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A B S T R A C T

The majority of electroencephalographic (EEG) and magnetoencephalographic (MEG) studies filter and analyse
neural signals in specific frequency ranges, known as ‘‘canonical’’ frequency bands. However, this segmentation,
is not exempt from limitations, mainly due to the lack of adaptation to the neural idiosyncrasies of each
individual. In this study, we introduce a new data-driven method to automatically identify frequency ranges
based on the topological similarity of the frequency-dependent functional neural network. The resting-state
neural activity of 195 cognitively healthy subjects from three different databases (MEG: 123 subjects; EEG1:
27 subjects; EEG2: 45 subjects) was analysed. In a first step, MEG and EEG signals were filtered with a narrow-
band filter bank (1 Hz bandwidth) from 1 to 70 Hz with a 0.5 Hz step. Next, the connectivity in each of
these filtered signals was estimated using the orthogonalized version of the amplitude envelope correlation
to obtain the frequency-dependent functional neural network. Finally, a community detection algorithm was
used to identify communities in the frequency domain showing a similar network topology. We have called this
approach the ‘‘Connectivity-based Meta-Bands’’ (CMB) algorithm. Additionally, two types of synthetic signals
were used to configure the hyper-parameters of the CMB algorithm. We observed that the classical approaches
to band segmentation are partially aligned with the underlying network topologies at group level for the
MEG signals, but they are missing individual idiosyncrasies that may be biasing previous studies, as revealed
by our methodology. On the other hand, the sensitivity of EEG signals to reflect this underlying frequency-
dependent network structure is limited, revealing a simpler frequency parcellation, not aligned with that
defined by the ‘‘canonical’’ frequency bands. To the best of our knowledge, this is the first study that proposes
an unsupervised band segmentation method based on the topological similarity of functional neural network
across frequencies. This methodology fully accounts for subject-specific patterns, providing more robust and
personalized analyses, and paving the way for new studies focused on exploring the frequency-dependent
structure of brain connectivity.
1. Introduction

The brain is the most complex biological system of the human
body (Fan, 2021). It is composed by a myriad of neurons continuously
communicating by synapses. There are many neuroimaging techniques
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that allow the acquisition of the electromagnetic activity generated
by these synapses, such as electroencephalography (EEG) and magne-
toencephalography (MEG). These neurophysiological techniques have a
high temporal resolution (in the order of milliseconds). This enables the
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capture of faster brain activity, which is of great interest in a dynamic
system as the brain (Babiloni et al., 2009). EEG and MEG (M/EEG)
also have relevant differences between them: while EEG has a reduced
cost, portability, and is more widespread in clinical settings (Poza
et al., 2017), MEG is contactless, and more robust against volume
conduction effects (Rampp and Stefan, 2007; van den Broek et al.,
1998). Furthermore, although both techniques record the same sources,
EEG is sensitive to radial and tangential sources, whereas MEG is only
sensitive to the latter ones (Ahlfors et al., 2010). It has been proposed
to combine both acquisition techniques to optimize the information
obtained and increase the spatial resolution of the recordings (Rampp
and Stefan, 2007; Molins et al., 2008; Malmivuo, 2012).

There are many ways of analysing M/EEG signals. One such way
is by individually assessing the time course of each sensor or brain
region. In this way, we can obtain information about the behaviour
of individual neuronal groups, what is known as ‘‘local activation’’
analyses (Stam and van Straaten, 2012). Nonetheless, by analysing only
the local patterns we are losing lots of information. It is noteworthy
that neurons interact between them, forming dynamical networks that
emerge via chemical and electrical processes (Tognoli and Kelso, 2014;
Núñez et al., 2021). Different brain regions are involved in these net-
works, whose interactions support higher cognitive functions, such as
deduction or reasoning (Vohryzek et al., 2020). There is a huge amount
of studies devoted to assess these interactions (O’Neill et al., 2018),
which are known as ‘‘functional connectivity’’ (FC) analyses (Colclough
et al., 2016; Bastos and Schoffelen, 2016; Boon et al., 2021; Briels et al.,
2020; Miraglia et al., 2017; O’Reilly et al., 2017).

Although there are sophisticated multi-dimensional methodological
approaches to estimate the FC that do not require the segmentation of
neural activity in frequency bands (Basti et al., 2020; Rahimi et al.,
2023), it is noteworthy that FC studies typically analyse the neural
interactions in specific frequency ranges: the well-known ‘‘canonical’’
frequency bands (i.e., delta, theta, alpha, beta-1, beta-2, and gamma).
These bands are supported by abundant literature, and they reflect
certain brain patterns with extensively proved physiological mean-
ing (Sanei and Chambers, 2021; Uhlhaas et al., 2008). Moreover, as
canonical frequency bands are widespread, they provide a common
framework that ease the comparisons across subjects and studies. How-
ever, there are several issues related with their definition: (i) they were
specified about 80 years ago, when the techniques for the acquisition
of neural activity were remarkably different than those currently avail-
able (Jasper and Andrews, 1936, 1938; Berger, 1934; Walter, 1936;
Walter and Dovey, 1944); (ii) there is a noticeable inconsistency in their
definition, with different band boundaries across studies (Newson and
Thiagarajan, 2019); (iii) most of the current analysis methods, such as
FC, had not been developed when the canonical frequency bands were
introduced and, as a consequence, they were defined based on local
activation patterns, thus losing relevant features of the neural signals;
and (iv) the canonical frequency bands do not account for individual
idiosyncrasies at subject-level. Other approaches to frequency band seg-
mentation tried to address the latter issue, proposing subject-adaptive
frequency bands (Pascarelli et al., 2020; Borghini et al., 2019). These
methods assess the distribution of the spectral content of the signals to
specify the personalized frequency band boundaries and, consequently,
they also rely on local activation patterns (Pascarelli et al., 2020;
Borghini et al., 2019). In this way, they take into account some of
the individual idiosyncrasies, but a great level of homogenization is
still present, as they use fixed parameters such as the number of bands
or their bandwidth. FC patterns reflect the global interaction between
brain regions, but also the local synchronization, thus summarizing a
richer variety of neural properties (Rodriguez-Gonzalez et al., 2021;
Tewarie et al., 2019a). Hence, it is reasonable to consider whether an
alternative, automatic, FC-based, and subject-specific frequency band
segmentation can be appropriate.

As we have mentioned, the majority of FC studies using M/EEG
2

employ frequency bands with fixed frequency ranges. This could be
a confounding factor, as it can be hiding relevant results by group-
ing frequencies with very different connectivity features (Newson and
Thiagarajan, 2019). In this paper, we propose, to the best of our
knowledge, the first methodology that allows to find unsupervised
data-driven frequency bands based on the connectivity topology. The
methodology proposed here automatically groups frequency bins based
on the topological similarity between them. We have called this new
methodology the ‘‘Connectivity-based Meta-Bands’’ (CMB) algorithm.
Throughout this paper, the term meta-band is used to name the fre-
quency ranges that our methodology identifies as belonging to the
same community based on their network topology. The CMB algorithm
allows to perform connectivity analyses accounting for the underlying
frequency structure, thus having personalized analyses that fully adapt
to the individual idiosyncrasies of neural activity of each subject.

Based on the hypothesis that we can automatically define user-
specific frequency ranges to be used in connectivity analyses, the
following research questions are posed in the manuscript: (i) how is
the topology of the underlying frequency-dependent neural network
structure? and (ii) can we define adaptive frequency bands that are a
better fit for this network structure than canonical frequency bands? To
answer these questions, the main objective of this paper is to develop a
FC-based, unsupervised, and subject-specific frequency band segmen-
tation approach. This would allow to perform subsequent analyses
without the bias factor of considering the frequency bands to be fixed
across subjects.

2. Materials

2.1. Synthetic signals

In order to assess the performance of the methodology under con-
trolled conditions, it was tested using synthetic signals with known
ground-truth. Two different types of signals were used: (i) amplitude-
coupled synthetic signals, and (ii) M/EEG-like synthetic signals.

2.1.1. Amplitude-coupled synthetic signals
These signals were designed to gain a better understanding of the

performance of the methodology, as well as to define its limitations
while keeping the computational burden in an acceptable level. Three
minutes of activity in 20 channels were generated with a sampling
frequency of 1000 Hz, and segmented in 5 s epochs. As the signals
were stationary, we considered that 3 min of activity was enough for
a proper operation of the CMB algorithm. These signals were used to
assess the influence of different hyper-parameters on the results, which
will be defined below: filter order, sampling frequency, bandwidth,
band overlapping, and frequency resolution.

