
620 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

Software defined networking agent
demonstration to enable configuration and
management of XGS-PON architectures
David de Pintos,1,2 Noemí Merayo,1,* Carlos Sangrador,1 Juan Carlos Aguado,1

Ignacio de Miguel,1 AND Ramón J. Durán Barroso1

1Universidad de Valladolid, Valladolid, Spain
2david.pintos@uva.es
*noemer@tel.uva.es

Received 3 May 2023; revised 8 July 2023; accepted 13 July 2023; published 16 August 2023

This paper describes the design and implementation of an OpenFlow software defined network (SDN) agent
that manages and configures 10-gigabit-capable symmetric passive optical network (XGS-PON) architectures.
Acting as an OpenFlow switch, the SDN agent communicates with an SDN controller using OpenFlow, while
holding direct communication with the optical line terminal (OLT) through the chipset manufacturer-specific
application programming interface, eliminating the need for emulating SDN layers in hardware devices. The pro-
posal was evaluated through experiments conducted on a White Box XGS-PON OLT using the Open Network
Operating System. The results demonstrate that the proposal facilitates a real-time SDN configuration of various
Internet services, successfully fulfilling different quality of service requirements. Due to its ease of deployment,
low complexity, smooth learning curve, scalability, and flexibility in integrating services, the proposal has sig-
nificant potential. As a result, it offers a rapid SDN solution for configuring and testing new functionalities with
minimal programming changes required in specific layers of the developed SDN agent. © 2023 Optica Publishing

Group under the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/JOCN.494694

1. INTRODUCTION

As data traffic continues to grow exponentially, due to
bandwidth-hungry applications, the rise of video stream-
ing, or the rollout of 5G, the need for higher capacity, faster,
and more reliable networks is becoming more pressing. In
addition, the COVID-19 crisis has led to more data traffic and
more bandwidth demand, which have accelerated the deploy-
ment of optical fiber connections in many countries. Indeed,
forecasts foresee around 309 million fiber to the home/building
(FTTH/B) connected households in 2027 in the EU region
[1]. In fact, the global FTTH/B market is expected to reach
USD 29.7 billion by 2026 [2]. For instance, China is expected
to reach an estimated market size of USD 8 billion by 2026,
with a steady annual growth rate of 15%. Japan and Canada,
other leading countries, are expected to grow by 10.5% and
11.8%, respectively, by 2026 [2]. In this global scenario, pas-
sive optical networks (PONs) are the preferred technology
for FTTH deployments, as they offer a flexible and scalable
solution and provide gigabit speeds over long distances without
the need for active components. In fact, the global GPON
(PONs based on the gigabit standard) market is estimated to
be USD 13.52 billion by 2027, growing at a compound annual
growth rate (CAGR) of 12.1% [3].

A PON is a fiber-optic network that employs a multipoint
topology and optical splitters to transmit data from a single
point of transmission, the optical line terminal (OLT), to
multiple user end points, optical network terminals/optical
network units (ONTs/ONUs). The concept of passive refers to
the absence of a power supply to the fiber and optical splitters.
However, while GPON is the basis of current FTTH deploy-
ments, the declining costs of 10G PON equipment and the
prospect of faster time-to-value for their networks is leading
many service providers to consider deploying symmetrical
10G networks (ITU-T G.9807.1), also called 10-gigabit-
capable symmetric PON (XGS-PON) [4]. Thus, XGS-PON
is expected to reach 55% of the GPON market by 2026, as it
already accounted for 15% in 2021. In fact, migration from
GPON to XGS-PON is simple, brings great flexibility as
both technologies can coexist, and can be done progressively
as bandwidth demands increase, since part of the deployed
network equipment and the optical distribution network itself
are reused [5].

The simultaneous integration of multiple PON technologies
as well as the increase of services with high quality of service
(QoS) requirements make these networks increasingly complex
to manage. This is coupled with the fact that PONs are often

1943-0620/23/090620-18 Journal © 2023 Optica Publishing Group



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 621

managed by proprietary and inflexible network management
systems. The development of software defined network (SDN)
solutions for PON infrastructures effectively addresses these
challenges, enabling more efficient operation and management
of networks, thus creating more self-aware as well as autono-
mous and secure networks [6]. SDN solutions allow network
operators to centrally control network management operations
and to apply automation to complex and time-consuming
tasks, avoiding manual interventions as much as possible. In
addition, SDN technology can bring other benefits to PONs
such as enabling fast and efficient configurations of services and
residential networks as well as allowing the coexistence of PON
devices from different manufacturers and PON technolo-
gies. SDN uses software-based controllers to direct traffic and
communicate with the underlying hardware infrastructure,
separating the control plane from the data plane to provide
intelligent, centralized network management, so that operators
can manage and monitor the network independently of the
underlying technology [7]. Therefore, in an SDN architecture,
the software application implementing the SDN controller
takes control of the network, centralizing management and
intelligence, and communicates with the hardware using dif-
ferent protocols such as OpenFlow (the most widely deployed
SDN-based protocol) [8], NETCONF [9], or RESTCONF
[10].

Due to these advantages, there are multiple proposals explor-
ing the integration of SDN into PON architectures, as opposed
to using traditional proprietary and inflexible management sys-
tems. In this regard, many proposals focus on implementing a
software abstraction layer in PON devices (OLTs, ONUs) to
make them SDN controllable and able to emulate the behavior
of SDN switches [11–15]. Under this approach, it is necessary
to program a virtual layer into an external device (one for each
PON device), such as a Raspberry Pi or minicomputer, that
communicates with all OLTs and ONUs, since they cannot
be directly integrated into the devices themselves. This is not
a native implementation, leading to increased complexity
and cost. In contrast, other proposals such as Virtual OLT
Hardware Abstraction (VOLTHA) [16], an open source
project of the Central Office Re-architected as a Datacenter
(CORD) initiative, reduce the PON to a programmable switch
controlled by an SDN controller capable of translating SDN
commands sent by the controller into the proprietary man-
agement system of the OLTs/ONUs without using external
hardware devices or additional software layers while allowing
for efficient network management. This open source project
is integrated in the SDN Enabled Broadband Access (SEBA)
architecture [17], an Open Networking Foundation (ONF)
project that builds an open source solution for virtualized
broadband access.

In previous research, we developed a solution based on this
last approach, where an SDN agent based on OpenFlow was
programmed and experimentally tested over a commercial
GPON [18]. However, that SDN proposal interacted indi-
rectly with the OLT, since the agent translated the OpenFlow
messages from the platform to the vendor’s proprietary man-
agement system control commands. On the contrary, in
this paper, we present an SDN-OpenFlow agent for XGS-
PON architectures that directly interacts with the OLT and

ONU chipsets through the specific application programming
interface (API) of the OLT chipset. This approach is highly
scalable, as it is divided into simple and highly differenti-
ated blocks, allowing new SDN functionalities to be easily
added in one block without affecting the rest, unlike other
approaches such as VOLTHA, where the implementation
of new functionalities affects the modification of several lay-
ers and blocks. It is also very easy and fast to deploy, as the
management system is fragmented into a small number of
containers, with well differentiated tasks, through a simple
dockerisation system. Furthermore, the developed agent is
very flexible, because in addition to being managed through
tools such as the Subscriber/Access Device Information Service
(SADIS) or Open Network Operating System (ONOS), it can
also be managed through an easy and intuitive menu-driven
interface. Therefore, the learning curve for managing the
proposed OpenFlow-based SDN agent is shallow and short,
and configuring it and programming new functionalities are
easier compared to other proposals. In addition, its installation
is lightweight and simple, as it consists of very few Docker
containers to deploy, as opposed to other approaches that
require a larger number of containers (resulting in increased
complexity), such as VOLTHA. The simplicity of the instal-
lation also translates into a reduction of the complexity of the
configuration. By reducing the number of components, the
interdependencies are simplified, which is one of the major
drawbacks of systems with a large number of components.
Furthermore, the SDN approach offers great potential as it has
been developed for OLT PON medium access control (MAC)
chipsets supporting multiple PON technologies (GPON,
XGPON, XGS-PON, NGPON2, EPON, and 10G-EPON)
through a common API.

In summary, this work presents a solution for the man-
agement of XGS-PON OLTs through SDN. The PON is
controlled by means of OpenFlow, so that an SDN con-
troller such as ONOS [19] can configure the traffic rules. This
solution has been experimentally tested on an XGS-PON
architecture, and the results are also presented in this paper.
In addition, the open source code of this SDN solution is
available on GitHub to be directly applicable for network
designers.

This paper is structured as follows. Section 2 describes the
state of the art of SDN in XGS-PONs. Section 3 presents the
design of the OpenFlow-based SDN agent for XGS-PON
infrastructures, and Section 4 describes the communica-
tion among the agent, SDN controller, and XGS-PON
devices. Section 5 explains the menu-driven user interface and
Section 6 the experimental scenario. Then, Section 7 shows
the validation and results of the proposal over an experimental
XGS-PON testbed. Finally, Section 8 summarizes the main
conclusions.

2. STATE OF THE ART

This section describes various approaches for integrating SDN
into PONs to achieve different objectives, including QoS man-
agement, user-side home network management, enforcement
of protection policies, and control of PON devices.



