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Abstract—Link failures have a significant negative im-
pact on the availability of a network and should therefore
be resolved as soon as possible. Because of the slow
convergence time of routing protocols upon detection of
a link failure, several IP Fast ReRoute (FRR) mechanisms
have been developed to overcome this problem. Recently,
segment routing, which is a flexible and scalable way of
doing source routing, enabled a new FRR mechanism called
Topology Independent Loop-Free Alternate (TI-LFA). As
the name suggests, the key feature of TI-LFA is that it
guarantees a loop-free detour against any link failure in
any network topology. However, typically fast responses
to failures only aim to restore the loop-free connection be-
tween the affected routers and do not consider the resulting
delay or impact on network congestion. This paper presents
an initial study on the selected TI-LFA backup paths and
their effect on the overall network performance. By means
of simulation, we evaluate how efficient TI-LFA reroutes
traffic for a number of traffic engineering approaches. Our
results quantify the impact of different traffic engineering
approaches and network loads on the performance of
TI-LFA. This suggests potential directions for improving
the effectiveness of TI-LFA protection in segment routing.

Index Terms—Segment Routing, Link Failures, IP Fast-
ReRoute, TI-LFA, Discrete Event Simulation
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I. INTRODUCTION

The widespread adoption of high-bandwidth, low-
latency applications in communication networks is con-
stantly pushing network operators towards more strin-
gent Service Level Agreements (SLA) that guarantee
peak performance, which is often defined as delivering
services to users 99,999% of the time. Unfortunately,
network failures are inevitable and occur for a variety
of reasons, including short-term router interface faults,
router crashes and reboots, or worst-case even long-term
fiber cuts [1]. These failures pose a threat to the SLAs
and require an immediate reaction to secure seamless
connectivity. In contrast, the global network convergence
after detecting a failure is relatively slow, ranging from
seconds to several minutes [2], which is insufficient to
meet SLAs with strict guarantees. The slow convergence
time is due to the delay in propagating the fault mes-
sage to a central Software-Defined Networking (SDN)
controller and the new path computations. Fast ReRoute
(FRR) mechanisms have been designed to quickly handle
unexpected failures by acting locally in the data plane
[3]. These mechanisms aim to minimize downtime in
the network by pre-installing static backup routes. In
this way, a node that detects a failure is ‘prepared’ and
can forward the packets instantaneously. Various FRR
approaches have been developed for this purpose [4].

In this work, we consider Topology Independent
Loop-Free Alternate (TI-LFA), an FRR mechanism
enabled by segment routing (SR) [5], [6]. SR is a
source-based routing architecture that originated to sim-978-1-6654-7598-3/23/$31.00 ©2023 IEEE



plify scalability issues in Multiprotocol Label Switching
(MPLS)-based Traffic Engineering (TE) methods [7]. SR
accomplishes traffic steering by decomposing a forward-
ing path into an ordered list of segments (known as an
SR policy), which is pushed as a label stack in the packet
header of the ingress node. By specifying intermediate
waypoints in the label stack, path diversity can extend
beyond shortest path routing. While this is beneficial
for traffic engineering, FRR methods can equally benefit
from these intermediate waypoints. This led to the emer-
gence of TI-LFA, which is the standard FRR method
to protect links and nodes in SR. The basic principle
of TI-LFA is to pre-compute the post-convergence path
from the Point of Local Repair (PLR), i.e. the node
detecting the failure, to the destination. TI-LFA can
now simply deploy SR to express this post-convergence
path via a stack of labels, or a repair list, and store it
locally at the PLR. The procedure is then repeated for all
destinations. Whereas previous FRR methods were often
topology-dependent and resulted in loops, TI-LFA can
protect all links and all nodes in all network topologies.
Nonetheless, despite having a working FRR method for
SR networks, the optimal FRR path should comprise
more criteria, the two most important being the resulting
traffic load and latency. Defining the optimal FRR path
in terms of load and latency is not a straightforward task
[8]. When traffic is rerouted using a longer backup path,
it has more latency and also consumes more bandwidth
resources. On the other hand, in heavily loaded net-
works an alternative, longer backup path may be useful
when the default backup path is congested. Keeping
in mind the progressively stricter SLA requirements of
many IoT, voice, and video applications, we believe
these aspects should not be overlooked when studying
FRR mechanisms such as TI-LFA. The main challenge,
however, is that FRR methods are locally pre-computed.
More precisely, because there is no time to communicate
dynamic network state information, these methods are
unaware of whether they take unnecessary detours or
interfere with other traffic, resulting in costly packet loss.
For this reason, it is a non-trivial problem how TI-LFA
can provide optimal backup paths while not exploiting
the full connectivity of the underlying network.