These signals were generated by means of an amplitude modulation
(AM) in specific frequency ranges and channels (that determined our
underlying meta-bands), and a low level of white Gaussian noise in
the broadband (−19 dBW). The final signal, 𝑠(𝑡), in each sensor 𝑖 was
constructed as follows:

𝑠𝑖(𝑡) = 𝑥(𝑡) ⋅𝑤𝑖 + 𝑜(𝑡), (1)

here 𝑥(𝑡) is the modulated signal (Eq. (2)), 𝑤𝑖 the binary weight used
o construct the underlying connectivity matrix for each sensor 𝑖, and
(𝑡) a white Gaussian noise signal. In this way, 𝑥(𝑡) is the same for all
he sensors, while the coupling is determined by 𝑤𝑖, with ‘‘1’’ indicating
oupling, and ‘‘0’’ not coupling. The AM signal 𝑥(𝑡) is defined as follows:

(𝑡) = 𝐴𝑐 ⋅ [1 + 𝑘𝑎 ⋅ 𝑚(𝑡)] ⋅ cos(2𝜋𝑓𝑐 𝑡), (2)

here 𝐴𝑐 is the carrier amplitude, 𝑘𝑎 the modulation index, 𝑚(𝑡) the
odulating signal, and 𝑓𝑐 the carrier frequency. Finally, the modulating

ignal 𝑚(𝑡) is defined as:

(𝑡) =
𝑙

∑

cos(2𝜋𝑓𝑛𝑡), (3)

𝑛=1
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with 𝑙 being the number of cosines composing the signal, and 𝑓𝑛
he frequency of each cosine. Thus, by varying 𝑓𝑐 , 𝑓𝑛 and 𝑙, we can
btain signals with the AM in different frequencies and with different
andwidths. In the simulated scenarios where more than two AM are
equired, the two signals are summed, i.e. 𝑠𝑖(𝑡) = 𝑠𝑖1(𝑡) + 𝑠𝑖2(𝑡). Further
etails on the generation of these signals can be found in section 1.1 of
he Supplementary Material.

.1.2. M/EEG-like synthetic signals
To evaluate the performance of the CMB algorithm with signals

loser to brain physiological time courses, M/EEG-like synthetic signals
ere generated. These signals contain a similar data distribution to

hat of real M/EEG recordings, thus providing a more realistic scenario.
onetheless, they have an increased computational burden compared

o the amplitude-coupled synthetic signals. These signals have the same
umber of neural sources as the original M/EEG signals (i.e, 68 neural

sources), the same duration in time, and are also divided into 5 s
epochs.

We employed 5 real source-level MEG recordings as the basis to cre-
ate these signals. First of all, we took advantage of surrogate data test-
ing to eliminate the static FC interactions from the 5 recordings (Hin-
driks et al., 2016; Stam, 2006). Specifically, we used the amplitude
adjusted Fourier transform (AAFT), which is an improved version of
the phase randomization method of surrogate data construction which
preserves the amplitude distribution of the data (Prichard and Theiler,
1994; Khambhati et al., 2018). This algorithm is capable of destroying
the static FC of a time series while preserving the amplitude distribution
and the linear structure of the data (Hindriks et al., 2016; Stam, 2006).
That is, after applying AAFT, we have 5 synthetic M/EEG-like signals
similar to the original ones, but with a negligible degree of static FC
between them. Then, the coupling between these signals (i.e, the FC)
was generated by means of filtering and weighted summing processes
in specific frequency ranges. The resulting signals have non-negligible
FC only in the defined frequency ranges.

These synthetic signals were used to gain deeper insights on how the
sampling frequency affects the meta-bands. In addition, we employed
these signals to find out whether our methodology is capable of recover-
ing, at least, 6 underlying bands with and without a gap with negligible
FC between them (see Section 3.3). More details about the generation of
these signals can be found in section 1.2 of the Supplementary Material.

2.2. Real M/EEG recordings

The CMB algorithm was also applied to analyse neural activity of
a cohort of 195 subjects from three different databases: 123 from an
MEG database, and 27 and 45 for two independent EEG databases. For
all the databases, 5 min of resting-state eyes-closed brain activity were
recorded. All patients were asked to remain awake and still during the
recordings. The neural activity was monitored in real time to prevent
subjects from falling asleep (Núñez et al., 2021; Rodríguez-González
et al., 2019). All the subjects included in the study had no history of
neurological or psychiatric disorders. In addition, they did not take
medication that could have an influence on M/EEG activity. Although
the CMB algorithm can also be applied to task-related paradigms, their
dynamical characteristics require further considerations on the CMB
algorithm that should be addressed in future studies, as they increase
the complexity of the required tests. Thus, we decided to employ the
simplest paradigm, based on considering resting-state recordings, to
provide the initial evaluation of the method. Furthermore, the resting-
state paradigm is widely used by the scientific community to study
intrinsic brain behaviour and neural alterations associated with differ-
ent pathologies (Boon et al., 2019; Cassani et al., 2018; Newson and
Thiagarajan, 2019). Hence, this paradigm is useful in clinical setting in
which other protocols are difficult to apply (or even impossible), for
example with patients suffering from dementia.
3

2.2.1. Characteristics of M/EEG recordings
MEG activity was recorded from 123 cognitively healthy con-

trols using a 160-channel axial gradiometer MEG system (MEG Vision
PQ1160C, Yokogawa Electric, sampling rate 1000 Hz). The sample is
composed of 61 females and 62 males with an age of 48.3 ± 16.1 years
(mean±standard deviation, SD).

The first EEG database (EEG1) was comprised by 27 healthy fe-
males. Neural signals were recorded with a 32-channel EEG system
(actiChamp Plus, BrainVision) at the Clinical University Hospital, Val-
ladolid (Spain) and at the Institute for Research & Innovation in Health
of the Porto University (Portugal). The electrodes were placed accord-
ing to the 10–20 system using a common reference: C3, C4, Cz, CP1,
CP4, CP5, CP6, F3, F4, F7 F8, Fz, FC1, FC2, FC5, FC6, Fp1, Fp2, FT9,
FT10, O1, O2, Oz, P3, P4, P7, P8, Pz, T7, T8, TP9, TP10. The age of
the sample was 30.8 ± 6.6 years (mean ± SD).

The EEG activity of the second EEG database (EEG2) was recorded
rom 45 cognitively healthy elderly controls. Brain activity was
ecorded with a 19-channel EEG system (XLTEK®, Natus Medical) at
he Department of Clinical Neurophysiology of the ‘‘Río Hortega’’ Uni-
ersity Hospital, Valladolid, Spain. Electrodes were placed according
o the international 10–20 system using a common average reference:
p1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, Pz, P3, P4, O1,
nd O2. The sample was composed by 31 females and 14 males, with
n age of 76.3 ± 4.0 years (mean±SD).

All the studies were conducted according to the Code of Ethics of
the World Medical Association (Declaration of Helsinki). The Ethics
Committee of the Hokuto Hospital (Obihiro, Japan) approved the study
for the MEG database (code #1001 and #1038); the Ethics Committee
of the Clinical University Hospital (Valladolid, Spain) and Institute for
Research & Innovation in Health (Porto, Portugal) approved the study
for the EEG1 database (codes PI19-1531 and 5/CECRI/2020); and the
Ethics Committee of the ‘‘Río Hortega’’ University Hospital (Valladolid,
Spain) approved the study for the EEG2 database (code 36/2014/02).
All participants and caregivers were informed about the research and
study protocol and gave their written informed consent.

2.2.2. Preprocessing of the M/EEG recordings
A similar preprocessing pipeline was conducted for the three

databases (Rodríguez-González et al., 2020): (i) filtering the signals
with two finite impulse response filters: a band-pass filter to limit noise
bandwidth (1–70 Hz) and a band-stop filter (49–51 Hz) to remove pow-
erline noise; (ii) independent component analysis to remove artefacted
components, by means of the Infomax algorithm, to visually identify
and remove components related with artefacts, and (iii) visual selection
of 5 s artefact-free epochs. For the MEG database 5.2 ± 3.2 (mean
± standard deviation) ICA components were rejected and 9.0 ± 6.3
epochs were visually discarded. Also, for the EEG1 database 6.7 ± 3.7
ICA components were rejected and 13.9 ± 8.1 epochs were visually
discarded. Finally, for the EEG2 database 3.0 ±2.0 ICA components
were rejected and 14.4 ± 7.4 epochs were visually discarded.