622 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

A significant number of studies propose that bandwidth
management and service configuration policies should be
performed by an SDN controller external to the network,
so that PONs do not use proprietary and inflexible man-
agement systems. In this way, Khalili et al. [20] propose an
SDN architecture (SIEPON) in which they move non-time
critical tasks, namely, the registration of ONTs and some
dynamic bandwidth allocation (DBA) policies, to an external
SDN controller. Also, the SDN architecture proposed in [21]
integrates a reprogrammable DBA module inside the SDN
controller that manages several DBA algorithms and activates
them according to the traffic demands of the ONTs. In [22],
an SDN architecture for the remote management of real-time
services according to QoS in a PON is presented. Liang et al.
propose in [23] a resource allocation algorithm using a long
short-term memory (LSTM) neural network to predict traffic
in an SDN-based PON. Regarding time wavelength division
multiplexing (TWDM)-PON, in [24], an SDN architecture
is proposed where an SDN controller dynamically allocates
bandwidth and wavelengths to users (ONUs) to meet QoS
requirements. The SDN architecture proposed in [25] simi-
larly allows an SDN controller to manage bandwidth allocation
policies to guarantee QoS requirements in TWDM-PONs.
Along this line, the authors of [26] proposed to integrate an
SDN solution in a hybrid xhaul-TWDM-PON architecture
for interactive video applications. Simulation results show that
the proposal improves average packet delay, packet loss, and
bandwidth efficiency. Contrary to most research on bandwidth
and service configuration strategies using simulation models,
the authors of [15] propose the implementation of an SDN
management layer on a GPON testbed that applies service
configuration strategies related to bandwidth levels, according
to the real-time QoS requirements of network subscribers.
Centofanti et al. [27] have experimentally tested different SDN
strategies to support low latency services, using a NETCONF-
based SDN controller that performs slice management over a
commercial XGS-PON infrastructure.

Other SDN proposals focus on managing residential net-
works in PON architectures, due to the growing number of
connected devices in users’ homes and applications with high
QoS requirements [14,28]. Regarding protection and energy
saving in PONs, an SDN-based architecture was implemented
in [29] to allow fast feeder fiber protection over PONs. Other
solutions [30] propose to save energy by moving the power
control of OLTs and ONTs to an external SDN controller. In
addition, SDN is integrated into protection tasks in long-reach
PONs (100 km), as the long range and high division ratio
mean that any network outage can interrupt the services of
thousands of users [31]. Moreover, Wang et al. [32] propose
and experimentally tested an SDN-based PON radio access
network (RAN) protection scheme. The proposal significantly
improves on other existing protection mechanisms and can be
used as a protection mechanism for non-time critical services.
On the other hand, SDN solutions are also applied in virtual
PONs (VPONs). Quian et al. propose in [30] a hybrid soft-
ware defined PON architecture where multiple VPONs are
managed by a DBA algorithm. Also, the flex PON architecture
[33] implements SDN to flexibly schedule services across
multiple VPONs.

Other proposals are based on mapping of OpenFlow mes-
sages into PON commands, thus proposing extensions to the
current OpenFlow protocols. Parol and Pawlowski propose
in [34] to integrate GPON-related functions to develop an
extension to the OpenFlow protocol (called OpenFlowPLUS,
since the current OpenFlow specification does not natively
support GPON. Amokrane et al. propose in [35] exten-
sions to OpenFlow that consist of mapping flows (defined in
OpenFlow) to GPON Encapsulation Method (GEM) ports
(defined in PON), as well as inserting and extracting virtual
local area network (VLAN) tags from traffic.

However, a great deal of research work is focused on mak-
ing PON devices, OLTs, and ONUs, controllable via SDN
technology [11–15]. In fact, many proposals integrate an
abstraction layer to make PON devices controllable by SDN,
as there are currently no SDN-based OLTs or ONTs on the
market. In [11], the authors have programmed an SDN
agent that on one hand interacts with the OLT through PON
commands and on the other hand with an SDN controller
through OpenFlow. In [12], the authors implemented a
GPON-based SDN-enabled virtual switch so the GPON
is transformed into a single OpenFlow switch, hiding the
GPON operational details from users. In the same way, the
authors of [13] developed an OpenFlow-based architecture
for gigabit Ethernet passive optical networks (GEPONs).
Merayo et al. [14,15] have designed and experimentally tested
an SDN solution on GPONs, integrating a software layer
on top of OLTs and ONTs (programmed on external devices
such as Raspberry/Banana Pi or minicomputers) to emulate
the behavior of OpenFlow virtual switches (OVSs) [36].
These approaches imply having a virtual layer programmed
in PON devices, which increases complexity in the network
and moves away from being an integrated, native solution.
Consequently, other approaches choose to avoid this com-
plexity by developing SDN agents capable of transforming
SDN commands into the native configuration of PONs. Along
this line is the VOLTHA project [16], which abstracts the
PON to a programmable switch managed by an SDN con-
troller and interacts with PON devices using proprietary and
manufacturer-specific languages. It does this by making use
of the OpenOLT agent and adapters implemented in OLTs
and ONUs. However, the agent makes use of Broadcom’s
Broadband Adaptation Layer (BAL) software to interface with
OLT chipsets, and some of this software is not open source.
In fact, VOLTHA is integrated in the SEBA project [17], an
open source development and integration project promoted by
the ONF. It builds on and integrates a great number of other
ONF projects, such as VOLTHA, ONOS, Trellis, SD-BNG,
XOS, P4, OpenOLT, BBSim, Stratum, and Tassen. SEBA
brings the advantages of virtualization and cloudification to
PONs since it uses a common API to abstract various OLT
and ONUs and to control them using an SDN controller.
In this sense, Suzuki et al. proposed in [37] that SEBA can
support IEEE PON, as the current abstraction unit in SEBA
supports only ITU-T PON. Indeed, the same authors also
proposed to implement edge computing on a 10G EPON
based on SEBA [38]. These experimental architectures are very
promising in PONs, as the rapid deployment and coexistence
of different PON technologies (GPON, EPON, 10G PON)



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 623

have led to the emergence of many PON device manufacturers,
leading to some incompatibility issues when managing them
simultaneously.

Although all PON devices comply with the same stan-
dards, there is no such thing as a fully universal PON device.
This is because each vendor uses different proprietary soft-
ware to access the OLT, leading to significant differences in
how access methods are implemented in the internal chipsets
(OLTs, ONUs). To address this issue, SDN protocols such as
OpenFlow and NetConfig can be used to manage PON equip-
ment from different vendors, technologies (such as GPON
and 10GPON), and standards (IEEE PON, ITU-T PON).
Consequently, our proposal is close to these approaches, as we
have developed an OpenFlow-based SDN agent that interacts
directly with the APIs of the chipsets of OLTs and ONUs. The
proposal provides significant potential due to its simplicity in
deployment, scalability, and adaptability in integrating new
services and functionalities. This implies that the learning
curve for managing our OpenFlow-based SDN agent is much
shorter and consists of fewer containers (less complexity)
compared to other existing approaches (such as VOLTHA).
Consequently, it provides a fast SDN solution for configuring
and testing new functionalities with minimal programming
changes required in specific SDN agent layers. Furthermore, it
has undergone experimental testing to demonstrate real-time
deployment of different types of Internet services with diverse
QoS requirements, thus proving its efficacy to service providers
and network operators in XGS-PON architectures. Finally, it
is important to note that it could be adapted to other PON
technologies.

3. GLOBAL DESIGN OF AN OPENFLOW-BASED
SDN AGENT FOR XGS-PON INFRASTRUCTURES

The proposed architecture permits operators and Internet
service providers (ISPs) to configure 10G PONs (XGS-PONs),
such as ONUs registration/deletion, configuration/deletion of
services (Internet, video, voice), network parameters, using an
SDN controller (ONOS [19]), and a novel OpenFlow-based
SDN agent that interacts with these networks. The approach
consists of an OpenFlow-based SDN agent with two differenti-
ated interfaces, as can be observed in Fig. 1. On one hand, the
ONOS adapter interface connects with the ONOS controller
and captures messages coming from the ONOS controller,
giving them a response as if the OpenFlow-SDN agent were an
OVS. On the other hand, the OLT adapter interface connects
to XGS-PON OLTs to manage and configure them in their
language. Finally, there is an intermediate translation layer
that connects both interfaces and is responsible for translating
ONOS instructions into XSGPON configurations. In addi-
tion, a menu-driven user interface, which allows instances to
the ONOS API to be created through a simple interface to con-
figure PON parameters, has been implemented, although our
proposal also allows instances to be created in ONOS directly.
The code and the instructions to install and deploy the SDN
agent (using Docker containers) are available on GitHub for
researchers to replicate the SDN agent and its deployment in
XGS-PON architectures [39]. In fact, the entire management

Fig. 1. OpenFlow agent to manage XGS-PONs from different
vendors.

system consists of three containers, one for ONOS, one for the
menu interface, and one containing the SDN agent.

