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In this work, we study the numerical approximation of the initial-boundary-value problem of nonlinear pseudo-

parabolic equations with Dirichlet boundary conditions. We propose a discretization in space with spectral 
schemes based on Jacobi polynomials and in time with robust schemes attending to qualitative features such 
as stiffness and preservation of strong stability for a more correct simulation of non-regular data. Error estimates 
for the corresponding semidiscrete Galerkin and collocation schemes are derived. The performance of the fully 
discrete methods is analyzed in a computational study.

1. Introduction

1.1. Motivation

In recent years, pseudo-parabolic differential equations in a bounded domain, or in the whole space, have been studied extensively covering 
many several foundation aspects, e.g., modelling, numerics and theory (see the list of references in Section 1.2). We are particularly motivated in 
the modelling of complex and challenging multiphase flow problem in porous media [16,32,56,57,60,88,96]. Specifically, we consider the nonlinear 
two-dimensional system of the two-phase flow model

𝜕

𝜕𝑡
(𝜙𝑆𝑤) + ∇ ⋅ 𝐅(𝐯, 𝑆𝑤) = −∇ ⋅ [𝐻𝑐(𝑆𝑤)∇𝑝𝑐 ], (1.1a)

𝑝𝑐 = 𝑝𝑒(𝑆𝑤) − 𝜏
𝜕

𝜕𝑡
(𝜙𝑆𝑤). (1.1b)

The system (1.1a)-(1.1b) involves capillary forces, general expressions for the relative permeability functions, variable porosity and permeability 
fields and the gravity effect. It consists of two equations: the first one (1.1a) is a nonlinear convection-reaction-diffusion equation for the wetting 
phase saturation 𝑆𝑤, [15,60], where 𝜙 is the rock porosity, 𝐯 denotes the total velocity (of wetting and non-wetting phases), 𝑝𝑐 is the capillary 
pressure (or pressure difference between the non-wetting and wetting phases), 𝐻𝑐 = 𝐻𝑐(𝑆𝑤) is the capillary induced diffusion function and 𝐅 =
𝐅(𝐯, 𝑆𝑤) is the convection flux or water fractional flow function, with 𝑝𝑒 denoting the equilibrium capillary pressure. The pseudo-parabolic character 
of the transport problem comes from the time-dependent relation, proposed in [57], and given by (1.1b), an elliptic-type equation for the dynamic 
capillary pressure, where 𝜏 is the so-called dynamic effect coefficient. (For a more detailed description, see [5,24] and references therein.) In 
addition, there is a close interplay among discretization methods, numerical analysis, and simulations discussed in this work for multiphase flow 
in porous media to other interesting related problems, as such Sobolev type equations, Benjamin Bona Mahony problem, the improved Boussinesq 
equation and the Körteweg-de Vries problem (see, e.g., [76,82,29,65,68,89,16]).

The complex dynamics of (1.1a)-(1.1b) motivates recent challenging approaches, like new conceptual notions of weak entropy solutions with 
specific modeling assumptions for scalar and multi-dimensional problems with discontinuous coefficients and nonlinearities in space-time, discussed 
in [1–4,28,35]. However, most of the work developed for (1.1a)-(1.1b) concerns the one-dimensional version
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𝜕

𝜕𝑡
(𝜙𝑆) + 𝜕𝐹 (𝑆)

𝜕𝑥
= − 𝜕

𝜕𝑥

(
𝐻(𝑆) 𝜕

𝜕𝑥

(
𝐽 (𝑆) − 𝜏

𝜕

𝜕𝑡
(𝜙𝑆)

))
. (1.2)

The suitability of (1.2) for modelling the two-phase flow in porous media is discussed in the literature from several points of view. They are 
related, of course, to well-posedness (existence and uniqueness of solution), [25,34], and to the use of (1.2) as a pseudo-parabolic regularization 
to derive existence results for the Buckley-Leverett (BL) model, [15]. This is proposed in [33] and applied in [36] for controlling the dissipation 
when approximating the BL equation. In addition, the numerical simulation with discontinuous data for (1.2) and extensions incorporating capillary 
pressure hysteresis is considered in [41,92,113].

1.2. Scope

From the above discussion and inspired by the 1-D pseudo-parabolic equation (1.2), the present paper is concerned with the initial-boundary-

value problem (ibvp) of pseudo-parabolic type in Ω = (−1, 1)𝑑 , 𝑑 = 1, 2

𝑐𝑣𝑡 −∇ ⋅ (𝑎∇𝑣𝑡) = −∇ ⋅ (𝛼∇𝑣) + 𝛽 ⋅∇𝑣+ 𝛾, 𝑥 ∈Ω, 𝑡 > 0, (1.3)

𝑣(𝑥,0) = 𝑣0(𝑥), 𝑥 ∈Ω, (1.4)

𝑣 = 0, on 𝜕Ω, 𝑡 > 0. (1.5)

The notation in (1.3)-(1.5) attempts to cover both the one- and two-dimensional problems, for 𝑣 = 𝑣(𝑥, 𝑡), with the following conventions and 
assumptions:

(C1) In 2D, 𝑥 = (𝑥, 𝑦), Ω is the square (−1, 1)2 ∶= (−1, 1) × (−1, 1), with 𝜕Ω denoting the four edges conforming its boundary, ∇ denotes the gradient 
operator, and the dot ⋅ stands for the Euclidean inner product in ℝ2, either between vector fields or in operational terms. In the one-dimensional 
case, 𝑥= 𝑥, Ω = (−1, 1), 𝜕Ω = {−1, 1}, ∇ = 𝜕𝑥, and the dot is the usual product in ℝ.

(C2) We assume that 𝑎, 𝑐 ∶ Ω →ℝ are continuously differentiable functions in Ω and bounded above and below by positive constants. The right hand 
side of (1.3) involves linear and nonlinear terms which are assumed to be continuously differentiable functions of their arguments 𝑥, 𝑡, and 𝑣. 
While 𝛼 = 𝛼(𝑥, 𝑡, 𝑣), and 𝛾 = 𝛾(𝑥, 𝑡, 𝑣) are always scalar functions, 𝛽 is a vector field with two components 𝛽𝑖, 𝑖 = 1, 2 when 𝑑 = 2, and a scalar 
function when 𝑑 = 1.

As cited in [43], the origin of pseudo-parabolic (or Sobolev-type) problems of the form (1.3) can be found in [103,107]. From a mathematical 
point of view, their study was initiated, as far as theoretical aspects are concerned, in the paper by Showalter and Ting, [99], and in [46], while the 
first results on numerical analysis are obtained, to our knowledge, in [44,45], for discretizations with finite differences of the one-dimensional case. 
First references of (1.3) as physical model can be found in heat conduction, [27], and in fluid-flow, [106].

As an extension of the references cited above, we can make a brief review of the literature for (1.3)-(1.5) and related problems. As far as 
modelling is concerned, linear and nonlinear versions (with local and nonlocal terms) of pseudo-parabolic-type equations appear as mathematical 
models of fundamental phenomena, [11,13,14,25,27,29,31,33,34,40,41,47,57,63–65,68,70,72,74,75,79–81,83,86,90,113]. More specifically, they 
model imprisoned radiation through a gas, [63,64,81], fluid flow in fissured rock, [14], heat conduction in heterogeneous media, [27,93], out-

of-equilibrium viscoelastic relaxation effect, [83], and porous media applications, [57,66,104] – see also [5,29,61,62,65,113] for a good survey. 
Several combined numerical-analytical studies about pseudo-parabolic equations linked to fluid flow problems might be found in [14,33,34,40,41]. 
Local pseudo-parabolic equations also appear in the study of two-phase flow models with dynamic capillary pressure and hysteresis [113,87]. On the 
other hand, nonlocal pseudo-parabolic equations, [13,27,72], describe a variety of physical phenomena, such as the seepage of homogeneous fluids 
through a fissured rock, heat conduction problems with thermodynamic temperature and conduction temperature, and the analysis of nonstationary 
processes in semiconductors in the presence of sources.

The mathematical theory of pseudo-parabolic equations can be covered by [19,25,30,40,95,99,100]. Existence and uniqueness of weak solutions 
to nonlinear pseudo-parabolic equations are proved in [90], whereas the existence of weak solutions for degenerate cases is studied in [79,80]. A 
homogenization of a closely related pseudo-parabolic system is considered in [86]. Travelling wave solutions and their relation to non-standard 
shock solutions to hyperbolic conservation laws are investigated in [31,33] for linear higher order terms. Uniqueness of weak solutions for a pseudo-

parabolic equation modelling flow in porous media can be found in [25,74]. In [47], the authors study existence and uniqueness of weak solutions 
of the initial and boundary value problem for a fourth-order pseudo-parabolic equation with variable exponents of non-linearity, along with a 
long-time behaviour of weak solutions. Finally, existence of weak solutions for a nonlocal pseudo-parabolic model for the Brinkman two-phase flow 
model in porous media has been recently established [68].

Concerning the numerical approximation of equations of the form (1.3), the literature contains many references involving finite differences, [8–

10,41,105], as well as finite elements and finite volumes [5,6,76,82,111]. We also mention some convergence results. First, stability and convergence 
of difference approximations to pseudo-parabolic partial differential equations is discussed in [44,45] and the time stepping Crank-Nicolson Galerkin 
method to approximate several nonlinear Sobolev-type problems is analyzed in [38,39]. Of particular relevance for the present study is the finite 
element approach for the nonlinear periodic-initial-boundary-value problem, [12], where Arnold et al. obtain optimal error estimates, in 𝐿2 and 𝐻1

norm, of a standard Galerkin method with continuous piecewise polynomials, and a nodal superconvergence. Moreover, Fourier spectral methods 
of Galerkin and collocation type for quasilinear pseudo-parabolic equations are analysed in [91]. On the other hand, in [114] an error analysis 
of a Chebyshev-Legendre pseudospectral discretization for the Dirichlet problem of a class of one-dimensional, nonclassical parabolic equations is 
performed. The equations are of the form of the 1D version of (1.3) with 𝑐 = 1, 𝑎 ∈ [0, 1] constant, 𝛼 = −1, 𝛽 = 0. The estimates, in the 𝐿2 norm and 
the 𝐻1 seminorm, depend on the parameter 𝑎 and the regularity of the data. In particular, they show spectral accuracy. A full discretization with 
the Crank-Nicolson/leapfrog method as time integrator is also introduced and illustrated with numerical experiments. More convergence results can 
be found in [70] (see also [69]), where an analysis of a linearization scheme for an interior penalty discontinuous Galerkin for a pseudo-parabolic 
model in porous media applications is considered. High-order finite differences are employed in [11] and B-spline quasi-interpolation methods in 
[75]. In addition, an adaptive mesh approach for pseudo-parabolic-type problems is introduced in [29] and a meshless method, based on radial 
basis functions (RBFs), is considered in [65]. The use of wavelets (Haar basis) in the spatial discretization of two-dimensional Sobolev equations is 
proposed in [53], where the temporal discretization is carried out with finite differences. Finally, unconditionally stable vector splitting schemes for 
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pseudo-parabolic equations are constructed and analyzed in [108]. It is worthwhile to mention that standard operator splitting may fail to capture 
the correct behaviour of the solutions for pseudo-parabolic type differential models. In [6], the authors presented a non-splitting numerical method 
which is based on a fully coupled space-time mixed hybrid finite element/volume discretization approach to account for the delicate nonlinear 
balance between the hyperbolic flux and the pseudo-parabolic term linked to the full pseudo-parabolic differential model.

1.3. Aims and contributions of the present work

In the search for new approaches to the numerical approximation of pseudo-parabolic problems of the form (1.3)-(1.5), several points conform 
the aim of the present paper. Concerning the spatial discretization, we focus on the performance of spectral methods. As in the periodic case, studied 
by Quarteroni, [91], and the 1D problem approximated by the Chebyshev and Legendre pseudospectral schemes in [114], our first aim is analyzing 
the convergence of spectral methods to approximate the Dirichlet problem (1.3)-(1.5) in space. More specifically, for Galerkin and collocation 
methods based on a family of Jacobi polynomials, existence of solution of the semidiscrete systems and error estimates in suitable Sobolev norms 
are derived. The results proved here establish the rate of convergence of the spectral approximation in terms of the regularity of the coefficients and 
initial condition of the problem: for data in 𝐶𝑚(Ω) and if 𝑁 is the degree of the polynomial approximation, then spectral Galerkin error is shown to 
decrease as 𝑂(𝑁−𝑚) or 𝑂(𝑁1−𝑚), while spectral collocation error behaves like 𝑂(𝑁2−𝑚).

On the other hand, temporal discretization also contributes to this search for alternatives of approximation to (1.3)-(1.5) with the introduction 
of additional properties in the requirements for the time integrator to improve the quality of the simulation. In addition to the classical quantitative 
features concerning convergence, our attention is focused on two aspects of the problem. The first one is the possible mildly stiff character (which 
depends on the relative magnitude of the higher-derivative terms); this point may recommend the use of fully or diagonally implicit methods. A 
second aspect to be taken into account concerns the use of strong stability preserving (SSP) methods, [52,50,51], as time integrators. Construction 
and analysis of SSP methods for hyperbolic partial differential equations have the aim at preserving the nonlinear stability (in some norm or, more 
generally, convex functional) of spatial discretizations with respect to the forward Euler method. This SSP property makes influence in a better 
simulation of discontinuous solutions, avoiding the presence of spurious oscillations and reducing the computational cost. Here we are interested 
in studying the performance of these methods in problems (1.3)-(1.5) with non-regular data. Our study must also take into account the so-called 
dispersive order of the temporal integration (cf. [67] and references therein) and, in order to reduce the phase error, choosing schemes with 
dispersive stability functions.

Finally, a numerical study with representative experiments, involving linear and nonlinear equations, is made to analyze computationally the 
performance of the proposed approach and its potential usefulness for related problems. In particular, the experiments will serve us to analyze the 
order of convergence of the spectral discretizations as well as to address the behaviour of the schemes with respect to the regularity of the data. 
For illustrative purposes and since these Legendre and Chebyshev families are mostly used in other applications, the description and computational 
study will be focused on two semidiscretizations: a Legendre Galerkin method and a Chebyshev collocation scheme. We believe they cover most 
of the numerical aspects of our whole proposal for this spectral approach but, indeed, other semidiscretizations can be chosen. As far as the 
temporal integration is concerned, according to the pseudo-parabolic character of the equation and possible stiffness, with oscillations, of the 
semidiscretizations, two SSP methods of a family of singly diagonally implicit Runge-Kutta (SDIRK) schemes are taken. Among other properties, the 
methods have order of convergence two and three, respectively, they are A-stable (hence L-stable), have dispersive stability functions with phase 
order two and four (respectively), and a good computational performance for solving iteratively the intermediate stages.

The paper is divided into two parts as follows. Section 2 concerns the analysis of convergence of the spectral semidiscretization in space. 
Sections 2.1 and 2.2 are devoted to some theoretical aspects of (1.3)-(1.5) as the weak formulation and some assumptions on well-posedness. 
These preliminaries also include a summary on inverse inequalities, as well as projection and interpolation error estimates for the family of Jacobi 
polynomials under consideration. All this will be used to the numerical analysis of the spectral Galerkin approximation in Section 2.3, and the 
collocation approximation in Section 2.4. Both contain, under suitable hypotheses on the data of the problem, results on the existence of numerical 
solution and convergence to the solution of (1.3)-(1.5). The second part of the paper is in Section 3 and concerns the time discretization and a 
computational study of the performance of the resulting fully discrete schemes. Sections 3.1 and 3.2 consist of a description of the semidiscrete 
systems corresponding to the Legendre Galerkin and Chebyshev collocation spectral methods. The description includes details on formulation and 
practical implementation. Section 3.3 is devoted to the full discretization. Dispersion and strong stability preserving properties of the selected SDIRK 
schemes as time integrators are discussed, as well as several implementation details. The full discretizations will be then ready for performing the 
computational study in Section 3.4. Section 4 summarizes the results and outlines possible directions for future research.

1.4. Preliminaries

We now describe the main notation used throughout the paper. As in the presentation of the problem (1.3)-(1.5), the distinction between the 
cases 𝑑 = 1 and 𝑑 = 2 will be made when necessary.

For positive integer 𝑝, 𝐿𝑝(Ω) denotes the normed space of 𝐿𝑝-functions on Ω with || ⋅ ||𝑝 as associated norm, while for nonnegative integer 𝑚, 
𝐶𝑚(Ω) is the space of 𝑚-th order continuously differentiable functions on Ω ∶= Ω ∪ 𝜕Ω. Let −1 < 𝜇 < 1 and 𝑑 = 1. We consider the Jacobi weight 
function

𝑤(𝑥) =𝑤𝜇(𝑥) = (1 − 𝑥2)𝜇, 𝑥 ∈Ω. (1.6)

(𝜇 = 0 corresponds to the Legendre case and 𝜇 = −1∕2 to the Chebyshev case.) When 𝑑 = 2, (1.6) becomes

𝑤(𝑥) =𝑤𝜇(𝑥) = (1 − 𝑥2)𝜇(1 − 𝑦2)𝜇, 𝑥 = (𝑥, 𝑦) ∈ Ω. (1.7)

The function (1.6) or (1.7) is used to introduce the following weighted Sobolev spaces. By 𝐿2
𝑤 = 𝐿2

𝑤(Ω) we denote the space of squared integrable 
functions with respect to the weighted inner product

(𝜙,𝜓)𝑤 = ∫ 𝜙(𝑥)𝜓(𝑥)𝑤(𝑥)𝑑𝑥, 𝜙,𝜓 ∈𝐿2
𝑤, (1.8)
Ω
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and associated norm ||𝜙||0,𝑤 = (𝜙, 𝜙)1∕2𝑤 . For the Sobolev spaces 𝐻𝑘
𝑤 =𝐻𝑘

𝑤(Ω), 𝑘 ≥ 0 integer (where 𝐻0
𝑤 =𝐿2

𝑤) the corresponding norm will be denoted 
by

||𝜙||2𝑘,𝑤 =
𝑘∑

𝑗=0
|| 𝑑𝑗

𝑑𝑥𝑗
𝜙||20,𝑤, (1.9)

when 𝑑 = 1 and

||𝜙||2𝑘,𝑤 = ∫
Ω

∑
𝑝+𝑞≤𝑘

(
𝜕𝑝+𝑞𝜙

𝜕𝑥𝑝𝜕𝑦𝑞

)2
𝑑𝑥, (1.10)

when 𝑑 = 2, with the definition of 𝐻𝑠
𝑤 = 𝐻𝑠

𝑤(Ω) for real 𝑠 ≥ 0 as the corresponding interpolate space, [18,7]. On the other hand, for real 𝑠 ≥ 0, 
−1 < 𝜇 < 1, 𝐻𝑠

𝑤,0 =𝐻𝑠
𝑤,0(Ω) is defined as the closure of the space (Ω) of infinitely differentiable functions with compact support in Ω. The trace 

theorem, [18], characterizes 𝐻𝑠
𝑤,0 as the space of functions 𝜙 ∈𝐻𝑠

𝑤 such that

𝜙
|||Γ𝑗 = 𝜕𝜙

𝜕𝑛𝑗
=⋯ = 𝜕𝑚−1𝜙

𝜕𝑛𝑗
= 0, 1 ≤ 𝑗 ≤ 4, (1.11)

where in (1.11) 𝑛𝑗 is the unit outward normal to Ω on the corresponding edge Γ𝑗 of 𝜕Ω, 1 ≤ 𝑗 ≤ 4 and, assuming that 𝑠 + (1 − 𝜇)∕2 is not integer, 𝑚
is its integral part. In the case 𝑑 = 1, 𝐻𝑘

𝑤,0 is then the space of functions 𝜙 ∈𝐻𝑘
𝑤 such that 𝜙(−1) = 𝜙(1) = 0. Note that in the case of the Legendre 

approximation (𝑤(𝑥) = 1) the spaces 𝐻𝑠
𝑤, 𝐻𝑠

𝑤,0 are the standard Sobolev spaces 𝐻𝑠, 𝐻𝑠
0 .

