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Abstract—Edge computing is envisioned as a key enabler in fu-
ture cellular networks by bringing the computing, networking and
storage resources closer to the end users and enabling offloading
for computation-intensive or latency-critical tasks coming from
the emerging 5G/6G applications. Such technology also introduces
additional challenges when it comes to deciding when to offload
or not since the dynamic wireless environment plays a significant
role in the overall communication and computation costs when
offloading workload to the nearby edge nodes. In this paper, we
focus on the communication cost in computation offloading via
wireless channels, by formulating an o-fair utility-based radio
resource allocation (RRA) problem tailored for offloading in a
multi-user urban scenario where the uplink connection is the
main focus. We begin by modeling the wireless channel with
large- and small-scale fading at both lower and millimetre-wave
frequencies, followed by data rate calculation based on 3GPP for
a more realistic approach. Then, while assessing the fairness of the
RRA, we simulate the resource allocation framework while taking
into account both users who need to offload and users who are
only interested in high downlink data rates. Simulation results
show that the weighted proportional fairness method adapted
for computation offloading can provide a good trade-off between
fairness and performance compared to other benchmark schemes.

Keywords—S5G, edge computing, computation offloading, re-
source allocation, fairness

I. INTRODUCTION

With demands fuelled by the emerging use cases and the
continuous increase of connected devices, edge computing
aims to extend the computing, storage and networking capa-
bilities of cloud servers to the edge of the network [1]. As the
long-distance data transmission from end devices to the cloud
incurs great propagation delay, bringing the computational
resources closer to mobile end users [2] reduces latency and
allows applications to leverage the benefits of computation
offloading since compute-intensive and latency-critical tasks
are migrated to resourceful edge nodes. The inclusion of edge
computing in standardization commonly follows the frame-
work of multi-access edge computing (MEC) [3].

Although edge computing brings dynamicity into the net-
work by allowing faster processing, the computing and storage
resources of MEC hosts are limited compared to cloud data
centers, and their availability is limited by the dynamic radio
access network (RAN) domain where time-varying link states
arc highly influencing the communication quality between
MEC hosts and end users. These aspects are especially im-
portant in scenarios where users are running computation-

intensive applications such as augmented reality (AR), virtual
reality (VR), face recognition or interactive gaming, to name
but a few. In such cases, there is need for optimal decision-
making where a decision can represent offloading all tasks to
MEC (full offloading), processing on device (local execution),
partial offloading, i.e., part of the tasks are executed on the user
device while the rest is offloaded, and cloud execution possibly
coming at the expense of reduced quality of experience (QoE).
As offloading every computation task is not feasible, smart
offloading decisions must be made by evaluating the overall of-
floading cost coming from the network and spectrum resources
together with the energy consumption required to communicate
and compute tasks using edge nodes [4]. This work focuses
on the communication aspect of computation offloading where
user equipment (UE) sends data packets to MEC for processing
and expects the computation result on the downlink (DL). In an
offloading scenario, data size (e.g. input parameters, program
codes) transmitted on the uplink (UL) is often higher than the
result transmitted on the DL [5], [6], therefore investigating
radio resource allocation (RRA) techniques with emphasis on
UL communication is essential when trying to make opti-
mal offloading decisions. Furthermore, in multi-user wireless
systems where different QoE has to be met for each user,
the resource allocation problem takes on a new perspective
where the trade-off between maximizing the overall system
performance and ensuring fairness must be approached, taking
into account that maximizing fairness may not be the best
answer. In other words, users with poor signal-to-interference-
plus-noise ratio (SINR) will experience resource starvation if
the goal is to maximize the overall system performance since
the resources will be distributed to users with better channel
state. If the goal is to achieve high system fairness, users with
unfavorable channel conditions benefit from more resources,
but this comes at the cost of degrading the overall performance,
therefore a balanced trade-off needs to be found [7].