Specifically, the OpenFlow-based SDN agent captures mes-
sages sent by ONOS, containing OpenFlow commands, to
configure the OLT and ONUs connected to the XGS-PON
as well as the end-user services/profiles (each one individually
related to an ONU) through the OLT, since the OLT is the
management element of an access network. In this way, the
OpenFlow agent extracts the configuration parameters sent
by ONOS in OpenFlow messages and with these parameters
interacts directly with the specific API of the OLT chipset ven-
dor. To do this, our proposal uses remote procedure call (RPC)
connections [40] so that the OpenFlow agent interacts with the
API of the OLT chipset. Then the OLT configures the devices
and services (e.g., Internet, voice, video) contracted by users.
Therefore, the agent transforms the commands sent by the
SDN controller via OpenFlow into commands interpretable
by the API of the OLT chipset. The reason for selecting RPC
is its utilization of a client-server model that offers remarkable
adaptability to the system. This enables the management of
OLTs from different vendors utilizing the same RPC configu-
ration, as the identical functions can be employed to control
different devices [38].

On the other hand, as each OLT may have a different OLT
chipset, the only change when managing XGS-PON equip-
ment from different manufacturers would be the internal API
of the OLT (OLT chipset). It will therefore be necessary to pro-
gram an adaptation layer inside the OLT that receives the RPC
instructions and consequently manages the network through
the particular management API of the OLT chipset. An impor-
tant feature of the proposed OpenFlow-based SDN agent is
that it can be deployed at software level (outside the OLT) to
control XGS-PON OLTs from different manufacturers, as it is
an external software layer implemented as a bridge between an
SDN controller and an XGS-PON infrastructure. In this way,
the same SDN controller (ONOS in this case) could control



624 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

PON equipment from different manufacturers using the same
SDN agent. Figure 1 shows a flexible network scenario with
the proposed OpenFlow-based SDN agent, where ONOS can
be able to interact with several XGS-PONs simultaneously
through the same SDN agent. By utilizing only the SDN
agent code, the RPC, and the ONOS-interacting graphical
user interface (GUI), our proposal enables the management of
any XGS-PON through a unified code. The adaptation layer
(inside the OLT in Fig. 1) responsible for direct interaction
with the API of the OLT chipset vendor is the only component
that needs modification, as different OLTs can have distinct
chipsets.

In addition, our proposal is scalable and flexible, as it is
divided into simple and highly differentiated blocks, ONO
adapter, translation layer, and OLT adapter, which makes it
easy to add new SDN functionalities to one of the blocks with-
out affecting the rest. New functionalities or types of services
can be easily integrated by simply defining that type of flow or
schema in the ONOS adapter and generating the service in the
translation layer. In this way, the new service would already be
configured without the need to modify the OLT adapter layer.

4. COMMUNICATION OF THE OPENFLOW
AGENT WITH THE SDN CONTROLLER AND
XGS-PON

This section explains how the OpenFlow agent interacts, on
one hand, with the ONOS controller and, on the other hand,
with the API of XGS-PON OLTs. The OpenFlow agent was
implemented using the python-openflow library, developed by
Kytos [41], which is compatible with the openflow standard
version 1.3/1.0.

A. Communication between the SDN Controller and
the OpenFlow Agent: ONOS Adapter

The first step is to establish an initial connection between
ONOS and the OpenFlow agent. This connection is estab-
lished through a socket that connects the agent to the ONOS
port associated with the OpenFlow protocol (6633). The pro-
posed OpenFlow-based SDN agent emulates the behavior of
an OpenFlow switch, creating real OpenFlow messages (using
the Kytos python-openflow library) that will be exchanged
with ONOS according to requests from the SDN con-
troller. When an OpenFlow switch connects to an SDN
controller, sets of OpenFlow messages are exchanged. The spe-
cific OpenFlow messages exchanged between the OpenFlow
agent and ONOS are shown in Fig. 2, using Wireshark [42] to
capture this sequence of messages. In Fig. 2, the green frames
represent OpenFlow messages used for service configuration,
while the red frames belong to messages responsible for initi-
ating communication and exchanging information between
ONOS and the agent. The following sections explain the
OpenFlow messages exchanged between ONOS and the SDN
agent during communication.

1. Connection Establishment

When an OpenFlow connection is first established, each side
of the connection shall immediately send an OFPT_HELLO
message with the highest OpenFlow protocol version sup-
ported by the sender. On receipt of this message, the recipient
must select the version of the OpenFlow protocol to be used.
If the negotiated version is compatible with the recipient,
the connection is established. As shown in Fig. 2, once the
OpenFlow agent and ONOS have exchanged OFPT_HELLO
messages and successfully negotiated a common version, the
connection is established and they start exchanging OpenFlow
messages.

2. Initial Communication

Once the connection has been established, ONOS periodi-
cally requests information from the OpenFlow agent through
different types of messages. The first thing ONOS does is to
send an OFPT_FEATURES_REQUEST message (Fig. 2),
and the OpenFlow agent responds to this request with an
OFPT_FEATURES_REPLY message, which includes infor-
mation that allows the controller to identify the switch and its
basic capabilities.

Next, ONOS requests a description of all the ports
registered in the OpenFlow agent. These ports are the network-
to-network interface (NNI) port of the OLT and the user
network interface (UNI) ports of all connected ONTs. For this
purpose, ONOS sends an OFPT_MULTIPART_REQUEST
message of type OFMP_PORT_DESC, as shown in Fig. 2,
and the OpenFlow agent responds with an equivalent
OFPT_MULTIPART_REPLY, which contains the infor-
mation of all registered ports, but since the OLT has been
recently added, there is not any ONU discovered yet. For
that reason, the SDN agent initially includes only the OLT
NNI port information on the OFMP_PORT_DESC message
type. Once the NNI port is registered, the network is ready
to register the ONTs, sending an OFPT_PORT_STATUS
message for each UNI port of each discovered ONU, as shown
in the Wireshark screenshot in Fig. 2, to register these ports in
ONOS.

After these initial messages, ONOS and the OpenFlow
SDN agent exchange further OpenFlow messages. One of
the requests of ONOS is the characteristics of the supported

Fig. 2. OpenFlow messages between the OpenFlow-SDN agent
and ONOS.



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 625

meters. Meters enable OpenFlow to implement simple QoS
operations, such as rate limiting. In fact, a meter is an element
in the OpenFlow standard that can measure and control the
rate of packets in flows. A flow is an element used to match
and process packets. The flows and meters are used in our
proposal to configure different types of services (e.g., Internet,
video, voice). Thus, ONOS requests this information by
means of an OFPT_MULTIPART_REQUEST message of
type OFMP_METER_FEATURES and the OpenFlow agent
responds with an OFPT_MULTIPART_REPLY message of
type OFMP_METER_FEATURES.

3. Network Management and Configuration with ONOS

Once the connection has been established, ONOS periodi-
cally requests information from the OpenFlow agent through
different types of messages. The first thing ONOS does is to
send an OFPT_FEATURES_REQUEST message (Fig. 2),
and the OpenFlow agent responds to this request with an
OFPT_FEATURES_REPLY message, which includes infor-
mation that allows the controller to identify the switch and its
basic capabilities.

Once the initial communication is established, the con-
troller periodically requests flow, table, and meter statistics
from the OpenFlow agent via OFPT_MULTIPART_
REQUEST messages. Since a flow is used to match and
process packets, it contains a set of match fields for matching
packets, a priority for matching precedence, a set of counters to
track packets, and a set of instructions to apply [43]. In addi-
tion, meters measure and control the rate of packets in flows.
The meter triggers a meter band if the packet rate or byte rate
passing through the meter exceeds a predefined threshold. If
the meter band drops the packet, it is called a rate limiter [43].
As mentioned above, our proposal uses flows and meters to
configure services. In this version, the OpenFlow-SDN agent
is able to configure Internet services, in particular single and
double services. In this way, within XGS-PONs, traffic must
always be simply tagged using VLANs. This tagging is used
to differentiate services (data, voice, video, etc.) that share the
same transmission medium. The VLAN tag is an identifier that
must be known by both ends of the communication. The tag
used to identify each of these services in single tagging is called
C-tag (customer tag). When traffic comes from the transport
network, it may also have a double VLAN tag (QinQ), which
can be used to differentiate several operators arriving at the
same PON (in our case, XGS-PON). This second tag is called
S-tag (service tag). Therefore, the S-tag must be assigned a
value when double tagging is required and will be applicable
only in the transport network, while the C-tag is for single
tagging in the transport network and the XGS-PON and must
always be specified. Thus, to configure a single tag or double
tag Internet service, both will have a single tag configured in
the access network (C-tag), but in the double tag scenario, a
VLAN tag (S-tag) will be added in the OLT interface (adding
the S-tag in the upstream direction and removing it in the
downstream direction), as can be observed in Fig. 3.

Thus, the most important messages exchanged between
ONOS and the OpenFlow agent for configuring, updating, or
deleting services are as follows:

Fig. 3. Explanation of S-tag and C-tag in PONs in XGS-PON
services.

• OFPT_FLOW_MOD: ONOS sends this message to
add or delete a flow. The flows are used to configure a service on
a specific user (UNI port of an ONT). In the OLT, services are
filtered by VLANs, so the criteria and instructions of the flows
are based on VLANs too. Additionally, flows are created both
upstream and downstream, which requires a set of matching
flows to create a service. In fact, for single tag (C-tag) services,
two flows should be created for each service, as the XGS-PON
operates in two channels: one for managing the downstream
QoS requirements and another for upstream QoS require-
ments. In the case of double tag services (S-tag), four flows are
needed because of the two VLANs, so a pair of flows should be
created for each VLAN (upstream, downstream).