For an integer 𝑁 ≥ 2, ℙ𝑁 = ℙ𝑁 (Ω) will stand for the space of polynomials on Ω of degree at most 𝑁 with respect to each variable and let

ℙ0
𝑁 = ℙ0

𝑁 (Ω) ∶= ℙ𝑁 (Ω) ∩𝐻1
0 (Ω),

be the subspace of polynomials in ℙ𝑁 (Ω) vanishing on the boundary 𝜕Ω.

If 𝑇 > 0 and 1 ≤ 𝑝 ≤∞, 𝐿𝑝(0, 𝑇 ) stands for the space of 𝐿𝑝 functions on [0, 𝑇 ] with norm | ⋅ |𝑝. For an integer 𝑘 ≥ 0, the space of 𝑚-th order con-

tinuously differentiable functions 𝑢 ∶ [0, 𝑇 ] →𝑋, where 𝑋 =𝐻𝑠
𝑤 or 𝐻𝑠

𝑤,0, 𝑠 ≥ 0, will be denoted by 𝐶𝑘(0, 𝑇 , 𝑋). Additionally, if 0 < 𝑘 <∞, 𝐿𝑘(0, 𝑇 , 𝑋)
will stand for the normed space of measurable functions 𝑢 ∶ [0, 𝑇 ] →𝑋 with associated norm

||𝑢||𝐿𝑘(0,𝑇 ,𝑋) =
⎛⎜⎜⎝

𝑇

∫
0

||𝑢(𝑡)||𝑘𝑠,𝑤𝑑𝑡⎞⎟⎟⎠
1∕𝑘

.

We also denote by 𝐿∞(0, 𝑇 , 𝑋) the space of functions 𝑢 ∶ [0, 𝑇 ] →𝑋 with finite norm

||𝑢||𝐿∞(0,𝑇 ,𝑋) = esssup𝑡∈[0,𝑇 ]||𝑢(𝑡)||𝑠,𝑤,
where essesup stands for the essential spectrum. Furthermore, 𝐶1(Ω ×[0, 𝑇 ] ×ℝ) (resp. 𝐶1

𝑏
= 𝐶1

𝑏
(Ω ×[0, 𝑇 ] ×ℝ)) will stand for the space of continuously 

differentiable (resp. uniformly bounded, continuously differentiable) functions 𝑓 = 𝑓 (𝑥, 𝑡, 𝑣) in (𝑥, 𝑡, 𝑣) ∈Ω × [0, 𝑇 ] ×ℝ.

The analysis of the collocation methods requires the introduction of discrete norms. Let {𝑥𝑗 , 𝑤𝑗}𝑁𝑗=0 be the nodes and weights of the Gauss-Lobatto 
quadrature related to 𝑤(𝑥), [18,23,78]. For 𝜙, 𝜓 continuous on Ω, the discrete inner product based on the Gauss-Lobatto data is denoted by

(𝜙,𝜓)𝑁,𝑤 =
𝑁∑
𝑗=0

𝜙(𝑥𝑗 )𝜓(𝑥𝑗 )𝑤𝑗, (1.12)

with associated norm ||𝜙||𝑁,𝑤 = (𝜙,𝜙)1∕2
𝑁,𝑤

. We recall that, [23]

(𝜙,𝜓)𝑁,𝑤 = (𝜙,𝜓)𝑤 , (1.13)

if 𝜙𝜓 ∈ ℙ2𝑁−1. The equivalence of the norms ||𝜙||𝑁,𝑤 and ||𝜙||0,𝑤 when 𝜙 ∈ ℙ𝑁 , established in the following lemma, was proved in [22] for the case 
of Legendre and Chebyshev weights and in [17] for (1.6) with 𝜇 > −1.

Lemma 1.1. Let 𝑁 ≥ 2 be an integer. Then there exist positive constants 𝐶1, 𝐶2, independent of 𝑁 , such that for any 𝜙 ∈ ℙ𝑁

𝐶1||𝜙||0,𝑤 ≤ ||𝜙||𝑁,𝑤 ≤ 𝐶2||𝜙||0,𝑤.
As far as the case 𝑑 = 2 is concerned, the corresponding inner product, cf. (1.12)

(𝜙,𝜓)𝑁,𝑤 =
𝑁∑
𝑗=0

𝑁∑
𝑘=0

𝜙(𝑥𝑗𝑘)𝜓(𝑥𝑗𝑘)𝑤𝑗𝑘, (1.14)

for 𝜙, 𝜓 continuous on Ω, makes use of the Gauss-Lobatto grid, [17]

𝑥𝑗𝑘 = (𝑥𝑗 , 𝑥𝑘), 𝑤𝑗𝑘 = (𝑤𝑗,𝑤𝑘), 0 ≤ 𝑗, 𝑘 ≤𝑁. (1.15)

For the sake of simplicity, the corresponding norm is also denoted by || ⋅ ||𝑁,𝑤. Observe that, since the quadrature formula

∫
Ω

𝜓(𝑥)𝑤(𝑥)𝑑𝑥 ≈
𝑁∑

𝑗,𝑘=0
𝜓(𝑥𝑗𝑘)𝑤𝑗𝑘, (1.16)

is exact on ℙ2𝑁−1, [17], then (1.13) also holds in this case.
18
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Remark 1.1. In some cases the previous inner products and norms will have to be extended to vector fields of two components in the expected way. 
Thus, if 𝜙 = (𝜙1, 𝜙2), 𝜓 = (𝜓1, 𝜓2) ∈𝐿2

𝑤 ×𝐿2
𝑤 we define

(𝜙,𝜓)𝑤 ∶= (𝜙1, 𝜓1)𝑤 + (𝜙2, 𝜓2)𝑤, (1.17)

where on the right-hand side (1.8) is used for the components. Similarly, for continuous vector fields 𝜙 = (𝜙1, 𝜙2), 𝜓 = (𝜓1, 𝜓2)

(𝜙,𝜓)𝑁,𝑤 ∶= (𝜙1, 𝜓1)𝑁,𝑤 + (𝜙2, 𝜓2)𝑁,𝑤, (1.18)

and (1.17), (1.18) lead to similar extensions for the corresponding norms || ⋅ ||0,𝑤, || ⋅ ||𝑁,𝑤. Since no confusion is possible and for the sake of 
simplicity, we use the same notation as in the scalar case.

Throughout the paper 𝐶 will be used to denote a generic, positive constant, independent of 𝑁 and 𝑢, but that may depend on 𝑡 (this will be 
specified by 𝐶(𝑡)).

2. Spectral semidiscretizations and error estimates

2.1. Weak formulation

The analysis of the spectral discretizations that will be made below requires some hypotheses, properties and technical results concerning 
(1.3)-(1.5) and the approximation in weighted norms. From now on we will fix 𝜇 ∈ (−1, 1) and consider the weight (1.6) or (1.7). The first property 
to be mentioned is the weak formulation of (1.3)-(1.5)

𝐴(𝑣𝑡,𝜓) = 𝐵(𝑣,𝜓), 𝜓 ∈𝐻1
𝑤,0 (2.1)

with 𝑣(0) = 𝑣0 and

𝐴(𝜙,𝜓) = (𝑐𝜙,𝜓)𝑤 +𝐿𝑎(𝜙,𝜓), (2.2)

𝐵(𝜙,𝜓) =𝐿𝛼(𝜙,𝜓) + (𝛽(𝜙) ⋅∇𝜙,𝜓)𝑤 + (𝛾(𝜙), 𝜓)𝑤, 𝜙,𝜓 ∈𝐻1
𝑤,0,

where, for 𝑑 = 𝑑(𝑥, 𝑡, 𝑣)

𝐿𝑑 (𝜙,𝜓) = ∫
Ω

𝑑∇𝜙 ⋅∇(𝜓𝑤)𝑑𝑥.

Since 𝑎 is bounded above and below by positive constants, 𝐿𝑎 is equivalent to

𝐿(𝜙,𝜓) = ∫
Ω

∇𝜙 ⋅∇(𝜓𝑤)𝑑𝑥, (2.3)

and therefore, [17,18,23], the bilinear form 𝐴 in (2.2) is continuous on 𝐻1
𝑤 ×𝐻1

𝑤,0 and elliptic on 𝐻1
𝑤,0 ×𝐻1

𝑤,0, that is, there are positive constants 
𝐶1, 𝐶2 such that for all 𝜙, 𝜓 ∈𝐻1

𝑤,0

|𝐴(𝜙,𝜓)| ≤ 𝐶1
(||𝜙||0,𝑤||𝜓||0,𝑤 + ||𝜙𝑥||0,𝑤||𝜓𝑥||0,𝑤)

≤ 𝐶1||𝜙||1,𝑤||𝜓||1,𝑤, 𝜙 ∈𝐻1
𝑤,𝜓 ∈𝐻1

𝑤,0,

𝐴(𝜙,𝜙) ≥ 𝐶2||𝜙||21,𝑤, 𝜙 ∈𝐻1
𝑤,0.

Using the weak formulation (2.1), we will assume that (1.3)-(1.5) is well-posed in the sense given by the following theorem. Its proof can be made 
by adapting the steps of the proof of the corresponding results for the periodic problem given in [12] for the 1D case (see also references therein).

Theorem 2.1. Let 𝑇 > 0 and assume that 𝑎, 𝑐 ∈ 𝐶1(Ω), 𝛼, 𝛽, 𝛾 ∈ 𝐶1
𝑏
(Ω × (0, 𝑇 ) ×ℝ). Given 𝑣0 ∈𝐻1

𝑤,0, then there is a unique solution 𝑣 ∈ 𝐶1(0, 𝑇 , 𝐻1
𝑤,0) of 

(2.1) with ||𝑣||𝐿∞(0,𝑇 ,𝐻1
𝑤) bounded by a constant depending only on ||𝑣0||1,𝑤 and the data of the problem. Furthermore, if 𝑣0 ∈ 𝐻𝑘

𝑤,0 with 𝑘 > 1 integer, 
𝑎, 𝑐 ∈ 𝐶𝑘−1(Ω), 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝐶𝑘−1(Ω × (0, 𝑇 ) ×ℝ), then 𝑣(𝑡) ∈𝐻𝑘

𝑤,0 for all 𝑡 ∈ (0, 𝑇 ) and

||𝑣||𝐿∞(0,𝑇 ,𝐻𝑘
𝑤) + ||𝑣𝑡||𝐿∞(0,𝑇 ,𝐻𝑘

𝑤) ≤ 𝐶, (2.4)

where 𝐶 is a constant depending only on ||𝑣0||𝑘,𝑤 and the data of the problem.

2.2. Projection and interpolation errors with Jacobi polynomials

Here we collect several results concerning projection and interpolation errors with respect to the weighted inner product (1.8) that will be used 
below. We refer to, e.g., [17,18,22,23,49,78,77,98] for details and additional properties. As in previous sections, the one- and two-dimensional cases 
will be discussed separately when necessary.

Let 𝜇 ∈ (−1, 1) and consider the weight (1.6) or (1.7). The spectral discretizations whose error will be estimated in the sequel are based on the 
family of Jacobi polynomials, which form an orthogonal basis of 𝐿2

𝑤. They are denoted by {𝐽𝜇
𝑛 }∞𝑛=0 in the 1D case. Particular cases such as Legendre 

and Chebyshev families correspond to 𝜇 = 0 and 𝜇 = −1∕2, respectively. Most properties of this Jacobi family (which is contained in the more general 
family of Jacobi polynomials {𝐽𝜇,𝜈

𝑛 }∞
𝑛=0, orthogonal in 𝐿2

𝑤𝜇,𝜈
with 𝑤𝜇,𝜈 (𝑥) = (1 − 𝑥)𝜇(1 + 𝑥)𝜈) are extensions of the corresponding properties of the 

Legendre family, [17,18]. For the 2D case, the orthogonal basis is formed by the tensor product of the Jacobi family {𝐽𝜇
𝑛 }∞ ,
𝑛=0
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𝐽𝑛(𝑥) = 𝐽𝜇
𝑛1
(𝑥)𝐽𝜇

𝑛2
(𝑦), 𝑛 = (𝑛1, 𝑛2) ∈ℕ2.

We first consider projection errors. Let 𝑁 ≥ 2 be an integer, 𝑣 ∈𝐻𝑠
𝑤, 𝑠 ≥ 0, and let 𝑃𝑁𝑣 ∈ ℙ𝑁 be the orthogonal projection of 𝑣 with respect to the 

inner product (1.8), and 𝑃 10
𝑁

𝑣 ∈ ℙ0
𝑁

be the orthogonal projection of 𝑣 with respect to the inner product in 𝐻1
𝑤,0

[𝜙,𝜓]𝑤 = ∫
Ω

∇𝜙′ ⋅∇𝜓𝑤(𝑥)𝑑𝑥.

Then we have, [17,21,18]

||𝑣− 𝑃𝑁𝑣||0,𝑤 ≤ 𝐶𝑁−𝑠||𝑣||𝑠,𝑤, 𝑣 ∈𝐻𝑠
𝑤, 𝑠 ≥ 0, (2.5)

||𝑣− 𝑃𝑁𝑣||𝑟,𝑤 ≤ 𝐶𝑁𝑟−𝑠||𝑣||𝑠,𝑤, 𝑣 ∈𝐻𝑠
𝑤, 1 ≤ 𝑟 ≤ 𝑠, 𝑟 integer

and for 𝑣 ∈𝐻𝑠
𝑤 ∩𝐻1

𝑤,0

||𝑣− 𝑃 10
𝑁 𝑣||1,𝑤 ≤ 𝐶𝑁1−𝑠||𝑣||𝑠,𝑤, 𝑠 ≥ 1. (2.6)

In the Legendre and Chebyshev cases, sharper estimates hold, see [22,23].

A third projection operator used below concerns the bilinear form 𝐴 given by (2.2). If 𝑣 ∈𝐻1
𝑤,0, then the orthogonal projection 𝑣∈ ℙ0

𝑁
of 𝑣 with 

respect to 𝐴 is defined as 𝑣 =𝑅𝑁𝑣 ∈ ℙ0
𝑁

such that

𝐴(𝑣− 𝑣,𝜓) = 0, 𝜓 ∈ ℙ0
𝑁. (2.7)

For this projection, we have, [17]

||𝑣− 𝑣||1,𝑤 +𝑁||𝑣− 𝑣||0,𝑤 ≤ 𝐶𝑁1−𝑚||𝑣||𝑚,𝑤, (2.8)

for 𝑣 ∈𝐻𝑚
𝑤 ∩𝐻1

𝑤,0, 𝑚 ≥ 1. Furthermore, a generalized estimate can be obtained as follows. If 𝑣 ∈𝐻𝑚
𝑤, 𝑚 ≥ 2, let 𝑢𝑁 ∈ ℙ𝑁 be a polynomial such that, 

[23]

||𝑢𝑁 − 𝑣||𝑘,𝑤 ≤ 𝐶𝑁𝑘−𝑚||𝑣||𝑚,𝑤, 0 ≤ 𝑘 ≤ 2. (2.9)

By using (2.8), (2.9) and the inverse inequalities, [17]

||𝜓||𝑠,𝑤 ≤ 𝐶𝑁2(𝑠−𝑟)||𝜓||𝑟,𝑤, 𝜓 ∈ ℙ𝑁, 0 ≤ 𝑟 ≤ 𝑠,

we have

||𝑣− 𝑣||2,𝑤 ≤ ||𝑢𝑁 − 𝑣||2,𝑤 + ||𝑢𝑁 − 𝑣||2,𝑤 ≤ 𝐶𝑁2−𝑚||𝑣||𝑚,𝑤 +𝐶𝑁2||𝑢𝑁 − 𝑣||1,𝑤 (2.10)

≤ 𝐶𝑁2−𝑚||𝑣||𝑚,𝑤 +𝐶𝑁2 (||𝑢𝑁 − 𝑣||1,𝑤 + ||𝑣− 𝑣||1,𝑤) ≤ 𝐶𝑁3−𝑚||𝑣||𝑚,𝑤.

Let 𝑁 ≥ 2 be an integer, 𝑠 ≥ 0, 𝑣 ∈ 𝐻𝑠
𝑤 and let 𝐼𝑁𝑣 denote the interpolant of 𝑣 on ℙ𝑁 based on the Gauss-Lobatto-Jacobi nodes. The following 

estimates for the interpolation errors can be found in [17,18]: for 𝑣 ∈𝐻𝑠
𝑤

||𝑣− 𝐼𝑁𝑣||𝑟,𝑤 ≤ 𝐶𝑁𝑟−𝑠||𝑣||𝑠,𝑤 𝑣 ∈𝐻𝑠
𝑤, 0 ≤ 𝑟 ≤ 1, 𝑠 > sup{𝑑 + 𝑟

2
,
𝑟+ 𝑑(1 + 𝜇)

2
}, (2.11)

where 𝑑 = 1 or 2. An estimate comparing the continuous and discrete inner products will be necessary: if 𝑓 ∈𝐻1
𝑤 and 𝜙 ∈ ℙ𝑁 , then

|(𝑓,𝜙)𝑤 − (𝑓,𝜙)𝑁,𝑤| ≤ 𝐶
(||𝑓 − 𝑃𝑁−1𝑓 ||0,𝑤 +||𝑓 − 𝐼𝑁𝑓 ||0,𝑤) ||𝜙||1,𝑤, (2.12)

where (⋅, ⋅)𝑁,𝑤 is given by (1.12), [23,17].