Due to the always-changing wireless domain and the
limited and expensive frequency spectrum, the efficient radio
resource allocation has been a challenging issue over the
years, especially in multi-user scenarios. Joint UL and DL
resource allocation optimization problem was investigated with
the objective to maximize system throughput [8]. The trade-
off between resource efficiency and user fairness is studied
in [9], where two adaptive resource allocation frameworks
based on utility theory were proposed, suitable for real-time
and non-real-time services. With recent advancements in arti-
ficial intelligence, reinforcement learning (RL) was employed



for networks with dynamic environments and dynamic user
demands to tackle resource allocation problems where the
trade-off between spectral efficiency and energy efficiency [10]
or the optimization of both overall and fairness throughput
[11] were investigated. In respect to computation offloading
scenarios, various researches have been carried out for different
types of networks, focusing on areas such as task partitioning,
types of offloading decisions or minimization of energy con-
sumption where one of the main aspects was to investigate
resource allocation [4], [12]. Moreover, in offloading-related
resource allocation discussions, data rate calculation is often
based on the Shannon-Hartley theorem, while more realistic
data rates are rather different. A joint optimization problem for
offloading decisions and computational resource allocation was
proposed in [13] where deep reinforcement learning (DRL)
was employed to find the optimal solution. Similarly, DRL was
employed to maximize the vehicular edge computing network
utility by determining the offloading and resource allocation
policies [14] or minimizing the total delay and resource usage
in a joint offloading, resource allocation and service caching
placement problem [5].

In this work, we focus on fair resource allocation for the
communication aspect of computation offloading in a multi-
user urban scenario. We first look at the channel models for
urban macro (UMa) and urban micro (UMi) environments
where we simulate statistical large- and small-scale fading
conditions for both line-of-sight (LOS) and non-line-of-sight
(NLOS) propagation. We continue with the calculation of more
practical data rates based on 3GPP by looking at SINR and
channel quality indicator (CQI) mapping in both frequency
range (FR) 1 and 2 in order to contrast it with the Shannon
capacity, which, to the best of our knowledge, it has not been
approached in offloading studies. Then, we propose a fair
RRA framework adapted for computation offloading where
we weight the importance of UL and DL data rates and
evaluate fairness. The objective function of the RRA problem
is built on a-fair utility functions with constraints where higher
«a value indicates a higher degree of fairness. The weights
of the proposed utility-based function can be adjusted to
accommodate the needs of users that require offloading (higher
UL data rate) and also for those who do not (higher DL data
rate). We solve the optimization problem using disciplined
convex programming and evaluate which functions are the
most suitable in an offloading scenario based on the trade-off
between overall performance and fairness.

The reminder of this paper is organized as follows. Sec-
tion II introduces the system model together with channel
modeling and data rate calculation. Section III describes the
proposed RRA framework. Section IV provides a closer look
at the simulation results. Section V concludes the paper and
looks out to future developments.

II. SYSTEM MODEL

In this section the system model is described together
with channel modeling and data rate calculation. As shown in
Figure 1, the system model is represented by the 5G RAN with
one MEC host. The RAN domain is comprised of UMa cells
using 3.5 GHz as carrier frequency, represented by the large
hexagons, and UMi cells using 27.5 GHz as carrier frequency,
represented by the small hexagons, distributed according to
a frequency reuse factor of 1/3. The gNodeB is following a
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Fig. 1. System model comprised of UMa and UMi cells served by one
gNodeB following the CU-DU-RU functional split and one MEC host.
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Fig. 2. Fading loss: (a) probability density function of shadowing loss for

UMa and UMi in LOS and NLOS conditions, and (b) probability density
function of Rice and Rayleigh distributions for small-scale fading.

high and low layer functional split [15] of the radio stack
and consists of multiple radio units (RUs) and distributed
units (DUs) and one centralized unit (CU) co-located with
the MEC host where data is offloaded for processing. Dur-
ing the simulation, we consider K serving RUs denoted by
K =1{1,2,...,K}, each of them responding to the demands
of T users denoted by Z = {1,2, ..., I'}. The user coordinates
are generated based on a uniform distribution, while taking
into account the inter-site distance (ISD) for both UMa and
UMi. We also consider M neighbor RUs for DL interference
denoted by M = {1,2, ..., M} and N UEs for UL interference
denoted by A" = {1,2, ..., N}. The same numbers of network
elements I, K, M and N are used for both UMa and UMi
scenarios.