• OFPT_METER_MOD: Meters are used to associate a
maximum bandwidth with a service. In this approach, QoS
requirements are linked to maximum bandwidth levels. This
maximum bandwidth is composed of guaranteed bandwidth
plus excess bandwidth, which is offered when the network has
enough bandwidth available. Thus, the maximum bandwidth
of a specific service is controlled by meters, so it is necessary to
assign a meter to each flow, one to control the maximum down-
stream bandwidth and one to control the maximum upstream
bandwidth. Then, the band rate defines the maximum band-
width associated with the service at both channels (upstream,
downstream). Therefore, a meter measures the packet rate of a
flow and allows its rate to be controlled, so that when this rate
is higher than a maximum value (maximum bandwidth) set in
the meter, packets are dropped.

Finally, the designed OpenFlow agent collects statistics of
the flows and counters of the configured services, so that it
responds to the controller with OFPT_MULTIPART_REPLY
messages of type OFMP_FLOW and OFMP_METER, as
shown in Fig. 3.

B. Translation of OpenFlow Commands to XGS-PON
Commands: Translation Layer

In the previous section, we detailed the communication of
the SDN agent with the ONOS controller (ONOS adapter),
and at this point, the OpenFlow agent must translate the
commands received from ONOS into commands that are



626 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

understood by the OLT, so that the OLT adapter sends this
information to the OLT by means of RPC instructions.

Thus, the first step is to check the received ONOS flows,
which are assigned to an OpenFlow table [43]. First, when
a new flow is received, the agent checks the matching fields
and looks for the identifier of an incoming port, which will
either be a UNI port of an ONT (traffic comes from the ONT,
upstream) or the NNI port of the OLT (traffic comes from out-
side the XGS-PON, downstream). The SDN agent will then
search for matching flows to create and configure a service.
The agent supports up to two tables, so any flow should be on
table “0” or “1.” Thus, two tables have been defined in this
proposal because the mapping fields are based on VLANs, one
for C-tagged services (table 0) and two for S-tagged services
(table 0, table 1). In addition, PONs use VLANs to differenti-
ate services (data, voice, video), which can be single or double
tagged. Accordingly, the SDN agent arranges these services
(C-tag, S-tag) in the tables according to the following rules:

• Single tagged services: The C-tag filter is set to table
0 and only one flow is set to each traffic direction (one for
downstream and one for upstream). In that case, a valid flow
must have an OpenFlow port in the “OUTPUT” instruction,
namely, a UNI port (of an ONU) in the downstream direction
or the NNI port of the OLT in the upstream direction.

• Double tagged services: These services have two VLAN
IDs (S-tag and C-tag), so each traffic channel has two flows
configured, one for each filtering VLAN, requiring a total
of four flows. Because of these two filtering VLANs, two
OpenFlow tables are needed. With this in mind, a valid double
tagged service is formed by matching flows from different
tables, starting from table 0 and progressing to table 1 where an
“OUTPUT” instruction must be set as before: a UNI port of
an ONU in the downstream or the NNI port of the OLT in the
upstream.

For each new service, the SDN agent collects the flow
parameters and stores them in a list of services, waiting to be
sent to the OLT through the OLT adapter. Each entry in the
list of services consists of the following fields:

• Port: It identifies the UNI port of the ONU on which
the service shall be deployed. This field is obtained from the
“OUTPUT” instruction of the flows for the OpenFlow down-
stream channel or from the “IN_PORT” instruction in the case
of flows for the upstream channel.

• NNI : It is the ID of the OLT NNI port.
• VLAN : It contains the VLAN identifiers C-tag and

S-tag. The S-tag field would be “null” in the case of single-tag
services. These parameters are taken from the flows, extracting
the C-tag from the “VLAN_VID” match filter and in the
case of S-tag from the “VLAN POP” (remove VLAN S-tag)
or “VLAN_PUSH” (add VLAN S-tag), depending on the
downstream or upstream channel, respectively.

• Meters ID: It contains two lists of meter IDs, one for
upstream direction and another for downstream.

Additionally, the translation layer contains information
about the PON and its devices (OLT, ONUs), so that it relates
the instances and data coming from ONOS to the specific

parameters of the PON. Thus, the types of data stored in the
translation layer are defined as follows:

• ONU data: ONU data, such as ONU identifier in the
PON, are stored for the purpose of activation and management
of the ONU.

• Service parameters (Internet): Parameters of a service (such
as bandwidth, Alloc-ID, GEM ports, etc.) are stored in the
translation layer to be managed through the OLT adapter layer
(install or remove services). However, other QoS parameters
such as additional bandwidth policies, priorities, and weights
in both traffic schedulers and queues are set by default in this
layer, so all services are configured with the bandwidth policies
set to “Best Effort,” and the priority and weights are set to zero.
Furthermore, the proposed OpenFlow SDN agent has been
currently designed to assign a single GEM port for each service.

• Default OMCI configuration: It defines and stores the
relationships between any type of service (Internet, multi-
cast, voice) and the ONT management and control interface
(OMCI) configuration to be installed at any ONU.

C. Communication between the OpenFlow-SDN
Agent and the XGS-PON: OLT Adapter

At this point, the OpenFlow agent is able to receive the ONOS
flows and meters and store the services and parameters to be
configured in the XGS-PON in lists. So, the next step is to
connect the OpenFlow agent to the XGS-PON and configure
the services (voice, data, video) and the ONTs in their language
(commands interpretable by chipsets). The communication
with the XGS-PON is done via an RPC connection, which
includes an RPC server on the OLT and an RPC client on
the SDN agent inside the OLT adapter. Since all OLTs will
use the same RPC functions to be managed, the RPC server
configuration will be unique and shared between OLTs. Thus,
each OLT has an internally installed RPC server with the same
functions defined in the RPC client, which will be used by the
SDN agent to configure the PON. To achieve maximum com-
patibility between different OLTs, the same configuration of
the VOLTHA RPC server will be used, defining the following
functions:

• GetDeviceInfo: to get OLT information (model, vendor
ID, number of PON ports, MAC address);

• HeartbeatCheck: to check the status of the OLT (“OK” if
enable);

• EnableIndication: to create a channel to send indications
and alarms detected in the OLT (the SDN agent shall listen on
that channel);

• ActivateOnu: to activate an ONU by setting it in
Operational State, Physical Layer Operation Administration
and Maintenance (PLOAM) activation operation, after
assigning an internal identifier (ONU-ID) [16];

• CreateTrafficSchedulers: to configure the bandwidth of
the service, traffic schedulers, both downstream and upstream
along with the Alloc-ID;

• RemoveTrafficSchedulers: to remove existing traffic sched-
ulers;

• CreateTrafficQueues: to create priority traffic queues in
both downstream and upstream channels;



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 627

• RemoveTrafficQueues: to remove the traffic queues;
• FlowAdd : to join the service configuration in a flow, one

for each channel (upstream, donwstream);
• FlowRemove: to remove the service flow;
• OmciMsgOut: to send OMCI messages to a specific

ONU for configuration, as the OLT API supports only sending
OMCI messages to ONUs;

• Reboot: to reboot the OLT.

These functions allow the network operator to configure the
XGS-PON, acting directly on the OLT driver API. Therefore,
in the initialization process, the agent connects to the OLT,
collects the OLT device information with GetDeviceInfo, and
calls EnableIndication to create the communication channel
and listen for indications from the OLT.

The following sections will explain some issues related to the
activation of an ONU and how to set up a service, in particular
Internet services. Although the OLT adapter layer uses RPC
functions to send these configurations to the OLT, it is impor-
tant to note that the translation layer coordinates the whole
process, leveraging its knowledge of the state of each device
(PON, ONU) and their associated parameters. This approach
allows for modifications and improvements of services and
functionalities mainly at the translation layer.

1. ONU Activation Process

When the SDN agent receives, in the OLT adapter, the indi-
cation that an ONU has been discovered (ONU Discovery
Indication), it transfers it to the translation layer. This layer will
then activate the ONU by sending the corresponding param-
eters and calling the RPC ActivateOnu function through the
OLT adapter layer. Once the ONU is activated, the SDN agent
must create the following entities according to the ITU-T
G.988 standard [44] by means of OMCI messages using the
OmciMsgOut function:

• MAC Bridge Service Profile: It implements a bridge that
may have any number of ports associated.

• GAL (GEM adaptation layer) Ethernet Profile: It defines
the maximum size of the payload generated in the entity.

• MAC Bridge Port Configuration Data: It creates an
instance of this entity for each UNI port, modeling a port on
the MAC bridge.

• Extended VLAN Tagging Operation Configuration Data:
It classifies and executes operations on the VLAN tagging of
MAC Bridge Port traffic, whereby an instance of this entity is
associated with each MAC Bridge Port Configuration Data.

Thus, Fig. 4 shows the log in the SDN agent of this OMCI
configuration and the described entities, with one instance of
these entities for each registered UNI port.