2.3. Spectral Galerkin approximation

Let 𝑁 ≥ 2 be an integer, 𝑇 > 0, and 𝑣0 ∈𝐻1
𝑤,0. The semidiscrete Galerkin approximation is defined as the function 𝑣𝑁 ∶ [0, 𝑇 ] → ℙ0

𝑁
satisfying

𝐴(𝑣𝑁𝑡 ,𝜓) = 𝐵(𝑣𝑁 ,𝜓), 𝜓 ∈ ℙ0
𝑁, (2.13)

𝐴(𝑣𝑁 (0), 𝜓) =𝐴(𝑣0, 𝜓), 𝜓 ∈ ℙ0
𝑁. (2.14)

The condition (2.14), that will be used below (see proof of Theorem 2.2) states that 𝑣𝑁 (0) is the orthogonal projection of 𝑣0 with respect to the 
operator 𝐴.

Remark 2.1. In what follows, we will make use of the two identities below (see, e.g., [12,91]). Let 𝐹 = 𝐹 (𝑥, 𝑡, 𝑢) be a 𝐶1 function of 𝑥, 𝑡, 𝑢. Then

𝐹 (𝑣) − 𝐹 (𝑧) = (𝑣− 𝑧)𝐹 ∗(𝑣, 𝑧), (2.15)

𝐹 (𝑣)∇𝑣− 𝐹 (𝑧)∇𝑧 = 𝐹 (𝑣)∇(𝑣− 𝑧) + (𝑣− 𝑧)𝐹 ∗(𝑣, 𝑧)∇𝑧, (2.16)

𝐹 ∗(𝑣, 𝑧) =

1

∫ 𝐹𝑢(𝑣+ 𝜏(𝑧− 𝑣))𝑑𝜏.

0
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Local existence and uniqueness of solutions of (2.13), (2.14) are ensured by standard theory of ordinary differential equations (ode) when (2.13)

is considered as a finite system for the coefficients of 𝑣𝑁 in some basis of ℙ0
𝑁

, by using the property of ellipticity of 𝐴 and continuity of 𝐵. Concerning 
this last point, some estimates on 𝐵 will be required in order to prove a global existence result. This is discussed in the following remark.

Remark 2.2. We write 𝐵 in (2.2) in the form

𝐵(𝜙,𝜓) =𝐵1(𝜙,𝜓) +𝐵2(𝜙,𝜓) +𝐵3(𝜙,𝜓) 𝐵1(𝜙,𝜓) = ∫
Ω

𝛼(𝜙)∇𝜙 ⋅∇(𝜓𝑤)𝑑𝑥,

𝐵2(𝜙,𝜓) = ∫
Ω

𝛽(𝜙) ⋅∇𝜙(𝜓𝑤)𝑑𝑥, 𝐵3(𝜙,𝜓) = ∫
Ω

𝛾(𝜙)(𝜓𝑤)𝑑𝑥.

Assuming that 𝛼, 𝛽, 𝛾 ∈ 𝐶1
𝑏
(Ω × (0, 𝑇 ) ×ℝ) (for the sake of simplicity, we suppress the dependence of 𝛼, 𝛽 and 𝛾 on 𝑥 and 𝑡 in the notation), then, using 

the continuity of (2.3), there are constants 𝛼1, 𝛽1 > 0 such that

|𝐵1(𝜙,𝜓)| ≤ 𝛼1||𝜙||1,𝑤||𝜓||1,𝑤, |𝐵2(𝜙,𝜓)| ≤ 𝛽1||𝜙||1,𝑤||𝜓||1,𝑤.
As far as 𝐵3 is concerned, from (2.15), (2.16) with 𝐹 = 𝛾 , we can write

𝛾(𝜙) = 𝛾(0) +𝜙𝛾∗(𝜙,0),

with 𝛾(0) ∶= 𝛾(𝑥, 𝑡, 0). Then

|𝐵3(𝜙,𝜓)| ≤ (𝛿 + 𝛾1||𝜙||1,𝑤)||𝜓||1,𝑤,
for some constant 𝛾1, and where 𝛿 = 𝛿(𝑡) = ||𝛾(0)||0,𝑤 is bounded on (0, 𝑇 ) by some constant 𝐶𝛿 .

Global existence and uniqueness for (2.13), (2.14) and the convergence to the solution of (2.1), (2.2) are proved in the following result.

Theorem 2.2. For all 𝑡 ∈ [0, 𝑇 ], there is a unique solution 𝑣𝑁 (𝑡) of (2.13), (2.14) satisfying

||𝑣𝑁 ||𝐿∞(0,𝑇 ,𝐻1
𝑤) ≤ 𝐶, (2.17)

for some constant depending on ||𝑣0||1,𝑤. Furthermore, let 𝑚 ≥ 1, and assume that 𝑣0 ∈ 𝐻𝑚
𝑤,0, 𝑎, 𝑐 ∈ 𝐶𝑚(Ω) ∩ 𝐻𝑚

𝑤 , 𝛼, 𝛽, 𝛾 ∈ 𝐶𝑚(Ω × (0, 𝑇 ) × ℝ) with 
𝛼(⋅, 𝑡), 𝛽(⋅, 𝑡), 𝛾(⋅, 𝑡) ∈𝐻𝑚

𝑤, 𝑡 ∈ [0, 𝑇 ]. If 𝑣 is the solution of (2.1), (2.2) given by Theorem 2.1, then

||𝑣𝑁 − 𝑣||𝐿∞(0,𝑇 ,𝐿2
𝑤) ≤ 𝐶𝑁−𝑚, (2.18)

||𝑣𝑁 − 𝑣||𝐿∞(0,𝑇 ,𝐻1
𝑤) ≤ 𝐶𝑁1−𝑚, (2.19)

for some constant 𝐶 which depends on ||𝑣0||𝐻𝑚
𝑤
, 𝛼, 𝛽, 𝛾, 𝑇 but not on 𝑁 .

Proof. Let 𝑣𝑁 be the solution of (2.13), (2.14), defined locally in 𝑡. Following previous approaches, [12,91], we first assume that 𝛼, 𝛽, 𝛾 ∈ 𝐶1
𝑏
(Ω ×

(0, 𝑇 ) ×ℝ). First we prove that 𝑣𝑁 exists on all [0, 𝑇 ]. By using the ellipticity of 𝐴 and Remark 2.2, we set 𝜓 = 𝑣𝑁𝑡 in (2.13) and have

||𝑣𝑁𝑡 ||1,𝑤 ≤ 𝐶||𝑣𝑁 ||1,𝑤 + 𝛿(𝑡),

for some constant 𝐶 . Then, integrating over (0, 𝑡) ⊂ [0, 𝑇 ] yields

||𝑣𝑁 ||1,𝑤 = ||𝑣𝑁 (0) +

𝑡

∫
0

𝑣𝑁𝑡 (𝑠)𝑑𝑠||1,𝑤 ≤ ||𝑣𝑁 (0)||1,𝑤 +𝐶

𝑡

∫
0

||𝑣𝑁 (𝑠)||1,𝑤𝑑𝑠+ ||𝛿||𝐿1(0,𝑇 ). (2.20)

From (2.14) with 𝜓 = 𝑣𝑁 (0) and continuity and coercivity of 𝐴 we have ||𝑣𝑁 (0)||1,𝑤 ≤ 𝐶||𝑣0||1,𝑤. This and Gronwall’s lemma applied to (2.20) imply 
the existence of 𝑣𝑁 (𝑡) for all 𝑡 ∈ (0, 𝑇 ) and (2.17).

As far as the error estimates are concerned, let 𝑣 be the projection given in (2.7) and define

𝜂 ∶= 𝑣− 𝑣, 𝑒𝑁 ∶= 𝑣𝑁 − 𝑣, 𝜉𝑁 ∶= 𝑣− 𝑣𝑁 = 𝜂 − 𝑒𝑁 ∈ ℙ0
𝑁. (2.21)

Note that, due to (2.7), 𝐴(𝜂𝑡, 𝜓) = 0, ∀𝜓 ∈ ℙ0
𝑁

, holds. Thus, (1.3) and (2.13) imply, for 𝜓 ∈ ℙ0
𝑁

𝐴(𝜉𝑁𝑡 ,𝜓) = −𝐴(𝑒𝑁𝑡 ,𝜓) = −(𝐵(𝑣𝑁 ,𝜓) −𝐵(𝑣,𝜓)). (2.22)

The right-hand side of (2.22) is written as

𝐵(𝑣𝑁 ,𝜓) −𝐵(𝑣,𝜓) = 𝐵1 +𝐵2 +𝐵3, (2.23)

𝐵1 = ∫
Ω

(
𝛼(𝑣+ 𝑒𝑁 )∇(𝑣+ 𝑒𝑁 ) − 𝛼(𝑣)∇𝑣

)
⋅∇(𝜓𝑤)𝑑𝑥,

𝐵2 = ∫
Ω

(
𝛽(𝑣+ 𝑒𝑁 ) ⋅∇(𝑣+ 𝑒𝑁 ) − 𝛽(𝑣) ⋅∇𝑣

)
(𝜓𝑤)𝑑𝑥,

𝐵3 = ∫
(
𝛾(𝑣+ 𝑒𝑁 ) − 𝛾(𝑣)

)
(𝜓𝑤)𝑑𝑥.
Ω
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We use (2.15), (2.16), the hypothesis 𝛼, 𝛽, 𝛾 ∈ 𝐶1
𝑏

and Theorem 2.1 to have

|𝐵1| ≤ 𝐶||𝑒𝑁 ||1,𝑤||𝜓||1,𝑤, |𝐵2| ≤ 𝐶||𝑒𝑁 ||1,𝑤||𝜓||1,𝑤, |𝐵3| ≤ 𝐶||𝑒𝑁 ||0,𝑤||𝜓||0,𝑤.
Therefore

|𝐵(𝑣𝑁 ,𝜓) −𝐵(𝑣,𝜓)| ≤ 𝐶||𝑒𝑁 ||1,𝑤||𝜓||1,𝑤, (2.24)

for 𝜓 ∈ ℙ0
𝑁

and with 𝐶 depending on ||𝑣0||1,𝑤. Then, taking 𝜓 = 𝜉𝑁𝑡 and using the coercivity of 𝐴, (2.22) and (2.24), we obtain

||𝜉𝑁𝑡 ||1,𝑤 ≤ 𝐶||𝑒𝑁 ||1,𝑤. (2.25)

Since (2.14) implies that 𝑣𝑁 (0) = 𝑣(0) and therefore 𝜉𝑁 (0) = 0, then writing 𝑒𝑁 = 𝜂 − 𝜉𝑁 yields

||𝜉𝑁 (𝑡)||1,𝑤 = || 𝑡

∫
0

𝜉𝑁𝑡 (𝑠)𝑑𝑠||1,𝑤 ≤ 𝐶

𝑡

∫
0

(||𝜉𝑁 (𝑠)||1,𝑤 + ||𝜂(𝑠)||1,𝑤)𝑑𝑠.
Therefore, (2.19) holds from Gronwall’s lemma, the property 𝑒𝑁 = 𝜂 − 𝜉𝑁 and Theorem 2.1.

We now prove the estimate (2.18). Lax-Milgram theorem, [37], ensures the existence of 𝜑 ∈𝐻1
𝑤,0 such that, [17,77]

𝐴(𝜓,𝜑) = (𝜉𝑁𝑡 ,𝜓)0,𝑤, 𝜓 ∈𝐻1
𝑤,0. (2.26)

Actually (see [23]) 𝜑 ∈𝐻2
𝑤 and

||𝜑||2,𝑤 ≤ 𝐶||𝜉𝑁𝑡 ||0,𝑤. (2.27)

We take 𝜓 = 𝜉𝑁𝑡 in (2.26) and use (2.22) to estimate

||𝜉𝑁𝑡 ||20,𝑤 ≤𝐴(𝜉𝑁𝑡 ,𝜑) =𝐴(𝜉𝑁𝑡 ,𝜑− 𝑃 10
𝑁 𝜑) +𝐴(𝜉𝑁𝑡 , 𝑃 10

𝑁 𝜑)

=𝐴(𝜉𝑁𝑡 ,𝜑− 𝑃 10
𝑁 𝜑) −𝐵(𝑒𝑁 ,𝑃 10

𝑁 𝜑)

=𝐴(𝜉𝑁𝑡 ,𝜑− 𝑃 10
𝑁 𝜑) +𝐵(𝑒𝑁 ,𝜑− 𝑃 10

𝑁 𝜑) −𝐵(𝑒𝑁 ,𝜑). (2.28)

Now, the continuity of 𝐴, (2.6), and (2.27) imply

𝐴(𝜉𝑁𝑡 ,𝜑− 𝑃 10
𝑁 𝜑) ≤ 𝐶||𝜉𝑁𝑡 ||1,𝑤||𝜑− 𝑃 10

𝑁 𝜑||1,𝑤 ≤ 𝐶𝑁−1||𝜉𝑁𝑡 ||1,𝑤||𝜑||2,𝑤 ≤ 𝐶𝑁−1||𝜉𝑁𝑡 ||1,𝑤||𝜉𝑁𝑡 ||0,𝑤. (2.29)

On the other hand, Remark 2.2, (2.6), and (2.27) lead to

|𝐵(𝑒𝑁 ,𝜑− 𝑃 10
𝑁 𝜑)| ≤ 𝐶

(||𝑒𝑁 ||1,𝑤||+ 𝛿
)
𝜑− 𝑃 10

𝑁 𝜑||1,𝑤 ≤ 𝐶𝑁−1 (||𝑒𝑁 ||1,𝑤||+ 𝛿
) ||𝜑||2,𝑤 ≤ 𝐶𝑁−1 (||𝑒𝑁 ||1,𝑤||+ 𝛿

) ||𝜉𝑁𝑡 ||0,𝑤. (2.30)

We now consider 𝐵1, defined in (2.23). In the one-dimensional case, integrating by parts, we can write, [12,91]

𝐵1(𝑒𝑁 ,𝜑) =

1

∫
−1

𝑒𝑁
(
(−𝛼𝑥 − 𝛼𝑢(𝑣𝑁 )𝑣𝑁𝑥 + 𝑣𝑥𝛼

∗)(𝜑𝑤)𝑥 −𝛼(𝑣𝑁 )(𝜑𝑤)𝑥𝑥
)
𝑑𝑥,

and several applications of Hardy’s inequality, see, e.g., [23] (this is not necessary of course in the Legendre case 𝜇 = 0), hypothesis 𝛼 ∈ 𝐶1
𝑏
, (2.17), 

and Theorem 2.1 imply

|𝐵1(𝑒𝑁 ,𝜑)| ≤ 𝐶||𝑒𝑁 ||0,𝑤||𝜑||2,𝑤. (2.31)

When 𝑑 = 2 we write 𝐵1(𝑒𝑁 , 𝜑) = 𝐼 + 𝐼𝐼 , with

𝐼 = ∫
Ω

[
(𝛼(𝑣+ 𝑒𝑁 )(𝑣+ 𝑒𝑁 )𝑥 − 𝛼(𝑣)𝑣𝑥

)
(𝜑𝑤)𝑥𝑑𝑥

= ∫
Ω

𝑒𝑁
((

𝛼∗𝑣𝑥 −
[
𝛼𝑥(𝑣𝑁 ) + 𝛼𝑣(𝑣𝑁

]
𝑣𝑁𝑥

)
(𝜑𝑤)𝑥 − 𝛼(𝑣𝑁 )(𝜑𝑤)𝑥𝑥

)
𝑑𝑥,

𝐼𝐼 = ∫
Ω

[
(𝛼(𝑣+ 𝑒𝑁 )(𝑣+ 𝑒𝑁 )𝑦 − 𝛼(𝑣)𝑣𝑦

)
(𝜑𝑤)𝑦𝑑𝑥

= ∫
Ω

𝑒𝑁
((

𝛼∗𝑣𝑦 −
[
𝛼𝑦(𝑣𝑁 ) + 𝛼𝑣(𝑣𝑁

]
𝑣𝑁𝑦

)
(𝜑𝑤)𝑦 − 𝛼(𝑣𝑁 )(𝜑𝑤)𝑦𝑦

)
𝑑𝑥,

and 𝛼 ∈ 𝐶1
𝑏
, (2.17), Theorem 2.1, and the application of Hardy’s inequality with respect to the corresponding variable in the integrals above lead 

also to (2.31).

Similarly, we write

𝐵2(𝑒𝑁 ,𝜑) =

1

∫ 𝑒𝑁
(
(−𝛽𝑥 − 𝛽𝑢(𝑣𝑁 )𝑣𝑁𝑥 + 𝑣𝑥𝛽

∗)(𝜑𝑤)
)
𝑑𝑥,
−1
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in the 1D case and

𝐵2(𝑒𝑁 ,𝜑) = ∫
Ω

𝑒𝑁
(
(𝛽∗1𝑣

𝑁
𝑥 + 𝛽∗2𝑣

𝑁
𝑦 )(𝜑𝑤) −

[
(𝛽1𝑥 + 𝛽1𝑣𝑣

𝑁
𝑥 )(𝜑𝑤)𝑥 + (𝛽2𝑦 + 𝛽2𝑣𝑣

𝑁
𝑦 )(𝜑𝑤)𝑦

]
(𝜑𝑤)

)
𝑑𝑥,

and hypothesis 𝛽 ∈ 𝐶1
𝑏
, (2.17), Theorem 2.1 and the continuity of 𝐿 in (2.3) lead to

|𝐵2(𝑒𝑁 ,𝜑)| ≤ 𝐶||𝑒𝑁 ||0,𝑤||𝜑||1,𝑤. (2.32)

As for 𝐵3 in (2.23), hypothesis 𝛾 ∈ 𝐶1
𝑏

implies

|𝐵3(𝑒𝑁 ,𝜑)| ≤ 𝐶||𝑒𝑁 ||0,𝑤||𝜑||0,𝑤. (2.33)

Thus (2.31)-(2.33) along with (2.27) yield

|𝐵(𝑒𝑁 ,𝜑)| ≤ 𝐶||𝑒𝑁 ||0,𝑤||𝜑||2,𝑤 ≤ 𝐶||𝑒𝑁 ||0,𝑤||𝜉𝑁𝑡 ||0,𝑤. (2.34)

If we apply (2.29), (2.30) and (2.34) to (2.28) we finally obtain

||𝜉𝑁𝑡 ||0,𝑤 ≤ 𝐶𝑁−1 (||𝜉𝑁𝑡 ||1,𝑤 + ||𝑒𝑁 ||1,𝑤 + 𝛿
)
+𝐶||𝑒𝑁 ||0,𝑤.

If we use (2.25), (2.19), 𝑒𝑁 = 𝜂− 𝜉𝑁 , Gronwall’s lemma and Theorem 2.1, then we see that (2.18) holds. Finally, the proof is completed by observing 
that the hypothesis 𝛼, 𝛽, 𝛾 ∈ 𝐶1

𝑏
can be removed from the same argument as in [12,91]. □

2.4. Spectral collocation approximation

Let 𝑁 ≥ 2 be an integer, 𝑇 > 0. We define the semidiscrete collocation approximation as a mapping 𝑣𝑁 ∶ [0, 𝑇 ] → ℙ0
𝑁

such that

𝑐𝑣𝑁𝑡 −∇ ⋅ 𝐼𝑁 (𝑎∇𝑣𝑁𝑡 ) = −∇ ⋅ 𝐼𝑁 (𝛼∇𝑣𝑁 ) + 𝛽 ⋅∇𝑣𝑁 + 𝛾(𝑣𝑁 ), (2.35)

at the nodes corresponding to the Gauss-Lobatto quadrature associated to (1.6) or (1.7), and introduced above, with

𝑣𝑁 (0) = 𝐼𝑁 (𝑣0), (2.36)

and where if 𝑢1, 𝑢2 ∈𝐻1
𝑤,0

𝐼𝑁 (𝑢1, 𝑢2) = (𝐼𝑁 (𝑢1), 𝐼𝑁 (𝑢2))𝑇 .

