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ABSTRACT Applicationswhere a person carries environmental sensors benefit from knowing the position of
the individual. Researchers can locate the device by analyzing the radio signals used for sending information.
However, it is necessary to know the impact of body obstruction on communication links and, therefore,
on the localization system. The paper studies this impact by using field tests employing one LoRa node with
an omnidirectional antenna in an outdoor parking lot with vegetation. The tests use four LoRa gateways
located in the corners of the area to measure the signals with and without body obstruction. The node was
located on the subject’s chest to maximize signal obstruction. Results show that signal strength decreases by
an average of 3 dB on links with body shadowing. Additionally, the study uses these signals with machine
learning and Kalman filter localization algorithms. Finally, the results show that body shadowing affects
location accuracy in most methods. These results are useful for IoT researchers that need to locate people
carrying LoRaWAN devices but cannot use GPS/GNSS due to energy constraints.

INDEX TERMS Body obstruction, environmental sensor, localization, LoRaWAN, RSSI.

I. INTRODUCTION
As part of the sustainable development goals of some govern-
ments, smart city projects are driving the growing demand
for outdoor environmental quality monitoring sensors [1].
Knowing the location of wireless environmental monitoring
sensors is essential for identifying, interpreting, and tracking
the measured values [2]. The use of GPS (Global Position-
ing Systems) or GNSS (Global Navigation Satellite Sys-
tems) is common due to their accuracy and adequate out-
door performance [3]. However, using an additional module
for positioning in low-power devices implies a significant
increase in power consumption [4]. Wireless technologies
such as LPWAN (Low Power Wide Area Network) allow
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the application of localization techniques, such as triangula-
tion, multilateration [4], and fingerprinting [5]. One of the
most widely used LPWAN technologies is LoRaWAN (Long
Range Wide Area Network) [6], a low-power, wide-range
communications technology useful for the Internet of Things
(IoT) and smart cities [7].

Portable multisensor platforms with LoRaWAN are avail-
able to support environmental monitoring with mobile nodes
[8]. The portability of these nodes on the human body opens
opportunities for mobile monitoring. However, this applica-
tion requires determining the impact of body shadowing on
the signals and the accuracy of the node location system [9].

Exposure of a human body to radio frequencies can cause
attenuation in the system [10], [11]. For example, the study
in [12] shows a model with obstruction of up to 6 dB for the
GSM-900 band. Another paper employed Received Signal

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 9521

https://orcid.org/0000-0001-8154-9203
https://orcid.org/0000-0002-1945-3144
https://orcid.org/0000-0002-1084-1159
https://orcid.org/0000-0002-0615-6546


L. E. Marquez et al.: Effects of Body Shadowing in LoRa Localization Systems

Strength Indicator (RSSI) measurements showing a 13 dB
difference in a Radio Frequency Identification RFID-900 sys-
temwith body obstruction [13]. However, there are no studies
analyzing the effect of human shadowing in LoRaWAN com-
munications.

On the other hand, the literature regarding localization
in LoRaWAN is rich, especially using RSSI values. Some
works used the multilateration technique based on RSSI
[14], while [15] and [16] used trilateration. A different
method is fingerprinting, which has improved accuracy over
lateration-based methods [17]. Several papers employed this
method along with machine learning (ML) techniques for
node location [18], [19], [20], [21], [22], [23], [24]. The
most common techniques are K-Nearest Neighbors (KNN)
[19], [20], [21], [22], [23], [24], Support Vector Regres-
sion Machine (SVR) [18], [21], [22], [24], Neural Networks
[20], [23], Random Forest and other variants of Decision
Trees [18], [20], [21], [22], [24]. The best performance in
these works was obtained by [18] using the Smoothing Spline
algorithm, with an outdoor area of 3422 m2, static nodes, and
an error of 9.4 m. The studies present noisy environments and
large areas but do not evaluate the effect of body shadowing
in LoRaWAN localization.

Consequently, this paper evaluates the RSSI behavior from
a LoRa node, with and without the obstruction of a human
body. The operating frequency of LoRa in this work is about
900MHz. At that frequency there are several works that have
analyzed the shadow effect of the human body at multiple
rotation angles and in free space conditions, both with mea-
surements and in simulation (e.g. [11], [12], [13]). The studies
were developed with a plane wave with vertical polarization
instead of LoRa modulation. However, these works provide a
basis for comparison with the present study.