2. Service Configuration

Once the ONU is activated and initialized, new services
(Internet in our case) can be created, and the SDN agent must
configure it in both the OLT and the ONU. As previously
explained, the ONOS adapter receives the OpenFlow mes-
sages from ONOS, and the translation layer will store this
information. Then, when the translation layer knows the

Fig. 4. ONU OMCI initialization process.

type of service to be created, it organizes the necessary data
and sends the appropriate requests to the OLT adapter layer,
which sends the configuration to the OLT. In this version, the
OpenFlow-SDN agent has been designed to configure and
remove Internet services.

On the OLT side, Figs. 5 and 6 describe the OLT configu-
ration of an Internet service inside the OLT. Figure 5 shows
the downstream configuration (from the OLT to the PON),
while Fig. 6 shows the upstream configuration (from the OLT
out of the PON). As can be observed, the SDN agent calls
the function CreateTrafficSchedulers to configure service
parameters, such as the downstream and upstream bandwidth
profiles, that is, Downstream TrafficScheduler in Fig. 5 and
Upstream TrafficScheduler in Fig. 6 together with the Alloc-
ID. These bandwidth profiles (in upstream and downstream)
contain the committed information rate (CIR) parameter,
which corresponds to the guaranteed bandwidth, and the
peak information rate (PIR) parameter, which corresponds
to the maximum bandwidth. Downstream TrafficScheduler
is associated with the Queue 0, so that these queues corre-
spond with the T-CONTs of the PON standards. In the next
step, the agent calls to the FlowAdd method by means of the
OLT adapter, to join all service parameters (ONU ID, GEM
port, Ingress/Egress interface) in a flow to be sent to the OLT.
Moreover, as PONs filter different types of traffic by VLANs,

Fig. 5. Diagram of downstream service configuration.



628 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

Fig. 6. Diagram of upstream service configuration.

Fig. 7. ONU OMCI service configuration.

the flow must contain the Classifier and Action structures
(Figs. 5 and 6) related to filter traffic based on VLANs and how
to manage these VLANs (push and pop actions).

On the other hand, as far as the ONU configuration is
concerned, the corresponding OMCI entities shall be imple-
mented in accordance with ITU-T G.988 [44]. Figure 7 shows
a screenshot of the status of the log related to the OMCI enti-
ties deployed when configuring an Internet service. First, the
service Alloc-ID is set to the first available T-CONT. Then, the
agent creates the following entities:

• GEM Port Network Connection Termination Point (CTP):
to represent the GEM port termination of the service at the
ONU, in this case, GEM port 1024 (Fig. 7);

• GEM Interworking TP: to link the GEM port network
CTP and the MAC Bridge configuration;

• MAC Bridge Port Configuration Data: entity described on
the ONU activation section;

• VLAN Tagging Filter Data: to perform traffic filtering
tasks by the VLAN identifier.

Finally, since the Extended VLAN Tagging Operation
Configuration Data entity is created at ONU initialization,
in the service configuration, the agent should update only this
entity.

Fig. 8. Main menu of the menu-driven user interface.

5. MENU-DRIVEN USER INTERFACE

To simplify the management of the XGS-PON and the
configuration of services (for instance, Internet) on the XGS-
PON, a menu-driven user interface has been developed using
OpenFlow. This application, coded in Python, can be used
to create flows and meters in the controller, instead of directly
using the ONOS API to configure services in the ONUs.
To do this, the menu-driven user interface communicates
internally with the ONOS API through HTTP requests using
the GET, POST, and DELETE methods. Figure 8 shows
the main menu of this menu-driven user interface, through
which the OLT and the ONUs connected to this OLT are
configured. The main menu consists of four options: “Show
all registered OLTs,” “Select an OLT,” “Configure the selected
OLT,” and finally, “exit,” to quit the user application. A notable
distinction from other GUIs, such as SEBA’s Network Edge
Mediator (NEM) software, is that NEM requires configuring
and activating all settings (services, bandwidths, OLTs, and
ONUs) primarily through the Topology and Orchestration
Specification for Cloud Applications (TOSCA) language.
TOSCA is an open source language utilized for describing rela-
tionships and dependencies between services and applications.
Once these configurations are dispatched, they can be viewed
within NEM’s graphical user interface. In contrast, our pro-
posal offers a simpler approach in which configurations do not
need to be programmed with code. Instead, parameter values
(services, profiles, bandwidths, VLANs, OLTs, ONUs) are
entered directly when requested by the menu-driver interface
and transmitted transparently to ONOS.

To configure a registered OLT, the user must first select it
through the second menu option (“Select an OLT”). To do
so, the user can view all registered OLTs using the first menu
option, i.e., “Show all registered OLTs,” which also shows more
information on the registered OLTs. Figure 9 shows informa-
tion of the OLTs currently registered in the user interface, in
this case, a single OLT, the Edgecore ASXvOLT16 Whitebox.

Once the OLT is selected, all configurations are made
through the third option menu (Configure selected OLT).
This option of the main menu opens a new menu with several
functionalities, as shown in Fig. 10. Within this submenu,
the user can view all UNI ports of all ONUs connected to the
OLT through the first option, which also displays detailed
information. The user can also obtain the current configu-
ration of each UNI port from the ONUs using the second
option. In addition, the user can create or delete a service from
an ONU (associated with a UNI port) using the third and
fourth options, respectively. To obtain the packet statistics of
the ONUs (for each UNI port), the fifth option can be used.



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 629

Fig. 9. Information related to registered OLTs in the user
interface.

Fig. 10. Information related to registered OLTs in the user
interface.

Finally, the sixth option shall be used to return to the main
menu.

Furthermore, it is important to note that the menu-driven
user interface can be easily modified to integrate new services
(voice, video) or functionalities or even modify existing ones
(adding IP filtering, including additional priority queues for
the services, among others).

6. DESCRIPTION OF THE SDN PROPOSAL
IMPLEMENTED ON AN XGS-PON TESTBED

A. XGS-PON Testbed Scenario

Our first step in demonstrating the feasibility and validity
of our proposal is to describe the experimental XGS-
PON architecture that has been deployed in the laboratory
(Fig. 11). The XGS-PON infrastructure comprises a virtual
OLT ASXvOLT16 Whitebox of Edge core (16x10G XGS-
PON/NG PON2 ports) [45]. After the OLT ASXvOLT16,
a 1:8 passive optical splitter is placed between the OLT and
the ONUs to connect several ONUs to the XGS-PON. To
account for the end-to-end attenuation due to distance in the
XGS-PON, a 15 dB attenuator is connected. Finally, on the
user side, we place sets of ONUs from different manufacturers.
Specifically, the following ONUs are used:

Fig. 11. Picture of the experimental XGS-PON testbed.

• Two ONUs of the manufacturer Azores model WAG-
8F2W6 XGS/GPON: They provide four gigabit Ethernet
ports, two plain old telephone service (POTS) ports, one RF
port, 4× 4 802.11ax 5G, and 2× 2 802.11ax 2.4G Wi-Fi
[46].

• One Broadcom ONU: It provides gigabit Ethernet ports,
two POTS ports, 2× 2 802.11ax at 2.4 GHzWi-Fi, and 4× 4
802.11ax (prototype).

• One Bowie ONU model WAG-D10T: It offers
one 10GE Ethernet port and/or one 2.5G Ethernet port
(prototype).

All connected devices comply with the ITU-T G.9807.1
XGS-PON recommendations [4], supporting 9.95328 Gbps
in the downstream and 9.95328 Gbps in the upstream.

B. XGS-PON Testbed Scenario

The SDN-OpenFlow agent has been set up inside a docker
container to manage the XGS-PON configuration via the
OLT, as shown in Fig. 12. Additionally, we have installed the
ONOS controller (version 2.5.9) and a menu-driven user
interface for streamlined network management and service
configuration, each in their own docker containers. All three
containers are hosted on a server connected directly to the
OLT through its management port using the RPC protocol.
To simplify the deployment process, a docker-compose file has
been used to consolidate all configurations into a single action,
resulting in the entire platform (agent, ONOS, user interface)
being deployed simultaneously and directly.

This architecture is shown in Fig. 12, where communication
between the different elements is described. Specifically, HTTP
connections are observed between the menu-driven user inter-
face and ONOS, OpenFlow connections between ONOS and
the SDN agent, and, finally, the connection with the OLT is
made by means of RPC. Specifically, the gRPC library has been
used [47], connecting the RPC client developed in the OLT
adapter with the RPC server in the OLT. When any instruction
is executed from the RPC client to the RPC server, the adap-
tation layer will be instantiated by the RPC server, which will
proceed to execute the required methods in the API of the OLT



630 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

Fig. 12. Schema of the deployed XGS-PON testbed.

chipset. For example, if you wish to set up a new Internet ser-
vice, the SDN agent should configure a new bandwidth profile
and an associated Alloc-ID, so the translation layer of the SDN
agent assigns the corresponding values and sends the command
to the OLT adapter to execute the CreateTrafficSchedulers
function in the RPC client. Then, this information is received
by the RPC server in the OLT through an RPC connection and
calls the adaptation layer, in charge of creating the new Internet
service, according to the specific API of the OLT provider.