(For simplicity, in this section 𝑣𝑁 will stand for the collocation approximation and this should not be confused with the Galerkin approximation 
defined in Section 2.3.) A first task here is to derive a weak formulation equivalent to (2.35), (2.36) and involving the inner product (1.12). Note 
that if 𝜓 ∈ ℙ0

𝑁
then 𝑤−1∇(𝜓𝑤) ∈ (ℙ𝑁−1)2, [18]. Therefore, using (1.13) we have, for 𝜙, 𝜓 ∈ ℙ0

𝑁

−
𝑁∑
𝑗=0

(𝐼𝑁 (𝑎𝜙𝑥)𝑥(𝑥𝑗 ))𝜓(𝑥𝑗 )𝑤𝑗 = −

1

∫
−1

(𝐼𝑁 (𝑎𝜙𝑥))𝑥𝜓𝑤𝑑𝑥 =

1

∫
−1

𝐼𝑁 (𝑎𝜙𝑥)(𝜓𝑤)𝑥𝑑𝑥 = (𝑎𝜙𝑥,𝑤
−1(𝜓𝑤)𝑥)𝑁,𝑤,

in 1D, and similarly in 2D, [18]

−
𝑁∑

𝑗,𝑘=0
∇ ⋅ 𝐼𝑁 (𝑎∇𝜙)(𝑥𝑗𝑘))𝜓(𝑥𝑗𝑘)𝑤𝑗𝑘 = −∫

Ω

∇ ⋅ 𝐼𝑁 (𝑎∇𝜙))𝜓𝑤𝑑𝑥

= ∫
Ω

(
𝐼𝑁 (𝑎𝜙𝑥)(𝜓𝑤)𝑥 + 𝐼𝑁 (𝑎𝜙𝑦)(𝜓𝑤)𝑦

)
𝑑𝑥.

Then Remark 1.1 and the comments above enable (2.35), (2.36) to admit the weak form

𝐴𝑁 (𝑣𝑁𝑡 ,𝜓) = 𝐵𝑁 (𝑣𝑁 ,𝜓), 𝜓 ∈ ℙ0
𝑁 (2.37)

𝑣𝑁 (0) = 𝐼𝑁𝑣0, (2.38)

where, for 𝜙, 𝜓 ∈ ℙ0
𝑁

𝐴𝑁 (𝜙,𝜓) = (𝑐𝜙,𝜓)𝑁,𝑤 + (𝑎∇𝜙,𝑤−1∇(𝜓𝑤))𝑁,𝑤, (2.39)

𝐵𝑁 (𝜙,𝜓) = (𝛼(𝜙)∇𝜙,𝑤−1∇(𝜓𝑤))𝑁,𝑤 + (𝛽(𝜙) ⋅∇𝜙,𝜓)𝑁,𝑤 + (𝛾(𝜙), 𝜓)𝑁,𝑤. (2.40)

From the equivalence with the bilinear form, [17,18]

𝑎𝑁 (𝜙,𝜓) = (𝜙,𝜓)𝑁,𝑤 + (∇𝜙,𝑤−1∇(𝜓𝑤))𝑁,𝑤,

which is continuous in ℙ𝑁 × ℙ0
𝑁

and coercive in ℙ0
𝑁

for all weights 𝑤𝜇, −1 < 𝜇 < 1, we have that 𝐴𝑁 in (2.39) satisfies the properties of continuity 
and ellipticity
23



E. Abreu and A. Durán Computers and Mathematics with Applications 102 (2021) 15–44
|𝐴𝑁 (𝜙,𝜓)| ≤ 𝐶||𝜙||1,𝑁 ||𝜓||1,𝑁 , 𝜙 ∈ 𝑃𝑁,𝜓 ∈ 𝑃 0
𝑁,

𝐴𝑁 (𝜓,𝜓) ≥ 𝐶||𝜓||21,𝑁 , 𝜓 ∈ 𝑃 0
𝑁, (2.41)

where

||𝜙||21.𝑁 = ||𝜙||2𝑁,𝑤 + ||∇𝜙||2𝑁,𝑤. (2.42)

Remark 2.3. Note also that if 𝛼 ∈ 𝐶1
𝑏
, then the property of continuity of the bilinear form

(𝜙,𝜓)↦ (∇𝜙,𝑤−1∇(𝜓𝑤))𝑁,𝑤, 𝜙 ∈ ℙ𝑁,𝜓 ∈ ℙ0
𝑁,

proved in [18], implies the continuity of the first term of 𝐵𝑁 in (2.40). The other two terms can be estimated, when 𝛽, 𝛾 ∈ 𝐶1
𝑏
, in a similar way, 

using the arguments of Remark 2.2, the equivalence of the norms || ⋅ ||1,𝑤, and (2.42) in ℙ𝑁 given from Lemma 1.1.

Lemma 2.1. There is a unique solution 𝑣𝑁 (𝑡) of (2.37), (2.38) for all 𝑡 ∈ [0, 𝑇 ] with

||𝑣𝑁 ||𝐿∞(0,𝑇 ,𝐻1
𝑤) ≤ 𝐶,

where 𝐶 depends on ||𝑣0||𝐻1
𝑤

.

Proof. As before, let us first assume that 𝛼, 𝛽, 𝛾 ∈ 𝐶1
𝑏
. When (2.38) is viewed as a finite ode system for the coefficients of 𝑣𝑁 with respect to some 

basis of 𝑃 0
𝑁

, standard theory proves local existence and uniqueness. In order to prove continuation for 𝑡 ∈ (0, 𝑇 ) of 𝑣𝑁 (𝑡), previous comments on 𝐵𝑁

in Remark 2.3 and Remark 2.2 show that for 𝜓 ∈ 𝑃 0
𝑁

|𝐵𝑁 (𝑣𝑁 ,𝜓)| ≤ (𝐶||𝑣𝑁 ||1,𝑁 + ||𝛾(0)||𝑁,𝑤)||𝜓||1,𝑁 , (2.43)

for some constant 𝐶 and where 𝛾(0) = 𝛾(0, ⋅, 𝑡). Then, from (2.41) and (2.43), taking 𝜓 = 𝑣𝑁𝑡 in (2.37) leads to

||𝑣𝑁𝑡 ||1,𝑁 ≤ 𝐶
(||𝑣𝑁 ||1,𝑁 + ||𝛾(0)||1,𝑁)

.

The equivalence of the norms from Lemma 1.1 in ℙ𝑁 yields a similar inequality

||𝑣𝑁𝑡 ||1,𝑤 ≤ 𝐶
(||𝑣𝑁 (𝑡)||1,𝑤 + ||𝛾(0)||1,𝑤) ,

from which

||𝑣𝑁 (𝑡)||1,𝑤 ≤ ||𝑣𝑁 (0)||1,𝑁 +𝐶

𝑡

∫
0

𝐶
(||𝑣𝑁 (𝑠)||1,𝑤 + ||𝛾(0, ⋅, 𝑠)||1,𝑤)𝑑𝑠.

We conclude the proof applying Gronwall’s lemma and the stability of Gauss-Lobatto interpolation in the 𝐻1
𝑤 norm, that is, [17,23]

||𝐼𝑁𝑣0||1,𝑤 ≤ ||𝑣0||1,𝑤.
The hypothesis 𝛼, 𝛽, 𝛾 ∈ 𝐶1

𝑏
can be finally removed as in [12,91]. □

The corresponding convergence result is as follows.

Theorem 2.3. Let 𝑚 ≥ 2 and assume the hypotheses of Theorem 2.2. Let 𝑣 be the solution of (2.1), (2.2) given by Theorem 2.1, and 𝑣𝑁 be the solution of 
(2.37), (2.38), defined for all 𝑡 ∈ [0, 𝑇 ]. Then

||𝑣𝑁 − 𝑣||𝐿∞(0,𝑇 ,𝐻1
𝑤) ≤ 𝐶𝑁2−𝑚, (2.44)

for some constant 𝐶 which depends on ||𝑣0||𝐻𝑚
𝑤
, 𝛼, 𝛽, 𝛾, 𝑇 but not on 𝑁 .

Proof. Let 𝜂, 𝑒𝑁 , 𝜉𝑁 be as given in (2.21). For 𝜓 ∈ ℙ0
𝑁

, since 𝐴(𝜂𝑡, 𝜓) = 0, we can write

𝐴𝑁 (𝜉𝑁𝑡 ,𝜓) =𝐴𝑁 (𝑣𝑡,𝜓) −𝐴(𝑣𝑡,𝜓) +𝐵(𝑣,𝜓) −𝐵𝑁 (𝑣𝑁 ,𝜓). (2.45)

Note first that

|𝐴𝑁 (𝑣𝑡,𝜓) −𝐴(𝑣𝑡,𝜓)| ≤ |(𝑐𝑣𝑡,𝜓)𝑁,𝑤 − (𝑐𝑣𝑡,𝜓)0,𝑤|+ |||∫
Ω

(𝐸 − 𝐼𝑁 )(𝑎∇𝑣𝑡)(𝜓𝑤)𝑥𝑑𝑥
|||, (2.46)

where 𝐸 denotes the identity operator. Since 𝑣𝑡 = 𝐼𝑁𝑣𝑡, then (2.12), applied to the first term on the right-hand side of (2.46), and the hypothesis on 
𝑐 implies that

|(𝑐𝑣𝑡,𝜓)𝑁,𝑤 − (𝑐𝑣𝑡,𝜓)0,𝑤| ≤ 𝐶||(𝐸 − 𝑃𝑁−1)𝑣𝑡||0,𝑤||𝜓||0,𝑤. (2.47)

Now, (2.5) and (2.8) lead to
24
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||(𝐸 − 𝑃𝑁−1)𝑣𝑡||0,𝑤 ≤ ||(𝐸 − 𝑃𝑁−1)𝑣𝑡||0,𝑤 + ||(𝐸 − 𝑃𝑁−1)(𝑣𝑡 − 𝑣𝑡)||0,𝑤
≤ 𝐶(𝑁 − 1)−𝑚||𝑣𝑡||𝑚,𝑤 +𝐶(𝑁 − 1)−1||𝑣𝑡 − 𝑣𝑡||1,𝑤
≤ 𝐶(𝑁 − 1)−𝑚||𝑣𝑡||𝑚,𝑤. (2.48)

As far as the second term on the right-hand side of (2.46) is concerned, from the continuity of 𝐿 in (2.3) we have, for 𝜓 ∈ ℙ0
𝑁

|||
1

∫
−1

(𝐸 − 𝐼𝑁 )(𝑎∇𝑣𝑡) ⋅∇(𝜓𝑤)𝑑𝑥||| ≤ ||(𝐸 − 𝐼𝑁 )(𝑎∇𝑣𝑡)||0,𝑤||𝜓||1,𝑤. (2.49)

Now, from (2.11), the hypothesis on 𝑎 and (2.11) we can write

||(𝐸 − 𝐼𝑁 )(𝑎∇𝑣𝑡)||0,𝑤 ≤ ||(𝐸 − 𝐼𝑁 )(𝑎∇𝑣𝑡)||0,𝑤
+||(𝐸 − 𝐼𝑁 )(𝑎(∇𝑣𝑡 −∇𝑣𝑡))||0,𝑤

≤ 𝐶𝑁1−𝑚||𝑎∇𝑣𝑡||𝑚−1,𝑤 +𝐶𝑁−1||𝑎(∇𝑣𝑡 −∇𝑣𝑡)||1,𝑤
≤ 𝐶𝑁1−𝑚||𝑣𝑡||𝑚,𝑤 +𝐶𝑁2−𝑚||𝑣𝑡||𝑚,𝑤, (2.50)

where 𝐶 depends on ||𝑎||𝑚−1,𝑤. In the last inequality the property, [17,77]

||𝑢𝑣||𝑠,𝑤 ≤ 𝐶||𝑢||𝑠,𝑤||𝑣||𝑠,𝑤, 𝑢, 𝑣 ∈𝐻𝑠
𝑤, 𝑠 ≥ 1,

was used.

We now consider the last two terms in (2.45), written as

𝐵(𝑣,𝜓) −𝐵𝑁 (𝑣𝑁 ,𝜓) =𝐵(𝑣,𝜓) −𝐵(𝑣,𝜓) +𝐵(𝑣,𝜓) −𝐵𝑁 (𝑣,𝜓)

+𝐵𝑁 (𝑣,𝜓) −𝐵𝑁 (𝑣𝑁 ,𝜓), (2.51)

and estimate each couple of (2.51). Assume first that 𝛼, 𝛽, 𝛾 ∈ 𝐶1
𝑏
. Similar arguments to those of (2.24) along with (2.8) imply

|𝐵(𝑣,𝜓) −𝐵(𝑣,𝜓)| ≤ 𝐶||𝑣− 𝑣||1,𝑤||𝜓||1,𝑤 ≤ 𝐶𝑁1−𝑚||𝑣||𝑚,𝑤||𝜓||1,𝑤. (2.52)

On the other hand

𝐵(𝑣,𝜓) −𝐵𝑁 (𝑣,𝜓) = ∫
Ω

(𝐸 − 𝐼𝑁 )(𝛼∇𝑣)(𝜓𝑤)𝑥𝑑𝑥+ (𝛽 ⋅∇𝑣,𝜓)0,𝑤 − (𝛽 ⋅∇𝑣,𝜓)𝑁,𝑤 + (𝛾(𝑣), 𝜓)0,𝑤 − (𝛾(𝑣), 𝜓)𝑁,𝑤.

As in (2.49), (2.50)|||∫
Ω

(𝐸 − 𝐼𝑁 )(𝛼∇𝑣)(𝜓𝑤)𝑥𝑑𝑥
||| ≤ 𝐶𝑁2−𝑚||𝑣𝑡||𝑚,𝑤||𝜓||1,𝑤.

Next, using (2.12)

|(𝛽 ⋅∇𝑣,𝜓)0,𝑤 − (𝛽 ⋅∇𝑣,𝜓)𝑁,𝑤| ≤ 𝐶
(||(𝐸 − 𝑃𝑁−1)𝛽(𝑣) ⋅∇𝑣||0,𝑤 + ||(𝐸 − 𝐼𝑁 )𝛽(𝑣) ⋅∇𝑣||0,𝑤) ||𝜓||0,𝑤,

and 𝛽 ∈ 𝐶1
𝑏

along with (2.5) and (2.11) lead to

||(𝐸 − 𝑃𝑁−1)𝛽(𝑣)𝑣𝑥||0,𝑤 ≤ 𝐶(𝑁 − 1)1−𝑚||𝑣𝑥||𝑚−1,𝑤 +𝐶(𝑁 − 1)−1||𝑣𝑥 − 𝑣𝑥||1,𝑤 ≤ 𝐶(𝑁 − 1)2−𝑚||𝑣||𝑚,𝑤,

while, similarly to (2.50)

||(𝐸 − 𝐼𝑁 )𝛽(𝑣)𝑣𝑥||0,𝑤 ≤ 𝐶𝑁2−𝑚||𝑣||𝑚,𝑤.

Finally, (2.12) also implies

|(𝛾(𝑣), 𝜓)0,𝑤 − (𝛾(𝑣), 𝜓)𝑁,𝑤| ≤ 𝐶
(||(𝐸 − 𝑃𝑁−1)𝛾(𝑣)||0,𝑤 + ||(𝐸 − 𝐼𝑁 )𝛾(𝑣)||0,𝑤) ||𝜓||0,𝑤.

Now

||(𝐸 − 𝑃𝑁−1)𝛾(𝑣)||0,𝑤 ≤ ||(𝐸 − 𝑃𝑁−1)𝛾(𝑣)||0,𝑤 + ||(𝐸 − 𝑃𝑁−1)(𝛾(𝑣) − 𝛾(𝑣))||0,𝑤.
Using (2.15) with 𝐹 = 𝛾 we have, cf. Remark 2.2

𝛾(𝑣) = 𝛾(0) + 𝑣𝛾∗(𝑣,0),

𝛾(𝑣) = 𝛾(𝑣) + (𝑣− 𝑣)𝛾∗(𝑣, 𝑣).

Then from (2.5) and (2.8) we obtain

||(𝐸 − 𝑃𝑁−1)𝛾(𝑣)||0,𝑤 ≤ 𝐶𝑁1−𝑚(||𝛾(0, ⋅, 𝑡)||𝑚−1,𝑤 + ||𝑣||𝑚,𝑤),||(𝐸 − 𝑃𝑁−1)(𝛾(𝑣) − 𝛾(𝑣))||0,𝑤 ≤ 𝐶𝑁1−𝑚||𝑣||𝑚,𝑤.
25



E. Abreu and A. Durán Computers and Mathematics with Applications 102 (2021) 15–44
All this leads to

|𝐵(𝑣,𝜓) −𝐵𝑁 (𝑣,𝜓)| ≤ (
𝐶𝑁2−𝑚||𝑣||𝑚,𝑤 +𝑁1−𝑚||𝛾(0, ⋅, 𝑡)||𝑚−1,𝑤) ||𝜓||0,𝑤. (2.53)

Finally, Remark 2.3 on the continuity of 𝐵𝑁 and Lemma 1.1 imply

|𝐵𝑁 (𝑣,𝜓) −𝐵𝑁 (𝑣𝑁 ,𝜓)| ≤ 𝐶||𝑒𝑁 ||1,𝑤||𝜓||1,𝑤. (2.54)

We may now take 𝜓 = 𝜉𝑁𝑡 in (2.45), use the coercivity of 𝐴𝑁 and (2.46)-(2.54) to obtain an estimate of the form

||𝜉𝑁𝑡 ||1,𝑤 ≤ 𝐶𝑁2−𝑚(||𝛾(0, ⋅, 𝑡)||𝑚−1,𝑤 + ||𝑣(𝑡)||𝑚,𝑤 + ||𝑣𝑡(𝑡)||𝑚,𝑤 + ||𝑒𝑁 ||1,𝑤).
Then Gronwall’s lemma, the property 𝑒𝑁 = 𝜂 − 𝜉𝑁 and Theorem 2.1 conclude the proof of (2.44). The condition 𝛼, 𝛽, 𝛾 ∈ 𝐶1

𝑏
can be removed as in 

previous results. □

Remark 2.4. From the previous proof we can observe that the difference with respect to that of Theorem 2.2 is the use of the generalized estimate 
(2.11). This results in the term 𝑁2−𝑚 in (2.44), instead of 𝑁1−𝑚 as in (2.19).