Moreover, the article applies localization techniques based
on RSSI to determine the effect of the body on the accuracy
of these techniques. Section II presents the experimental
design and results of LoRa performance, with and with-
out human shadowing. Section III applies these results to
different localization algorithms and compares their perfor-
mance. To the best of the authors’ knowledge, this is the
first work to describe the impact of body obstruction in
LoRaWAN localization systems. This work will be helpful
for the research community that requires locating on-body
environmental sensors.

II. LORA PERFORMANCE WITH HUMAN SHADOWING
A. EXPERIMENTAL SETUP
The test scenario was an outdoor parking lot with a 100 m
× 50 m area, as shown in Fig. 1. The experimental test is
an approximation to reality because LoRa is designed for
long distances. However, this outdoor scenario allows an easy
approach to evaluate performance with realistic obstacles
such as trees, and the results should not be different placing
the antennas at distances of 100 meters. Since the working
frequency is around 900 MHz, the test is in the far field

FIGURE 1. (a) Satellite view where the yellow triangles identify the
gateways and the blue dots indicate the node positions. (b) Trees in the
test area.

region (as that zone starts below 0.5 meters); therefore, the
RF signal characteristics are maintained until its disappear-
ance. This approach of studying LoRa performance in small
outdoor areas has already been used in other works like
[15], [25], [26].

The experimental test locations were marked using a Trim-
ble M3 DR3 total station; this device provides the geographic
coordinates of each point with an accuracy in the order of
millimeters [27]. Due to time and weather restrictions, the
experiments employed 16 locations where the LoRa node
transmitted to the four gateways. Fig. 1 (a) shows these test
points (blue dots) over a satellite image of the site. Fig. 1 (b)
illustrates the trees in the test area.

The experiments without body obstruction located the
LoRa node on a tripod. Then, tests placed the node on a per-
son’s chest because this position creates the most obstruction
[28]. The subject provided an informed consent.

The equipment used in the measurement campaign
included four LoRaWAN RisingHF gateways [29] and a
WisTrio LPWAN Tracker node, operating at 915 MHz [30].
This device worked at 5470 bps on channels 0-3 with enabled
ADR (Adaptive Data Rate). However, more than 90% of the
collected data uses Spreading Factor (SF) 7. Therefore, ADR
activation does not significantly affect the results. Table 1
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TABLE 1. Characteristics of devices.

FIGURE 2. Attenuation caused by vegetation for each node-gateway link.

shows the characteristics of the equipment used in the exper-
imental setup.

All devices used externally connected omnidirectional
antennas; thus, we did not include their radiation pattern in
the RSSI variation study.

B. VEGETATION
Trees and bushes in the work area caused attenuation. The
testing scenario included semi-dense and dense vegetation.
Therefore, the research incorporated the effect on the sig-
nal by using a vegetation loss model. The link attenuation
depended on the depth of the foliage [31]. Equation (1)
computes this loss:

Lveg = 0.2f 0.3d0.6[dB] (1)

where f is the frequency (in MHz) and d is the foliage depth
(m) [31].

At the test site, this attenuation changes according to vege-
tation density on each link, i.e., between the node location and
each gateway. Fig. 2 shows the vegetation attenuation values
calculated for each link using (1).

Fig. 2 shows that different node-gateway links have attenu-
ation greater than 7 dB. Similarly, at least one node-gateway
link has minimum vegetation obstruction (0 dB). Fig. 1 (a)
shows that the links for test points 7 to 15 have a comparable
position concerning the trees at the center of the working area.
Consequently, Fig. 2 exhibits similar behavior in positions

FIGURE 3. Tests with human shadowing. The red triangles are the
gateways, and the blue circles are the test points. The green symbols
indicate the body’s position (square) and the node (arrow).

7 to 15, with variations specific to each link according to the
rest of the vegetation. In fact, vegetation attenuation affects
the path loss exponent and the received signal levels on each
link.

C. EFFECT OF HUMAN SHADOWING
1) OBSTRUCTION TYPES
Fig. 3 shows the test points, illustrating the location of the
node with body shadowing. The green symbols include a
square representing the person and one arrow showing the
node position. All figures show UTM coordinates, Zone 18.

According to the orientation of the node, the body gener-
ates complete obstruction (NLOS), a semi-obstruction (Quasi
Line-of-Sight, QLOS), and no obstruction (LOS) for differ-
ent gateways. The relative transmission angles are classified
according to the ranges of (2), according to [28]:

LOS →
[
0◦, 67.5◦

]
∪

[
292.5◦, 360◦

]
QLOS →

[
67.5◦, 112.5◦

]
∪

[
247.5◦, 292.5◦

]
NLOS →

[
112.5◦, 247.5◦

]
(2)

Fig. 3 illustrates the relative transmission angles for test point
2. In this case, the transmission angle is approximately 177◦

to GW1 (NLOS), 18◦ to GW2 (LOS), 85◦ to GW3 (QLOS),
and 136◦ to GW4 (NLOS).
Fig. 4 shows the transmission angles between each test

point and the gateways considering the body orientation. The
behavior at positions 8 to 15 is similar due to the locations of
the body concerning the different gateways.