Consequently, the adaptation layer must be modified
depending on the OLT chipset and its API. However, our
approach provides great potential and flexibility, as our SDN
agent has been developed and tested for the Broadcom Maple
BCM68628 driver (OLT driver), which is compatible with
all BCM68620 series drivers [48]. The BCM68620 series is
a high performance OLT PON SoC (System-on-a-Chip),
supporting GPON, XGPON, XGS-PON, NGPON2, EPON,
and 10G-EPON. But it also integrates support for existing and
next-generation PON technologies through a common API,
thus enabling a unified software design that can be applied to
multiple PON protocols and technologies.

7. VALIDATION ANALYSIS AND RESULTS

This section explains the experimental validation of different
functionalities of the SDN proposal on a legacy XGS-PON.
Specifically, the registration of new ONUs will be tested experi-
mentally, as well as the configuration/deletion of different types
of Internet services (single and double tag).

Fig. 13. Initial configuration with one ONU of two UNI ports.

A. Registration of New ONUs

The first functionality to be validated is to connect a new ONU
to the XGS-PON, verifying that the OpenFlow agent activates
it and registers a new OpenFlow port for each UNI port of the
new ONU. Thus, at the beginning of the test, an ONU with
two UNI ports was already registered (port_1, port_2), and
one of the NNI ports (port_0) of the OLT was also registered,
as shown in Fig. 13. This figure shows this initial configuration
on the user interface, which is the output of the option “Show
all registered ports” on the “Configure the selected device”
menu. Afterwards, a new ONU (Azores model) with four
UNI ports is connected, so the OpenFlow agent discovers it
and activates it, associating an ONU ID. As shown in Fig. 14,
the OpenFlow agent informs ONOS of the newly registered
ONU with its associated UNI ports, and they all appear in the
menu-driven user interface.

These registered ports have several important attributes, for
example, the port numbered “port_1” shows the following:

• element: ID of the OLT;
• port: ID given to the port by the OpenFlow agent;
• isEnabled: informs that the port is enabled;
• Type: connection type (copper, optical fiber);
• portSpeed: link speed;
• portName: name given by the OpenFlow agent to the

port, generated by concatenating the ONU serial number and
the UNI port number on the ONU.



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 631

Fig. 14. New configuration with one new ONU registered.

B. Configuration of Internet Services

After registering ONUs in the SDN system, services such as
the Internet can be configured and sent to XGS-PON users
(UNI ports in ONUs) using OpenFlow flows and meters.
These flows and meters can be created through the ONOS web

Fig. 15. Single tag service configuration.

interface or through the menu-driver user interface designed.
Specifically, the user interface was used for all tests. To validate
Internet services, a single tag and a double tag service will be
configured and tested in the XGS-PON.

1. Configuration of a Single Tag Internet Service

For a single tag Internet service on a specific UNI port of one
ONU (previously selected), the configuration is shown in
Fig. 15. As can be observed, the configured C-tag VLAN is
833, the S-tag VLAN is 4096, which means there is no S-tag,
and the guaranteed and excess bandwidths are 500 Mbps and
100 Mbps, respectively (maximum of 600 Mbps), for both
downstream and upstream. Indeed, the IEEE 802.1Q-2005
QoS standard specifies that the VLAN identifier is encoded in
a 12-bit field between values from 0 to 4095 reserved, so we
will use 4096 to indicate the absence of the S-tag [49].

Furthermore, for this service, two flows are created in
ONOS, one for downstream and another for upstream, and
one meter, which is associated with both flows. The meter will
be associated with two bands with a DROP parameter, one
of 500,000 Kbps (500 Mbps) for the guaranteed bandwidth
and the other of 600,000 (600 Mbps) for the maximum per-
mitted bandwidth, with a meter identifier “id = 2.” Thus,
this configuration is encapsulated in JSON format and sent
from this application to ONOS via an HTTP POST request.

Fig. 16. JSON representation of the configured flows in the user
application (a) upstream and (b) downstream.



632 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

Fig. 17. JSON representation of the configured meter in ONOS
with guaranteed and maximum bandwidth.

Figures 16(a) and 16(b) show the configuration of both flows,
upstream and downstream, respectively.

To demonstrate that the configuration has been correctly set
up in ONOS, Fig. 17 shows the meter configuration obtained
through a GET request in ONOS.

In addition, Fig. 18 shows an ONOS snapshot of the
upstream flow created for the Internet service (the downstream
flow is similar). As can be observed, the associated meter
previously created “meterId= 2” appears in the flow.

Once ONOS has received each JSON configuration,
both meters and flow types, it sends the same configura-
tion to the OpenFlow agent through OpenFlow messages.
Figure 19 shows the meter message, which is a message of type
“OFPT_METER_MOD,” encapsulating the data detailed
above in the JSON configuration.

To corroborate that the Internet service has been deployed
correctly in the OLT, Fig. 20 shows the status of the log inside
the OLT. In this case, we can find XGS-PON parameters
related to traffic schedulers, traffic queues, such as Alloc-IDs
or GEM ports, instead of OpenFlow meters and flows. In fact,
the parameters have a value of Alloc-ID and GEM port equal
to 1024 and, after the GEM port configuration, the entry
“Received classifier with O_VID: 833” reports the VLAN
configuration. In addition, line 8 of Fig. 20 also shows the
bandwidth configuration, where the CIR set to 500 Mbps
corresponds to the guaranteed bandwidth, and the PIR set to
600 Mbps to the maximum bandwidth.

The Wireshark tool has been used to measure the band-
width performance of the service. The tests have been carried
out using the iperf tool, so an iperf client transmitting at
1 Gbps is connected to the UNI port of this ONU and an
iperf server is connected to the OLT. Figure 21 shows the
measured throughput of the Internet service using Wireshark

Fig. 18. Flow configured in ONOS for the upstream channel.

Fig. 19. OpenFlow messages between the OpenFlow agent and
ONOS.

Fig. 20. Status of the log inside the OLT.

for the upstream channel (the downstream bandwidth is sim-
ilar), which corresponds to the maximum bandwidth set to
600 Mbps.



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 633

Fig. 21. Throughput of the upstream Internet service measured
with Wireshark.

Fig. 22. Configuration of a new Internet service with different
bandwidth restrictions.

Fig. 23. Real-time throughput performance of a dynamic Internet
service measured with Wireshark with the SDN proposal (upstream).

On the other hand, to demonstrate the viability of the
SDN proposal in a real network environment, the speed of
configuring and deploying the service with the SDN proposal
has been analyzed. Thus, the test is performed considering
an initial Internet service with a bandwidth of 250 Mbps and
then modifying the bandwidth restrictions by increasing it to
510 Mbps, as shown in Fig. 22, in the user interface. Thus,
Fig. 23 shows the real-time throughput performance of the
dynamic Internet service measured with Wireshark in the
upstream channel. As can be observed, the time elapsed from
launching the Internet service in the user interface (at 30 s) to
deployment (at 31 s) is very short, around 1 s. This leads us to
conclude that our proposal is fully feasible in terms of speed.

2. Configuration of a Double Tag Internet Service

For a double tag Internet service on an ONU, the configura-
tion via the menu-driven user interface is shown in Fig. 24,
which, as introduced above, has an additional VLAN tag
(S-tag) associated with it. The only difference from the single

Fig. 24. Configuration of a double tag Internet service.

Fig. 25. Flows configured in ONOS for the upstream channel.

tag service is the configured S-tag VLAN value, which in this
case is 900. The C-tag VLAN is 833, and the guaranteed and
excess bandwidths are 500 Mbps and 10 Mbps, respectively
(maximum of 510 Mbps), for both downstream and upstream.
Therefore, the meter associated with the flows is the one
created for the single tag service (Fig. 24).

For this Internet service, four flows must be created in
ONOS, two for downstream and two for upstream (one pair
for each VLAN). Then, this configuration is encapsulated in
JSON format and sent from this application to ONOS via an
HTTP POST request. To demonstrate that the configuration
has been set up correctly in ONOS, Figs. 25 and 26 show the
configuration of the flows in the upstream (two flows) and
downstream (two flows), respectively, obtained through GET
requests in ONOS.

To check the correct deployment of the Internet service in
the OLT, Fig. 27 shows the corresponding log in the OLT. In
the log status, parameters of the XGS-PON standard related



634 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

Fig. 26. Flows configured in ONOS for the downstream channel.

Fig. 27. Status of the log inside the OLT.

to the configuration of services can be observed, such as both
VLANS (900, 833), Alloc-IDs (1024), GEM ports (1024), or
the bandwidth requirements in the upstream and downstream
channels.

Finally, Fig. 28 shows the measured throughput of the
Internet service using Wireshark for the upstream direction
(the same performance for the downstream). The tests have
been carried out using the iperf tool, so an iperf client trans-
mitting at 1 Gbps is connected to the UNI port of this ONU,
and an iperf server is connected to the OLT. In Fig. 28, it can
be seen that the ONU is allocated the maximum bandwidth of
510 Mbps previously configured using the menu-driver user
interface.

Fig. 28. Throughput of the upstream Internet service measured
with Wireshark.

Fig. 29. Deletion of the Internet service in the menu-driven user
interface.

Fig. 30. OpenFlow messages between the OpenFlow agent and
ONOS to delete the upstream flow.