A. Channel modeling

To understand the channel conditions that users in UMa and
UMi scenarios may undergo, we simulated the 3GPP channel
model [16] with large- and small-scale fading, considering both
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Fig. 3. Overall propagation loss for macro and micro cells under both LOS

and NLOS conditions with large-scale fading — pathloss and shadowing shown
as a range given by the standard deviation, and small-scale fading shown as
specific samples when extracting random variates.

FR1 (0.41 GHz - 7.125 GHz) and FR2 (24.25 GHz - 52.6 GHz)
frequencies. The model parameters are summarized in Table 1.
Figure 2 (a) shows the shadowing loss modeled as a Gaussian
distribution on a logarithmic scale. The standard deviation
os does not change from FRI to FR2 since the channel
model is designed for frequencies under 100 GHz. Figure 2 (b)
depicts the small-scale fading statistically modeled by the Rice
distribution for LOS propagation where a dominant component
is present, and Rayleigh distribution for NLOS propagation.
Rice distribution is mainly characterized by the Rice factor K,
representing the ratio between the power of LOS component,
and average power of the sum of the NLOS components, where
the NLOS components are denoted by ¢NOS_ In NLOS, K,
is equal to 0 (becoming a Rayleigh distribution), while for
the LOS case, K, is modeled as a Gaussian distribution with
non-zero-mean g, and standard deviation og,. The overall
propagation loss is calculated according to Eq. (1), where PLj
is the calculated pathloss, S, is the shadowing loss and X,
is the small-scale fading loss as follows

PL=PLy+ S, + X,.. 1)

In Figure 3, large-scale fading (pathloss and shadowing)
and small-scale fading are represented in both UMa and UMi
scenarios for both LOS and NLOS. We can see that the
fading loss increases with distance in both scenarios where the
UMi NLOS case presents the highest propagation loss when
moving to the millimetre-wave (mm-wave) frequency range.
The distance is calculated as a 3D distance, where the 2D
distance between the UE and RU as well as the UE and RU
heights were taken into account. To evaluate the UE channel
condition we looked at the DL SINR for user ¢ served by RU
k which can be expressed as follows

DL
PruGy;

M b)
P+ 321 PruGRY,

SINRDY = 2

where Pry represents the RU transmit power, different for
UMa and UMi, GPY is the DL channel gain from RU k
to user ¢, where receiver antenna gain was also considered,

TABLE 1. SIMULATION PARAMETERS

Parameter name Unit Value UMa  Value UMi
Carrier frequency f. GHz 35 27.5
Frequency reuse factor 1/3 1/3
Number of serving RUs K 1 1
Number of users I 20 20
Number of interfering RUs M 4 4
Number of interfering UEs N 6 6
ISD m 500 250
Shadowing LOS o dB 4 4
Shadowing NLOS o dB 6 7.82
Rice K, factor pug,. dB 9 9
Rice K, factor ok, dB 3.5 5
Small-scale fading UEILOS Vrms 1 1
RU height m 25 10
UE height m 1.5 1.5
Effective environment height m 1 1
Minimum 3D distance between UE and RU m 35 10
Transmit power PRy dBm 53 47
Transmit power Pug dBm 20 23
Antenna gain RU dB 20 20
Antenna gain UE dB 3 3
NF RU dB 1.5 3
NF UE dB 4 4
Maximum bandwidth B MHz 30 100
Number of component carriers .J 1 1
Number of MIMO layers v 1 1
Scaling factor f 1 1
Numerology 1 2
SINR lower limit dB =7 =7
UL weight wY¥ 0.7 0.7
Maximum UL PRBs per user nUrI;)max 17 9
Maximum DL PRBs per user M rbmax 18 9
Maximum PRBs per channel nprb .0 78 132

P, = kpT.B is the thermal noise power and Gg{g is the

DL channel gain of the interfering RU m to user ¢. Similarly,

the UL SINR from user 7 to RU k is calculated as follows
Pyg GZU 2

Py + Y000, PurGYY

where Pyg is the UE transmit power, different for UMa and
UMi, and GEI,; is the channel gain from the interfering user
N to serving RU k. The final SINR values were obtained by
subtracting the noise figure (NF) which has different values
for UE and RU in FR1 and FR2.