Additionally, the increased number of sensors of the MEG recordings
allowed the application of an additional artefact rejection step (the
SOUND algorithm Rodríguez-González et al., 2019; Mutanen et al.,
2018) before the filtering. This algorithm was applied using an anatom-
ical template and a 𝜆0 = 0.1, according to the values suggested in a
revious study (Rodríguez-González et al., 2019).

.2.3. Source reconstruction
MEG and EEG time series were reconstructed at source-level using

he Weighted Minimum Norm Estimation (wMNE) method (Lin et al.,
006). This algorithm restricts the sources of the inverse problem
y minimizing the energy (𝑙2 norm) while weighting deep sources to

facilitate their detection (Lin et al., 2006). This algorithm was selected
as it is widely used in the context of MEG and EEG source localiza-
tion (Rodríguez-González et al., 2020; Tait et al., 2021; Rizkallah et al.,
2020; Larson-Prior et al., 2013). Of note, it can be argued that a more
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appropriate source inversion algorithm could be selected for a spe-
cific signal modality (as example, sLORETA for EEG (Pascual-Marqui,
2002)). However, in this study the source inversion process is not in-
tended to unveil the real underlying sources, but to establish a common
space for all three databases, while keeping their processing pipelines
as similar as possible. The wMNE implementation is freely available
in Brainstorm toolbox (http://neuroimage.usc.edu/brainstorm) (Tadel
et al., 2011).

An anatomical forward model was created using the ICBM152 tem-
plate (Fonov et al., 2009; Douw et al., 2018). Based on it, a three-layer
(brain, skull, and scalp) realistic head model was generated with a
boundary element method using the OpenMEEG software (Rodríguez-
González et al., 2020; Gramfort et al., 2010). The source space was
limited to the cortex using a total number of 15000 sources (Rodríguez-
González et al., 2020). The sources were restricted to be normal to
the cortex (Rodríguez-González et al., 2020). Finally, after flipping
the sources of opposite direction to avoid blurring of neighbouring
generators (Vidaurre et al., 2016), the 15000 sources were grouped
in the 68 regions of interest (ROIs) according to the Desikan–Killiany
atlas (Rodríguez-González et al., 2020; Desikan et al., 2006; Lai et al.,
2018).

3. Methods: Connectivity-based meta-bands

3.1. Computation of the functional networks

Preprocessed source-level time signals were used to estimate the
functional networks. In Fig. 1 the analysis steps of the study are
illustrated. Further details on the filtering process, and the estimation of
the connectivity are included in subsequent sections. The steps carried
out to build them are summarized below.

(i) Define the algorithm parameters (filter order, sampling fre-
quency, frequency resolution, filter boundaries, etc.).

(ii) Z-score transform the signals.
(iii) Filter the signals with a narrow bandwidth.
(iv) Orthogonalize the signals.
(v) Estimate the connectivity by means of the amplitude envelope

correlation (AEC).
(vi) Repeat steps 3–5 for each of the frequency ranges defined in

step 1. The resulting matrices have the following dimensions:
𝑁 ×𝑀 ×𝑀 × 𝑄, where 𝑁 is the number of frequency bins, 𝑀
the number of sources, and 𝑄 the number of epochs.

(vii) Extract communities across the frequency dimension by means
of the Louvain GJA algorithm. These frequency-dependent com-
munities are what we refer to as meta-bands.

Although the operation of the CMB algorithm is considered unsuper-
ised, some parameters were tuned during the algorithm development.
o this end, we took advantage of the synthetic signals previously
escribed (both amplitude-coupled and M/EEG-like). Of note, although
he algorithm displays satisfactory performance with the default param-
ters, they can be modified depending on the user requirements, such
s lower computational burden or different frequency range of interest.

.1.1. Filtering process
A narrow-band filter bank was employed to filter the signals, em-

loying a Hamming window to minimize the filter ripple (Cohen,
014). The MATLAB filtfilt function was used to achieve a filtering
rocess with no phase distortion (Cohen, 2014). Furthermore, to avoid
he edge effect of the filter, the filtering process was performed consid-
ring the whole recording (before the segmentation into 5 s epochs);
n addition, the first and last 5 s epochs of the synthetic and real
ignals were discarded to avoid the influence of filter transient effects
n the results (Cohen, 2014). Different filter orders were assessed
4

o evaluate the algorithm performance (namely 100, 250, 500, 750, s
000, 1250, 1500, 2000, 2500, and 3000). Additionally, the filter-
ng process was carried out with a 50% overlap between filters to
ncrease the frequency resolution and smooth the evolution of the
requency-dependent networks.

.1.2. Connectivity estimation: orthogonalized amplitude envelope correla-
ion

The selection of the connectivity metric is a decision of utmost
mportance for the application of the CMB algorithm, as different
onnectivity metrics are likely sensitive to different aspects of brain
ynamics (He et al., 2019; Schoonhoven et al., 2022). Several reasons
ed us to consider the orthogonalized version of the AEC. Firstly, thanks
o the orthogonalization process, this metric is robust against volume
onduction and field spread effects, which are major confounding
actors in connectivity analyses (Colclough et al., 2016). Additionally, it
as been proven to be robust and consistent, displaying a high level of
eproducibility and repeatability; these features have been previously
onsidered as quality markers for connectivity metrics (Colclough et al.,
016; Schoonhoven et al., 2022). Also, as the mathematical formulation
f the AEC is simple, it is easier to interpret than other more mathe-
atically convoluted parameters (Brookes et al., 2014; Colclough et al.,
016). Furthermore, it is sensitive to the alterations of neurological dis-
rders in functional connectivity, which is relevant for future potential
linical implementations of the CMB algorithm (Schoonhoven et al.,
022). Finally, amplitude-based metrics have been adapted to compute
nstantaneous connectivity patterns, which have been successfully used
o identify brain states from electrophysiological signals (Núñez et al.,
021, 2022; Tewarie et al., 2019b).

The AEC is an amplitude-based connectivity metric (Brookes et al.,
014). To calculate the AEC, the power envelope of the signals is
omputed as the absolute value of the Hilbert transform. Finally, the
EC is calculated as the Pearson correlation between the two signal
nvelopes. This metric was used due to its robustness, simplicity, and
onsistency across studies (Colclough et al., 2016; Schoonhoven et al.,
022). Before computing the AEC, a pairwise orthogonalization was
pplied to the signals in order to avoid spurious correlations due to
olume conduction and field spread effects (Brookes et al., 2012). The
EC is used to obtain the frequency-dependent connectivity matrices
f the filtered signals from the previous step. Before performing the
ommunity detection, the connectivity matrices of all the trials of
ach subject were averaged. Otherwise, the high dimensionality of
he data would make the community detection impossible due to the
omputational burden.

.2. Automatic frequency band identification

.2.1. Recurrence plots
Recurrence plots (RP) are two-dimensional matrices that ease the

etection of clusters and patterns of periodicity in the data they repre-
ent (Marwan et al., 2007; Webber and Zbilut, 2005). Originally, they
ere designed to detect time patterns in dynamical systems (Marwan
t al., 2007). They are formulated as follows (Webber and Zbilut, 2005):

𝑛,𝑚(𝜀) = 𝛩(𝜀 − ‖𝑿𝑛 −𝑿𝑚‖), (4)

here 𝐗𝑛 is the time course at time 𝑛, 𝜀 is a threshold, 𝛩(⋅) the
eaviside function, and ‖ ⋅ ‖ the norm. Nonetheless, in this study, we

eplaced the norm by the Spearman correlation between AEC matrices
o avoid the selection of an arbitrary threshold (Tewarie et al., 2019b).
urthermore, as we are not working in the time domain but in the
requency domain, the RPs were defined as follows (Núñez et al., 2021;
ewarie et al., 2019b):

𝑛,𝑚 = corr[𝐴𝐸𝐶(𝑛), 𝐴𝐸𝐶(𝑚)], (5)

here 𝐴𝐸𝐶(𝑛) and 𝐴𝐸𝐶(𝑚) are the connectivity matrices for the
requencies 𝑛 and 𝑚, respectively. Thus, the RP is used to identify
requency-dependent clusters that group connectivity matrices with a

imilar topological structure.

http://neuroimage.usc.edu/brainstorm
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Fig. 1. Flow diagram of the study. (1) Definition of the algorithm hyper-parameters based on the characteristics of our study. (2) Normalization of the data by means of a
Z-transformation. (3) Filtering of the signal in narrow (1 Hz) bands. (4) Computation of the frequency-dependent FC by means of the amplitude envelope correlation in its
orthogonalized version. Steps (3) and (4) are repeated for each frequency range defined in step (1). (5) Community detection to estimate the meta-bands by means of the Louvain
GJA algorithm.
3.2.2. Louvain community detection algorithm
Community detection algorithms have been used to detect clusters

of brain regions (Bassett and Bullmore, 2006; Gates et al., 2016), or
temporal brain meta-states (Núñez et al., 2021; Tewarie et al., 2019b;
Zhou et al., 2019). Here, this methodology was used to detect repeated
network patterns along the frequency dimension that can be identified
as meta-bands. As we wanted to implement the frequency band iden-
tification in an unsupervised fashion, the Louvain GJA algorithm was
used (Núñez et al., 2021). This method does not require the a-priori
definition of the number of communities to discover, overcoming, in
this sense, other algorithms such as k-means clustering, or non-negative
tensor factorization (Núñez et al., 2021; O’Neill et al., 2018; Tewarie
et al., 2019b; Cabral et al., 2017; Ponce-Alvarez et al., 2015).