C. Deletion of Internet Services

In this section, we test the deletion of an Internet service
through the SDN proposal developed. To do so, we will con-
sider that initially we had a service with maximum bandwidth
of 510 Mbps (guaranteed plus excess bandwidth), and as
shown in Fig. 29, we will proceed to delete this service using
the menu-driven user interface.

Once ONOS receives this configuration in JSON format, it
sends the same configuration to the OpenFlow agent through
OpenFlow messages, namely, the removal of the two flows
(upstream, downstream) and the associated meters. Figure 30
shows the flow message (type “OFPT_FLOW_MOD”), which
includes the command “OFPFC_DELETE_STRICT,” to
delete the corresponding flow. In addition, Fig. 31 shows the
OpenFlow message (type “OFPT_METER_MOD”), which



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 635

Fig. 31. OpenFlow messages between the OpenFlow agent and
ONOS to delete the associated meter of the flow.

Fig. 32. Status of the log inside the OLT after the deletion of a
service.

Fig. 33. Throughput of the upstream Internet service measured
with Wireshark using the SDN approach (upstream).

includes the command “OFPMC_DELETE,” to delete the
associated meter.

To test that the Internet service has been correctly deleted
in the OLT, Fig. 32 shows the status of the log inside the OLT.
In the log status, parameters of the XGS-PON related to the
deletion of services can be observed, such as Alloc-IDs (1024),
GEM ports (1024), traffic schedulers (sched_id = 0), and
traffic queues (tm_queue= 0).

Finally, Fig. 33 shows the real-time evolution of the band-
width using Wireshark to analyze the removal of the Internet
service in the upstream channel. As can be seen in this graph,
the removal of the service takes place almost automatically,
about 1–2 s after sending the command from the user interface
(second 48).

8. CONCLUSIONS

This paper presents the development and design of an SDN
OpenFlow agent for managing and configuring PONs, specifi-
cally XGS-PON architectures, with the ONOS controller. The
OpenFlow agent behaves like an OpenFlow switch, enabling
communication with ONOS using OpenFlow messages.
Additionally, it communicates with OLTs using the vendor-
specific APIs of the OLT chipset, without the need to emulate

SDN abstract layers in hardware devices. To evaluate the pro-
posal, we conducted experiments using OpenFlow and ONOS
on a White Box OLT for XGS-PON architectures. Our results
demonstrate that the proposed solution allows for the real-time
configuration and deletion of various types of Internet services,
catering to the QoS requirements of service providers and
operators. Furthermore, the proposed SDN OpenFlow agent
is both scalable and flexible. It is composed of distinct, simple
blocks, namely, the ONOS adapter, translation layer, and OLT
adapter, which facilitates the seamless integration of new SDN
functionalities. The integration of new functionalities does
not usually require modifications in all blocks, but only in
some of them, mainly ONOS and the translation layer. As a
result, our OpenFlow-based SDN agent has a comparatively
smooth learning curve, and since its deployment involves
fewer containers, it makes it less complex compared to existing
alternative approaches.

In the future, we plan to flexibly integrate other critical
services for operators and service providers, such as multicast
(video) or voice, into the SDN agent. It is worth noting that
the menu-driven user interface is highly flexible and can be
readily adapted to incorporate new services or functionalities,
as well as modify existing ones (additional IP filtering, addi-
tional service priorities, and so on). In fact, our menu-driven
user interface offers a simpler approach in which configurations
are entered directly when requested by the applications and
transmitted transparently to ONOS. Another research line is
focused on employing the SDN-enabled XGS-PON testbed as
the supporting wired infrastructure for a set of use cases related
to connected vehicles, edge computing, and computation
offloading, which are currently under development.

Funding. Consejería de Educación, Junta de Castilla y León (VA231P20);
European Regional Development Fund (VA231P20); Ministerio de Ciencia
e Innovación (PID2020-112675RB-C42); Agencia Estatal de Investigación
(PID2020-112675RB-C42).

Acknowledgment. We are grateful to Telnet R.I. for the supply of
XGS-PON equipment (OLT, ONUs).

Data availability. The code and the instructions to install and deploy
the SDN agent are available on GitHub at [39].

REFERENCES
1. FTTH Council, “FTTH market forecasts 2022–2027” [Accessed 1

March 2023], https://www.ftthcouncil.eu/knowledge-centre/all-
publications-and-assets/1462/ftth-market-forecasts-2022-2027.

2. Broadband Market Trends, “Global fiber-to-the-home/
building (FTTH/B) industry” [Accessed 1 March 2023], https://www.
reportlinker.com/p05817990/Global-Fiber-to-the-Home-Building-
FTTH-B-Industry.html?utm_source=GNW.

3. Global Market Insights, “GPON market” [Accessed 10 January
2023], https://www.gminsights.com/industry-analysis/gigabit-
passive-optical-network-equipment-market?gclid=Cj0KCQiA-
oqdBhDfARIsAO0TrGHBClfRzrbJv25T9rCqME-
mIyYJytRvrsoh91FeFi-SCVf9byApzM8aAgVLEALw_wcB.

4. “10-gigabit-capable symmetric passive optical network (XGS-
PON),” ITU-T Recommendation G.9807.1 (2023) [Accessed 10
February 2023], https://www.itu.int/rec/T-REC-G.9807.1/en.

5. K. Wieland, “XGS-PON moves center stage,” Light Reading (2022)
[Accessed 10 February 2023], https://www.lightreading.com/
partner-perspectives-(sponsored-content)/xgs-pon-moves-center-
stage/a/d-id/775326.



636 Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking Research Article

6. K. J. Kerpez, J. M. Cioffi, G. Ginis, M. Goldburg, S. Galli, and P.
Silverman, “Software-defined access networks,” IEEE Commun.
Mag. 52(9), 152–159 (2014).

7. A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and
W. Kellerer, “Software defined optical networks (SDONs): a com-
prehensive survey,” IEEE Commun. Surv. Tutorials 18, 2738–2786
(2016).

8. Open Networking Foundation (ONF), OpenFlow [Accessed 20
January 2023], https://www.opennetworking.org/.

9. Network Configuration Working Group, NETCONF Configuration
Protocol [Accessed 20 January 2023], https://tools.ietf.org/wg/
netconf.

10. A. Bierman, M. Bjorklund, and K. Watsen, “RESTCONF Protocol,”
IETF RFC 8040 (2017) [Accessed 20 January 2023], https://
tools.ietf.org/html/rfc8040.

11. S. S. W. Lee, K.-Y. Li, and M.-S. Wu, “Design and implementa-
tion of a GPON-based virtual OpenFlow-enabled SDN switch,”
J. Lightwave Technol. 34, 2552–2561 (2016).

12. S. S. W. Lee, K. Li, W. Liu, C. Chen, H. Fang, and T. Wong,
“Embedding bandwidth-guaranteed network-based virtual Ethernet
switches in SDN networks,” J. Lightwave Technol. 35, 5041–5055
(2017).

13. R. G. Clegg, J. Spencer, R. Landa, M. Thakur, J. Mitchell, and
M. Rio, “Pushing software defined networking to the access,” in
3rd European Workshop on Software Defined Networks (2014),
pp. 31–36.

14. N. Merayo, D. de Pintos, J. C. Aguado, I. de Miguel, R. J. Durán, P.
Fernández, R. M. Lorenzo, and E. J. Abril, “Experimental validation
of an SDN residential network management proposal over a GPON
testbed,” Opt. Switching Netw. 42, 100631 (2021).

15. N. Merayo, D. de Pintos, J. C. Aguado, I. de Miguel, R. J. Durán,
P. Fernández, R. M. Lorenzo, and E. J. Abril, “An experimental
OpenFlow proposal over legacy GPONs to allow real-time service
reconfiguration policies,” Appl. Sci. 11, 903 (2021).

16. The Open Source Project VOLTHA [Accessed 22 January 2022],
https://opennetworking.org/voltha.

17. S. Das, “From CORD to SDN Enabled Broadband Access (SEBA)
[Invited Tutorial],” J. Opt. Commun. Netw. 13, A88–A99 (2021).

18. N. Merayo, J. C. Aguado, I. De Miguel, R. J. Durán Barroso, P.
Fernández, R. M. Lorenzo, and E. J. Abril, “Deployment of an SDN-
based GPON control agent to manage network configurations,” in
International Conference on Electrical, Computer, Communications
and Mechatronics Engineering (ICECCME), Maldives, 2022.

19. “The ONOS SDN controller” [Accessed 22 January 2022], https://
opennetworking.org/onos/.

20. H. Khalili, S. Sallent, J. R. Piney, and D. A. Rincón, “A proposal for
an SDN-based SIEPON architecture,” Opt. Commun. 403, 9–21
(2017).

21. C. Li, W. Guo, W. Wang, W. Hu, and M. Xia, “Programmable band-
width management in software-defined EPON architecture,” Opt.
Commun. 370, 43–48 (2016).

22. H. Yang, J. Zhang, Y. Zhao, J. Wu, Y. Ji, Y. Lin, J. Han, and Y.
Lee, “Experimental demonstration of remote unified control for
OpenFlow-based software-defined optical access networks,”
Photon. Netw. Commun. 31, 568–577 (2016).

