbioma and comorbidities may explain a large variation of the 

production of some cytokines that makes statistical comparison difficult.  
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Repurposing fluvoxamine in SARS-CoV-2 clinical trials 

A number of small molecules with known antiviral activity against other human 

RNA viruses are being evaluated for efficacy in treating SARS-CoV-2 [98]. Testing the 

ability of available drugs as inhibitors of SARS-CoV-2 proliferation led to the clinical use 

of remdesivir [182]. With the purpose of testing the effect of immunomodulators in the 

control of COVID-19 ailment, we tested fluvoxamine as a common SSRI currently used to 

treat mental disorders [134]. Its beneficial effect on COVID-19 disease could be explained 

by its capacity to modulate the endocytic trafficking of the spike SARS-CoV-2 protein 

[245]. This agrees with a report on fluoxetine, another SSRI, which has been found to 

decrease viral titres [246], as well as cytokine expression [247].  

Consistent with the experimental results, early fluvoxamine treatment in individuals with 

mild COVID-19 illness was associated with a reduction of signs of clinical deterioration 

[136]. This report gave supported to our hypothesis and suggested that the main mechanism 

involved in fluvoxamine effect in SARS-CoV-2 clinical evolution could be exerted through 

the UPR. Based on this, the present study addressed the effect of fluvoxamine in a mouse 

experimental model of SARS-CoV-2 infection. Results disclosed a pattern of reduction of 

proinflammatory cytokine induction, while viral titres were not modified. Our study 

supports the notion that fluvoxamine counters CS, acting as an immunomodulator rather 

than an antiviral drug. The low ability of fluvoxamine to decrease viral replication 

privileges the use of antivirals at early stages of the disease, while it may be beneficial at a 

late phase of severe COVID-19 pneumonia when viral replication has ended and 

hyperinflammation rules prognosis. 
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Targeting the UPR in SARS-CoV-2 infection 

Our data are consistent with the notion that the Ire1α-Xbp1 arm of the UPR is the 

most conserved branch and its preferential recruitment as compared the other branches. In 

view of its activation in human samples, the analysis of different in vivo models and in vitro 

experiments with different VOCs were carried out. The use of different models of SARS-

CoV-2 infection showed a preferential activation of the UPR in K18-hACE2 mice and 

Syrian hamsters as compared to Ad-ACE2 infection in C57BL/6 and Balb/c mice. 

Tellingly, activation of the Ire1α-Xbp1 branch correlated with overproduction of cytokines 

in acute infection, while Ddit3/CHOP mRNA and protein were not influenced by infection 

in both K18-hACE2 and Syrian hamster. 

The association of the IRE1α-XBP1 branch with acute lung injury has been reported during 

infection with strains of zoonotic viruses showing poorly glycosylated proteins [248]. In 

addition, UPR teams up with the IFN stimulated gene human myxovirus resistance gene A 

(MxA) to produce cell death [249]. As regards human disease, sXBP1 activation has been 

found in monocytes, and together with NFKB1 and RUNX1, has been reported as a key 

transcription factors driving inflammation in COVID-19 disease [250]. In this connection, 

previous reports described that during the formation of autophagosomes, certain UPR-

related proteins  regulate cellular autophagy [251, 252] and help evade type I IFN response 

[253]. Moreover, SARS-CoV-2 coronavirus ORF-8b protein aggregates robustly induces 

ER stress, mitochondrial dysfunction, NLRP3 inflammasome, and caspase-independent 

cell death in macrophages [254]. These data underscore that the activation of the UPR 

following virus host-cell interaction may influence disease progression. 

Several reports underscore the contribution of the UPR to viral replication in 

coronavirus infected cell lines [44, 45, 141, 255]. In contrast, up-regulation of IRE1α 
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RNase activity by cannabidiol has been found to block SARS-CoV-2 replication in a cell 

line derived from lung epithelial cells and in nasal turbinates of infected mice [256], while 

it partially activates the IRE1α-XBP1 branch in a lung epithelial cell line [257, 258]. Our 

findings support the implication of the IRE1α-XBP1 branch in viral replication and suggest 

that targeting the UPR might be effective when the IRE1α-XBP1 branch surpasses its 

homeostatic function to become a hyperinflammation driver.  

The development of more selective drugs targeting the IRE1α-XBP1 is necessary 

to confirm its role in SARS-CoV-2 pneumonia. In line with this, other airway diseases such 

as asthma [259, 260], lung fibrosis and emphysema [261, 262] have been found to respond 

to pharmacological manipulation of the UPR. The scrutiny of the molecular mechanisms 

underlying the activation of the UPR during SARS-CoV-2 infection can support new 

therapeutic strategies.
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The evolutionary phylogeny of the SARS-CoV-2 virus and its wide geographic 

spread led to the availability of a dataset from different continents numbering the genome 

structure of the new variants to obtain constant tracking of the ongoing COVID-19 

pandemic. Although these new variants are more transmissible and less pathogenic, most 

of the scientific community worldwide attempted to manage the COVID-19 pandemic by 

rebuilding its boundaries in their field of research. The potential decreased effectiveness of 

vaccines and natural immune protection against these new emerging variants, prompted 

public health organizations to undertake initiatives to continue research in vaccines, 

antivirals and immunomodulators for the management of SARS-CoV-2 severe disease. 

Hence, our approach to understanding the immunopathological clues of SARS-CoV-2 

disease has disclosed: 

 

1. SARS-CoV-2 infection induces sXBP1 in nasopharyngeal swab samples and in 

BAAs of patients under mechanical ventilation suffering from severe pneumonia. 

2. The transcriptomic profile of BAAs samples from patients with severe 

manifestations of SARS-CoV-2 revealed lower levels of proinflammatory 

cytokines such as IL6 and IL1B during active-COVID infection compared to non-

COVID pneumonia. In contrast, the expression of the anti-inflammatory cytokine 

IL-10 was higher during COVID infection. Stratification of COVID-19 patients 

according to the presence and absence of sXBP1, showed increased levels of 

PTGS2, TNF, IL1B, and IL6, which correlated with the presence of sXBP1. 

3. Genes encoding proteins involved in glycolysis and mitochondrial function 

increased during active-COVID infection as compared to both non-COVID and 

post-COVID infection.  
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4. The expression of monocyte-macrophage lineage markers related to DCs 

differentiation, antigen presentation, survival signals and chemokine/migration was 

reduced during active-COVID-19 infection in BAAs. 

5. Stimulation of MDDCs with the TLR8 ligand ssRNA40 induced IRE1α-XBP1 

dependent cytokine production. 

6. K18-hACE2 mice model and Syrian hamster showed activation of the Ire1α-Xbp1 

branch of the UPR but not of the Perk-Atf4-CHOP arm. 

7. The SIR1 agonist fluvoxamine decreased cytokine levels in peripheral blood of 

MA-SARS-CoV-2 infected mice. However, viral titres and immunohistopathology 

of harvested lungs were not significantly influenced.  

8. The overexpression of different VOCs of SARS-CoV-2 S protein induces the 

splicing of XBP1. 

9. IRE1α-XBP1 modulation counteract viral replication of SARS-CoV-2 in human 

epithelial cells, including infection with different VOCs. 

 

➢ The activation of IRE1α-XBP1 branch of the UPR in patient samples, MDDCs 

stimulated via TLR8, in vivo models of SARS-CoV-2 infection and human 

epithelial cells infected with different VOCs indicates that the inhibition of 

IRE1α RNase activity could be a therapeutic approach for severe COVID-19 

disease. 
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