For this task, the RP constructed in the previous section is consid-
ered as a graph, with each of the frequency-dependent connectivity
matrices being the nodes, and the Spearman correlation between them
being the edges. Communities were then discovered in the RP by
means of the Louvain GJA method (Rubinov and Sporns, 2011; Blondel
et al., 2008). The Louvain GJA method is an iterative algorithm that
maximizes the modularity of its solution by assigning each node to its
own community and then finding modularity maxima by moving nodes
5

to other communities (Gates et al., 2016). This method has been proven
to perform well with poorly-defined communities (Gates et al., 2016).
As the algorithm is non-deterministic, it was run 250 times, selecting
the solution with highest modularity (Núñez et al., 2021).

To ease the comparison across subjects, we conducted a per-group
community detection pipeline (Núñez et al., 2022). To do so, RPs were
constructed by concatenating all the frequency-dependent connectivity
matrices of every subject in a database (Núñez et al., 2021). Hence,
community detection was carried out on square connectivity matrices
with dimension 𝑁 , where 𝑁 is the number of subjects in a database
multiplied by the number of frequency bins. The network topologies
of the meta-bands were obtained by averaging all the connectivity
matrices assigned to each meta-band (Núñez et al., 2021).

3.2.3. Frequency-band activation sequence (FAS), attraction strength (AS),
and degree of dominance (DoD)

A metric was defined based on the community extraction performed
by the Louvain GJA method, the frequency-band activation sequence
(FAS). This is a symbolic function that contains the information about
the dominant meta-band network topology for each frequency bin
(i.e., the functional connectivity configuration assigned by the Louvain
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algorithm to that bin). Metrics containing information about changes
between meta-states have been previously used to characterize brain
state transitions (Núñez et al., 2021; Cabral et al., 2017; Baker et al.,
2014). Nonetheless, the FAS only contains information regarding to
which meta-band belongs each frequency-dependent connectivity ma-
trix at each frequency bin. Consequently, in order to complement this
information, two new metrics were defined: the attraction strength
(AS) and the degree of dominance (DoD). These parameters measure
how well the network topology of a specific frequency fits its assigned
meta-band.

The AS is the Spearman correlation between each
frequency-dependent connectivity matrix and the topology of the dom-
inant meta-band (i.e., the meta-band to which it has been assigned). It
s calculated as follows:

𝑆(𝑖) = 𝑐𝑜𝑟𝑟(𝐴𝑖,𝑀𝑑𝑖) (6)

here 𝑐𝑜𝑟𝑟(⋅) is the Spearman correlation, 𝑀𝑑𝑖 the network topology
f the dominant meta-band in the frequency 𝑖, and 𝐴𝑖 the connectivity
atrix in the frequency 𝑖.

The DoD is defined as the correlation between each connectivity
atrix and the dominant meta-band, minus the average correlation

etween that connectivity matrix and the non-dominant meta-bands.
t is calculated as follows:

𝑜𝐷(𝑖) = 𝑐𝑜𝑟𝑟(𝐴𝑖,𝑀𝑑𝑖) −
1

𝑚 − 1

𝑚
∑

𝑛=1
𝑛≠𝑑

𝑐𝑜𝑟𝑟(𝐴𝑖,𝑀𝑛𝑖) (7)

here 𝑀𝑛𝑖 is the network topology of each of the non-dominant meta-
ands in the frequency 𝑖. By analysing the complementary information
btained from these metrics (FAS, AS, and DoD), we can deepen our
nderstanding of the frequency structure of brain FC.

.3. Assessing the algorithm performance by means of synthetic signals with
nown ground-truth

The performance of the CMB algorithm was evaluated with the two
ypes of synthetic signals (amplitude-coupled and M/EEG-like). Two
ifferent types of tests were performed: (i) evaluation of the algorithm
o assess whether it is able to detect meta-bands in hypothetical de-
anding situations; (ii) tuning of the parameters to assess their impact

n the results.
In the first scenario, the following parameters were evaluated:

• Bandwidth: Different values of the underlying synthetic meta-
band bandwidth were tested to find out whether there is a hard
limit where the algorithm is unable to recover the underlying
meta-band. This parameter was tested for amplitude-coupled syn-
thetic signals.

• Band overlap: The presence of close frequency bands (or even
overlapping ones) could also be a problem for the algorithm. This
parameter was tested for amplitude-coupled synthetic signals.

• Number of meta-bands: This simulation was performed to assess
whether the number of underlying meta-bands that the CMB
algorithm is capable of recovering. This parameter was tested for
M/EEG-like synthetic signals.

• Continuous bands: The previous test of the capability of the
algorithm of recovering multiple bands was repeated again with
two different band configurations. First, we considered a scenario
where a frequency range with no underlying network structure
was left between meta-bands. For example, if two meta-bands
are defined in the range of interest between 1 and 70 Hz, they
could range, e.g., from 5 to 35 Hz and from 45 to 60 Hz, with a
frequency band with no underlying defined network structure in
between. Second, we also considered a scenario where the meta-
bands were adjacent (i.e. the frequency range without structure
6

that separated the meta-bands is no longer considered). That is,
if we define two meta-bands in a frequency range of interest
between 1 and 70 Hz, they could range, e.g., from 1 to 40 Hz and
from 40 to 70 Hz. This test was carried out to assess whether the
CMB algorithm is capable to detect the boundaries not only be-
tween meta-bands but also between a meta-band and a frequency
region without a specific FC pattern. This parameter was tested
for M/EEG-like synthetic signals.

In the second scenario, we evaluated:

• Filter order: The meta-bands were generated with different filter
orders to assess their impact on the results. This parameter was
tested for amplitude-coupled synthetic signals.

• Sampling frequency: Different sampling frequencies were tested
to evaluate the influence of this parameter. This parameter was
tested for amplitude-coupled and M/EEG-like synthetic signals.

• Frequency resolution: The influence of the bandwidth of the
filters of the narrowband filter bank on the meta-bands was
evaluated. This parameter (and the frequency range under study)
define the number of frequency bins. This parameter was tested
for amplitude-coupled synthetic signals.

. Results

.1. Assessing the CMB algorithm performance in demanding situations

The performance of the CMB algorithm in the hypothetical demand-
ng situations defined in Section 3.3 is summarized below (a more
etailed description of the results can be obtained in section 2 of the
upplementary Material):

• Bandwidth: The results showed wider bandwidths provide
better-defined connectivity matrices, as there are more frequency
bins with a given connectivity pattern. Further details are pro-
vided in section 2.1.2 of the Supplementary Material.

• Band overlap: The CMB algorithm is capable of detecting close,
contiguous, and even overlapping meta-bands. In this latter sce-
nario, in the frequency ranges where two meta-bands overlap,
only one of them is detected. Further details are provided in
section 2.1.4 of the Supplementary Material.

• Number of meta-bands: The CMB algorithm is able to recover
any number of meta-bands. Further details are provided in section
2.2 of the Supplementary Material.

• Continuous bands: The CMB algorithm is able to recover adja-
cent and non-adjacent meta-bands. Further details are provided
in sections 2.2.1 and 2.2.2 of the Supplementary Material.

.2. Assessing the influence of the CMB algorithm hyper-parameters in the
esults

The results about the influence of the different hyper-parameters of
he CMB algorithm in the meta-band detection can be summarized as
ollows (a more detailed description of the results can be obtained in
ection 2 of the Supplementary Material):

• Filter order: Lower filter orders yield a decreased frequency
resolution to detect the underlying meta-band (i.e., lower effi-
ciency detecting the edges of the meta-bands). Also, higher filter
orders lead to a noisier detection in the frequencies where no
meta-band was specified and, thus, to less defined connectivity
matrices with lower coupling values. In consequence, we have
selected a filter order of 500 to get a good balance between the
aforementioned effects. Further details are provided in section
2.1.1 of the Supplementary Material.