2) EFFECTS ON RSSI
Each gateway provides information regarding RSSI lev-
els, signal-to-noise ratio (SNR), channel frequency, and the
reception time of each packet.
The information of each packet received simultaneously

at the four gateways allows the creation of a radio map.
This map includes the RSSI values for each test point with
the corresponding geographic coordinate obtained with the
Trimble. This coordinate is the ground truth for the location
experiments. The measurement campaign uses more than
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FIGURE 4. Relative transmission angle for each node-gateway link.

FIGURE 5. RSSI histogram for tests with and without body obstruction.

50 packets per position per gateway in each case (with and
without body obstruction). After the outlier elimination pro-
cess, data includes 40 measurements per position for each
gateway, i.e., 2560 RSSI values with body obstruction and
the same number without it.

Fig. 5 shows the histograms of the data for both NHS
(Non-Human-Shadowing) and HS (Human-Shadowing) sce-
narios. The histogram for the NHS scenario shows a dis-
tribution of RSSI levels displaced to the right compared
to the HS distribution. Applying Tukey honestly significant
difference (HSD) to both data sets yields a 3 dB difference
with 95% confidence. Thus, RSSI levels decrease in the
HS scenario. Furthermore, Fig. 5 shows the best probability
distribution fit for each data set. The log-likelihood statistic
and Kolmogorov-Smirnov test indicate that the best fitting
distribution for the NHS data is Logistic, while for HS is
Largest Extreme Value (GEV in the figure). According to
these results, HS behaves as a random phenomenon whose
values predominate in the lower levels.

Fig. 6 to 9 display the box-whiskers plots of RSSI mea-
surements obtained in each gateway, without and with body
obstruction. As expected, RSSI is higher when the nodes
are close to the GWs. For example, according to Fig, 3
positions 1, 14 and 15 are closer to GW 1, and these positions

FIGURE 6. RSSI values NHS (blue) and HS (orange), by Gateway 1.

FIGURE 7. RSSI values NHS (blue) and HS (orange), by Gateway 2.

FIGURE 8. RSSI values NHS (blue) and HS (orange), by Gateway 3.

FIGURE 9. RSSI values NHS (blue) and HS (orange), by Gateway 4.

show larger RSSI levels in Fig. 6. The same behavior occurs
in positions 2 and 3 for GW 2 (Fig. 7), positions 3 to 6 for
GW 3 (Fig. 8) and positions 6 to 9 for GW 4 (Fig. 9).
Moreover, position 16 has a large level of RSSI for GWs
3 and 4, showing a direct line of sight in these links, consistent
with Fig. 1a. The values in the HS scenario (orange) tend to
be smaller than NHS (blue). The results in Figs. 6 to 9 are
consistent with the location and the angles shown in Figs. 3
and 4. Comparing the HS and NHS values for LOS links,
the Tukey HSD method indicates no significant difference
between the means. However, the statistics show differences
between their standard deviations, showing the randomness
of this type of testing in the given scenario. The mean values
for QLOS links also show no significant difference.

Furthermore, some mean RSSI levels for HS are higher
than NHS. This phenomenon results from the variability of
the signal in the presence of the body. As an illustration,
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FIGURE 10. Standard deviation by position.

Fig. 10 shows the standard deviation of RSSI values by
position, where the circles correspond to HS and non-circles
represent NHS.

For example, Fig. 6 shows that, for position 15 at gateway
1, the average RSSI is higher with HS; however, Fig. 10
shows that gateway 1 HS also has a higher standard deviation
than NHS, showing the effect of body obstruction on the
signal.

Nevertheless, the behavior of the data collected illustrates
a direct effect on RSSI levels due to the obstruction caused
by the body to different communication links. On average,
the RSSI levels with body obstruction decrease by 3 dB com-
pared to the link without obstruction. LoRa shows smaller
attenuation than that reported in [11], [12] for GSM and
[13] for RFID. In those cases, the 900 MHz signal, decays
by 25 dB [11], 6 dB [12] and 13 dB [13] in the presence
of the body. This behavior demonstrates the robustness of
LoRa modulation compared to other technologies for the
same frequency band.