This paper presents an initial study and simulation
of the static backup paths provided via TI-LFA using
SR-TE methods in a small network topology, focusing
on the resulting length of the backup paths (latency)
and network load. As Section 9.1 of RFC 9256 [7]
acknowledges “Since TI-LFA protection is based on IGP
computation, there are cases where the path used during

the fast-reroute time window may not meet the exact
constraints of the SR Policy”. Thus, our study aims to
address the following observations:

1) Although TI-LFA is able to provide 100% topolog-
ical connectivity, this does not necessarily result in
the most efficient backup path, since the local PLR
does not have a global picture of the network upon
failure detection.

2) In line with the previous observation, inefficient
backup paths inherently lead to additional traffic
load in the network. Accordingly, we analyse to
what extent TI-LFA backup paths negatively affect
latency and network congestion, and whether there
is potential for optimisation.

The remainder of the paper is structured as follows.
In Section II, we discuss the network model, the SR-TE
mechanisms that we consider and a motivation for testing
the performance of TI-LFA in this environment. In Sec-
tion III, we describe in more detail how the simulation
is performed. In Section IV, we evaluate the network
performance, both for the scenario with and without link
failures, and discuss the performance of TI-LFA fast
restoration in the latter case. Section V concludes the
paper and provides some directions for future work.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

The network topology is modelled as a graph consist-
ing of N nodes connected via undirected point-to-point
links. We assume all network nodes are SR-enabled.
Then, SR policies (tunnels, from now on) that steer
traffic flows in the network are established following two
steps.

In the first step, the path to be followed from source
to destination is determined by a centralised SDN con-
troller. For this, the Shortest Path (SP) can be used.
However, we can also leverage the flexibility provided
by segment routing to choose a different path instead.
In this work, besides the SP we also consider the
Shortest Available Path (SAP). This SAP is computed
by dynamically filtering the links in the network that
provide sufficient capacity to support the bandwidth of a
new traffic demand. The shortest path is then determined
based on this residual graph.

The second step is to encode the selected path. In
segment routing, a packet is encoded as a stack of labels
or Segment Identifiers (SIDs) inserted in the packet
header by the ingress node. Each label corresponds to
a SID, which can be a node or adjacency (link) in
the scope of our model. When the top label on the
stack is a node SID, it does not need to be directly
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adjacent to the current node, as SR relies on shortest
path routing in between. It is worth noting that we
do not consider traffic splitting when multiple shortest
paths between two nodes are available. In case of an
adjacency SID, it needs to be directly adjacent to the
current node. We apply two approaches. The first one
is a naive approach in which every node’s SID along
the path is pushed to the segment stack. We denote this
approach as node encoding. However, more intelligent
algorithms can express the desired path whilst keeping
the required number of labels to a minimum, like the
Segment Routing – Label Encoding Algorithm (SR-
LEA) [9]. SR-LEA uses both global node SIDs and local
adjacency (link) SIDs to enforce any path with minimal
labels.

Our aim is to compare the performance of the TI-LFA
Fast ReRoute mechanism when various SR-TE ap-
proaches are applied in the network, namely, the use
of SP vs SAP algorithms, as well as the use of node
encoding vs SR-LEA.

To make this more concrete, we show in Fig. 1 an
example of how TI-LFA guarantees connectivity after a
link failure, but fails to take the most efficient path to
the destination. In this figure, an SR path is established
from source node s to destination node d, forcing traffic
to take the upper path by specifying node x as an
intermediate label in the segment stack. When s detects
an error on its outbound interface to x, TI-LFA instantly
pushes its pre-configured repair list on top of the segment
list to reroute traffic to the next segment, i.e. node x.
Now, incoming traffic at s that was supposed to follow
the green SR path is rerouted via the red path. We see
that although TI-LFA succeeded in rerouting traffic, an
optimal repair path would not route traffic beyond node d
(to x and then back to d). Sending packets back and forth
across the links between x and d causes unnecessary load
and delays in the network and should ideally be avoided.
As we will show, the methods selected for routing (SP
or SAP) and encoding (node encoding on SR-LEA) have
an impact on this issue. Therefore, we will compare,
by means of simulation, which method yields the best
results for TI-LFA.

