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a b s t r a c t

In this paper we consider a three-parameter system of Boussinesq/Boussinesq type, modeling the
propagation of internal waves. Some theoretical and numerical properties of the systems were
previously analyzed by the authors. As a second part of the study, the present paper is concerned with
the analysis of existence and the numerical simulation of some issues of the dynamics of solitary-
wave solutions. Standard theories are used to derive several results of existence of classical and
generalized solitary waves, depending on the parameters of the models. A numerical procedure based
on a Fourier collocation approximation for the ode system of the solitary wave profiles with periodic
boundary conditions, and on the iterative solution of the resulting fixed-point equations with the
Petviashvili scheme combined with vector extrapolation techniques, is used to generate numerically
approximations of solitary waves. These are an essential part of a computational study of the dynamics
of the solitary waves, both classical and generalized. Using a full discretization based on spectral
approximation in space of the corresponding periodic initial-value problem for the systems, and a
fourth-order Runge–Kutta method of composition type as time integrator, we explore the evolution of
small and large perturbations of the computed solitary-wave profiles, and we study computationally
the collisions of solitary waves as well as the resolution of initial data into trains of solitary waves.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

In a previous paper, [1], see also [2], the authors consid-
red the three-parameter family of Boussinesq/Boussinesq (B/B)
ystems

(1 − b∂xx)ζt +
1

γ + δ
∂xvβ +

(
δ2 − γ

(δ + γ )2

)
∂x
(
ζvβ

)
+ a∂xxxvβ = 0

1 − d∂xx)(vβ)t + (1 − γ )∂xζ +

(
δ2 − γ

2(δ + γ )2

)
∂xv

2
β

+ (1 − γ )c∂xxxζ = 0, (1.1)

erived by Bona, Lannes and Saut, [3], as a one-dimensional ap-
roximation to the two-dimensional Euler equations for internal
ave propagation along the interface of a two-layer system of flu-

ds, with a rigid-lid condition for the upper layer while the lower
ayer is bounded below by a horizontal, impermeable bottom.
n (1.1), wherein the variables are nondimensional and unscaled,
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x ∈ R, t ⩾ 0, ζ = ζ (x, t) denotes the interfacial deviation and
vβ = (1 − β∂xx)−1u, with β ⩾ 0 a modeling parameter, and
where u = u(x, t) is a velocity variable. The parameter γ ∈ (0, 1)
stands for the density ratio between upper and lower layers. The
constants a, b, c, d are of the form

a =
(1 − α1)(1 + γ δ) − 3δβ(δ + γ )

3δ(γ + δ)2
, b = α1

1 + γ δ

3δ(γ + δ)
,

c = βα2, d = β(1 − α2). (1.2)

here δ denotes the depth ratio between upper and lower layers
nd α1 ⩾ 0 and α2 ⩽ 1 are modeling parameters. From (1.2) we

have the relation

(δ + γ )a + b + c + d = S(γ , δ), S(γ , δ) :=
1 + γ δ

3δ(γ + δ)
. (1.3)

The physical regime of validity of (1.1) as approximation to
he Euler system and under which it was derived in [3] (see
lso [4]) is of Boussinesq type in both fluid domains. This means
≈ 1, and that the dispersive and nonlinear effects are assumed
o be small and of comparable size. The case of surface wave
ropagation, derived and analyzed in [5,6], corresponds to taking
= 0, δ = 1 in (1.1). In addition, the derivation of (1.1) in [3]
assumes that surface tension effects are negligible. This physical
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ssumption is mathematically expressed in the condition (1.3)
which is analogous to the formula (1.8) in [5] for the case of
urface waves) and establishes a relation among a, b, c and d.
hus, once the physical parameters γ and δ are fixed, system
1.1), under (1.3), can be viewed as dependent on three of the
our parameters a, b, c, d or, equivalently, using (1.2), on α1, α2, β,
hat we treat as modeling parameters.