B. Data rates

SINR =

3)

We explored two methods for data rate calculation since
our proposed RRA framework described in Section III relies
on data rate as output parameter. First, we start with the typical
assumption of using the Shannon—Hartley theorem to obtain
data rate 7} for user ¢ as

ri = Blog(1+ SINR;), 4)

where B is the channel bandwidth. Since we did not find this
approach realistic enough, we moved toward more practical
data rates calculated based on 3GPP [17], where data rate r;
for user ¢ is defined as follows
) ) ) 7’LB ‘S/(J')»# 1
Y= Z V(J)Q%)f(J)Rpr#

S

(1-0HD) ), (5)

j=1
where J is the number of aggregated component carriers, v is
the number of multiple-input multiple-output (MIMO) layers,
Q@ is the modulation order, f is the scaling factor, R is the

code rate, T# = -, is the average orthogonal frequency-
division multiplexing (OFDM) symbol duration, p is the 5G
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Shannon—Hartley as a result of SINR-CQI mapping.

NR numerology, n rb is the physical resource block (PRB)
allocation for bandwidth BW with numerology ¢ and OH is
the overhead.

To compare the two data rates, we mapped the SINR values
to the corresponding channel quality indicators (CQI) using the
linear expressions calculated in [18]. The CQI indices [19] take
values between 0 and 15, where each value represents a pair of
modulation scheme @Q,,, and code rate R. We selected y = 1
and 30 MHz bandwidth for UMa, and p = 2 and 100 MHz
bandwidth for UMi. The comparison is displayed in Figure 4,
where the data rate calculated with Eq. (5), having a staircase
shape as a result of the SINR-CQI mapping, is significantly
lower than the one calculated with Eq. (4) (the relative change
compared to Shannon can be as least 30.1 % for DL data rates,
excluding the flat region above 20dB SINR, with an average
relative difference of 42.32 % and 44.15 % for FR1 and FR2
respectively for common user SINR values between -7 and
30dB). Moreover, we can observe that the UL data rate given
in Eq. (5) is slightly higher compared to its DL counterpart,
in both FR1 and FR2, due to differing overhead values [17].
In our simulation, we chose to exclude SINR values smaller
than —7 dB in order to preserve the CQI values above 1. Given
the above comparison, we select the number of PRBs n,1, as
input for our RRA optimization problem and use the data rate
calculation formula given in Eq. (5) since it provides values
closer to what UEs will experience and allows giving more
applicable guidance for actual network deployments.

III. RADIO RESOURCE ALLOCATION FOR OFFLOADING

This section describes the proposed RRA framework for-
mulated as a joint UL and DL constrained optimization prob-
lem based on the weighted a-fair utility function. The resource
that is being allocated is restricted to the frequency domain,
more precisely each user i gets allocated an integer number of
resource blocks 7y, ;. In addition, we adapt the problem to
computation offloading where we allow different weights for
UL and DL to represent the users’ offloading preference.

Let the binary variable a; denote the offloading preference
of user 7 as follows

a; = 0,
1 T 1,

if UE ¢ is not offloading,

if UE 7 is offloading. ©

Then, the general a-fair utility function [20], U (TZ) in
Eq. (7), is adapted as presented in Table II, where wl ' yields
the weight attributed to UL data rate and « represents the fair-
ness parameter where a higher o value means higher fairness in
terms of resource allocation. The purpose of connecting w "
and a; in the proposed formulas is to allow weight flipping
when offloading is needed or not, i.e., for users that do not
wish to offload a higher weight is assigned to DL, while for
users requiring offloading the higher weight is instead assigned

to UL.
w; log(r;), ifa=1,
Ua(ri) = pl-e : (N
Wi, otherwise.