23. X. Liang, Q. Tian, F. Wang, W. Yu, and X. Xin, “A dynamic resource
allocation based on network traffic prediction for sliced passive
optical network,” in 19th International Conference on Optical
Communications and Networks (ICOCN) (2021).

24. F. Wang, B. Liu, L. Zhang, F. Jin, O. Zhang, Q. Tian, F. Tian, L. Rao,
and X. Xin, “Dynamic bandwidth allocation based on multiservice
in software-defined wavelength-division multiplexing time-division
multiplexing passive optical network,” Opt. Eng. 56, 036104 (2017).

25. I.-S. Hwang, A. Rianto, and A. F. Pakpahan, “Software-defined peer-
to-peer file sharing architecture for TWDM PON,” in Proceedings of
the 27th Wireless and Optical Communication Conference (WOCC),
Hualien, Taiwan, 2018.

26. A. T. Liem, I.-S. Hwang, E. Ganesan, O. Lengkong, and L. Jallow,
“Enabling SDN in hybrid Xhaul-TWDM-PON networks for interactive
video applications,” in 2nd International Conference on Cybernetics
and Intelligent System (ICORIS) (2020).

27. C. Centofanti, A. Marotta, D. Cassioli, F. Graziosi, N. Sambo, L.
Valcarenghi, C. Bernard, and H. Roberts, “Slice management in
SDN PON supporting low-latency services,” in European Confer-
ence on Optical Communication (ECOC) (2022).

28. R. Flores Moyano, D. Fernández, N. Merayo, C. M. Lentisco, and A.
Cárdenas, “NFV and SDN-based differentiated traffic treatment for
residential networks,” IEEE Access 8, 34038–34055 (2020).

29. B. Yan, J. Zhou, J. Wu, and Y. Zhao, “SDN based energy manage-
ment system for optical access network,” in Proceedings of the 9th
International Conference on Communications and Networking in
China, Shanghai, China, 2014.

30. C. Quian, Y. Li, O. Zhang, B. Cao, Z. Li, and M. Wang, “Staged
priority-based dynamic bandwidth allocation in software-defined
hybrid passive optical network,” Opt. Eng. 57, 126101 (2018).

31. S. McGettrick, F. Slyne, N. Kitsuwan, D. B. Payne, and M.
Ruffini, “Experimental end-to-end demonstration of shared N:M
dual-homed protection in SDN-controlled long-reach PON and
pan-European core,” J. Lightwave Technol. 34, 4205–4213 (2018).

32. M. Wang, G. Simon, I. Amigo, L. A. Neto, L. Nuaymi, and P.
Chanclou, “SDN-based RAN protection solution for 5G, an experi-
mental approach,” in International Conference on Optical Network
Design and Modeling (ONDM) (2021).

33. L. Zhou, G. Peng, and N. Chand, “Demonstration of a novel
software-defined Flex PON,” Photon. Netw. Commun. 29, 282–290
(2015).

34. P. Parol and M. Pawlowski, “Future proof access networks for B2B
applications,” Informatica 38, 193–204 (2014).

35. A. Amokrane, J. Hwang, J. Xiao, and N. Anerousis, “Software
defined enterprise passive optical network,” in IEEE International
Conference on Network Service Management (2014), pp. 406–441.

36. Open vSwitch, “Production quality, multilayer open virtual switch”
[Accessed 10 January 2022], https://www.openvswitch.org/.

37. T. Suzuki, Y. Koyasako, K. Nishimoto, K. Asaka, T. Yamada, J.-I.
Kani, T. Shimada, and T. Yoshida, “Demonstration of IEEE PON
abstraction for SDN enabled broadband access (SEBA),” J.
Lightwave Technol. 39, 6434–6442 (2021).

38. Y. Koyasako, T. Suzuki, T. Hatano, T. Shimada, and T. Yoshida,
“Demonstration of real-time motion control on a 10G-EPON edge
computing platform with SDN enabled broadband access,” J. Opt.
Commun. Netw. 14, 951–959 (2022).

39. N. Merayo, “OpenFlow SDN agent in GPONs,” GitHub (2023)
[Accessed 25 April 2023], https://github.com/GCOdeveloper/
OpenFlow_Agent.

40. “Information technology—Open Systems Interconnection—Remote
Procedure Call (RPC),” ISO/IEC 11578:1996 (1996) [Accessed 10
September 2022], https://www.iso.org/standard/2229.html.

41. “Python-OpenFlow Library Kytos SDN” [Accessed 10 October
2022], https://github.com/kytos/python-openflow.

42. Wireshark [Accessed February 2023], https://www.wireshark.org/.
43. Open Networking Foundation, “OpenFlow Switch Specification,

Version 1.3.1,” ONF TS-007 (2012) [Accessed January 2023],
https://opennetworking.org/wp-content/uploads/2013/04/
openflow-spec-v1.3.1.pdf.

44. “ONU management and control interface (OMCI) specification,”
ITU-T Recommendation G.988, Amendment 3 (2020).

45. Edge Core Networks [Accessed 10 February 2023], https://www.
edge-core.com/.

46. ONT Azores WAG-8F2W6 [Accessed 1 February 2023], https://
azoresnetworks.com/products/wag-8f2w6.

47. “gRPC protocol” [Accessed 10 October 2022], https://grpc.io.
48. Broadcom, “BCM68620 Universal OLT PON MAC” [Accessed 1

February 2023], https://www.broadcom.com/products/broadband/
xpon/bcm68620.

49. “IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks,” IEEE 802.1Q-2005 (2006) [Accessed
3 February 2022], https://standards.ieee.org/ieee/802.1Q/3495/.

David de Pintos received a degree in telecommunication engineering in
2019 from the University of Valladolid, Spain. He has worked as a technical
operator at the company SATEC and as a research fellow at the University of



Research Article Vol. 15, No. 9 / September 2023 / Journal of Optical Communications and Networking 637

Valladolid for two years. Currently, he is working at CTAG in the embedded
software department.

Noemí Merayo received a degree in telecommunication engineering from
the University of Valladolid, Spain, in February 2004 and the Ph.D. degree
from the Optical Communication Group at the University of Valladolid
in July 2009. Since 2005, she has worked as a lecturer at the University
of Valladolid. She has also been a visiting research fellow at the University
of Hertfordshire in the Optical Networks Group, Science and Technology
Research Institute (STRI); at the TOyBA research group of the University of
Zaragoza; and more recently in the Technical University of Munich (TUM).
Her research focuses on the design and performance evaluation of optical
networks, especially passive optical networks, and the application of artificial
intelligence techniques. Dr. Merayo is currently coordinating the master’s
degree in physics and technology of lasers at the University of Valladolid and
the University of Salamanca.

Carlos Manuel Sangrador received a degree in telecommunication engineer-
ing in 2021 at the University of Valladolid. He has worked as a research fellow
at the University of Valladolid for two years. Currently, he works at the GMV
company in the Verification and Validation Department as a software tester of
ITS systems, and he is also studying for a master’s degree in telecommunica-
tions engineering at the Open University of Catalonia.

Juan Carlos Aguado received the Telecommunication Engineer and Ph.D.
degrees from the University of Valladolid, Spain, in 1997 and 2005, respec-
tively. Since 1998, he has been working as a junior lecturer at the University
of Valladolid, where he is currently an associate professor. His current research
interests focus on design and performance evaluation of optical networks
and the application of artificial intelligence techniques. He has also been a
postdoctoral researcher with the Group of Transmisiones Ópticas de Banda
Ancha (TOyBA) at University of Zaragoza.

Ignacio de Miguel (Senior Member, IEEE) received a degree in tele-
communication engineering and the Ph.D. degree from the University of
Valladolid (UVa), Spain, in 1997 and 2002, respectively. He is currently
an associate professor at UVa and the coordinator of the master’s degree in
telecommunication engineering. He has also been a visiting research fellow
at University College London, UK. His main research interests include the
design, control, and performance evaluation of communication infrastruc-
tures, optical networks, and edge computing and the application of artificial
intelligence techniques in these environments. He has published more than
40 papers in international journals and more than 170 conference papers.
Dr. de Miguel has been a member of the Technical Program Committee of
several international conferences, besides being the Chair of the TPC and
the Local Organizing Committee of NOC 2009. He was a recipient of the
Nortel Networks Prize to the Best Ph.D. Thesis on Optical Internet in 2002,
awarded by the Spanish Institute and the Association of Telecommunication
Engineers (COIT/AEIT).

Ramón J. Durán Barroso received his Telecommunication Engineer
degree in 2002 and his Ph.D. degree in 2008, both from the University of
Valladolid (UVa), Spain. He works as an associate professor at the University
of Valladolid. His current research focuses on the use of artificial intel-
ligence techniques for the design, optimization, and operation of future
heterogeneous networks, multi-access edge computing, and network func-
tion virtualization. Dr. Durán Barroso is the coordinator of the H2020
MSCA IoTalentum project composed of 14 partners, and he has been
the coordinator of the Spanish Research Thematic Network “Go2Edge:
Engineering Future Secure Edge Computing Networks, Systems and
Services” composed of 15 entities. He has been the UVa leader in another six
European and national projects. The dissemination activity of his research has
produced 48 papers in JCR journals and more than 130 conference papers.