The present paper continues a study initiated in [1] (for an
xtended version of both papers see [2]), where the authors dis-
ussed several theoretical and numerical issues for (1.1). A sum-
ary of the results of [1] is presently given. We first reviewed, in

erms of the parameters a, b, c, d, well-posedness properties of
he initial-value problem (ivp) for (1.1) using the results of [5,6]
or the case of surface wave propagation. It was shown that in the
dmissible case

H1) a, c ⩽ 0, b, d ⩾ 0,

the ivp for (1.1) is linearly well-posed in suitable Sobolev spaces
for ζ and u. Concerning local in time well-posedness of the full
nonlinear systems (meaning existence, uniqueness and regularity
locally in time of solutions), the application of the theory devel-
oped in [6] leads to seven cases of well-posed systems in the
indicated pairs of Sobolev spaces as follows:

• Case (i): b, d > 0, a = c = 0 (Hs
× Hs, s ⩾ 0).

• Case (ii): b, d > 0, a, c < 0 (Hs
× Hs, s ⩾ 0).

• Case (iii): b = 0, d > 0, a, c < 0 (Hs
× Hs+3, s ⩾ 1).

• Case (iv): b = 0, d > 0, a = c = 0, or b > 0, d = 0, a = c =

0 (Hs
× Hs+1, s ⩾ 1; conditional global existence).

• Case (v): b, d > 0, a = 0, c < 0 or b, d > 0, a < 0, c = 0
(Hs+1

× Hs, s ⩾ 0; conditional global existence).
• Case (vi): b = 0, d > 0, a < 0, c = 0 (Hs

× Hs+2, s ⩾ 1).
• Case (vii): b > 0, d = 0, a < 0, c = 0 or b = 0, d > 0, a =

0, c < 0 (Hs
× Hs, s ⩾ 2),

here for real s, Hs
= Hs(R) denotes the L2-based Sobolev

pace over R. (See [7] for further regularity results for some of
hese systems.) In addition, the system (1.1) has a Hamiltonian
tructure when b = d, as in the surface wave case. It is worth
entioning that since the case of surface waves is a limiting
ase of (1.1), it is possible to apply recent results on long time
xistence for the initial-value problem of the system for surface
aves, as e. g. in [8–10], and on the asymptotic behavior of
olutions, [11,12], to study such issues in the internal-wave case.
Another contribution of [1] concerns the analysis of numerical

pproximations to (1.1). The corresponding periodic ivp was dis-
retized in space by the spectral Fourier–Galerkin method and L2
rror estimates for the resulting semidiscretization were derived
or each case (i)–(vii) of nonlinearly well posed systems. We also
ntroduced a full discretization of the periodic ivp for (1.1) by
ntegrating numerically in time the spectral semidiscrete systems
ith a fourth-order Runge–Kutta (RK)-composition method based
n the implicit midpoint rule, [13–15]. The resulting fully discrete
cheme was checked for accuracy, stability, and performance,
n [1] by means of numerical experiments.

The present paper continues the analysis of the systems (1.1)
y focusing on their solitary-wave solutions. More specifically, we
ake a complete study of solitary waves of the B/B systems of
hysical interest, consisting of:

• Theoretical results on existence of classical and generalized
solitary waves, depending on the choice of the parameters
a, b, c, d of the system and on the speed of the wave.

• A numerical study of generation and dynamics of these
solitary waves, which may shed some light on their stability
and role on the evolution of general solutions of (1.1).
2

All this will be developed according to the following plan of
he paper. In Section 2 we consider the existence and numerical
pproximation of such solitary-wave solutions. We apply several
echniques for proving existence of solitary waves, namely Nor-
al Form Theory, [16,17], valid for solitary-wave speeds close to

he limiting value cγ ,δ =
√
(1 − γ )/(δ + γ ), and Toland’s the-

ory, [18], Concentration–Compactness theory, [19], and Positive
Operator theory, [20], that predict existence of solitary waves also
at larger speeds (relative to cγ ,δ). We construct in several cases of
interest classical and generalized solitary-wave profiles by solv-
ing numerically the second-order nonlinear ordinary differential
equation (ode) systems satisfied by the solitary waves. The ode
systems are discretized by a spectral method and the resulting
nonlinear systems of algebraic equations are numerically solved
by the iterative Petviashvili scheme, [21,22], accelerated by the
Minimal Polynomial extrapolation (MPE) algorithm, [23].