NeuroImage 280 (2023) 120332V. Rodríguez-González et al.
Fig. 2. Meta-bands detected with the MEG database using a filter order of 500. (A) 𝑌 -axis includes the FAS for each subject, while 𝑋-axis represents each individual frequency
bin; different colours represent different communities. (B) Frequency evolution of Attraction Strength (AS, blue) and Degree of Dominance (DoD, green). (C) Network topologies
of the three meta-bands detected; the colour of each network topology corresponds with the colour of the meta-bands in the upper plot. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
• Sampling frequency: It can be observed that lower sampling fre-
quencies provide slightly narrower bands for a given filter order.
Besides, the lower the sampling frequency, the lower regularity in
the detection (i.e., spurious state changes) in frequencies where
no underlying band was defined. Further details are provided in
sections 2.1.3 and 2.2.3 of the Supplementary Material.

• Frequency resolution: Higher bandwidths of the narrowband fil-
ter bank are associated with decreased frequency resolution in the
results. Of note, increasing the frequency resolution increments
the computational burden of the CMB algorithm. Further details
are provided in section 2.1.5 of the Supplementary Material.
7

4.3. Assessing the CMB algorithm with real signals

The assessments carried out with synthetic signals helped us to
decide which parameters to select when computing the CMB algorithm
in real signals. First, the original sampling frequency was used for the
three databases. The bandwidth of the filters was set to 1 Hz (thus
being the CMB algorithm capable to detect 1 Hz bands), as lower values
will dramatically increase the computational burden. As previously
indicated, higher values of this factor will provoke solutions with lower
frequency resolution, and less spurious meta-band transitions. This can
be appreciated in Figures S20 and S21 in Supplementary Material.
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All the analyses were conducted between 1 and 70 Hz. Of note, the
connectivity matrices around 50 Hz (47.5–52.5 Hz) were discarded as
they are highly influenced by the 50 Hz power-line artefact (and its
associated notch filtering process) (Rodriguez-Gonzalez et al., 2021).
In line with the findings observed in the synthetic signals, a filter
order of 500 was employed. To ensure convergence of the Louvain
GJA algorithm, the number of iterations was set to 250, although 100
iterations have been proven to be enough (Núñez et al., 2021). It is
noteworthy that the specific values of these parameters can be adapted
to fit the requirements of each study.

Fig. 2 summarizes the meta-bands detected for the MEG database.
The corresponding AS and DoD values are also depicted, as well as the
topology for the three meta-bands networks detected. A fronto-medial
network meta-band (brown) that is dominating approximately from
15 to 25 Hz can be observed. In addition, there is a medial network
meta-band (green) that is mainly dominating in low (1–5 Hz) and high
(35–70 Hz) frequencies. Finally, there is a parieto-occipital network
meta-band (blue) that dominates around alpha (5–15 Hz) and beta-
2 bands (25–35 Hz). Regarding the AS, it could be observed that it
decreases in: (i) the low frequencies; (ii) the blue meta-band around
alpha; and (iii) from 30 Hz on. The higher AS values, the better the
adjustment of individual frequency-dependent connectivity matrices
with the corresponding meta-band network topology. Moreover, it can
be appreciated that the DoD has two peaks: (i) in the blue meta-band
around alpha; and (ii) in the brown meta-band. An increase of this
value indicates a higher topological distance between the dominant
meta-band and other meta-bands.

Fig. 3 shows the meta-bands as well as their corresponding AS,
DoD, and topologies for the EEG1 database. The differences with the

eta-bands features detected for the MEG database are noteworthy,
onetheless, it can also be observed some similarities. There is a meta-
and dominating from 1 Hz to approximately 30 Hz (brown) and
nother meta-band dominating from 30 to 70 Hz (green). Moreover,
he blue meta-band only appears in some subjects from 20 Hz on, and
n a few isolated frequencies. In addition, the brown meta-band displays
parieto-occipital topology similar to the blue meta-band of the MEG

atabase. The green meta-band displays a fronto-medial topology, and
he blue one a right-medial network configuration. Finally, AS and DoD
arameters show a peak around 10 Hz: while the peak of the AS is
egative, the peak of the DoD is positive (similar to the behaviour of
oD in the MEG database).

Fig. 4 summarizes the meta-bands as well as their corresponding
S, DoD, and topologies for the EEG2 database. The frequency dis-

tribution of the meta-bands is very similar to the one of the EEG1:
the brown meta-band dominates approximately from 1 to 30 Hz; the
green meta-band dominates approximately from 30 to 70 Hz; and the
blue meta-band only appears in some subjects from 20 Hz on, and in
a few isolated frequencies. Furthermore, the topologies of the green
(fronto-medial) and blue (right-medial) meta-bands are also similar to
those found in the EEG1 database. On the other hand, the network
configuration of the brown meta-band is different from that for the
EEG1 database, having a medial topology. Both AS and DoD present
a negative peak around 10 Hz, with a steeper decline for the AS.

The results in Figs. 2, 3, and 4, but calculated with a filter order of
1500, are also included in Supplementary Material in Figures S22 (MEG
database), S23 (EEG1 database), and S24 (EEG2 database). There, the
noisier meta-band detection obtained when using 1500 as filter order
can be appreciated. The problem of noisy detection was also observed
in previous studies (Núñez et al., 2021, 2022).

In addition, the extent to which the CMB algorithm fits other
approaches used to automatically define the frequency bands was
assessed for MEG signals. To do that, we quantified the alignment
of the meta-band in the alpha range (blue meta-band) with other
definitions of this frequency band, as it is known that alpha band plays
an important role in resting-state recordings (Bazanova, 2012). Two
8

definitions to estimate the alpha band were evaluated: the canonical
alpha band (8–13 Hz), and an adaptive alpha band based on estimating
the individual alpha frequency (IAF) and considering the alpha band
as: IAF ± 2 Hz. (Vecchiato et al., 2011; Babiloni et al., 2010). This
process was only performed for the MEG database, as the EEG databases
lack a clear meta-band specific to the alpha frequencies. In Fig. 5
the overlap of the detected meta-bands with the canonical (A) and
adaptive (B) alpha band approaches is depicted. For the canonical
approach, our alpha meta-band is present in a 59.7% of the frequency
bins, while for the adaptive approach the degree of overlap of our
alpha meta-band is 67.4%. In addition, in Fig. 6 the modal meta-
band across subjects is depicted, showing a remarkable consistency
with the canonical definition of the frequency bands (shown in a bar
above): delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz,
and gamma: 30–70 Hz. Besides, in that Figure the network topologies
of both, the canonical bands and the meta-bands are also displayed.
These network topologies support the validity of the results obtained
by the CMB algorithm, as there is a remarkable coincidence between
the network topology of the meta-bands and the topology of canonical
bands in the frequencies where they are present: brown meta-band
presents a connectivity pattern similar to those for delta and gamma
bands; the network topology of the green meta-band is similar to those
of theta, beta-1, and beta-2; and blue meta-band has a connectivity
pattern similar to that of alpha.

5. Discussion

In this study, we introduced a new method to study the frequency
structure of the functional connectivity in resting-state signals. We
performed a community detection procedure along the frequency di-
mension to unveil the underlying meta-bands, which were grouped
according to the similarity of their network topology. Our findings
showed that: (i) the CMB algorithm is sensitive to individual idiosyn-
crasies at subject level, providing a new framework to further un-
derstand the frequency structure of functional brain networks; (ii)
this frequency structure is dominated by a limited number of meta-
bands (i.e., connectivity topologies), that possibly play different roles
depending on the frequency range; and (iii) MEG is more sensitive than
EEG to characterize the underlying frequency structure of functional
connectivity.