In particular, we measure the performance of TI-LFA
in terms of the following metrics:

• Success rate: This metric measures the percentage
of flows that can be successfully recovered after a
link failure (among the flows affected by that fail-
ure). When dealing with a link failure, the backup
path may already be in use by other traffic flows, so
rerouting may overload links and thus it cannot be

Fig. 1: A graph with 2 multi-hop paths between source
s and destination d. Traffic is forced to take the upper
path (primary path) by inserting node x in the segment
list. Upon detection of a failure, s pushes its TI-LFA
repair list on top of the segment list, resulting in node
repetitions along the backup path.

really used due to bandwidth unavailability. Ideally
the rerouted flows should cause minimal additional
load for each link.

• Path stretch: For successfully restored flows, this
metric reports the increase in the number of hops for
the new route compared to the primary route, both
in absolute and relative (percentage) terms. Longer
backup paths introduce more load and latency in
the network and are therefore worth measuring.

• Node repetitions: This metric indicates how many
nodes are visited more than once in the backup path.
Detours as in Fig. 1 generate unnecessary overhead
in the network and should ideally never occur. For
instance, the value of this metric for the scenario in
Fig. 1 would be 3, as three nodes are visited twice
by the recovered traffic flow.

III. SIMULATION METHODOLOGY

We have developed a discrete event-based network
simulator (DES) that provides support for SR-TE when
traffic requests are dynamically arriving at the network,
and for performing fast restoration using TI-LFA. The
simulator has been developed using the Python-based
software framework SimPy [10]. Essentially, SimPy al-
lows modelling asynchronous tasks through a set of basic
operations such as events, processes and resources.

Fig. 2 provides a conceptual representation of the
simulator and network model. The key idea behind the
simulator is to bring the network to a state where a
set of tunnels (for the transmission of traffic flows) is
established according to a certain load, and then assess
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Fig. 2: A conceptual representation of the SR-TE simu-
lator and TI-LFA backup paths.

how many of those traffic flows would be successfully
recovered for each potential single link failure if TI-LFA
is used. The metrics associated to the recovered tunnels,
namely the increase in length and occurrence of node
repetitions, are also computed. While keeping the traffic
load (the average number of tunnels set up in the
network) to a fixed value, the procedure is then repeated
at different moments, so that the set of established
tunnels is different at each moment, to obtain statistically
meaningful results.

To do so, tunnels are dynamically established and
released in the network, and periodically (after sufficient
changes in the network) a ‘snapshot’ of the network state
at that moment is taken. In such a snapshot, all potential
single-link failures that disrupt an existing traffic flow
are identified and analysed individually. Iteratively, for
every possible link failure, the TI-LFA repair list is
pushed on top of the remaining segment list, and we then
determine whether the traffic flow can be successfully
rerouted to its destination. If true, we save the full new
path and retrieve its metrics. On a side note, to encode
TI-LFA post-convergence paths as repair lists, the basic

algorithm presented in [11] is applied. Also, as this
paper focuses on the fast restoration of link failures, we
do not include later, slow convergence effects, in our
model. We are only interested in the instantaneous effect
of a link failure. In between two snapshots where the
“what-if” scenario associated to each single link failure
is considered, the simulator continues its usual operation
dynamically establishing and releasing tunnels. Note that
this dynamic establishment and release of tunnels only
serves to ensure that the network evolves to a different
state before analysing the impact of failures in that
scenario, allowing failures to be tested during different
network states during the simulation.

In order to establish and release tunnels, the module
‘SR simulator’ generates bidirectional traffic flows from
a specific source to a destination node as a chronological
sequence of discrete events. It also provides the SR-TE
policy and the duration for establishing the tunnel in
the network. The SDN controller has full knowledge
of the network topology and communicates with the
nodes to centrally manage the requested traffic flows
and steer them through the network according to the
provided SR-TE policy. An example of a deployed SR
tunnel for a traffic flow originating at R1 is displayed in
Fig. 2. Furthermore, at each node we store pre-computed
TI-LFA backup paths for link failures to all possible
destinations. The SR configuration of such a backup
path, i.e. the repair list, is visualised with an example in
R2. Ultimately, the SR simulator will use all collected
data to assess the optimality of the implemented fast
failover routes.