3. Full discretization and a computational study

In this section we complete our proposal for the numerical approximation of the ibvp (1.3)-(1.5) with the introduction of the time integrator. 
The resulting fully discrete schemes will be used in a series of numerical experiments with the aim at illustrating the error estimates obtained in 
Sections 2.3 and 2.4, as well as investigating the general performance of the method with non-smooth data.

As mentioned in the Introduction, the spectral discretization, analyzed in Section 2 for the general Jacobi polynomials family and for the Galerkin 
and collocation versions, will be represented in the computational study below by the Legendre Galerkin method and the Chebyshev collocation 
scheme. These two subfamilies are widely used when approximating with spectral methods and their implementation is well known and explained 
in many references (see below). Our choice might have involved, in any of the two approaches (Galerkin or collocation), any other family of Jacobi 
polynomials, although the implementation is, to our knowledge, not so developed in the literature.

The spectral collocation approach and the practical formulation of the spectral Galerkin method (based on numerical integration, the so-called 
Galerkin with numerical integration formulation, [23]) involve some properties of the discrete norm associated to the Gauss-Lobatto quadrature that 
are now discussed. In the one-dimensional case, and for the given weight function 𝑤, the Gauss-Lobatto quadrature formula is obtained as follows, 
[22,23,49,78]. Let 𝑁 > 0 be an integer and ℙ𝑁 be the space of polynomials of degree at most 𝑁 on Ω, with 𝑝𝑁 the 𝑁 -th degree polynomial of the 
orthogonal Legendre or Chebyshev family. Let

𝑞(𝑥) = 𝑝𝑁+1(𝑥) + 𝑎𝑝𝑁 (𝑥) + �̃�𝑝𝑁−1(𝑥), (3.1)

with 𝑎, ̃𝑏 chosen such that 𝑞(−1) = 𝑞(1) = 0. If −1 = 𝑥0 < 𝑥1 <⋯ < 𝑥𝑁 = 1 are the roots of (3.1), then there are weights 𝑤0, … , 𝑤𝑁 such that

1

∫
−1

𝑝(𝑥)𝑤(𝑥)𝑑𝑥 =
𝑁∑
𝑗=0

𝑝(𝑥𝑗 )𝑤𝑗, 𝑝 ∈ ℙ2𝑁−1.

In the case of Legendre polynomials (where 𝑝𝑁 is denoted by 𝐿𝑁 ), the 𝑥𝑗 , 𝑗 = 1, … , 𝑁 − 1, are shown to be the zeros of 𝐿′
𝑁

and

𝑤𝑗 =
2

𝑁(𝑁 + 1)
1

𝐿𝑁 (𝑥𝑗 )2
, 𝑗 = 0,… ,𝑁,

while for the Chebyshev case (where 𝑝𝑁 is denoted by 𝑇𝑁 )

𝑥𝑗 = cos 𝑗𝜋
𝑁

, 𝑤𝑗 =

{
𝜋

2𝑁 𝑗 = 0,𝑁,
𝜋

𝑁
𝑗 = 1,… ,𝑁.

Recall that the Gauss-Lobatto quadrature is related to a discrete inner product (1.12) and satisfies (1.13). In the two-dimensional case, the Gauss-

Lobatto quadrature formula is given by (1.16) for 𝜓 ∈ ℙ2𝑁−1 with nodes and weights obtained from the 1D case and (1.15), [23,98].

For the computational study developed in this section, some cases of (1.3), relevant in the applications, will be used in the numerical experiments. 
We make here a brief description of them:

• The following linear pseudo-parabolic problem will be considered as a first model example

𝑣𝑡 − 𝑎∇ ⋅∇𝑣𝑡 = 𝑏∇ ⋅∇𝑣, 𝑥 ∈Ω= (−1,1)𝑑 , 𝑡 > 0, 𝑑 = 1,2, (3.2)

𝑣(𝑥,0) = 𝑣0(𝑥), 𝑥 ∈Ω, (3.3)

𝑣(𝑡)|||𝜕Ω = 0, 𝑡 > 0, (3.4)

where 𝑎 and 𝑏 are positive constants and 𝑣0 ∶ (−1, 1)𝑑 →ℝ. Equation (3.2) is a linearized version of the BBM-Burgers equation. It can be solved, 
for general enough initial conditions 𝑣0, by using the technique of separation of variables. In the one-dimensional case, from the basis of the 
corresponding eigenvalue problem

𝑋𝑛(𝑥) = sin 𝑛𝜋

2
(𝑥+ 1), 𝑛 = 1,2,… ,

with eigenvalues 𝜆𝑛 = −(𝑛𝜋∕2)2, 𝑛 = 1, 2, …, the solution of (3.2)-(3.4) can be formally written in the form
26
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𝑣(𝑥, 𝑡) =
∞∑
𝑛=1

𝐶𝑛𝑒
𝛼𝑛𝑡𝑋𝑛(𝑥), where 𝛼𝑛 =

𝑏𝜆𝑛
1 − 𝑎𝜆𝑛

, (3.5)

and 𝐶𝑛 is the 𝑛-th coefficient of 𝑣0 in the corresponding sine Fourier expansion

𝑣0(𝑥) =
∞∑
𝑛=1

𝐶𝑛𝑋𝑛(𝑥), (3.6)

assuming that this does exist. In order to check the convergence when dealing with problems (3.2)-(3.4), the representation (3.5)-(3.6) will 
be used in Section 4 as follows. For different initial data 𝑣0, the corresponding numerical approximation will be compared with the associated 
solution of (3.2)-(3.4), computed exactly or in an accurate enough, approximate way, via the sine Fourier expansion (3.5). In this last case, 
acceleration techniques, [101,102], will be used when necessary. For an alternative way to estimate the numerical order of convergence, see 
e.g. [20]. In the two-dimensional case, the corresponding representation of 𝑣, analogous to (3.5), is

𝑣(𝑥, 𝑦, 𝑡) =
∞∑

𝑛,𝑚=1
𝐶𝑛,𝑚𝑒

𝛼𝑛,𝑚𝑡𝑋𝑛,𝑚(𝑥, 𝑦), where 𝛼𝑛,𝑚 =
𝑏𝜆𝑛,𝑚

1 − 𝑎𝜆𝑛,𝑚
, 𝜆𝑛,𝑚 = −(𝑛𝜋∕2)2 − (𝑚𝜋∕2)2, (3.7)

with 𝑋𝑛,𝑚(𝑥, 𝑦) = sin 𝑛𝜋

2 (𝑥 + 1) sin 𝑛𝜋

2 (𝑦 + 1), 𝑛, 𝑚 = 1, 2, …, and 𝐶𝑛,𝑚 is the (𝑛, 𝑚)th coefficient of the sine Fourier expansion

𝑣0(𝑥, 𝑦) =
∞∑

𝑛,𝑚=1
𝐶𝑛,𝑚𝑋𝑛,𝑚(𝑥, 𝑦). (3.8)

• A second case study will be the Dirichlet problem of equations of the form

𝑣𝑡 − 𝑎∇ ⋅∇𝑣𝑡 + 𝛼 ⋅∇𝑣+ 𝛽∇ ⋅∇𝑣+ 𝛾 ⋅∇𝑓 (𝑣) = 𝐹 , (3.9)

with 𝑎 > 0, 𝛽 ∈ℝ, 𝑓 = 𝑓 (𝑣) some nonlinear function of 𝑣, 𝐹 = 𝐹 (𝑥, 𝑡) a source term, and 𝛼, 𝛾 ∈ℝ𝑑 . Two particular important examples of 𝑓 will 
be used in the numerical experiments:

– The case of the BBM-Burgers equation, for which

𝑓 (𝑣) = 𝑣2. (3.10)

– The function

𝑓 (𝑣) =
⎧⎪⎨⎪⎩

0 if 𝑣 < 0
𝑣2

𝑣2+2(1−𝑣)2 if 0 ≤ 𝑣 ≤ 1
1 if 𝑣 > 1

. (3.11)

The nonlinear term (3.11) appears in modelling two-phase flow porous media, see e.g. [5,6,24,96].

Some details on the implementation, for both Galerkin and collocation approximations, will be given below. They will be firstly described for the 
case of one dimension, and then we will explain how the procedures may be extended to the two-dimensional case.

3.1. Legendre spectral Galerkin approximation

Let 𝑁 ≥ 2 be an integer, 𝑇 > 0. In this section 𝑣𝑁 ∶ [0, 𝑇 ] → ℙ0
𝑁

will denote the semidiscrete Galerkin approximation, solution of (2.13), (2.14). 
We are interested in the representation of 𝑣𝑁 to implement (2.13), (2.14) in the Legendre case, and the discussion of several formulations. We 
consider the 1D case first. Due to the presence of nonlinear terms, we write 𝑣𝑁 in terms of the nodal basis functions, [23]

𝜓𝑗 (𝑥) =
1

𝑁(𝑁 + 1)
(1 − 𝑥2)
(𝑥𝑗 − 𝑥)

𝐿′
𝑁
(𝑥)

𝐿𝑁 (𝑥𝑗 )
, 𝑗 = 0,… ,𝑁, (3.12)

where 𝑥𝑗 , 𝑗 = 0, … , 𝑁 , denotes the nodes associated to the Legendre-Gauss-Lobatto quadrature, 𝐿𝑁 is the 𝑁 -th Legendre polynomial. The basis (3.12)

satisfies

𝜓𝑗 (𝑥𝑘) = 𝛿𝑗𝑘, 𝑗, 𝑘 = 0,… ,𝑁. (3.13)

A Galerkin with numerical integration (G-NI) formulation will be also adopted. This means that, [23], from the expansion of the numerical approx-

imation

𝑣𝑁 (𝑥, 𝑡) =
𝑁∑
𝑘=0

𝑉𝑘(𝑡)𝜓𝑘(𝑥), 𝑉𝑘(𝑡) = 𝑣𝑁 (𝑥𝑘, 𝑡), (3.14)

the integrals in the weak formulation are approximated by the Legendre-Gauss-Lobatto quadrature. The resulting system for 𝑉 (𝑡) = (𝑉0(𝑡), … , 𝑉𝑁 (𝑡))𝑇
will have the form(

𝐾 (0)
𝑁

(𝑐) +𝐾 (2)
𝑁

(𝑎)
)

𝑑

𝑑𝑡
𝑉 =𝐾 (2)

𝑁
(𝛼)(𝑉 ) +𝐾 (1)

𝑁
(𝛽)(𝑉 ) + Γ𝑁 (𝑉 ), (3.15)

where, for 0 ≤ 𝑗, 𝑘 ≤𝑁
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(
𝐾 (0)

𝑁
(𝑐)

)
𝑗𝑘

= 𝑐(𝑥𝑗 )𝑤𝑗𝛿𝑗𝑘,(
𝐾 (2)

𝑁
(𝑎)

)
𝑗𝑘

=
𝑁∑
ℎ=0

𝑎(𝑥ℎ)
𝑑𝜓𝑗

𝑑𝑥
(𝑥ℎ)

𝑑𝜓𝑘

𝑑𝑥
(𝑥ℎ)𝑤ℎ, (3.16)

(
𝐾 (2)

𝑁
(𝛼)(𝑉 )

)
𝑗𝑘

=
𝑁∑
ℎ=0

𝛼(𝑉ℎ)
𝑑𝜓𝑗

𝑑𝑥
(𝑥ℎ)

𝑑𝜓𝑘

𝑑𝑥
(𝑥ℎ)𝑤ℎ, (3.17)

(
𝐾 (1)

𝑁
(𝛽)(𝑉 )

)
𝑗𝑘

=
𝑁∑
ℎ=0

𝛽(𝑉ℎ)
𝑑𝜓𝑗

𝑑𝑥
(𝑥ℎ)𝜓𝑘(𝑥ℎ)𝑤ℎ = 𝛽(𝑉𝑘)

𝑑𝜓𝑗

𝑑𝑥
(𝑥𝑘)𝑤𝑘, (3.18)

(Γ𝑁 (𝑉 ))𝑗 =
𝑁∑
ℎ=0

𝛾(𝑉ℎ)𝜓𝑗 (𝑥ℎ)𝑤ℎ = 𝛾(𝑉𝑗 )𝑤𝑗. (3.19)

In general, matrices (3.16)-(3.18) are full and require 𝑂(𝑁3) operations, with the grid values of the derivatives computed from the Legendre 
differentiation matrix, [23]. The coefficients in (3.17)-(3.19) are obtained from the use of the nodal basis and (3.13). Thus if 𝔽 = 𝛼, 𝛽 or 𝛾 , then the 
computation of 𝔽 (𝑉 )(𝑥ℎ), ℎ = 0, … , 𝑁 , is understood as 𝔽 (𝑣𝑁 (𝑥ℎ, 𝑡)), that is 𝔽 (𝑉ℎ(𝑡)). The general formulation (3.15) can be simplified in particular 
cases of (1.3). For the pseudo-parabolic problem (3.9), the description is made with 𝐹 = 0 on Ω = (−1, 1) and homogeneous boundary conditions. (In 
the numerical experiments, though, problems on other intervals, with inhomogeneous terms in (3.9) and/or nonhomogeneous boundary data may 
be considered. This means that the implementation is adapted from the homogeneous problem in Ω to the corresponding case at hand via suitable 
change of variables to homogenize the boundary data, cf. Remark 3.1 below.) The formulation simplifies to

(𝑀𝑁 + 𝑎𝐾 (2)
𝑁

) 𝑑
𝑑𝑡

𝑉 (𝑡) + 𝛼𝐶𝑁𝑉 (𝑡) − 𝛽𝐾 (2)
𝑁

𝑉 (𝑡) + 𝛾𝐶𝑁𝑓 (𝑉 (𝑡)) = 0, (3.20)

where now

𝑀𝑁 = diag(𝑤0,… ,𝑤𝑁 ), (3.21)

𝐶𝑁 = −𝐾 (1)
𝑁

, (𝐾 (1)
𝑁

)𝑖𝑗 = (𝜓𝑖,
𝑑

𝑑𝑥
𝜓𝑗 )𝑁,𝑤, (3.22)

(𝐾 (2)
𝑁

)𝑖𝑗 = ( 𝑑

𝑑𝑥
𝜓𝑖,

𝑑

𝑑𝑥
𝜓𝑗 )𝑁,𝑤, (3.23)

and the computation of 𝑓 (𝑉 ) must be understood component wise. (For example, if 𝑓 (𝑣) = 𝑣2, then 𝑓 (𝑉 ) = 𝑉 ⋅𝑉 , where the dot denotes the Hadamard 
product of the vectors.) Note that this formulation makes the Galerkin method be essentially equivalent to the collocation approach. The reason is 
that in this case, [23]

𝐾 (1)
𝑁

= −𝑀𝑁𝐷𝑁, 𝐾 (2)
𝑁

= −𝑀𝑁𝐷2
𝑁,

where 𝐷𝑁 and 𝐷2
𝑁

denote here the first- and second-derivative matrix at the Legendre-Gauss-Lobatto nodes respectively. This is used, along with 
the boundary conditions, to write (3.20) in the form

(𝐼𝑁−1 − 𝑎�̃�(2)
𝑁
) 𝑑
𝑑𝑡

𝑉 (𝑡) + 𝛼�̃�𝑁𝑉 (𝑡) + 𝛽�̃�(2)
𝑁

𝑉 (𝑡) + 𝛾�̃�𝑁𝑓 (𝑉 (𝑡)) = 0,

where 𝐼𝑁−1 is the (𝑁 − 1) × (𝑁 − 1) identity matrix and the tilde means that the first and last rows and columns (for matrices) and the first and last 
components (in column vectors) are removed from (3.20).

For the 2D case, we write

𝑣𝑁 (𝑥, 𝑦, 𝑡) =
𝑁∑

ℎ,𝑖=0
𝑉ℎ,𝑖(𝑡)𝜓ℎ(𝑥)𝜓𝑖(𝑦), 𝑉ℎ,𝑖(𝑡) = 𝑣𝑁 (𝑥𝑖, 𝑥𝑗 , 𝑡), (3.24)

and the G-NI formulation for 𝑉 (𝑡) = (𝑉𝑖𝑗 (𝑡))𝑁𝑖,𝑗=0, based on the grid (1.15), will have the matrix form

𝑀𝑁 (𝑄𝑁 (𝑐) ⋅ 𝑉 ′)𝑀𝑁 +𝐾 (2)
𝑁

(𝐿𝑁 (𝑎) ⋅ 𝑉 ′)𝑀𝑁 +𝑀𝑁 (𝐿𝑁 (𝑎) ⋅ 𝑉 ′)(𝐾 (2)
𝑁

)𝑇 =𝐾 (2)
𝑁

𝛼𝑁 (𝑉 ))𝑀𝑁 +𝑀𝑁 (𝛼𝑁 (𝑉 ))(𝐾 (2)
𝑁

)𝑇

+𝐾 (1)
𝑁

𝛽𝑁 (𝑉 ))𝑀𝑁 +𝑀𝑁 (𝛽𝑁 (𝑉 ))(𝐾 (1)
𝑁

)𝑇

+𝑀𝑁𝛾𝑁 (𝑉 )𝑀𝑁, (3.25)

where the dot stands for the Hadamard product of matrices,

𝑄𝑁 (𝑑) ∶= (𝑑(𝑥𝑖, 𝑥𝑗 ))𝑁𝑖,𝑗=0, 𝑑 = 𝑎, 𝑐,

𝐹𝑁 (𝑉 ) ∶= (𝐹𝑁 (𝑉𝑖𝑗 ))𝑁𝑖,𝑗=0, 𝐹 = 𝛼, 𝛽, 𝛾,

and 𝑀𝑁, 𝐾 (1)
𝑁

and 𝐾 (2)
𝑁

are given by (3.21)-(3.23). The formulation (3.25) can be written in terms of tensor products when 𝑉 (𝑡) is vectorized in the 
form

𝑉 = (𝑉00,… , 𝑉𝑁0,… , 𝑉0𝑁,… , 𝑉𝑁𝑁 )𝑇 . (3.26)

Thus, for example, in the case of (3.9) with homogeneous conditions, making use of some properties of the Kronecker product ⊗, (3.25) can be 
simplified to (cf. [98])
28
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(
𝐼𝑁−1 ⊗𝐼𝑁−1 − 𝑎𝑁

) 𝑑

𝑑𝑡
𝑉 +𝑁𝑉 (𝑡) + 𝑁𝑓 (𝑉 (𝑡)) = 0, (3.27)

with

𝑁 ∶= 𝐼𝑁−1 ⊗ �̃�(2)
𝑁

+ �̃�(2)
𝑁

⊗ 𝐼𝑁−1,

𝑁 ∶= 𝛼1(�̃�𝑁 ⊗ 𝐼𝑁−1) − 𝛼2(𝐼𝑁−1 ⊗ �̃�𝑁 )

+ 𝛽
(
(�̃�(2)

𝑁
⊗ 𝐼𝑁−1) + (𝐼𝑁−1 ⊗ �̃�(2)

𝑁
)
)

𝑁 ∶= 𝛾1(�̃�𝑁 ⊗ 𝐼𝑁−1) − 𝛾2(𝐼𝑁−1 ⊗ �̃�𝑁 ),

(3.28)

where the tilde conserves the same meaning as before (adapted to the two-dimensional case), and where 𝑓 (𝑉 ) is also understood component wise.