5.1. Revisiting canonical frequency bands

The well-known canonical frequency bands are supported by a large
body of studies. It is clear that they reflect underlying physiological
mechanisms (Sanei and Chambers, 2021; Buzsaki and Draguhn, 2004).
Nonetheless, there are a variety of issues related with their definition
that lead us to look for an automatic, unsupervised, and adaptive
frequency segmentation in connectivity studies. The first issue is that
they were defined about 80 years ago, using the rudimentary EEG
systems that were available at the time (Jasper and Andrews, 1936;
Berger, 1934; Walter and Dovey, 1944). Since then, technology and,
as a consequence, recording systems have dramatically changed, and
are now able to record neural activity with a highly increased quality.
Because of this, it is reasonable to hypothesize that nowadays more
accurate frequency bands segmentations can be performed. The next
issue is related with the frequency bands limits. The literature shows
a great inconsistency in the definition of the specific limits of the
canonical frequency bands (Newson and Thiagarajan, 2019). Thus,
even though the name of the bands is preserved, their specific definition
varies across studies (Newson and Thiagarajan, 2019). The third issue is
that analysis methods have deeply evolved since the original definition
of the canonical frequency bands. The current analysis techniques are
able to measure different patterns of neural activity than the ones used
to define the canonical bands. For example, functional connectivity

reflects global (and local) neural synchronization, while the methods
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Fig. 3. Meta-bands detected with the EEG1 database using a filter order of 500. (A) 𝑌 -axis includes the FAS for each subject, while 𝑋-axis represents each individual frequency
bin; different colours represent different communities. (B) Frequency evolution of Attraction Strength (AS, blue) and Degree of Dominance (DoD, green). (C) Network topologies
of the three meta-bands detected; the colour of each network topology corresponds with the colour of the meta-bands in the upper plot. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
used to define the canonical bands only reflect local neural synchro-
nization (Stam and van Straaten, 2012; Rodriguez-Gonzalez et al.,
2021; Tewarie et al., 2019a). Finally, the canonical frequency bands
do not account for the individual idiosyncrasies, i.e., the differentiating
brain patterns across individuals. In line with this, there is an increased
interest in personalized analyses, which have lead to the definition of
adaptive frequency bands (Pascarelli et al., 2020; Borghini et al., 2019).
Our methodology allows to define user-specific frequency bands, with
a data-driven method that permits an increased level of personalization
regarding the currently used adaptive approaches.

It has to be indicated that a direct comparison between the CMB
algorithm and the canonical bands is not possible. The CMB algorithm
disregards all the assumptions made by the canonical bands and, hence,
the resulting frequency segmentation is so different that the direct
comparison with the canonical bands is not possible: the frequency
ranges are different, the number of meta-bands does not match, and the
meta-bands expand across non-adjacent frequency ranges. Additionally,
although the topologies of the canonical frequency bands showed a
remarkable coincidence with their (approximate) corresponding meta-
bands, this analysis is too simple to make direct associations between
meta-bands and canonical bands. Furthermore, the limits of the canon-
ical bands are not clear, as there is a great inconsistency in their
definition (Newson and Thiagarajan, 2019). Consequently, we decided
to only compare the alpha band of these previous approaches with
the meta-band associated with alpha (the blue meta-band) in the MEG
database, as it has been observed that alpha activity dominates neural
dynamics during eyes-closed rest condition (Millett, 2001; Trajkovic
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et al., 2021). It can be appreciated that our blue meta-band has an
occipital connectivity pattern, similar to that observed in the canonical
alpha band. Of note, the adaptive alpha band showed higher coin-
cidence (67%) with our alpha meta-band compared to the canonical
alpha band (60%). This suggests that, although the traditional band
segmentation approaches provide a good starting point for fitting the
underlying topological structure at group-level, the individual idiosyn-
crasies are not fully accounted for. In this regard, the CMB algorithm is
useful as it automatically adapts to the specific neural patterns of each
subject, with no a-priori assumptions, as the canonical and adaptive
approaches do.

The majority of the currently available user-specific band segmen-
tation approaches are based on detecting spectral peaks, which can be
problematic in the absence of observable peaks in the power spectral
density (Cohen, 2021). In consequence, it is difficult to compare our
meta-bands with previous studies as, to the best of our knowledge,
only two previous works have assessed the frequency structure of
functional connectivity (Cohen, 2021; Puxeddu et al., 2021). The study
conducted by Puxeddu and colleagues (Puxeddu et al., 2021) employed
a community-detection algorithm in frequency-specific connectivity
matrices. Nonetheless, the research was not aimed at proposing an
alternative frequency segmentation method, but to use a multi-layer
model to analyse multi-frequency EEG networks (Puxeddu et al., 2021).
On the other hand, based on the idea that the current band seg-
mentation approaches add uncertainty and subjectivity to the anal-
yses, Cohen (Cohen, 2021) proposed an alternative band segmenta-
tion approach. He used covariance matrices to identify patterns that
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Fig. 4. Meta-bands detected with the EEG2 database using a filter order of 500. (A) 𝑌 -axis includes the FAS for each subject, while 𝑋-axis represents each individual frequency
bin; different colours represent different communities. (B) Frequency evolution of Attraction Strength (AS, blue) and Degree of Dominance (DoD, green). (C) Network topologies
of the three meta-bands detected; the colour of each network topology corresponds with the colour of the meta-bands in the upper plot. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
maximally separate the spatio-temporal narrowband activity from the
spatio-temporal broadband activity. Then, he grouped these patterns
using the dbscan clustering algorithm, resulting in its user-specific
bands (Cohen, 2021). His results showed a great variability across
subjects in the number of detected frequency bands (ranging from 4
to 11), and also in the limits of the personalized alpha band (with
the lower bound ranging approximately from 3 to 10 Hz, and the
upper bound ranging approximately from 6 to 18 Hz). Our results
support the heterogeneity in band segmentation found in this previous
work, which suggests the need for individualized analyses that accounts
for these user-specific idiosyncrasies. The CMB algorithm performs an
individualized band segmentation derived from the connectivity-based
spatio-frequency patterns obtained by means of the AEC method, as
it is robust and repeatable (Colclough et al., 2016; Schoonhoven et al.,
2022). In addition, the CMB algorithm uses the Louvain GJA algorithm,
as it does not a-priori define any parameter to achieve a satisfactory
performance (Núñez et al., 2021, 2022). In consequence, to the best
of our knowledge, this is the first study that proposes a subject-specific
frequency band segmentation based on the topological properties of the
frequency-dependent connectivity matrices.

All these findings led us to define some general ideas on the use
of the ‘‘canonical’’ frequency bands. On the one hand, their use when
working with resting-state EEG signals in connectivity analyses should
be carefully considered. Our results indicate that the use of these bands
can introduce a significant bias, as their parcellation of the frequency
range does not reflect the underlying frequential structure of functional
connectivity. In this regard, the CMB algorithm could be a better
10
alternative as it fully adapts to the frequency-dependent connectiv-
ity patterns. On the other hand, the scenario for MEG resting-state
connectivity analyses is more complicated to analyse. The ‘‘canonical’’
frequency bands are convenient, as they provide a common framework
that eases the comparison across studies; however, their definition is
not consistent (Newson and Thiagarajan, 2019), and they do not take
into account subject-specific neural traits. In this regard, we consider
that, while ‘‘canonical’’ frequency bands can be an acceptable proxy
of the underlying frequency-dependent network structure, they are
missing the individual particularities that should be accounted to obtain
accurate results, as well as a better understanding and more meaningful
interpretations of the phenomena under study. In summary, we think
that, whenever the computational capabilities make it possible, the
CMB algorithm should be employed in resting-state MEG connectiv-
ity studies. Nonetheless, it could be also convenient to complement
those analyses with the conventional segmentation into ‘‘canonical’’
frequency bands, to facilitate a more straightforward comparisons with
previous studies.

5.2. Unveiling the fundamental functional network configurations

Regarding the number of meta-bands detected for the different
databases, a relevant conclusion can be drawn. Whereas in the MEG sig-
nals 3 clearly defined communities are observed, in the EEG databases
only 2 dominant communities are detected, being the third one only
present in isolated frequency bins and subjects. Of note, these results do
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Fig. 5. Overlapping of meta-bands (for the MEG database using a filter order of 500) with other alpha band definitions: (A) canonical alpha band (8–13 Hz); (B) adaptive alpha
band (individual alpha frequency ± 2 Hz). The alternatives definitions of the alpha band are delimited with two red lines. The 𝑌 -axis includes the FAS for each subject, while
the 𝑋-axis represents each individual frequency bin; different colours mean different communities. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
not mean that our resting-state neural activity displays only 2 or 3 spe-
cific network topologies; they mean that there are 3 network topologies
that recurrently appear across frequencies during the resting-state.