We assume that traffic flows (the requests for setting
up a tunnel) arrive at the network according to a Poisson
process with inter-arrival rate λ. The source and desti-
nation nodes for each traffic flow are randomly selected
according to a uniform distribution. Each traffic flow
requests a fixed capacity, denoted as Ccxn. The duration
for which an SR tunnel is being established follows an
exponential distribution for which we specify a fixed
mean T . Then, the normalised traffic load ρ is defined
by Equation 1,

ρ =
λ · T

N · (N − 1)/2
· Ccxn

Clink
(1)

where N represents the number of nodes in the network
and Clink the capacity of a link. For simplicity, all
links have the same capacity so that the ratio Ccxn/Clink
remains constant during the simulation. Ultimately, the
load is normalised to take the dimensions of the con-
sidered network into account as well. A load ρ = 1
can be interpreted as a network where on average one
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Fig. 3: Network considered in the evaluation. Each link
is tagged with its cost. All links have the same capacity.

bidirectional traffic flow is carried between each source-
destination pair, consuming the full bandwidth of the
links (or similarly, two bidirectional flows consuming
half the bandwidth).

IV. PERFORMANCE EVALUATION

A. Simulation Setup

To evaluate the discussed SR-TE methods for path
selection and encoding in our simulator, we feed 11 000
tunnel establishment requests (to transport traffic flows)
to the network topology depicted in 3, which consists
of 10 SR-enabled routers connected with 14 undirected
links. To remove possible transient effects at the start of
the simulation, the first 1 000 traffic flows are eventually
discarded from the evaluation. With the remaining 10 000
traffic flows, we determine the traffic flow rejection ratio
and average tunnel length. To account for different net-
work loads, the simulation is run repeatedly for gradually
increasing values of the inter-arrival rate λ in Eq. 1,
while the mean duration T of a traffic flow is kept
constant and the ratio Ccxn/Clink is fixed at 0,10.

Next, we analyse the scenario which addresses single
link failures and fast recovery with TI-LFA. To define
the periodic update interval to generate snapshots in the
network, we set this value equal to the flow inter-arrival
times obtained for different traffic loads. This guarantees
the same number of snapshots in every simulation. We
obtain the metrics discussed in Section II and average
them over all link failures within one snapshot, after
which they are averaged a second time over all snapshots
during the simulation.

B. Simulation Results

Fig. 4 represents the performance of the discussed
SR-TE approaches in the absence of link failures. The
results when SR tunnels employ SP are represented
in blue, while red is used for SAP. The performance

is analysed in terms of flow rejection ratio (Fig. 4a),
i.e. the ratio of rejected SR tunnels (due to lack of
resources) to requested tunnels, and the average tunnel
length (Fig. 4b), expressed in number of hops. Each
data point is obtained by averaging the measurements
of 10 000 incoming traffic requests. The approach for
encoding the path (node encoding or SR-LEA) does
not have an impact on these results and is therefore
omitted here. The x-axis shows increasing values for the
(normalised) traffic load applied during the simulation.
Here, a distinction is made between the offered and
carried traffic load. In Fig. 4a, the offered load refers to
the requested amount of traffic flows we want to establish
in the network, whereas in Fig. 4b, the carried load
reflects the actual traffic present in the network (before
facing failures). As traffic is homogeneously generated,
the carried load is derived from the offered load by
multiplying the latter by one minus the flow rejection
ratio. This allows a fair comparison across different
SR-TE strategies. Unsurprisingly, the use of SAP leads
to the best results in terms of flow rejection ratio, at
the expense of slightly longer tunnel lengths. This was
expected, as SAP allows more flexibility in the chosen
path. The reduction in flow rejection ratio is most notable
for low traffic loads (Fig. 4a), whereas the increase in
tunnel length is most prominent at higher loads, when
the network is more congested (Fig. 4b).