Remark 3.1. It may be worth mentioning some implementation details concerning the treatment of the nonhomogeneous case. The semidiscretiza-

tion of any source term (independent of 𝑣) is similar to that of the coefficients 𝑎 and 𝑐 in (1.3), with 𝑡 as parameter. On the other hand, the presence of 
nonhomogeneous Dirichlet boundary conditions requires a previous step to homogenize the problem in the usual way. Searching for some function 
𝑤 satisfying the boundary conditions and defining 𝑣 = 𝑣 −𝑤, then 𝑣 satisfies a nonhomogeneous version of (1.3) but with homogeneous boundary 
conditions and initial data 𝑣(𝑥, 0) = 𝑣(𝑥, 0) −𝑤(𝑥, 0). By way of illustration, for the case of (3.9), the equation for 𝑣 would be of the form

𝑣𝑡 − 𝑎∇ ⋅∇𝑣𝑡 + 𝛼 ⋅∇𝑣+ 𝛽∇ ⋅∇𝑣+ 𝛾 ⋅∇𝑓 (𝑣+𝑤) = 𝐹 ,

where 𝑓 = 𝐹 −𝑤𝑡 − 𝑎∇ ⋅∇𝑤𝑡 + 𝛼 ⋅∇𝑤 + 𝛽∇ ⋅∇𝑤.

In one dimension, the auxiliary function 𝑤 is determined in the usual way: If 𝑣(±1, 𝑡) = 𝑐±(𝑡), then we can take

𝑤(𝑥, 𝑡) =
𝑐+(𝑡) − 𝑐−(𝑡)

2
𝑥+

𝑐+(𝑡) + 𝑐−(𝑡)
2

.

In the two-dimensional case, an extension of this procedure can be derived from the technique described in e.g. [97,98] (see also references therein). 
If

𝑣(±1, 𝑦, 𝑡) = 𝑎±(𝑦, 𝑡), 𝑣(𝑥,±1, 𝑡) = 𝑏±(𝑥, 𝑡), (3.29)

we consider

𝑢(1)(𝑥, 𝑦, 𝑡) =
𝑏+(𝑥, 𝑡) − 𝑏−(𝑥, 𝑡)

2
𝑦+

𝑏+(𝑥, 𝑡) + 𝑏−(𝑥, 𝑡)
2

.

Defining

𝑎±(𝑦, 𝑡) = 𝑎±(𝑦, 𝑡) − 𝑢(1)(±1, 𝑦, 𝑡),

then 𝑎(±1, 𝑡) = 0. Let

𝑢(2)(𝑥, 𝑦, 𝑡) =
𝑎+(𝑦, 𝑡) − 𝑎−(𝑦, 𝑡)

2
𝑥+

𝑎+(𝑦, 𝑡) + 𝑎−(𝑦, 𝑡)
2

.

Then, by construction, 𝑤(𝑥, 𝑦, 𝑡) = 𝑢(1)(𝑥, 𝑦, 𝑡) + 𝑢(2)(𝑥, 𝑦, 𝑡) satisfies (3.29).

For the linear problem (3.2)-(3.4), the general formulation (3.15), (3.25) can be also simplified. To this end, the implementation of the Legendre 
Galerkin method for (3.2)-(3.4) will follow the compact representation described in [97] for linear elliptic problems (see also [23,98]). The main 
idea is choosing a suitable basis for ℙ0

𝑁
such that the linear system obtained from (2.13) is as simple as possible. (In the experiments and for 

simplicity, 𝑣𝑁 (0) will be taken as 𝑣0(𝑥), so that the second equation (2.14) is satisfied.) In Lemma 2.1 of [97] this is given by 𝜙0, … , 𝜙𝑁−2 with

𝜙𝑘(𝑥) = 𝑐𝑘(𝐿𝑘(𝑥) −𝐿𝑘+2(𝑥)), 𝑐𝑘 =
1√

4𝑘+ 6
, 𝑘 = 0,… ,𝑁 − 2,

where 𝐿𝑘 denotes the Legendre polynomial of degree 𝑘. By using the representation

𝑣𝑁 (𝑥, 𝑡) =
𝑁−2∑
𝑘=0

𝑣𝑁𝑘 (𝑡)𝜙𝑘(𝑥),

and evaluating (2.13) for 𝜓 = 𝜙𝑗, 𝑗 = 0, … , 𝑁 − 2, we obtain the system for 𝑉 (𝑡) = (𝑣𝑁0 (𝑡), … , 𝑣𝑁
𝑁−2(𝑡))

𝑇

𝐾𝑁𝑉 ′(𝑡) + 𝑆𝑁𝑉 (𝑡) = 0, (3.30)

with 𝐾𝑁, 𝑆𝑁 matrices with entries

(𝐾𝑁 )𝑗𝑘 = (𝜙𝑘,𝜙𝑗 )𝑤
⏟⏞⏞⏟⏞⏞⏟

𝑏𝑗𝑘

+𝑎 (𝜙′
𝑘,𝜙

′
𝑗 )𝑤

⏟⏞⏞⏟⏞⏞⏟
𝑎𝑗𝑘

,

(𝑆𝑁 )𝑗𝑘 = 𝑏(𝜙′
𝑘,𝜙

′
𝑗 )𝑤 = 𝑏𝑎𝑗𝑘, (3.31)

where, [97]

𝑎𝑗𝑘 =
{

1 𝑘 = 𝑗

0 𝑘 ≠ 𝑗
, (3.32)
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and 𝑏𝑘𝑗 = 𝑏𝑗𝑘, defined, for 𝑘 ≥ 𝑗, as

𝑏𝑗𝑘 =
⎧⎪⎨⎪⎩
𝑐𝑘𝑐𝑗

(
2

2𝑗+1 + 2
2𝑗+5

)
𝑘 = 𝑗

−𝑐𝑘𝑐𝑗
2

2𝑘+1 𝑘 = 𝑗 + 2
0 otherwise

(3.33)

Then (3.31) is of the form

𝐾𝑁 = 𝑎𝐼𝑁−1 +𝐵𝑁, 𝑆𝑁 = 𝑏𝐼𝑁−1, (3.34)

where 𝐵𝑁 = (𝑏𝑗𝑘)𝑁−2
𝑗,𝑘=0. Note that this matrix is pentadiagonal with only three nonzero diagonals.

This approach may also be used in the two-dimensional case from the representation

𝑣𝑁 (𝑥, 𝑦, 𝑡) =
𝑁−2∑
𝑘,𝑗=0

𝑣𝑁𝑘𝑗 (𝑡)𝜙𝑘(𝑥)𝜙𝑗 (𝑦), (3.35)

and the analysis made in [97,98], leading to an alternative to the Kronecker formulation. A description of the procedure for the problem (3.9)

follows by way of illustration. In the linear case (𝛾 = 0), the semidiscrete Legendre spectral Galerkin approximation 𝑣𝑁 (𝑡) = (𝑣𝑁
𝑘𝑗
(𝑡))𝑁−2

𝑘,𝑗=0 will satisfy

𝐵
𝑑𝑣𝑁

𝑑𝑡
𝐵 + 𝑎

(
𝐴
𝑑𝑣𝑁

𝑑𝑡
𝐵 +𝐵

𝑑𝑣𝑁

𝑑𝑡
𝐴𝑇

)
+ 𝛼1𝐶𝑣𝑁𝐵 + 𝛼2𝐵𝑣𝑁𝐶𝑇 − 𝛽

(
𝐴𝑣𝑁𝐵 +𝐵𝑣𝑁𝐴𝑇

)
= 𝐹 , (3.36)

where 𝐴 = (𝑎𝑗𝑘) and 𝐵 = (𝑏𝑗𝑘) are given by (3.32) and (3.33), respectively, 𝐶 = (𝑐𝑗𝑘) is the matrix, [97]

𝑐𝑗𝑘 ∶= (𝜙′
𝑘,𝜙𝑗 )𝑤 = −𝑐𝑘𝑗 =

{
2𝑐𝑘𝑐𝑗 𝑘 = 𝑗 + 1
0 𝑘 ≠ 𝑗 + 1 , (3.37)

and 𝐹 = (𝐹𝑖𝑗 )𝑁−2
𝑖,𝑗=0, 𝐹𝑖𝑗 = ∫Ω 𝐹𝜙𝑖(𝑥)𝜙𝑗 (𝑦)𝑑𝑥. We may use the matrix decomposition method described in [97,98] to solve (3.36). Since in the Legendre 

case 𝐴 = 𝐼𝑁−1 and 𝐵 is symmetric and definite positive, we can decompose

𝐵𝐸 = Λ𝐸, (3.38)

where Λ ∶= diag(𝜆0, … , 𝜆𝑁−2) is the diagonal matrix of eigenvalues of 𝐵 and 𝐸 is an orthogonal matrix whose columns form an orthonormal basis of 
eigenvectors of 𝐵. If 𝑈 ∶=𝐸𝑇 𝑉 , then 𝑉 =𝐸𝑈 and applying (3.38) to (3.36) leads to

𝐸Λ𝑈 ′𝐵 + 𝑎
(
𝐸𝑈 ′𝐵 +𝐸Λ𝑈 ′)+ 𝛼1𝐶𝐸𝑈𝐵 + 𝛼2𝐸Λ𝑈𝐶𝑇 − 𝛽 (𝐸𝑈𝐵 +𝐸Λ𝑈 ) = 𝐹 . (3.39)

Multiplying (3.39) by 𝐸𝑇 =𝐸−1, we have

Λ𝑈 ′𝐵 + 𝑎
(
𝑈 ′𝐵 +Λ𝑈 ′)+ 𝛼1𝐶𝑈𝐵 + 𝛼2Λ𝑈𝐶𝑇 − 𝛽 (𝑈𝐵 +Λ𝑈 ) =𝐺 ∶=𝐸𝑇 𝐹 , (3.40)

where 𝐶 =𝐸𝑇𝐶𝐸. If we transpose (3.40) and use that 𝐶𝑇 = −𝐶 , we can write

𝐵(𝑈 ′)𝑇Λ+ 𝑎
(
𝐵(𝑈 ′)𝑇 + (𝑈 ′)𝑇Λ

)
− 𝛼1𝐵𝑈𝑇𝐶 + 𝛼2𝐶𝑈𝑇Λ− 𝛽

(
𝐵𝑈𝑇 +𝑈𝑇Λ

)
=𝐺𝑇 . (3.41)

The matrix system (3.41) may be decoupled in some cases. For example, if we assume 𝛼 = 0, and 𝑢𝑗 , 𝑔𝑗 denote, respectively, the 𝑗th column of 𝑈𝑇

and 𝐺𝑇 , then (3.41) reads

(𝑎𝜆𝑗𝐼𝑁−1 + (1 + 𝑎𝜆𝑗 )𝐵)𝑢𝑗 − 𝛽(𝜆𝑗𝐼𝑁−1 +𝐵)𝑢𝑗 = 𝑔𝑗 , (3.42)

for 𝑗 = 0, … , 𝑁 − 2. Then the implementation of the procedure consists of the eigendecomposition (3.38), the computation of 𝐺, the resolution of 
(3.42) (where we recall that 𝐵 is pentadiagonal with only three nonzero diagonals), and the change 𝑉 = 𝐸𝑈 . In the nonlinear case (𝛾 ≠ 0) we can 
still combine the previous approach with a G-NI approximation of the nonlinearity, using the relation between the two representations (3.24) and 
(3.35), that is

𝑉ℎ,𝑖(𝑡) =
𝑁−2∑
𝑘,𝑗=0

𝑣𝑁𝑘𝑗 (𝑡)𝜙𝑘(𝑥ℎ)𝜙𝑗 (𝑥𝑖), ℎ, 𝑖 = 0,… ,𝑁.

Remark 3.2. As it is well known, [85,48,23,110,109], spectral discretizations are generally ill conditioned because of the condition number of the 
matrices involved, which typically grows like 𝑂(𝑁4). For the experiments below (cf. Section 3.4) we did not observe limitations in this sense. This 
was probably due to the use of the basis chosen to expand the spectral approximation. The case illustrated above for the linear problem is an example 
of the basis recombination technique, which expands the spectral approximation in a basis of polynomials fulfilling the boundary conditions and 
that may lead to well-conditioned systems, specially in the Dirichlet case, [58,98]. In addition, and due (among other reasons) to the estimates 
proved in section 2, the values of 𝑁 considered in the experiments of section 3.4 were not needed to be too large.

The technique of basis recombination has several alternatives, useful for more general boundary conditions, like the boundary bordering con-

sidered in [84], and references therein. Furthermore, in order to reduce ill conditioning, several strategies of preconditioning and stabilization are 
indeed available, [23,59,112,98,84].
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3.2. Spectral collocation approximation

Consider first the 1D case. For an integer 𝑁 ≥ 2, 𝑣𝑁 ∶ [0, 𝑇 ] → ℙ0
𝑁

stands for the semidiscrete spectral collocation approximation satisfying (2.37), 
(2.38) and based on Chebyshev polynomials

𝑣𝑁 (𝑥, 𝑡) =
𝑁∑
𝑘=0

𝑣𝑁𝑘 (𝑡)𝑇𝑘(𝑥), (3.43)

with 𝑇𝑘(𝑥) standing for the Chebyshev polynomial of degree 𝑘. The approximation 𝑣𝑁 is usually represented by the nodal values

𝑉 (𝑡) = 𝑉 𝑁 (𝑡) = (𝑣𝑁 (𝑥0, 𝑡),… , 𝑣𝑁 (𝑥𝑁 , 𝑡))𝑇 , (3.44)

at the Gauss-Lobatto nodes 𝑥𝑗 , 𝑗 = 0, … , 𝑁 . The vector (3.44) is related to (3.43) by the formula, [23,89]

𝑣𝑘(𝑡) =
𝑁∑
𝑗=0

𝐶𝑘𝑗𝑉
𝑁
𝑗 (𝑡), 𝑉 𝑁

𝑗 (𝑡) = 𝑣𝑁 (𝑥𝑗 , 𝑡),

𝐶𝑘𝑗 =
2

𝑐𝑘𝑐𝑗
cos 𝑗𝑘𝜋

𝑁
, 𝑐𝑗 =

{
2 𝑗 = 0,𝑁
1 𝑗 = 1,… ,𝑁 − 1 .

The general formulation of the semidiscrete system for (3.44) can be derived by using a representation of 𝑉 in the nodal basis (3.12). Thus, a full-

matrix system, similar to that of the G-NI approach (3.15), can be obtained (but indeed with different nodes and weights). For practical purposes, it 
may be more interesting to describe the simplified formulations for the special cases (3.2) and (3.9). In the first one, we have

𝑍𝑁

(
(𝐼𝑁 − 𝑎𝐷2

𝑁 ) 𝑑
𝑑𝑡

𝑉 𝑁 (𝑡) − 𝑏𝐷2
𝑁𝑉 𝑁 (𝑡)

)
= 0,

where

• 𝐷𝑁 is now the 𝑁 ×𝑁 Chebyshev interpolation differentiation matrix, [23], and 𝐷2
𝑁
=𝐷𝑁𝐷𝑁 .

• 𝑍𝑁 is the 𝑁 ×𝑁 matrix that represents setting the first and the last components of a vector equals zero, enforcing in this way the boundary 
conditions (3.4) directly.

Similarly, for (3.9), the semidiscrete system in 1D is

(𝐼𝑁 − 𝑎𝐷2
𝑁 ) 𝑑

𝑑𝑡
𝑉 (𝑡) + 𝛼𝐷𝑁𝑉 (𝑡) + 𝛽𝐷2

𝑁𝑉 (𝑡) + 𝛾𝐷𝑁𝑓 (𝑉 (𝑡)) = 𝐹 , (3.45)

where 𝐹 stands for the vector of nodal values of 𝐹 . In the 2D case, the semidiscretization is formulated using the tensor product approach, and the 
2D version of (3.43), given by

𝑣𝑁 (𝑥, 𝑦, 𝑡) =
𝑁∑

𝑘,𝑚=0
𝑣𝑁𝑘,𝑚(𝑡)𝑇𝑘(𝑥)𝑇𝑚(𝑦),

and represented by the nodal values

𝑉 (𝑡) = (𝑣𝑁 (𝑥𝑖, 𝑥𝑗 , 𝑡))𝑁𝑖,𝑗=0.

The resulting formulas are similar to those in (3.27), (3.28). The two-dimensional version of (3.45) then reads(
𝐼𝑁 ⊗ 𝐼𝑁 − 𝑎

(
𝐷2

𝑁 ⊗ 𝐼𝑁 + 𝐼𝑁 ⊗𝐷2
𝑁

)) 𝑑

𝑑𝑡
𝑉 (𝑡) +

(
𝛼1𝐷𝑁 ⊗ 𝐼𝑁 − 𝛼2𝐼𝑁 ⊗𝐷𝑁

)
𝑉 (𝑡)

+𝛽
(
𝐷2

𝑁 ⊗ 𝐼𝑁 + 𝐼𝑁 ⊗𝐷2
𝑁

)
𝑉 (𝑡) +

(
𝛾1𝐷𝑁 ⊗ 𝐼𝑁 − 𝛾2𝐼𝑁 ⊗𝐷𝑁

)
𝑓 (𝑉 (𝑡)) = 𝐹 , (3.46)

for 𝑉 (𝑡), 𝑓 (𝑉 (𝑡)) and 𝐹 in the vectorized form, cf. (3.26).

Remark 3.3. We note that the matrix 𝐼𝑁 − 𝑎𝐷2
𝑁

in (3.45) is always invertible for 𝑎 > 0, since the eigenvalues of 𝐷2
𝑁

are real and negative, [48]. 
Possible ill conditioning in the resolution of (3.45) can also overcome (besides with some of the procedures already mentioned in Remark 3.2) with 
standard direct or iterative techniques for ill-conditioned systems, [94] and references therein. For the experiments below, see the description in 
section 3.4.

On the other hand, the strategy, described above, to simplify the implementation of the Legendre Galerkin method also implies an important 
saving in the computational effort. In the case of the Chebyshev collocation scheme, the performance in the computational cost can be improved 
with the combined use of a fast (FFT-based) transform and an efficient, preconditioned iterative technique for the resolution of the resulting systems, 
[98] (cf. Section 3.4 for details concerning the experiments of the present paper).