III. EFFECT OF HUMAN SHADOWING IN LORA
LOCALIZATION
The change in RSSI may affect localization results. Hence,
the research applied the measured NHS RSSI values to dif-
ferent localization methods and then repeated the same pro-
cedure with HS data. The methods employed are SVR, Extra
Trees, KNN, MLP algorithms, and Extended Kalman Filter
(EKF). The research selected these algorithms because they
are widely used for localization in wireless networks [32].

A. ALGORITHM COMPARISON
This research employed 70% of data for training, 15%
for validation, and 15% for testing. The data was pre-
processed, modifying the representation of the sample
values. There are four data representation schemes for
localization, i.e., positive, normalized, exponential, and
powed [20], [33], [34], [35]. We used Python for each data
representation scheme and ML algorithm and Matlab for the
filter-based algorithm.

TABLE 2. Hyperparameters of the ML algorithms.

TABLE 3. Average location errors (m).

Table 2 shows the hyperparameters of each ML algorithm
that obtained the best results. In the table, RBF means Radial
Basis Function, C is the Regularization parameter, and RELU
means Rectified Linear Activation Unit.

Table 3 presents the average errors obtained for the four
ML methods developed and the Kalman filter-based algo-
rithm. The results show that KNN presents the best perfor-
mance in both scenarios (NHS and HS).

Table 3 shows that the estimation errors differ for the NHS
and HS test scenarios. The average error is larger than 5 m in
the HS case, whereas the NHS case has an average error of
less than 4 m in threeMLmodels. This result shows the effect
on the RSS-based localization system when the LoRa device
experiences human shadowing.

Additionally, Table 3 shows that three of the ML algo-
rithms employed in this work obtained smaller errors than
studies with similar areas working at 915 MHz, such as [14].
According to [14], the localization accuracy of tens of meters
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FIGURE 11. True and Predicted Locations for KNN, NHS and HS.

FIGURE 12. True and predicted locations, KNN, NHS scenario.

is sufficient for applications like the one proposed in this
work.

The results from the Kalman filter-based algorithm display
a larger localization error than those employing ML tech-
niques.

B. ANALYSIS OF KNN AND EXTRA TREES
According to Table 3, KNN and Extra Trees obtained the best
localization performance. Thus, we provide a more detailed
analysis of them.

1) KNN
The KNN model predicts the coordinates for the node loca-
tion. Fig. 11 shows the ground truth (red crosses) and the
predicted values (blue dots) for the NHS and HS scenarios.

Fig. 11 displays a complete match between the predicted
points and the true coordinates. The reason is KNN takes
each sample to the nearest neighbor, whether it matches the
true position or another one in the dataset. Therefore, the
algorithm creates erroneous predictions that coincide with a
different coordinate.

Fig. 12 and Fig. 13 show the locations that present errors
in the NHS and HS scenarios, respectively. The green arrows
indicate the displacement each point suffered from the ground
truth and the algorithm’s prediction, i.e., the position error.

Fig. 12 shows that the KNN algorithm erroneously pre-
dicted four positions in the NHS scenario, with errors of
10 and 30 m.

Fig. 13 illustrates that HS performance of the KNN algo-
rithm is worse than NHS, as it erroneously predicted eight
positions, with errors between 10 m and 50 m.

FIGURE 13. True and predicted locations, KNN, HS scenario.

FIGURE 14. True and predicted locations, extra trees, NHS.

FIGURE 15. True and predicted locations, extra trees, HS.

2) EXTRA TREES
The Extra Trees algorithm predicts positions that do not
precisely match the ground truth. Fig. 14 and Fig. 15 present
the predicted and true locations in the Extra Trees algorithm
for NHS and HS respectively. In each case, the predicted
values are close to the real ones, with less variability in the
NHS scenario than in HS. Fig. 14 illustrates that Extra Trees
can predict the node’s location with errors of the order of
centimeters with a maximum of 28 m. Fig. 15 shows how
the Extra Trees algorithm locates the node with errors of the
order of centimeters, up to 32.5 m maximum.