Given the proposed utility functions in Table II, we can
summarize the scope of each utility as follows: the weighted
maximum system efficiency with a = 0 (referred to as Max
SE) aims to maximize the overall system data rates without
regard for fairness, the weighted proportional fairness with
« = 1 (referred to as PF) is an intermediate function with weak
representation of fairness, while weighted harmonic mean
fairness with o = 2 (referred to as HMF) imposes the strongest
fairness criteria out of the three, thus benefiting users with
bad channel conditions, but at the cost of lower overall system
performance. System fairness can be evaluated using Jain’s
fairness index [21] F defined as

(i 7i)?
= Izll P2’ ®
1=1"1

To determine the possible trade-offs between fairness and
overall system data rates, the RRA problem can be formulated
as

maximize Z Ua( UL DL (9a)
UL ,.DL

Ty 5T

subject to

nprb i >1 Vl, (9b)

n,?r%z > 1 Vi, (%)
prb i < nprbmax VZ’ (9d)
DL DL .

nprb,i S nprbmax VZ, (96)
1

Z(ngr%) % + nprb z) < nprbmdx VZ, (9f)

i=1

where constraints (9b) and (9c) guarantee at least one PRB
per user for DL and UL, (9d) and (9¢) limit the maximum
number of PRBs that can be assigned for one user on UL and
DL respectively, and (9f) indicates that the sum of all PRBs
cannot be larger than the maximum available PRBs for the
given bandwidth of the wireless channel. With objective (9a),
we seek to maximize each utility function where the input
is represented by the number of PRBs restricted to integer
values. The solution is obtained using disciplined convex
programming (DCP) and it will be described in Section IV.
In addition to the three evaluated utility functions, equal PRB
allocation for all users is further included in the evaluation to
contrast between output (i.e., data rate) and input (i.e., PRB
allocation) fairness. Since equal PRB allocation can result in
unused spectrum, we further distribute the remaining PRBs
randomly in order to cover the maximum available resources.



TABLE II.

ADAPTED «-FAIR UTILITY FUNCTIONS

a value Utility function
Max SE 0 Ua(ry *,r7") = (=) % (1 = @) = w)r" + (=) % (a; — w5)rP"
PF L U075t = (D= ) = w ) log(r) + (=1)" (a; — wi) log (1)
HMF 2 Ua(ri™ ) = (—1)“"((1—ai)—wPL)(—TUL>+(—1)a"“(ai—w?L)(—TDL)
TABLE III. FAIRNESS AND AVERAGE SUM DATA RATES
IV.  SIMULATION RESULTS AND DISCUSSION
. . . . UMa UMi
In this section we present the simulation results for the ' .
communication cost in a computation offloading scenario Fairness Avg. X Fairness Avg. X
data rate data rate
based on the proposed system model and the RRA scheme Mean S vpigs) Mean S i)
described in Sections II and III. In the simulation, we consider Max SE 0273 0.019 11691 0703 0077  370.14
one UMa and one UMi cell, each cell serving 20 static PE 0.835  0.060 96.65 0.840 0062 307.87
- . HMF 0913 0.041 76.30 0918 0041  255.13
users. For each user, we compute the channel conditions, i.e., Equal PRB 0793  0.081 06.81 0820 0065 30932
large- and small-scale fading, followed by the UL and DL
SINR calculation where all the interfering network elements
(RUs or UEs) are considered to have NLOS propagation. 40 |l 7 MaxSE (a)
Then, we randomly attribute one propagation type (LOS or = = PF
NLOS) for each user and select only users with an acceptable 35 — . M
SINR value, i.e., above =7 dB, as described in Section II. The 30
offloading preference a; is randomly distributed for each user
i, and, for simplicity, we set the UL weight value wV" to 25