3.3. Full discretization

Our proposal for a numerical treatment of (1.3)-(1.5) is completed by the choice of schemes to approximate in time the spectral ode semidiscrete 
systems. To this end, we consider the singly diagonally implicit Runge-Kutta (SDIRK) methods of Butcher tableau

𝜇 𝜇 0
1 − 𝜇 1 − 2𝜇 𝜇

1 1
(3.47)
2 2
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with 𝜇 = 1∕2 (implicit midpoint rule, order two) and 𝜇 = 3+
√
3

6 (order three). Among other properties, the methods are A-stable (and therefore 
L-stable), cf. [54,55].

Our motivation for the choice of (3.47) mainly concerns the possible oscillatory stiff character (1.3) or the corresponding spectral semidiscrete 
systems. This phenomenon may happen, for example, when discretizing in space hyperbolic problems. In our case, the presence of the third order 
derivative ∇ ⋅ ∇𝜕𝑡 typically tends to regularize the evolution (and, as mentioned before, the stiff character) but the presence of oscillations, from 
discontinuous data, during the numerical simulation is not discarded if the hyperbolic terms in (1.3) are dominant. For example, in the BBM-Burgers 
case (3.9), (3.10), the previous situation may occur if 𝛾 >> 𝑎. In this sense, SDIRK methods like (3.47) combine two favourable qualitative properties 
that may ensure the stabilization of the discretization.

The first property is the generation of small dispersion errors of the oscillations in the numerical approximation. The literature on this topic is 
numerous (cf. e.g. [67] and references therein for details). A brief description follows. For a system of ordinary differential equations

𝑢′(𝑡) = 𝐹 (𝑢), (3.48)

obtained from a semidiscretization in space of some partial differential equations, we consider a 𝑠-stage, implicit Runge-Kutta method of Butcher 
tableau

𝑐 𝐴

𝑏𝑇
(3.49)

The stability properties of (3.49) are usually studied using the stability function

𝑅(𝑧) = det(𝐼 − 𝑧𝐴+ 𝑧𝑒𝑏𝑇 )
det(𝐼 − 𝑧𝐴)

, (3.50)

with 𝑒 = (1, 1, … , 1)𝑇 . The function 𝑅 is a rational approximation to the exponential function

𝑒𝑧 −𝑅(𝑧) =
∞∑
𝑗=0

𝐶𝑗𝑧
𝑗 ,

for some coefficients 𝐶𝑗 . The linear order of (3.49) is defined as the integer 𝑝 for which 𝐶𝑗 = 0, 𝑗 = 0, … , 𝑝, 𝐶𝑝+1 ≠ 0. On the other hand, dispersion 
errors when integrating (3.48) with (3.49) are measured by the phase error function

Φ(𝑦) ∶= 𝑦− arg(𝑅(𝑖𝑦)), 𝑦 ∈ℝ, (3.51)

(where arg(𝑧) denotes an argument of 𝑧). Analyticity at the origin enables to expand (3.51)

Φ(𝑦) =
∞∑
𝑗=0

𝐶𝑝,𝑗𝑦
𝑗 ,

and to define the phase order of (3.49) with stability function (3.50) as the integer 𝑞 such that

𝐶𝑝,𝑗 = 0, 𝑗 = 0,… , 𝑞,𝐶𝑝,𝑞+1 ≠ 0.

Then (3.49) is said to be dispersive of order 𝑞.

Several papers in the literature develop the theory of construction of dispersive RK (and multi-step) methods and, in the RK case, the relation of 
the order 𝑞 with the linear order 𝑝 and the number of stages 𝑠. For the case of DIRK and SDIRK methods, this relation is characterized in e.g. [73]. 
In particular, for the schemes (3.47) with 𝜇 = 1∕2 (considered as a 1-stage method) and 𝜇 = 3+

√
3

6 , the phase order is 𝑞 = 2 and 𝑞 = 4, respectively. 
This ensures small dispersion errors in the case of the appearance of oscillatory behaviour in the simulation, which is specially useful for long 
times.

A second aspect that we considered for the choice of (3.47) is the strong stability preserving (SSP) property and the use of the so-called 
SSP methods. These time integration schemes preserve the strong stability properties of spatial discretizations under the forward Euler time in-

tegration. Their formulation relies on the following SSP property (see [52] for details). For the system (3.48), assume that the forward Euler 
method

𝑢𝑛+1
𝐹𝐸

= 𝑢𝑛𝐹𝐸 +Δ𝑡𝐹 (𝑢𝑛𝐹𝐸 ),

satisfies, in some convex functional || ⋅ ||𝐶
||𝑢𝑛+1

𝐹𝐸
||𝐶 ≤ ||𝑢𝑛𝐹𝐸 ||𝐶 ,

when Δ𝑡 ≤Δ𝑡𝐹𝐸 for some Δ𝑡𝐹𝐸 . Given a 𝑠-stage Runge-Kutta (RK) method for (3.48), written in the form

𝑦𝑖 = 𝑢𝑛 +Δ𝑡

𝑠∑
𝑗=1

𝑎𝑖𝑗𝐹 (𝑦𝑗 ), 1 ≤ 𝑖 ≤ 𝑠+ 1,

𝑢𝑛+1 = 𝑦𝑠+1, (3.52)

the SSP coefficient of (3.52) is defined as the largest constant 𝜅 ≥ 0 such that

||𝑦𝑖||𝐶 ≤ ||𝑢𝑛||𝐶 , 1 ≤ 𝑖 ≤ 𝑠+ 1,

(which in particular implies ||𝑢𝑛+1||𝐶 ≤ ||𝑢𝑛||𝐶 ) whenever
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Table 1

Six smallest eigenvalues 𝜆 of 𝐵𝑁 for several 𝑁 .

𝑁 = 16 𝑁 = 32 𝑁 = 64
3.8483E-03 3.0081E-04 2.0239E-05

3.1038E-03 2.6739E-04 1.9040E-05

1.9343E-03 1.3810E-04 9.0673E-06

1.5451E-03 1.2251E-04 8.5278E-06

5.2100E-04 3.5183E-05 2.2777E-06

4.1274E-04 3.1177E-05 2.1418E-06

Δ𝑡 ≤ 𝜅Δ𝑡𝐹𝐸 . (3.53)

If 𝜅 > 0, the method (3.52) is said to be strong stability preserving under (3.53). Examples of convex functionals || ⋅ ||𝐶 are the classical norms and 
the total variation seminorm.

Our motivation for the use of SSP methods in (1.3)-(1.5) is similar to that mentioned above for the use of methods with dispersive stability 
functions; it can be found in the search for a way to ensure the stabilization of the discretization when dealing with discontinuous data. Note that 
several examples, see e.g. [52,50], reveal the advantages of SSP methods in hyperbolic problems like Burgers or Euler equations.

In our case, this application would also require a previous analysis on the behaviour of the spectral semidiscretizations with respect to the Euler 
method. Our confidence here is based on the stability results of the Euler method in other related approaches, [12,91]. By way of illustration, we 
may analyze the approximation to the Legendre semidiscrete system (3.30) by the forward Euler scheme. For 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 0, 1, … let 𝑉 𝑛

𝐹𝐸
∈ℝ𝑁−1 be 

an approximation to 𝑉 (𝑡𝑛) such that

𝐾𝑁

(
𝑉 𝑛+1
𝐹𝐸

− 𝑉 𝑛
𝐸𝐹

Δ𝑡

)
+𝑆𝑁𝑉 𝑛

𝐹𝐸 = 0, 𝑛 = 0,1,…

Using (3.34), this can be written as

𝑉 𝑛+1
𝐹𝐸

= (𝐼𝑁−1 − 𝑏Δ𝑡𝐾−1
𝑁 )𝑉 𝑛

𝐹𝐸, 𝑛 = 0,1,… (3.54)

Note that since 𝐵𝑁 is symmetric, all its eigenvalues are real. Furthermore, it is not hard to check that

𝑏𝑗𝑗𝑏𝑗+2,𝑗+2 − 𝑏2
𝑗,𝑗+2 > 0,

which implies that 𝐵𝑁 is also positive definite. Therefore all the eigenvalues 𝜆 are positive. Thus, from (3.54), we have

||𝑉 𝑛+1
𝐹𝐸

|| ≤ ||𝑉 𝑛
𝐹𝐸 ||, (3.55)

(where here || ⋅ ||𝐶 = || ⋅ || denotes the usual Euclidean norm in ℝ𝑁−1) when Δ𝑡 < 𝜇∕𝑏, for all 𝜇 = 𝑎 + 𝜆 eigenvalue of 𝐾𝑁 . This implies that, taking 
Δ𝑡𝐹𝐸 = 𝜇𝑚𝑖𝑛∕𝑏, where 𝜇min = min{𝜇, 𝜇 eigenvalue of 𝐾𝑁}, we obtain that the semidiscretization (3.30) satisfies the monotonicity property (3.55) with 
respect to the Euler method. It is experimentally observed (see Table 1) that as 𝑁 →∞ the smallest eigenvalue 𝜆 = 𝜆𝑁 of 𝐵𝑁 tends to zero. This 
means that asymptotically Δ𝑡𝐹𝐸 behaves like 𝑎∕𝑏 and in practice the choice Δ𝑡𝐹𝐸 = 𝑎∕𝑏 would imply (3.55) for Δ𝑡 ≤Δ𝑡𝐹𝐸 .

We finally observe that the SDIRK methods (3.47) are SSP methods and both were shown to be optimal (within the corresponding SDIRK schemes 
with the same stages and order) in the sense that the value 𝜅 in property (3.53) is maximal, [42,71]. They will be denoted by SSP12 (𝜇 = 1∕2, 1 
stage, order 2) and SSP23 (𝜇 = 3+

√
3

6 , 2 stages, order 3). It is indeed possible the use of higher-order methods and of different type (other Runge-Kutta 
families or multisteps methods), [50,51].

3.4. A computational study

In this section we make a computational study to check the performance of the numerical methods described above, considering (3.2) and (3.9)

as model problems.

The implementation of the fully discrete schemes is performed as follows. For the experiments with nonlinear problems below, and taking 
advantage of the diagonally implicit structure of the temporal discretization schemes, the corresponding implicit systems for the intermediate stages 
are numerically solved by the classical fixed point iteration. (Note that we have one intermediate stage for SSP12 and two for SSP23.) In all the 
computations we did not require more than two iterations per stage. In the case of the discretization of (3.20), the matrices (3.21)-(3.23) are 
computed directly, and this is also used in the resolution of the systems of the iterative process. Other alternatives, based on differentiation in 
frequency space, [98], may be somehow adapted to the representation (3.14). (To our knowledge, the approach in [98] would be the closest idea to 
what might be called fast transform in this Legendre case.) On the other hand, the full discretization of (3.45) takes advantage of the computation of 
𝐷𝑁𝑉 with FFT techniques, [23,89]. For the resolution of the systems in the fixed point iterative process, we implemented two procedures: the first 
one was a direct resolution, based on a unique factorization of the matrix 𝐼𝑁 − 𝑎𝐷2

𝑁
, 𝑎 > 0. The second one was carried out with Krylov methods, 

[94], making use of direct computations with 𝐼𝑁 − 𝑎𝐷2
𝑁

to implement the Conjugate Gradient method. This second approach was experimentally 
observed more efficient (probably because of the performance of the FFT in the computations) and was taken in the numerical results below. We

also recall that in the case of linear problems, iteration is not necessary. For the computations in 2D, we made use of the Kronecker formulations 
(3.27) and (3.46); in some linear cases we also implemented the procedure based on the eigendecomposition (3.35). The application of this approach 
to the nonlinear case, and the use of dynamical low-rank approximation (cf. [26] and references therein) for the matrix or tensor systems will be 
considered for a future research.

In the 1D case and concerning the Legendre Galerkin method, the numerical solution at a final time 𝑇 =𝑀Δ𝑡 is evaluated at a grid of Chebyshev 
points in (−1, 1)

𝑥𝑗 = cos 𝑗𝜋 , 𝑗 = 0,… , 𝑃 ,

𝑃
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Table 2

Numerical approximation of (3.9), (3.10), (3.56): 𝐿2 and 𝐻1 norms of 
the error at 𝑇 = 1 with Legendre Galerkin method and 𝑁 = 256.

Δ𝑡 𝜇 = 1∕2 𝜇 = 3+
√
3

6
𝐿2 Error 𝐻1 Error 𝐿2 Error 𝐻1 Error

0.1 2.8114E-04 1.0382E-03 2.6531E-05 9.6292E-05

0.05 7.0232E-05 2.5936E-04 3.4773E-06 1.2570E-05

0.0025 1.7555E-05 6.4830E-05 4.4547E-07 1.6069E-06

0.00125 4.3885E-06 1.6207E-05 5.6383E-08 2.0316E-07

Fig. 1. Numerical solution with Legendre Galerkin and SSP23 for the problem (3.9), (3.10), (3.56) at 𝑡 = 0,0.3,0.6,1.

and compared with the solution at the grid using the 𝐿2, 𝐻1 and 𝐿∞ norms

||𝐸(ℎ)||2 =(
ℎ

𝑃∑
𝑗=1

(𝑣𝑀 (𝑥𝑗 ) − 𝑣(𝑥𝑗 , 𝑇 ))2
)1∕2

,

||𝐸(ℎ)||𝐻1 =

(
ℎ

𝑃∑
𝑗=1

((𝑣𝑀 )′(𝑥𝑗 ) − 𝑣′(𝑥𝑗 , 𝑇 ))2 + ||𝐸(ℎ)||2
𝐿2

)1∕2

,

||𝐸(ℎ)||∞ = max
1≤𝑗≤𝑃 |𝑣𝑀 (𝑥𝑗 ) − 𝑣(𝑥𝑗 , 𝑇 )|,

where ℎ = 2∕𝑁 . (For the computations in 2D, we considered the same formulas for the errors, but with respect to the grid {(𝑥𝑖, 𝑥𝑗 ) ∶ 𝑖, 𝑗 = 0, … , 𝑃 }
and using the vectorized form of the approximations and the solutions.) For the Chebyshev collocation scheme, the comparisons are made in 
the corresponding weighted, discrete norms, computing the derivative with the matrix 𝐷𝑁 . Note that in this case, we take into account that the 
formulation of the scheme gives the role of representation of the numerical solution to the vector of approximation at the quadrature nodes. In 
most of the computations the 𝐿2 and 𝐿∞ norms give similar conclusions. For that reason, the 𝐿∞ norm of the error will be shown only in those 
experiments for which it provides new features.

3.4.1. Problem 1. Spectral convergence for Legendre Galerkin approximation

In order to check the spectral convergence for regular data, we first consider the BBM-Burgers problem (3.9), (3.10) in Ω = (−1, 1) with homoge-

neous boundary conditions, 𝑎 = 𝛼 = 1, 𝛽 = −1, 𝛾 = 1∕2, and

𝑣(𝑥,0) = sin(𝜋𝑥),

𝐹 (𝑥, 𝑡) = 𝑒−𝑡
(
−sin(𝜋𝑥) + 𝜋 cos(𝜋𝑥)(1 + 𝑒−𝑡 sin(𝜋𝑥))

)
. (3.56)

The exact solution is 𝑣(𝑥, 𝑡) = 𝑒−𝑡 sin(𝜋𝑥), [82]. The problem is approximated by the Legendre G-NI method and the two SSP time integrators. 𝐿2

and 𝐻1 errors at 𝑇 = 1 with 𝑁 = 256 and several values of the time stepsize Δ𝑡 are shown in Table 2. The results show the corresponding order of 
convergence of the time integrators. (We checked that larger values of 𝑁 did not give any change in this behaviour.) The form of the numerical 
solution at several times is shown in Fig. 1.
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Table 3

Numerical approximation of (3.9), (3.10), (3.57): 𝐿2 norms 
of the error at 𝑇 = 1 and rates of convergence with Legendre 
Galerkin method and 𝑁 = 64.

Δ𝑡 𝜇 = 1∕2 𝜇 = 3+
√
3

6
𝐿2 Error Rate 𝐿2 Error Rate

0.1 4.6655E-04 4.4400E-05

0.05 1.1660E-04 2.000 5.6934E-06 2.963

0.0025 2.9146E-05 2.000 7.2100E-07 2.981

0.00125 7.2864E-06 2.000 9.0721E-08 2.991

Fig. 2. Numerical solution with Legendre Galerkin and SSP23 for the problem (3.9), (3.10), (3.57) at 𝑡 = 0,1 with Δ𝑡 = 0.025.

The spectral convergence and the order of the temporal discretization are also checked in Table 3, corresponding to the 𝐿2 errors at 𝑇 = 1, 
with 𝑁 = 64, for the 2D problem (3.9), (3.10) in Ω = (−1, 1)2, with homogeneous boundary conditions, 𝑎 = 2, 𝛼 = (1, 1)𝑇 , 𝛽 = −1, 𝛾 = (1∕2, 1∕2)𝑇 , 
and

𝑣(𝑥, 𝑦,0) = sin(𝜋𝑥) sin(𝜋𝑦),

𝐹 (𝑥, 𝑦, 𝑡) = 𝑒−𝑡
(
−(1 + 2(𝑎+ 𝛽)𝜋2) sin(𝜋𝑥) sin(𝜋𝑦) + 𝜋(𝛼1 cos(𝜋𝑥) sin(𝜋𝑦) + 𝛼2 sin(𝜋𝑥) cos(𝜋𝑦))

)
+2𝜋𝑒−2𝑡 sin(𝜋𝑥) sin(𝜋𝑦)(𝛾1 cos(𝜋𝑥) sin(𝜋𝑦) + 𝛾2 sin(𝜋𝑥) cos(𝜋𝑦)). (3.57)

The exact solution is 𝑣(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(𝜋𝑥) sin(𝜋𝑦). Fig. 2 shows the form of the numerical approximation at the initial and final time given by the 
discretization with the spectral Legendre Galerkin G-NI method and SSP23.

3.4.2. Problem 2. Spectral convergence for Chebyshev collocation approximation

The Chebyshev collocation scheme is now used to approximate the BBM-Burgers problem (3.9), (3.10) in Ω = (−20, 30) with homogeneous 
boundary conditions, 𝑎 = 𝛼 = 𝛽 = 1, 𝛾 = −1∕2 and, [76]

𝑣(𝑥,0) = sech(𝑥),

𝐹 (𝑥, 𝑡) = sech(𝑥− 𝑡)
(
1 − 6 tanh3(𝑥− 𝑡) − 2 tanh2(𝑥− 𝑡)

+ tanh(𝑥− 𝑡)(5 + sech(𝑥− 𝑡))) . (3.58)

The function 𝑣(𝑥, 𝑡) = sech(𝑥 − 𝑡) is the solution of the corresponding initial-value problem. Strictly speaking, it does not satisfy the homogeneous 
boundary conditions. But its values at the boundaries 𝑥 = −20, 30 are, for each 𝑡 > 0, small enough to take it for comparison with the numerical 
solutions given by Chebyshev collocation and SSP12, SSP23 methods. The 𝐿2 and 𝐻1 errors at 𝑇 = 10 are shown in Table 4, while the travelling

wave form for the numerical profile is illustrated in Fig. 3. The errors show again the order of convergence in time of the fully discrete methods. 
Here a larger value of 𝑁 is required. This is probably related with the approximation at the maximum height of the wave and the fact that the 
Chebyshev points are not equally distributed.