IV. CONCLUSION
This paper shows that the signal in LoRaWAN systems
degrades when a human body obstructs any transmission
links. Results showed that the transmission angle to the
gateway varies as the node changes position, along with the
degree of obstruction generated by the body. Additionally,
results show an average decrease of 3 dB in RSSI values with
human shadowing.
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Furthermore, the paper evaluates the effect of the body
on LoRaWAN localization using RSSI-based methods. The
results indicate that EKF exhibits larger errors thanML-based
methods. The best performing algorithm was KNN, with an
average error of 0.93 m for the NHS scenario and 5.51 m for
HS. However, the error variability of KNN is larger than Extra
Trees; hence, the latter would produce estimates with smaller
individual errors than KNN. Moreover, the results show a
difference close to 4 m for most ML algorithms, comparing
NHS and HS scenarios. This difference demonstrates the
impact of human body obstruction on the localization system.
Therefore, future work requires mechanisms to mitigate the
shadowing effects caused by the body in static and moving
scenarios.

REFERENCES
[1] C. Toma, A. Alexandru, M. Popa, and A. Zamfiroiu, ‘‘IoT solu-

tion for smart cities’ pollution monitoring and the security chal-
lenges,’’ Sensors, vol. 19, no. 15, p. 3401, Aug. 2019, doi: 10.3390/
s19153401.

[2] A. Khapalov, ‘‘Source localization and sensor placement in environmental
monitoring,’’ Int. J. Appl. Math. Comput. Sci., vol. 20, no. 3, pp. 445–458,
Sep. 2010, doi: 10.2478/v10006-010-0033-3.

[3] F. Lemic, A. Behboodi, J. Famaey, and R. Mathar, ‘‘Location-based
discovery and vertical handover in heterogeneous low-power wide-area
networks,’’ IEEE Internet Things J., vol. 6, no. 6, pp. 10150–10165,
Dec. 2019, doi: 10.1109/JIOT.2019.2935804.

[4] I. Daramouskas, V. Kapoulas, and T. Pegiazis, ‘‘A survey of methods
for location estimation on low power wide area networks,’’ in Proc.
10th Int. Conf. Inf., Intell., Syst. Appl. (IISA), Jul. 2019, pp. 1–4, doi:
10.1109/IISA.2019.8900701.

[5] J. Purohit, X. Wang, S. Mao, X. Sun, and C. Yang, ‘‘Fingerprinting-based
indoor and outdoor localization with LoRa and deep learning,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–6, doi:
10.1109/GLOBECOM42002.2020.9322261.

[6] Q. M. Quadir, T. A. Rashid, N. K. Al-Salihi, B. Ismael, A. A. Kist, and
Z. Zhang, ‘‘Low power wide area networks: A survey of enabling tech-
nologies, applications and interoperability needs,’’ IEEE Access, vol. 6,
pp. 77454–77473, 2018, doi: 10.1109/ACCESS.2018.2883151.

[7] L. E. Marquez, A. Osorio, M. Calle, J. C. Velez, A. Serrano, and
J. E. Candelo-Becerra, ‘‘On the use of LoRaWAN in smart cities: A
study with blocking interference,’’ IEEE Internet Things J., vol. 7, no. 4,
pp. 2806–2815, Apr. 2020, doi: 10.1109/JIOT.2019.2962976.

[8] A. Simo, S. Dzitac, I. Dzitac, M. Frigura-Iliasa, and F. M. Frigura-Iliasa,
‘‘Air quality assessment system based on self-driven drone and LoRaWAN
network,’’ Comput. Commun., vol. 175, pp. 13–24, Jul. 2021, doi:
10.1016/j.comcom.2021.04.032.

[9] Y. Li, Y. Zhuang, X. Hu, Z. Gao, J. Hu, L. Chen, Z. He, L. Pei,
K. Chen, M. Wang, X. Niu, R. Chen, J. Thompson, F. M. Ghannouchi,
and N. El-Sheimy, ‘‘Toward location-enabled IoT (LE-IoT): IoT posi-
tioning techniques, error sources, and error mitigation,’’ IEEE Internet
Things J., vol. 8, no. 6, pp. 4035–4062, Mar. 2021, doi: 10.1109/JIOT.
2020.3019199.

[10] T. Otim, A. Bahillo, L. E. Díez, P. Lopez-Iturri, and F. Falcone,
‘‘FDTD and empirical exploration of human body and UWB radia-
tion interaction on TOF ranging,’’ IEEE Antennas Wireless Propag.
Lett., vol. 18, no. 6, pp. 1119–1123, Jun. 2019, doi: 10.1109/LAWP.
2019.2910378.

[11] A. Bahillo, J. Blas, P. Fernandez, R. M. Lorenzo, S. Mazuelas, and
E. J. Abril, ‘‘E-field assessment errors associated with RF dosemeters for
different angles of arrival,’’ Radiat. Protection Dosimetry, vol. 132, no. 1,
pp. 51–56, Aug. 2008, doi: 10.1093/rpd/ncn275.