0.7 for offloading users, which means that in a non-offloading
scenario, the DL weight is also equal to 0.7. We calculated the
maximum number of PRBs allowed for one user, nj and
nD% by selecting a relevant 5G quality of service identifier
(§)QI) for offloading, i.e., 5QI 90 which can be approprizgg for
Prbmax
prbmas [0f UMa are equal to 17 and 18 PRBs respectively,
while for UMi scenario, both nJk ~ and np}  are equal to
9. The maximum channel capacity np.,,,. for UMa scenario
operating at 3.5 GHz with a maximum bandwidth of 30 MHz
is 78 PRBs [23], while for UMi operating at 27.5 GHz with
a maximum bandwidth of 100 MHz is 132 PRBs [24]. The
evaluation of the proposed utility functions is made based on
100 independent simulation runs, i.e., new channel conditions,
propagation type and offloading preferences for each user. The
list of parameters considered for the simulation is summarized
in Table L.

To observe the simulation results, we first looked at Jain’s
fairness index calculated for UMa as illustrated in Figure 5 (a),
where we can observe that the lowest fairness values are
attributed to Max SE (o = 0), while the highest values
are obtained with HMF (o = 2), the average fairness index
value increasing by approximately three times. Similarly, the
lowest fairness values in UMi come from Max SE, but the
gap between Max SE and HMF is narrowed due to the larger
maximum number of PRBs that can be assigned in FR2.
In both UMa and UMIi, the fairness index was calculated
according to Eq. (8), where r; is the weighted sum of DL
and UL data rates. Based on the results in Table III, it is
interesting to compare weighted PF and Equal PRB since both
have similar fairness statistics and average UL and DL data rate

sum per iteration.
Looking closer at the difference between the two methods,

we find that the average UL data rate sum per iteration for
UMa users in offloading scenario obtained with PF is 37 %
higher compared to Equal PRB, as shown in Figure 6 (a),
while the average DL data rate sum per iteration for users
in non-offloading scenario is 36.86 % higher, as shown in

mixed reality offloading applications [22]. As a result, n
and nPL
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Fig. 5. Jain’s fairness index for the proposed resource allocation in (a) UMa
and (b) UMi scenarios.

Figure 6 (b), therefore confirming the influence of weights
on the PRB assignment. Similar differences are found for
UMi environment. Based on these results, weighted PF can
offer a good trade-off between fairness and performance for
users in offloading and non-offloading scenarios for both
UMa and UMi. Therefore, users running compute-intensive
applications with need to offload arc assigned more PRBs
for UL, translating into higher UL data rates, with 56.06 %
increase compared to average DL data rate sum per iteration
in the same scenario. For users with no nced for offloading,
the average DL data rate sum per iteration is 52.62 % higher
compared to UL. Since the channel state is changing with each
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(a) with Equal PRB and weighted PF after UL PRB allocation, and (b) with
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iteration, the number of users with SINR higher than —7dB is
also changing, therefore the number of PRBs allocated for DL
and UL with weighted PF is varying between one and four
PRBs in UMa scenario, as depicted in Figure 6 by the four
data rate curves.

V. CONCLUSION

In this work we looked at 5G channel modeling for urban
scenarios and calculated data rates using two methods —
Shannon—Hartley and 3GPP, concluding that 3GPP can provide
more realistic data rates, with difference as low as 30.1 % for
DL data rates. Then, we proposed different weighted a-fair
utility functions for resource allocation to accommodate the
user needs in offloading and non-offloading scenarios where
the weights varied according to the offloading preference.
Considering the outcome of this work, we could see that
weighted PF can achieve a good fairness-performance trade-
off, outperforming Equal PRB allocation in terms of average
UL data rate sum per iteration for offloading users with an
increase of 37 %, and a similar increase in DL data rate for
non-offloading users in UMa scenario. In future work, we will
look out for additional parameters for more accurate channel
modeling, moving toward MIMO and carrier aggregation for
higher data rates, and DRL-based resource allocation solutions
for faster decision-making and scalability, using this work as
comparison.
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