Subsequently, Fig. 5 represents the results for TI-LFA
rerouting when facing single link failures, using the same
traffic data and the same topology as in the previous
case. Results for four different SR-TE approaches are
shown, corresponding to the two path selection and two
encoding methods discussed in Section II. To distinguish
between SP and SAP we again use blue and red colours,
with darker colour tones (and circular markers) for
node encoding and a lighter colour tones (and triangular
markers) when SR-LEA encoding is used. In each plot,
the x-axis represents the normalised carried traffic load
in the network. Fig. 5a shows the success rate, i.e., the
percentage of times that TI-LFA succeeds in rerouting a
flow when facing link failure. As expected, the success
rate decreases steadily as the network gets more loaded,
irrespective of the SR-TE strategy used. This can be
easily explained because in that situation, the backup
path is more likely to overload the links of the new
path to the destination. The next plots elaborate on the
cases where the recovery was successful. Fig. 5b and 5c
represent the path stretch after using the backup path,
expressed in additional number of hops and percentage
increase relative to the primary path, respectively. Both
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(a) Flow rejection ratio

(b) Average tunnel length

Fig. 4: Comparison of the network performance for SP
and SAP for increasing network loads.

figures show a similar decreasing trend as traffic load
increases. This is because in more loaded networks, the
long backup paths have a higher risk of crossing at
least one congested link, causing the entire recovery to
fail. Finally, Fig. 5d examines whether traffic flows pass
through the same node more than once when rerouted.
More precisely, it represents the average number of node
repetitions that a rerouted traffic flow faces. We find that
the more there is a deviation from the shortest path (here,
SAP), and the more labels are included in the segment
list (here, node encoding), the higher the risk of such
node repetitions.

C. Discussion of the Results

As expected, an SR-TE approach like SAP leads to
a lower traffic rejection ratio compared to SP routing.
Our results also show that this generally does not lead
to inferior TI-LFA performance, as, for instance, using
SAP even leads to slightly shorter backup paths than
for SP. On the other hand, detours where nodes are
visited twice are more likely using SAP and SR-LEA,
especially at higher network loads. This is because traffic
is rerouted to the next segment instead of the destination,
and typically a more congested network requires more
intermediate segments to specify a SAP. This is evident
from the results using the full ‘node encoding’, where
node repetitions happen more often than with SR-LEA.
In those cases, the segments to route around the failed
link intersect more frequently with the original route.

Therefore, it could be interesting to examine if we
can remove unnecessary detours in the rerouted path
rapidly and without invoking the (slow) control plane.
One suggestion could be to perform some additional
post-processing locally in the data plane, at the time
of pushing the pre-computed TI-LFA repair list on top
of the remaining segment list. The node that activates
the repair list could check if there are duplicates in
the concatenated repair and segment list. If this is the
case, intermediate labels become obsolete and could
simply be deleted. The plausibility of this approach will
however strongly depend on the labels used to encode
the primary and backup path. We see the study of the
optimal configuration of the TI-LFA repair lists, tailored
to the primary paths, as a topic for future research.

V. CONCLUSIONS AND FUTURE WORK

This paper studied the efficiency of Fast ReRouting
in the data plane, before the control plane convergence
kicks in. We restricted our study to the specific case of
TI-LFA protection against single link failures in segment
routing networks for one topology. While Fast ReRoute
methods have been in place for a long time and TI-LFA
guarantees topological connectivity after a failure, much
less attention was paid to the trade-off between their level
of resiliency and resource overheads in terms of load
and latency. To examine if the 100% failure coverage
of TI-LFA comes at the price of inefficient use of the
available network resources, we set up a simulator to
steer SR-TE traffic through a network and periodically
simulate link failures. Our results quantified how the
SR-TE methods applied in the network, i.e. the establish-
ment and encoding of SR paths, influence the efficacy
with which TI-LFA reroutes traffic to its destination.
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(a) Successful recovery rate (b) Path stretch

(c) Percentage path stretch (d) Repeated visits of the same node

Fig. 5: Analysis of the TI-LFA backup paths for different SR-TE strategies and for increasing network loads.

Our experimental simulations also revealed in which
conditions the performance of TI-LFA is most harmed.
The main inefficiency we observed is the repeated visits
to the same node along recovery paths, which leads to
increasing congestion and latency in the network. We
believe that our observations open interesting directions
for future research. As our next steps, we want to
analyse our observations across various network topolo-
gies and explore how operations in the data plane can
help TI-LFA reroute traffic more efficiently for different
SR-TE approaches, while balancing generality versus
performance.
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