[12] A. Bahillo, J. Blas, P. Fernandez, S. Mazuelas, A. Vinuela, R. M. Lorenzo,
and E. J. Abril, ‘‘E-field errors associated with RF dosimeters for RF
human exposure assessment in urban environments,’’ in Proc. 30th Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2008, pp. 2821–2824, doi:
10.1109/IEMBS.2008.4649789.

[13] A. Bahillo, J. Prieto, S. Mazuelas, R. M. Lorenzo, P. Fernandez, and
E. J. Abril, ‘‘E-field assessment errors caused by the human body on local-
ization systems,’’ in Proc. IEEE 71st Veh. Technol. Conf., 2010, pp. 1–5,
doi: 10.1109/VETECS.2010.5493636.

[14] H. Kwasme and S. Ekin, ‘‘RSSI-based localization using LoRaWAN
technology,’’ IEEE Access, vol. 7, pp. 99856–99866, 2019, doi:
10.1109/ACCESS.2019.2929212.

[15] A. Vazquez-Rodas, F. Astudillo-Salinas, C. Sanchez, B. Arpi, and
L. I. Minchala, ‘‘Experimental evaluation of RSSI-based positioning sys-
tem with low-cost LoRa devices,’’ Ad Hoc Netw., vol. 105, Aug. 2020,
Art. no. 102168, doi: 10.1016/j.adhoc.2020.102168.

[16] P. Manzoni, C. T. Calafate, J.-C. Cano, and E. Hernández-Orallo, ‘‘Indoor
vehicles geolocalization using LoRaWAN,’’ Future Internet, vol. 11, no. 6,
p. 124, May 2019, doi: 10.3390/fi11060124.

[17] C. Laoudias, A. Moreira, S. Kim, S. Lee, L. Wirola, and C. Fischione,
‘‘A survey of enabling technologies for network localization, tracking, and
navigation,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3607–3644,
4th Quart., 2018, doi: 10.1109/COMST.2018.2855063.

[18] M. Anjum, M. A. Khan, S. A. Hassan, A. Mahmood, H. K. Qureshi,
and M. Gidlund, ‘‘RSSI fingerprinting-based localization using machine
learning in LoRa networks,’’ IEEE Internet Things Mag., vol. 3, no. 4,
pp. 53–59, Dec. 2020, doi: 10.1109/IOTM.0001.2000019.

[19] M. Aernouts, R. Berkvens, K. Van Vlaenderen, and M.Weyn, ‘‘Sigfox and
LoRaWAN datasets for fingerprint localization in large urban and rural
areas,’’ Data, vol. 3, no. 2, p. 13, Apr. 2018, doi: 10.3390/data3020013.

[20] G. G. Anagnostopoulos and A. Kalousis, ‘‘A reproducible comparison of
RSSI fingerprinting localization methods using LoRaWAN,’’ in Proc. 16th
Workshop Positioning, Navigat. Commun. (WPNC), Oct. 2019, pp. 1–6,
doi: 10.1109/WPNC47567.2019.8970177.

[21] T. Janssen, R. Berkvens, and M. Weyn, ‘‘Comparing machine learning
algorithms for RSS-based localization in LPWAN,’’ inProc. Int. Conf. P2P,
Parallel, Grid, Cloud Internet Comput., in Lecture Notes in Networks and
Systems, 2020, pp. 726–735, doi: 10.1007/978-3-030-33509-0_68.

[22] T. Janssen, R. Berkvens, and M. Weyn, ‘‘Benchmarking RSS-based local-
ization algorithms with LoRaWAN,’’ Internet Things, vol. 11, Sep. 2020,
Art. no. 100235, doi: 10.1016/j.iot.2020.100235.

[23] I. Daramouskas, V. Kapoulas, and M. Paraskevas, ‘‘Using neural net-
works for RSSI location estimation in LoRa networks,’’ in Proc. 10th
Int. Conf. Inf., Intell., Syst. Appl. (IISA), Jul. 2019, pp. 1–7, doi:
10.1109/IISA.2019.8900742.

[24] F. Lemic, V. Handziski, M. Aernouts, T. Janssen, R. Berkvens, A. Wolisz,
and J. Famaey, ‘‘Regression-based estimation of individual errors in finger-
printing localization,’’ IEEE Access, vol. 7, pp. 33652–33664, 2019, doi:
10.1109/ACCESS.2019.2903880.