As this is the first study that extracts frequency meta-bands, it is
not easy to find previous researches to which to relate the results.
However, it may be interesting to consider our meta-bands as the
frequential counterparts of the brain meta-states extracted on dynamic
functional connectivity (dFC) analyses. The so-called brain meta-states
are network patterns that are recurrently repeated over time, consid-
ering that the connectivity matrix in each time sample is a weighted
combination of the identified meta-states (Zhao et al., 2019; Mennigen
et al., 2018). In this regard, the number of recurrent network topologies
detected in the MEG database (i.e., 3) is in agreement with a previous
study, where 3 time-recurrent network topologies were extracted in
resting-state EEG signals from healthy elderly subjects (Núñez et al.,
2021). Although in the literature, different number of meta-states have
been identified, its repertory is usually limited, considered to follow
a heavy-tail distribution, with a few meta-states being activated very
frequently (von Schwanenflug et al., 2023). This is consider to provide
a cost-efficient modular way of processing neural information (von
Schwanenflug et al., 2023; Ramirez-Mahaluf et al., 2020). Thus, it
is reasonable to hypothesize that the limited number of meta-band
topologies that we have identified may also be a consequence of the
optimization of neural information processing. In line with that, it
has been proposed that one of the main variables ruling out brain
organization may be economical constraints (Bullmore and Sporns,
2012).
11
Another interesting finding is that the meta-bands are distributed
across disjointed frequency ranges: for the MEG database, the green
meta-band is present around the canonical delta and gamma bands,
and the blue meta-band is present around canonical alpha and beta-
2 bands. This contradiction could be explained by three factors. First,
this can be due to a mixing effect provoked by averaging different trials
from resting-state activity, which has been found to exhibit a highly dy-
namic repertoire of recurrent network topologies (Núñez et al., 2021).
Second, it could be due to cross-frequency coupling. Several studies
have addressed the potential relationships between different frequency
bands, observing that these interactions play an important role in
the processing and transmission of neural information (Händel and
Haarmeier, 2009; Cho et al., 2015; Riddle et al., 2021). Particularly,
cross-frequency patterns have been demonstrated to play an important
role in resting-state activity, as they contribute to long-range communi-
cation (Florin and Baillet, 2015; Stankovski et al., 2017). In this regard,
previous studies on this field have observed interactions between slow-
frequency (delta and theta) and high-frequency (beta and gamma)
oscillations (Händel and Haarmeier, 2009; Cho et al., 2015; Riddle
et al., 2021), which could shape the functional network patterns at
these frequency ranges. Finally, this distant coupling can be due to the
fact that we are grouping frequency bands based on their underlying
network topology. Hence, this does not necessarily indicate there are
only 2 or 3 global meta-bands, but similar network topologies operating
across different frequencies (Uhlhaas et al., 2008). In this regard, it
can be hypothesized that this is the result of the brain optimizing
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Fig. 6. Comparison of meta-bands (for the MEG database using a filter order of 500) with canonical frequency bands. (A) Network topologies of the identified meta-bands. (B)
In the upper part, the mode of the meta-bands across all the subjects is depicted, below there is a bar showing the canonical definition of the frequency bands (𝛿: 1–4 Hz; 𝜃:
4–8 Hz; 𝛼: 8–13 Hz; 𝛽1: 13–19 Hz; 𝛽2: 19–30 Hz; and 𝛾: 30–70 Hz). (C) Network topologies of the canonical frequency bands. Different colours represent different communities.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
resources (Bullmore and Sporns, 2012), having a reduced number of
topologies integrating different functions depending on the frequency
range they are operating (Uhlhaas et al., 2008). It has been suggested
that the brain has timescale-dependent network organizations (Sasai
et al., 2014; Bola and Sabel, 2015). Our results extend that hypothesis
indicating that some of those topologies could be repeated (at least to
some extent) across frequencies. This is supported by previous studies
that revealed that some graph characteristics of neural networks were
preserved across frequencies (Bullmore and Sporns, 2009; Bassett et al.,
2006). Besides, this can be observed in Fig. 6 that compares meta-bands
and canonical frequency bands in both, sequencing, and topology.
This Figure shows that, although there are some bands historically
considered different, from a mathematical perspective and based on
the underlying network topology, they could be considered as closely
related.

The blue MEG meta-band, which we have associated with the
canonical alpha band, presents a parieto-occipital topology. This meta-
band does not fit its corresponding frequency-dependent connectivity
matrices very well; however, it does it remarkably better than the other
(i.e., non-dominant) meta-bands. A similar topology can be appreciated
for the EEG1 database in its brown meta-band, which is the meta-
band present around the canonical alpha band. On the other hand, the
brown meta-band from EEG , which is again present in the frequencies
12

2

around the canonical alpha band, depicts a medial widespread topol-
ogy. Around this meta-band, DoD and AS values decrease, indicating
that the brown meta-band is not fitting the underlying network topol-
ogy properly. This suggests that the increased sampling frequency and
spatial resolution of the EEG1 database have improved the sensitivity
of the signals to reflect the underlying network structure, although still
not to the same extent as in MEG signals. The network topology of
this meta-band is similar to that observed in other studies, which found
parieto-occipital networks for resting-state M/EEG signals in the alpha
band (Colclough et al., 2016; Miraglia et al., 2017; Hillebrand et al.,
2012). This occipital topology could be related to the posterior areas
of the default-mode network (DMN), which has been proposed to be
the dominant brain activity during rest. Some studies have suggested
that the DMN consist of two subnetworks: anterior DMN, and posterior
DMN (Raichle and Snyder, 2007; Raichle et al., 2001; Fauchon et al.,
2022; Vidaurre et al., 2018). This association with the posterior DMN
is supported by previous studies which found that these areas were
strongly active (Fauchon et al., 2022; Vidaurre et al., 2018), and highly
connected (Vidaurre et al., 2018) in the alpha frequencies during rest.
Interestingly, the posterior areas of the DMN have been associated with
higher cognitive functions such as the integration of information, at-
tention, empathy, self-consciousness mental thoughts that occur during
rest, and theory of mind (Culham and Kanwisher, 2001; Raichle and
Snyder, 2007; Fauchon et al., 2022).
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The brown meta-band of the MEG signals has a fronto-central
topology. Its high AS and DoD values suggests that this meta-band ap-
propriately fits its corresponding frequency-dependent matrices, even
remarkably better than the other meta-bands. A similar beta-band
network topology has been observed in a previous study using MEG
resting-state recordings (Hillebrand et al., 2012). Although this associ-
ation is not as clear as for the blue meta-band, this topology could be
associated with the anterior areas of the DMN (Fauchon et al., 2022;
Vidaurre et al., 2018). This network has been observed to be highly
active for low frequencies (around theta), but not in beta (Fauchon
et al., 2022; Vidaurre et al., 2018). The anterior areas of the DMN are
involved in high cognitive functions such as semantic integration, emo-
tions, and decision making (Tsapkini et al., 2011; Fellows and Farah,
2007). The beta frequency activation of this meta-band may be related
with the sensorimotor network, which has been reported to be very
active and connected around beta frequencies, and displays a topology
with some areas overlapping with the brown meta-band (Fauchon et al.,
2022). This network is also highly reported in intrinsic neural activity,
and is involved in perception, proprioception, and motion (Chenji et al.,
2016; Feher, 2012; Caspers et al., 2021). On the other hand, the
beta band has also been reported to assume a critical function in the
formation of canonical resting-state networks (Hipp et al., 2012), which
implies a relevant role in the processing of information within and
across cortical circuits (Little et al., 2019), and may explain the role
of brown meta-band.

It is worth mentioning that all these brain topologies were identified
using the orthogonalized version of the AEC. The orthogonalization
process removes the zero-lag connectivity, as it is considered to be
the result of spatial leakage leading to spurious connections (Brookes
et al., 2012; Colclough et al., 2016). However, it has been proven
that zero-lag couplings contain relevant information regarding the
transmission of information, specially between homotopic neural ar-
eas (O’Reilly and Elsabbagh, 2021). Notably, different explanations
were given to these couplings. For example, antiphase coupling is
attributed to interhemispheric inhibition dynamics (O’Reilly and Elsab-
bagh, 2021; Perez and Cohen, 2009). Additionally, in-phase synchrony
could also be explained by subcortical drivers projecting to different
brain areas (Huang and Pipa, 2007), or by cortico-cortical or cortico-
thalamocortical projections (Uhlhaas et al., 2009; Vicente et al., 2008).
It has been also suggested that this zero-lag connectivity can be in-
volved in the predictive capacity of the brain (O’Reilly and Elsabbagh,
2021). Different methods have been proposed to evaluate FC while
avoiding leakage effects without disregarding these relevant zero-lags
couplings (Farahibozorg et al., 2018; Hauk et al., 2022). However,
differentiating genuine zero-lag interactions from spurious ones is still
an open issue (O’Reilly and Elsabbagh, 2021). In this regard, in line
with the literature (Bastos and Schoffelen, 2016; Brookes et al., 2012;
Colclough et al., 2016; Khadem and Hossein-Zadeh, 2014; Schoffelen
and Gross, 2009; Stam et al., 2007), we consider that the spurious zero-
lag couplings could be biasing our CMB algorithm and, therefore, we
decided to discard all of them by using the PLI as the connectivity
measure. Nevertheless, it is important to consider that, while our
frequency-dependent connectivity patterns reflect most of the func-
tional interactions between brain regions, there are subtle aspects of
these interactions that may be lost.