In Section 3 we present a computational study of several issues
associated with the stability and the dynamics of classical and
generalized solitary waves of B/B systems. We note that a com-
putational study of solitary waves has been carried out in [24] by
a spectral-RK scheme, among other, for a B/B system resembling
those in the class (vi); classical solitary waves are constructed and
their overtaking and head-on collisions are simulated. In [25] the
author used a Crank–Nicolson finite difference-relaxation scheme
in order to compare the evolution of solutions of B/B systems (for
internal waves with free upper surface) with that of the solutions
of their associated KdV one-way approximations. In Section 3
of the paper at hand, the ode ivp’s resulting from the spectral
semidiscretizations of the ivp’s for some of the B/B systems are
discretized in time by the three-stage, fourth-order accurate di-
agonally implicit RK method of composition type analyzed in [1]
for the case of the KdV equation. With this fully discrete method
in hand we study computationally the temporal evolutions ema-
nating from small and larger perturbations of initial classical and
generalized solitary waves. We also investigate overtaking and
head-on collisions of solitary waves and the resolution of initial
profiles into sequences of solitary waves. (For more experiments,
see the extended version [2].) We close the paper with a section
of concluding remarks.

2. Solitary waves

This section is focused on the existence and numerical gener-
ation of solitary-wave solutions of the B/B systems (1.1). We first
review the application of several theories of existence and then
we illustrate the corresponding results with some examples of
numerical generation of the profiles.

2.1. Some existence results

Solitary-wave solutions of (1.1) are of the form ζ = ζ (X), u =

u(X) where X = x − cst, cs ̸= 0, and ζ , u satisfy

∂x

(
cs(1 − b∂xx) −

1
δ+γ

− a∂xx
−(1 − γ )(1 + c∂xx) cs(1 − d∂xx)

)(
ζ

vβ

)
= κγ ,δ∂x

(
ζvβ
v2
β

2

)
,

where κγ ,δ =
δ2−γ

(δ+γ )2
. Classical Solitary Waves (CSW), for which

ζ , u → 0 as |X | → ∞, will be solutions of(
cs(1 − b∂xx) −

1
δ+γ

− a∂xx
−(1 − γ )(1 + c∂xx) cs(1 − d∂xx)

)(
ζ

vβ

)
= κγ ,δ

(
ζvβ
v2
β

2

)
. (2.1)

In addition, there exist Generalized Solitary Waves (GSW), which
satisfy (2.1) but are not CSW’s.
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.1.1. Existence via linearization
In the case of small deviations of cs from the speed of sound

he existence of solitary waves can be studied in a similar way to
nalogous studies in [26,27] by using Bifurcation theory, [16,17].
or the case of (2.1), we define cγ ,δ to be the speed of sound
orresponding to (1.1), i. e. as

γ ,δ =

√
1 − γ

δ + γ
, (2.2)

ote that if (cs, ζ , vβ) is a solution of (2.1), then (−cs, ζ ,−vβ) is
lso a solution (with the same profile but opposite speed). Thus
e can assume cs > 0 and define the parameter

:=
cs
cγ ,δ

− 1, (2.3)

o that cs = µ̃cγ ,δ+1. The parameter µ̃ given by (2.3) is analogous
to the parameter µ used in [28] to study, via the Normal Form
Theory (NFT), the existence of solitary waves for free surface
wave propagation on an inviscid fluid layer under gravity and
surface tension effects. In terms of the variables ζ , vβ, (2.1) can
be rewritten as a first-order system, depending on µ̃, for U =

U1,U2,U3,U4)T := (ζ , ζ ′, vβ, v
′
β
)T , namely as

U ′
= V (U, µ̃) := L(µ̃)U + R(U, µ̃), (2.4)