[25] E. Svertoka, A. Rusu-Casandra, R. Burget, I. Marghescu, J. Hosek,
and A. Ometov, ‘‘LoRaWAN: Lost for localization?’’ IEEE Sensors
J., vol. 22, no. 23, pp. 23307–23319, Dec. 2022, doi: 10.1109/JSEN.
2022.3212319.

[26] G. M. Bianco, R. Giuliano, F. Mazzenga, and G. Marrocco, ‘‘Multi-
slope path loss and position estimation with grid search and experimental
results,’’ IEEE Trans. Signal Inf. Process. Netw., vol. 7, pp. 551–561, 2021,
doi: 10.1109/TSIPN.2021.3106693.

[27] Nikon-Trimble. (Oct. 2005). USER GUIDE Trimble M3 Total Station.
Accessed: Mar. 16, 2022. [Online]. Available: http://www.geosamudra.
com/datasheet/Trimble_M3_UserGuide_100A_English.pdf

[28] T. Otim, A. Bahillo, L. E. Díez, P. Lopez-Iturri, and F. Falcone,
‘‘Impact of body wearable sensor positions on UWB ranging,’’
IEEE Sensors J., vol. 19, no. 23, pp. 11449–11457, Dec. 2019, doi:
10.1109/JSEN.2019.2935634.

[29] Seeed Studio. LoRa/LoRaWAN Gateway Kit—Seeed Wiki. Accessed:
Dec. 9, 2021. [Online]. Available: https://wiki.seeedstudio.com/LoRa
_LoRaWan_Gateway_Kit/

[30] RAKwireless Technology Limited. RAK7205/RAK5205 WisTrio
LPWAN Tracker | RAKwireless Documentation Center. Accessed:
Dec. 9, 2021. [Online]. Available: https://docs.rakwireless.com/Product-
Categories/WisTrio/RAK7205-5205/Overview/#product-features

[31] H. Lehpamer, Microwave Transmission Networks: Planning, Design, and
Deployment, vol. 1. New York, NY, USA: McGraw-Hill, 2004.

[32] I. Ullah, S. Qian, Z. Deng, and J.-H. Lee, ‘‘Extended Kalman filter-
based localization algorithm by edge computing in wireless sensor net-
works,’’ Digit. Commun. Netw., vol. 7 no. 2, pp. 187–195, May 2021, doi:
10.1016/J.DCAN.2020.08.002.

[33] G. G. Anagnostopoulos and A. Kalousis, ‘‘A reproducible analysis of
RSSI fingerprinting for outdoor localization using sigfox: Preprocessing
and hyperparameter tuning,’’ in Proc. Int. Conf. Indoor Positioning Indoor
Navigat. (IPIN), Sep. 2019, pp. 1–8, doi: 10.1109/IPIN.2019.8911792.

[34] T. Janssen, M. Aernouts, R. Berkvens, and M. Weyn, ‘‘Outdoor
fingerprinting localization using sigfox,’’ in Proc. Int. Conf. Indoor
Positioning Indoor Navigat. (IPIN), Sep. 2018, pp. 1–6, doi:
10.1109/IPIN.2018.8533826.

VOLUME 11, 2023 9527

http://dx.doi.org/10.3390/s19153401
http://dx.doi.org/10.3390/s19153401
http://dx.doi.org/10.2478/v10006-010-0033-3
http://dx.doi.org/10.1109/JIOT.2019.2935804
http://dx.doi.org/10.1109/IISA.2019.8900701
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322261
http://dx.doi.org/10.1109/ACCESS.2018.2883151
http://dx.doi.org/10.1109/JIOT.2019.2962976
http://dx.doi.org/10.1016/j.comcom.2021.04.032
http://dx.doi.org/10.1109/JIOT.2020.3019199
http://dx.doi.org/10.1109/JIOT.2020.3019199
http://dx.doi.org/10.1109/LAWP.2019.2910378
http://dx.doi.org/10.1109/LAWP.2019.2910378
http://dx.doi.org/10.1093/rpd/ncn275
http://dx.doi.org/10.1109/IEMBS.2008.4649789
http://dx.doi.org/10.1109/VETECS.2010.5493636
http://dx.doi.org/10.1109/ACCESS.2019.2929212
http://dx.doi.org/10.1016/j.adhoc.2020.102168
http://dx.doi.org/10.3390/fi11060124
http://dx.doi.org/10.1109/COMST.2018.2855063
http://dx.doi.org/10.1109/IOTM.0001.2000019
http://dx.doi.org/10.3390/data3020013
http://dx.doi.org/10.1109/WPNC47567.2019.8970177
http://dx.doi.org/10.1007/978-3-030-33509-0_68
http://dx.doi.org/10.1016/j.iot.2020.100235
http://dx.doi.org/10.1109/IISA.2019.8900742
http://dx.doi.org/10.1109/ACCESS.2019.2903880
http://dx.doi.org/10.1109/JSEN.2022.3212319
http://dx.doi.org/10.1109/JSEN.2022.3212319
http://dx.doi.org/10.1109/TSIPN.2021.3106693
http://dx.doi.org/10.1109/JSEN.2019.2935634
http://dx.doi.org/10.1016/J.DCAN.2020.08.002
http://dx.doi.org/10.1109/IPIN.2019.8911792
http://dx.doi.org/10.1109/IPIN.2018.8533826