The performance of the Chebyshev collocation scheme is also illustrated by approximating the 2D problem (3.9), (3.10) in Ω = (−𝜋, 𝜋) × (−1, 1), 
with 𝑎 = 5, 𝛼 = (0, 0)𝑇 , 𝛽 = 1, 𝛾 = (1, 1)𝑇 , boundary conditions

𝑣(−𝜋, 𝑦, 𝑡) = −1 − 𝑦, 𝑣(𝜋, 𝑦, 𝑡) = 1 − 𝑦, 𝑣(𝑥,−1, 𝑡) = 𝑥+ 1, 𝑣(𝑥,1, 𝑡) = 𝑥− 1,

and

𝑣(𝑥, 𝑦,0) = sin(𝑥) sin(𝜋𝑦) + 𝑥− 𝑦,
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Table 4

Numerical approximation of (3.9), (3.10), (3.58): 𝐿2 and 𝐻1 norms of 
the error at 𝑇 = 1 with Chebyshev collocation method and 𝑁 = 1024.

Δ𝑡 𝜇 = 1∕2 𝜇 = 3+
√
3

6
𝐿2 Error 𝐻1 Error 𝐿2 Error 𝐻1 Error

0.1 5.2981E-04 9.8639E-04 2.2235E-05 3.8118E-05

0.05 1.3237E-04 2.4636E-04 32.9139E-06 4.9823E-06

0.0025 3.3087E-05 6.1631E-05 3.7482E-07 6.3747E-07

0.00125 8.2715E-06 1.5638E-05 4.7773E-08 8.1216E-08

Fig. 3. Numerical solution with Chebyshev collocation and SSP23 for the problem (3.9), (3.10), (3.58) at 𝑡 = 0,3,6,10.

𝐹 (𝑥, 𝑦, 𝑡) = 𝑒−𝑡
(
−(1 + (𝑎+ 𝛽)(1 + 𝜋2)) sin(𝑥) sin(𝜋𝑦) + 𝛼1 cos(𝑥) sin(𝜋𝑦) + 𝜋𝛼2 sin(𝑥) cos(𝜋𝑦)

+2(𝑥− 𝑦)(𝛾1 cos(𝑥) sin(𝜋𝑦) + 𝜋𝛾2 sin(𝑥) cos(𝜋𝑦)) + 2(𝛾1 − 𝛾2) sin(𝑥) sin(𝜋𝑦)
)

+2𝑒−2𝑡 sin(𝑥) sin(𝜋𝑦)(𝛾1 cos(𝑥) sin(𝜋𝑦) + 𝜋𝛾2 sin(𝑥) cos(𝜋𝑦)) + 2(𝛾1 − 𝛾2)(𝑥− 𝑦). (3.59)

The exact solution is 𝑣(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(𝑥) sin(𝜋𝑦) + 𝑥 − 𝑦. Table 5 shows the 𝐿2 errors at 𝑇 = 10 given by the time integrators with 𝑁 = 64; this is 
enough to confirm the spectral convergence of the spatial approximation and the order of convergence of the temporal discretization. The form of 
the numerical solution is shown in Fig. 4.

3.4.3. Problem 3. Nonsmooth data

We are now interested in studying the performance of the methods when the initial data has low regularity. To this end we perform numerical 
experiments to compute the numerical rates of convergence of the spatial discretization in the corresponding norms. In all cases, we checked with 
several ranges of time stepsize Δ𝑡 that errors and orders do not change with smaller values than those that were finally taken. Unless otherwise 
stated, we fix Δ𝑡 = ℎ∕2. We first consider (3.2)-(3.4) with 𝑎 = 𝑏 = 1 and

𝑣0(𝑥) =
{

1 |𝑥| ≤ 2
0 otherwise . (3.60)
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Table 5

Numerical approximation of (3.9), (3.10), (3.59): 𝐿2 norms of 
the error at 𝑇 = 10 and rates of convergence with Legendre 
Galerkin method and 𝑁 = 64.

Δ𝑡 𝜇 = 1∕2 𝜇 = 3+
√
3

6
𝐿2 Error Rate 𝐿2 Error Rate

0.1 2.9201E-02 4.2167E-04

0.05 7.3030E-03 1.999 5.2502E-05 3.006

0.0025 1.8259E-03 1.999 6.5480E-06 3.003

Fig. 4. Numerical solution with Chebyshev collocation and SSP23 for the problem (3.9), (3.10), (3.59) at 𝑡 = 0,10 with Δ𝑡 = 0.025.

In this case, the expansion (3.6) has coefficients 𝐶𝑛 =
2
𝑛𝜋

(
cos 𝑛𝜋

4 − cos 3𝑛𝜋
4

)
. The corresponding solution (3.5) is represented by a truncated series 

whose accuracy is checked by using acceleration techniques, [102]. Table 6 shows the errors and convergence rates at 𝑇 = 1 of the Legendre 
Galerkin approximation for the two fully discrete methods using ℎ = 2∕𝑁 . In both, the lack of regularity makes the 𝐻1 norm unable to control the 
error, but in the case of the other two norms, the error in space seems to be dominant and, according to the rates, like 𝑂(𝑁−1). The form of the 
numerical solution at different times is illustrated in Fig. 5. As the regularity of the initial condition is increasing, an increment in the spatial order 
of convergence is expected. Thus, taking

𝑣0(𝑥) = 1 − |𝑥|, (3.61)

(see Fig. 6) the behaviour of the errors in 𝐿2 norm corresponding to SSP23 (which is third-order), observed in Table 7, suggests an error in space of 
𝑂(𝑁−2), while in the case of the 𝐻1 norm this seems to be 𝑂(𝑁−1∕2). In the case of SSP12, since Δ𝑡 =𝑂(ℎ), the order of the spatial error in 𝐿2 norm 
would coincide with the second order in time.

A final experiment concerns the initial condition

𝑣0(𝑥) =
{

1 + 2𝑥+ 𝑥2 −1 ≤ 𝑥 ≤ 0
1 + 2𝑥− 3𝑥2 0 ≤ 𝑥 ≤ 1 , (3.62)

whose second derivative has a discontinuity at 𝑥 = 0. The corresponding results, displayed in Table 8, show that the dominant error in time is 
recovered. (See Fig. 7 to illustrate the form of the approximation at several times.) In order to determine the order in space, Table 9 shows the 
errors given by SSP23 with Δ𝑡 =𝑂(ℎ2). The rates for the 𝐿2 error norm suggest an spatial error of 𝑂(𝑁−4), while the 𝐻1 norm of the error is similar 
to that of Table 8, and this behaves like 𝑂(𝑁−3∕2). According to the experiments with (3.60)-(3.62) and at least for the case of the (3.2)-(3.4), the 
numerical results suggest that, for 𝑣0 ∈𝐻𝑚

𝑤, 𝑚 ≥ 1

max
0≤𝑡≤𝑇 ||𝑣𝑁 (𝑡) − 𝑣(𝑡)||1,𝑤 ≤ 𝐶𝑁1∕2−𝑚, max

0≤𝑡≤𝑇 ||𝑣𝑁 (𝑡) − 𝑣(𝑡)||0,𝑤 ≤ 𝐶𝑁−2𝑚.

The experiments with (3.60) also suggest to conjecture that if 𝑣0 ∈𝐿2
𝑤 then

max
0≤𝑡≤𝑇 ||𝑣𝑁 (𝑡) − 𝑣(𝑡)||0,𝑤 ≤ 𝐶𝑁−1.

The results corresponding to the Chebyshev collocation method do not show any qualitative change with respect to those given by the Leg-

endre Galerkin discretization. Thus previous experiments suggest a similar error behaviour for Galerkin and collocation methods. (Recall that the 
implementation makes the schemes have a related formulation.)

Similar effects were observed in the 2D case. By way of illustration we consider (3.2)-(3.4) with 𝑎 = 𝑏 = 1 and

𝑣0(𝑥, 𝑦) =
{

1 𝑥 < 0
0 otherwise (3.63)
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Table 6

Numerical approximation of (3.2)-(3.4) from (3.60): 𝐿2 and 𝐿∞ norms 
at 𝑇 = 1 of the error with Legendre Galerkin method and Δ𝑡 = 0.5ℎ, ℎ =
2∕𝑁 .

𝑁 𝜇 = 1∕2 𝜇 = 3+
√
3

6||𝐸(ℎ)||2 ||𝐸(ℎ)||∞ ||𝐸(ℎ)||2 ||𝐸(ℎ)||∞
32 6.0479E-04 6.2190E-04 6.2133E-04 6.4695E-04

64 3.0184E-04 3.1317E-04 2.9785E-04 3.0665E-04

128 1.5098E-04 1.5723E-04 1.5201E-04 1.5887E-04

256 7.5451E-05 8.1659E-05 7.5194E-05 8.1246E-05

Fig. 5. Numerical approximation of (3.2)-(3.4) with Legendre Galerkin and SSP23 from the initial condition (3.60) at 𝑡 = 0,0.3,0.6,1.

(cf. Fig. 8(a)). The numerical solution given by the Legendre Galerkin method and SSP23 at 𝑇 = 1 is shown on Fig. 8(b). This can be compared with 
an approximation to the solution computed by an accurate truncation of (3.7).

In the nonlinear case, the performance of the methods with less regular conditions is illustrated by the following experiments. Starting now with 
the 2D case, we consider the problem (3.9), (3.11) with 𝛾 = (1, 1), 𝛽 = −1, 𝑎 = 5, 𝛼 = (0, 0) on Ω = (−1, 1)2, homogeneous boundary conditions, and 
initial condition and source term given by

𝑣(𝑥, 𝑦,0) = 1 − |𝑥|− |𝑦|, 𝐹 = 𝐹 (𝑥, 𝑦, 𝑡) = 1∕(1 + 𝑥2 + 𝑦2), (𝑥, 𝑦) ∈ Ω. (3.64)

The initial profile and its projection onto 𝑦 = 0 are shown in Figs. 9(a) and (b) respectively. The problem was integrated numerically with the 
Legendre G-NI scheme and the SSP23 method up to a final time 𝑇 = 10. The resulting numerical solution and corresponding projection onto 𝑦 = 0
can be seen in Figs. 9(c) and (d) respectively. The discretization captures the smoothing effect of the evolution and does not seem to develop spurious 
oscillations.

A similar behaviour, in the one-dimensional case, can be observed when approximating (3.9), (3.11) on Ω = (−60, 210) with 𝛼 = 0, 𝑎 = 5, 𝛽 =
−1, 𝛾 = 1, 𝐹 = 0, nonhomogeneous boundary conditions

𝑣(−60, 𝑡) = 𝑆𝐿, 𝑣(210, 𝑡) = 𝑆𝑅,

and Riemann type initial data
E. Abreu and A. Durán Computers and Mathematics with Applications 102 (2021) 15–44
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Table 7

Numerical approximation of (3.2)-(3.4) from (3.61): 𝐿2 and 𝐻1 norms 
at 𝑇 = 1 of the error with Legendre Galerkin method and Δ𝑡 = 0.5ℎ, ℎ =
2∕𝑁 .

𝑁 𝜇 = 1∕2 𝜇 = 3+
√
3

6||𝐸(ℎ)||2 ||𝐸(ℎ)||𝐻1 ||𝐸(ℎ)||2 ||𝐸(ℎ)||𝐻1

32 3.0806E-05 7.1528E-02 4.6914E-05 7.1537E-02

64 7.6988E-06 5.0138E-02 1.1779E-05 5.0140E-02

128 1.9260E-06 3.5374E-02 2.9535E-06 3.5374E-02

256 4.8245E-07 2.5000E-02 7.4021E-07 2.5001E-02

Fig. 6. Numerical approximation of (3.2)-(3.4) with Legendre Galerkin and SSP23 from the initial condition (3.61) at 𝑡 = 0,0.3,0.6,1.

Table 8

Numerical approximation of (3.2)-(3.4) from (3.62): 𝐿2 and 𝐻1 norms 
at 𝑇 = 1 of the error with Legendre Galerkin method and Δ𝑡 = 0.5ℎ, ℎ =
2∕𝑁 .

𝑁 𝜇 = 1∕2 𝜇 = 3+
√
3

6||𝐸(ℎ)||2 ||𝐸(ℎ)||𝐻1 ||𝐸(ℎ)||2 ||𝐸(ℎ)||𝐻1

32 2.5019E-05 9.6161E-03 8.0169E-07 9.6074E-03

64 6.2468E-06 3.3927E-03 9.8674E-08 3.3911E-03

128 1.5612E-06 1.1987E-03 1.2254E-08 1.1984E-03

256 3.9028E-07 4.2369E-04 1.5272E-09 4.2364E-04
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Fig. 7. Numerical approximation of (3.2)-(3.4) with Legendre Galerkin and SSP23 from the initial condition (3.62) at 𝑡 = 0,0.3,0.6,1.

Table 9

Numerical approximation from (3.62): 𝐿2

and 𝐻1 norms at 𝑇 = 1 of the error with Leg-

endre Galerkin method, 𝛾 = 3+
√
3

6
and Δ𝑡 =

0.25ℎ2, ℎ = 2∕𝑁 .

𝑁 ||𝐸(ℎ)||2 ||𝐸(ℎ)||𝐻1

32 9.3545E-08 9.6074E-03

64 5.8890E-09 3.3911E-03

128 6.5649E-10 1.1984E-03

256 4.1507E-11 4.2364E-04

Fig. 8. Numerical solution with Legendre Galerkin G-NI and SSP23 for the problem (3.2)-(3.4), (3.63) at 𝑡 = 0,1 with Δ𝑡 = 10−2 .
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Fig. 9. Numerical solution with Legendre G-NI and SSP23 for the problem (3.9), (3.11) with 𝛾 = (1, 1), 𝛽 = −1, 𝑎 = 5, 𝛼 = (0, 0) on Ω = (−1, 1)2 and (3.64) with Δ𝑡 = 0.05. 
(a) Initial profile; (b) Numerical solution at 𝑡 = 10; (c) and (d) are the corresponding projections onto 𝑦 = 0.

𝜂(𝑥) =
{

𝑆𝐿 if 𝑥 < 0
𝑆𝑅 if 𝑥 ≥ 0 (3.65)

Two cases are considered: 𝑆𝐿 = 0.9, 𝑆𝑅 = 0 and 𝑆𝐿 = 0.55, 𝑆𝑅 = 0. (For the relevance of the models in porous media flows, see [6,5] and references 
therein.) For a final time of simulation 𝑇 = 150, the numerical solution given by the Legendre G-NI method with SSP23 is shown in Fig. 10. The 
profiles do not seem to develop disturbances from the discontinuous initial data and the final structure of the solution is in accordance with that in 
the literature, [41,33].

4. Concluding remarks

This paper attempts to contribute to the approximation to the initial-boundary-value problem, with Dirichlet boundary conditions, of pseudo-

parabolic equations in several ways. First, a rigorous numerical analysis of the spectral Galerkin and collocation discretizations based on Jacobi 
polynomials, is made. Existence of numerical solution and convergence results are proved. The error estimates indeed depend on the regularity of 
the data. Specifically, if 𝑚 denotes the order of regularity of the data of the problem and 𝑁 is the degree of the polynomial approximation, then 
the error analysis for the spectral Galerkin method behaves like 𝑂(𝑁1−𝑚) while the spectral collocation method behaves like 𝑂(𝑁2−𝑚). On the other 
hand, the different exponent in the decay of the error (which depends on this regularity) between the estimates in the Galerkin and collocation 
schemes is due to the corresponding inverse inequalities associated to the Jacobi polynomials, cf. the Fourier spectral case studied in [91].

In the second part of the paper, a computational study of spectral discretizations in space, combined with SDIRK-SSP schemes for the time 
integration and without operator splitting strategies, is performed. The study is focused on the families of Legendre and Chebyshev polynomials, 
as widely used in the applications. We first make a detailed description of the Legendre Galerkin and Chebyshev collocation schemes. Then our 
choice for the full discretization is determined (beyond classical aspects of quantitative accuracy) by two qualitative aspects: the possibility that the 
semidiscretizations are affected by stiffness and the behaviour with respect to the integration with nonregular data, with the subsequent generation 
of a spurious oscillatory behaviour in the numerical solution. In order to avoid these problems without a great computational effort, we consider 
SDIRK methods with dispersive stability functions. In addition, for controlling the numerical solution from nonsmooth data, we propose to study the 
benefits of the SSP property in this pseudo-parabolic case and the corresponding use of SSP methods. Our suggestion is based on the performance of 
these schemes to approximate discontinuous solutions of hyperbolic partial differential equations. All this finally takes us to consider two SDIRK-SSP 
methods: one with second order of convergence and phase order two (SSP12), and the second with third order of convergence and phase order four 
(SSP23). In both cases, the SSP coefficients, within the corresponding number of stages and order, are optimal. The alternative of using higher-order 
and/or explicit SSP methods (for example, if the problem is known to be nonstiff) is always possible.
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Fig. 10. Numerical solution with Legendre G-NI and SSP23 for the problem (3.9), (3.11), (3.65) at 𝑡 = 150. (a) 𝑆𝐿 = 0.9, 𝑆𝑅 = 0; (b) 𝑆𝐿 = 0.55, 𝑆𝑅 = 0.

We present numerical experiments, in 1D and 2D, with linear and nonlinear problems, to check the performance of the methods. For smooth 
initial data (Problem 1, in Section 3.4.1 and Problem 2, in Section 3.4.2), the numerical experiments show the spectral order of convergence in 
space (confirming the theoretical results in the first part of the paper). We also study numerically the behaviour of the approximation from initial 
conditions with low regularity. The computations suggest some estimates on the behaviour of the error with respect to the smoothness of the initial 
condition. The use of SSP methods with dispersive stability functions seems to avoid, as in the hyperbolic case, spurious oscillations in the numerical 
approximation when simulating not regular solutions.

Keeping in mind the challenging task to preserve the numerical efficiency and robustness to the overall spectral approach being analyzed, 
several potential continuations of this work can be mentioned. The first one is the theoretical confirmation of some conjectures, experimentally 
suggested in the present paper and not covered by the convergence results, on the error behaviour for nonsmooth data. On the other hand, the 
good performance observed by the inclusion of the SSP property and the order of dispersion in the time discretization may deserve a deeper study, 
in order to analyze their extent and influence on the time behaviour of the simulation. In addition, some alternatives for the implementation in 
two-dimensional problems, suggested in the present study, as well as those based on the dynamical low-rank approximation, [26], can be explored 
in order to improve the computational effort. Finally, the introduction of different boundary conditions, always subject to modelling requirements, 
may have the challenge of considering a different family of polynomials for the spectral approach.
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