5.3. Differences in the underlying connectivity patterns between EEG and
MEG

Of note, it was observed that a similar wide-sense frequency struc-
ture is detected in MEG and EEG. However, the results obtained from
the EEG databases are missing a specific meta-band around the canon-
ical alpha band that the CMB algorithm is able to recover in the MEG
database. There are several differences between the MEG and EEG
datasets that could explain the decreased EEG sensitivity to the underly-
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ing frequency structure: reduced signal-to-noise ratio (Fred et al., 2022; h
Illman et al., 2020), decreased robustness against volume conduction
effects (Rampp and Stefan, 2007), reduced sampling frequency, lower
number of sensors, or reduced sample size, among others. To assess
the latter factor, we performed an additional test by re-calculating
the meta-bands detected for the MEG database but only including
in the analysis 27 random subjects (as in the EEG1 database). The
results are shown in supplementary Figure S25. By doing this, the
meta-band detection only slightly changed, with the blue meta-band
still clearly detected around the canonical alpha band. In the second
test, the influence of the number of sensors was evaluated. To this
end, we constructed two new data subsets using the MEG recordings,
matching in the number of sensors and sample size of the EEG1 and
EEG2 databases. As a result, we obtained two new MEG subsets: (i) one

ith 32 sensors and 27 subjects, and (ii) other with 19 sensors and 45
ubjects. The results are displayed in supplementary Figure S26. It can
e appreciated that the detection of the three meta-bands is maintained,
lthough there are some differences that can be due to two factors: (i)
he reduced sample size (as previously described); and (ii) the reduced
umber of sensors. The influence of the sampling frequency was already
ssessed as a potential confounding factor in the CMB algorithm. It
as observed that for the M/EEG-like synthetic signals, this parameter
oderately affected the meta-band detection. This was also analysed
ith real signals by downsampling the MEG database to 200 Hz (as in

he EEG2 database) and estimating the meta-bands again. The results
re shown in supplementary Figure S27 and indicate that the meta-
and detection has changed, though the blue meta-band is still clearly
etected in the frequencies around the canonical alpha band. However,
ts presence is less evident than for 1000 Hz. Thus, our findings suggest
hat the sampling frequency could be, at least partially, influencing the
esults of the EEG databases. To sum up, these results indicate that
hese factors (i.e., spatial resolution and sampling frequency) are not
ufficient to explain the differences observed between EEG and MEG
atasets. In line with this, it can be appreciated that the meta-band
etection in the EEG1 database is similar to that obtained in the EEG2
atabase, despite the remarkable differences in their spatial resolution
32 vs. 19 channels) and sampling frequency (500 vs. 200 Hz). Thus,
e can conclude that the discrepancies between EEG and MEG are due

o the intrinsic dissimilarities between both techniques (Babiloni et al.,
009; Rampp and Stefan, 2007; Lopes, 2013; Ahlfors et al., 2010),
uggesting an increased sensitivity of MEG to reflect the underlying
requency-dependent network structure.

.4. Limitations and future lines

Although this study yielded interesting and promising results, in-
roducing a new methodology to carry out analyses of the frequential
tructure of functional brain connectivity, it has some limitations that
eserve further discussion.

First of all, we observed a divergence in the results between the
EG and EEG databases. Although several possible reasons to explain

he differences have already been discussed, further research is required
o find whether it is possible to design a methodology capable of detect-
ng similar meta-bands for EEG signals as those in the MEG database.
n line with that, it would also be interesting to evaluate other EEG
atasets (with different number of channels and sampling frequencies)
sing the methodology proposed in this paper. Additionally, different
ource localization algorithms could be employed to find the extent to
hich the source inversion method influences the band segmentation
chieved by the proposed methodology.

Furthermore, although the introduced methodology is based on a
ata-driven, automatic algorithm, there are some parameters that could
e optimized to adapt specific user requirements (i.e., frequency reso-
ution of the filters, filter order, or sampling frequency, among others).
t is likely that the most important parameter is the filter order, with

igher values of this parameter providing frequency-accurate solutions
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(but with an increased presence of noise) and lower values providing
smoother solutions.

Moreover, future work should upgrade the implementation of the
CMB algorithm to address some of its limitations. In this regard, an
interesting new feature would be allowing to configure whether the
CMB algorithm accepts meta-bands covering non-adjacent frequency
ranges or not. Of note, the implementation of this feature would
require prior efforts addressing the issue of spurious meta-band changes
(i.e., changes that occur only for isolated frequency bins). Also, the
application of the CMB algorithm is now based on the orthogonalized
AEC. It has been observed that different connectivity metrics may
reflect different neural mechanisms (He et al., 2019; Schoonhoven
et al., 2022); thereby, in the future, the CMB algorithm could also
include new connectivity metrics such as robust phase-based metrics.
Moreover, the applied orthogonalization process is removing zero-lag
associations that are sometimes considered spurious due to leakage
effects (Colclough et al., 2016); however, they can also contain rel-
evant information (O’Reilly and Elsabbagh, 2021). Hence, in future
analyses, it could be interesting to explore approaches that do not
remove this connectivity (Farahibozorg et al., 2018; Hauk et al., 2022).
Additionally, we have based the meta-band segmentation only in the
FC patterns. Although these dynamics also reflect, to some extent,
information about the oscillatory amplitude, the implementation of the
CMB algorithm should be extended to support other input data sources
to perform the community detection (Rodriguez-Gonzalez et al., 2021;
Tewarie et al., 2019a; Demuru et al., 2020), as power topologies or
hybrid data merging FC and power topology information. Furthermore,
the CMB algorithm was developed considering the functional connec-
tivity stable across time. This was done due to the high computational
cost and complexity associated with considering its dynamic behaviour
(dFC approach); nonetheless, in future studies, the CMB algorithm
could be updated to support also dFC analyses. Besides, it would also be
interesting to merge our methodology with the one previously proposed
by Núñez and colleagues, combining time meta-states and frequency
meta-bands to provide the time–frequency ‘‘building-blocks’’ of neural
dynamics (Núñez et al., 2021, 2022).

Finally, the study was conducted with resting-state signals. Further
task-related studies should be carried out to assess the potential of
the introduced methodology to analyse the changes in the frequential
structure of functional brain networks during an structured task. To this
end, it could be interesting to determine the time intervals where the
phenomenon of interest occurs, and then identify the corresponding
meta-bands. This approach has the potential to enhance our compre-
hension of how the brain responds to specific stimuli or which neural
substrates enable different cognitive processes by providing a more
accurate and specific evaluation of M/EEG activity. In this regard, it
could be specially interesting to combine the CMB algorithm with the
methodology developed in Núñez et al. (2022), as it would allow to
disentangle how these meta-bands patterns change over time.

6. Conclusions

In this study, we propose a novel frequency band segmentation
approach based on the topology of the functional connectivity matrices
in narrow frequency ranges. The data-driven, automatic frequency band
segmentation proposed here presents a remarkable coincidence with
the ‘‘canonical’’ frequency bands at group level, but it demonstrates this
frequency parcellation ignores individual idiosyncrasies that may be
biasing previous studies. Interestingly, we have also observed that the
sensitivity of EEG signals to frequency-dependent connectivity neural
patterns is not sufficient to identify an underlying structure aligned
with the ‘‘canonical’’ frequency bands.

This study opens the way for personalized, data-driven connec-
tivity analyses, allowing an objective definition of frequency ranges
of interest based on the topological similarity of the functional brain
network across frequencies. Besides, these analyses, able to quantify
14
the individual idiosyncrasies of neural activity, could be extended to
clinical settings to provide a more accurate identification of brain
connectivity alterations in several disorders, such as dementia due to
Alzheimer’s disease, schizophrenia, depression, or migraine (Rossini
et al., 2020; Bowyer et al., 2015; Dev et al., 2022; Pan et al., 2022).

Furthermore, the CMB algorithm provides a new framework for the
characterization of different neural pathologies, as well as to facilitate
their diagnosis, thanks to the possibility of studying how they affect
to the frequential structure of the functional brain network. The ratio-
nale behind the CMB algorithm is in line with the current evolution
of science and medicine, which is focused in providing personalized
studies, diagnostic tools, and treatments capable of adapting to the
particularities of each individual (Goetz and Schork, 2018; Keizer,
2021).
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