L. E. Marquez et al.: Effects of Body Shadowing in LoRa Localization Systems

[35] J. Torres-Sospedra, R. Montoliu, S. Trilles, Ó. Belmonte, and J. Huerta,
‘‘Comprehensive analysis of distance and similarity measures for Wi-Fi
fingerprinting indoor positioning systems,’’ Expert Syst. Appl., vol. 42,
no. 23, pp. 9263–9278, Dec. 2015, doi: 10.1016/j.eswa.2015.08.013.

LUZ E. MARQUEZ (Member, IEEE) received the
degree in electronics engineering from the Uni-
versidad Autónoma de Colombia, Barranquilla,
Colombia, in 2004, and the M.S. degree in telem-
atics and telecommunications from the Universi-
dad del Norte, Barranquilla, in 2014, where she
is currently pursuing the Ph.D. degree in electrical
and electronics engineering. She is also an Assis-
tant Professor with the Institución Universitaria de
Barranquilla, Barranquilla. Her research interests

include telematics applications and communication technologies for wireless
sensor networks.

ALFONSO BAHILLO received the degree and
Ph.D. degrees in telecommunications engineer-
ing from the University of Valladolid, Spain, in
2006 and 2010, respectively, and the PMP Certi-
fication from PMI, in 2014. From 2006 to 2010,
he was a Research Engineer with CEDETEL.
From 2006 to 2011, he was an Assistant Professor
at the University of Valladolid. From 2010 to 2012,
he was a Product Owner with LUCE Innovative
Technologies. From 2013 to 2017, he held a post-

doctoral position and was the Project Manager of DeustoTech-Fundacion
Deusto, Bilbao, where he trains Ph.D. students and collaborates in several
national and international research projects. From 2017 to 2020, he was
the Director of DeustoTech-Fundacion Deusto, University of Deusto. He
has worked (leading some of them) in more than 25 regional, national, and
international research projects and contracts. He has coauthored more than
35 research papers, published in international journals, published more than
40 communications in international conferences, and three national patents.
His research interests include local and global positioning techniques, ambi-
ent assisted living, intelligent transport systems, wireless networking, and
smart cities.

MARIA CALLE (Senior Member, IEEE) received
the B.S. degree in electronics engineering from
Universidad Pontificia Bolivariana, Medellín,
Colombia, in 1995, and the master’s degree in
telecommunications and the Ph.D. degree in infor-
mation sciences from the University of Pittsburgh,
Pittsburgh, PA, USA, in 2006 and 2009, respec-
tively.

She is currently a Professor with the Universi-
dad del Norte, Barranquilla, Colombia, a Senior

Researcher with Minciencias, Bogota, Colombia, and the Coordinator with
the Telecommunications and Signals Research Group, Universidad del
Norte. Her current research interests include low-power wide area net-
works, communication protocols for the Internet of Things, and engineering
education.

IGNACIO DE MIGUEL (Senior Member, IEEE)
received the degree and Ph.D. degrees in telecom-
munication engineering from the Universidad de
Valladolid (UVa), Spain, in 1997 and 2002, respec-
tively. He is currently an Associate Professor with
UVa and the Coordinator of the master’s degree
in telecommunication engineering. He has also
been a Visiting Research Fellow at University Col-
lege London, U.K. His research interests include
design, control and performance evaluation of

communication infrastructures, edge computing, and the application of arti-
ficial intelligence techniques in those environments. He has been a member
of the TPC of several international conferences, besides being the Chair of
the TPC and the Local Organizing Committee of NOC, in 2009. He was a
recipient of the Nortel Networks Prize for the Best Ph.D. Thesis on Optical
Internet, in 2002, awarded by the Spanish Institute and the Association of
Telecommunication Engineers (COIT/AEIT).

9528 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.eswa.2015.08.013