L(µ̃) =

⎛⎜⎜⎜⎝
0 1 0 0

dc2s +a(1−γ )
D 0 −

cs
D

(
a +

d
δ+γ

)
0

0 0 0 1
−

(1−γ )cs(b+c)
D 0 1

D

(
bc2s +

c(1−γ )
δ+γ

)
0

⎞⎟⎟⎟⎠ ,

(U, µ̃) =

⎛⎜⎜⎜⎝
0

1
D
δ2−γ

(δ+γ )2
(
−dcsU1U3 +

a
2U

2
3

)
0

1
D
δ2−γ

(δ+γ )2
(
−c(1 − γ )U1U3 −

bcs
2 U2

3

)
⎞⎟⎟⎟⎠ ,

D = bdc2s − (1 − γ )ac = bdc2s −
ac
κ1

c2γ ,δ, κ1 :=
1

δ + γ
. (2.5)

e assume that the condition (H1) holds and D ̸= 0. The system
2.4), (2.5) admits U = 0 as fixed point, that is, V (0, µ̃) = 0.
dditionally, the vector field V is reversible, meaning that

V (U, µ̃) = −V (SU, µ̃),

here S = diag(1,−1, 1,−1). In view of these observations, we
ee that the study of homoclinic solutions of (2.1) via NFT requires
irst to analyze the linearization of (2.4) at the origin U = 0. The
haracteristic equation is
4
− Bλ2 + A = 0, (2.6)

here

=
c2s − c2γ ,δ

D
, B =

(b + d)c2s + (c + a/κ1)c2γ ,δ
D

. (2.7)

he structure of the spectrum of L(µ̃) in (2.4), with D as in
2.5) can be studied following the survey [29]. The distribution
f the roots of (2.6) in the (B, A)-plane is given in Fig. 1, which

reproduces the bifurcation diagram, along with the location and
the type of the four eigenvalues, shown in Figure 1 of [29]. Thus,
the behavior of the linear dynamics is determined by the four
regions separated by the four bifurcation curves

C0 = {(B, A)/A = 0, B > 0},

1 = {(B, A)/A = 0, B < 0},

2 = {(B, A)/A > 0, B = −
√
A},

C = {(B, A)/A > 0, B =
√
A}. (2.8)
3

3

The Center Manifold Theorem and the theory of reversible bifur-
cations can be applied to study the existence of homoclinic orbits
in each bifurcation. The reduced Normal Form systems reveal the
existence of homoclinic to zero orbits and homoclinic to peri-
odic orbits. The corresponding solutions are CSW’s and GSW’s,
respectively. In addition, periodic and quasi-periodic orbits are
identified, [28].

More specifically, we may adapt the discussion of [29] near
the bifurcation curves C0 to C3 to the case of (2.4), with D as
in (2.5), using (2.3) as bifurcation parameter. Note first that by
(2.7), A = 0 iff cs = cγ ,δ; then B = S(γ , δ)/(bd − ac/κ1), with
S(γ , δ) :=

1+γ δ
3δ(δ+γ ) . Therefore, under the hypothesis (H1), the curve

0 is characterized by the conditions

, c ⩽ 0, b, d ⩾ 0, bd −
ac
κ1
> 0, µ̃ = 0, (2.9)

while the conditions for the curve C1 are

a, c ⩽ 0, b, d ⩾ 0, bd −
ac
κ1
< 0. µ̃ = 0. (2.10)

We now study the information furnished by the Normal Form
Theory (NFT) close to each curve Cj, 0 ⩽ j ⩽ 3. In the case of
C0, the linearization matrix L(0) has two simple eigenvalues equal
to

±

√
S(γ , δ)

bd − ac/κ1
, (2.11)

nd the zero eigenvalue with geometric multiplicity one and
lgebraic multiplicity two. As in [28,29], the main role in de-
cribing the dynamics close to C0 by NFT is played by this two-
imensional center manifold. When µ̃, A and B are positive, and

near C0 the linear dynamics is given by the spectrum of L(µ̃)
which consists of four real eigenvalues (region 2 in Fig. 1). In this
case, the normal form system has a unique solution, homoclinic to
zero at infinity, symmetric and unique up to spatial translations,
([28], Proposition 3.1), that corresponds to a CSW solution of (2.1).

Remark 2.1. If µ̃ is negative, by similar arguments to those
of [28], NFT establishes the existence of a family of periodic
solutions of the reduced system (close to C0) for each µ̃, unique
up to spatial translations. For the case at hand, and due to (2.7),
if µ̃ < 0 and bd − ac/κ1 > 0, then D > 0. Therefore, A < 0
and we fall into region 3 of Fig. 1. Numerical experiments on the
generation of approximate periodic traveling wave solutions of
(2.1) under these conditions are reported in [2].

In the case of C1, the spectrum of L(0) consists of zero (with
algebraic multiplicity two) and the two simple imaginary eigen-
values given by (2.11) (recall that bd−ac/κ1 < 0). The arguments
used in [28], Proposition 3.2, apply here and NFT reduces (2.1), on
the center manifold, for µ̃ ̸= 0 small enough, to a normal form
system which admits homoclinic solutions to periodic orbits, that
is GSW solutions. Information about the structure of the periodic
orbits can also be obtained, cf. [30] and references therein.

Remark 2.2. In addition to GSW’s, the normal form derived
in [28], section 3.2, also reveals the existence of other solutions:
periodic, quasi-periodic, and homoclinic to zero solutions (that
is, CSW’s). This normal form is used in [29] to generalize the
result of existence of a homoclinic solution of square hyperbolic
secant form (in lowest order of µ̃) or a pair of hyperbolic secant
solutions close to C1 and corresponding to region 3 of Fig. 1.
As mentioned in [29], persistence of these solutions under small
reversible perturbations of the normal form is not expected.
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Table 1
Corresponding admissible system in (1.1) and type of solitary waves for
small and positive cs − cγ ,δ , when D ̸= 0, according to the Normal Form
Theory.
Case Admissible system Type of solitary wave

(A1) a, c < 0, b = 0, d > 0 GSW
(A2) a, c < 0, b, d > 0, bd

δ+γ
− ac < 0 GSW

(A3) a, c < 0, b, d > 0, bd
δ+γ

− ac > 0 CSW
(A4) a = 0, c < 0, b, d > 0 CSW
(A5) a < 0, c = 0, b, d > 0 CSW
(A6) a = c = 0, b, d > 0 CSW

The normal form derived in [31] is used in [29] to study the
ynamics close to C2. Its application to our case reveals the exis-

tence of homoclinic to zero solutions (CSW’s) with nonmonotone
decay for µ̃ < 0 and corresponding to region 1 of Fig. 1 (they
have a truncated form like E1 sech(E2x)eiωθ, for constants E1, E2
and ω related to the coefficients of the normal form, and θ ∈ R),
nd homoclinic solutions to periodic orbits (GSW’s) for µ̃ > 0

corresponding to region 4 of Fig. 1.

Remark 2.3. These CSW’s with nonmonotone decay require then
speeds cs smaller than the speed of sound cγ ,δ (since µ̃ < 0)
and are different from the CSW’s obtained close to C0, which
are strictly positive or negative. The generation and stability of
these waves will be examined numerically in Sections 2.2 and 3.3,
respectively.

Finally, near C3, and according to [29], crossing from the
region 2 to region 1 in Fig. 1 forms a bifurcation causing the
generation of new homoclinic orbits. This bifurcation was ana-
lyzed for specific problems, [32–34]. In our case, the numerical
computations suggest a similar situation to that described in [32]
(see also section 5.1 of [29] and references therein). In particu-
lar, CSW’s of nonmonotone decay are numerically generated in
Section 2.2 (see also [2]).

In summary, NFT establishes the existence of CSW solutions
of (2.1) for small and positive c2s − c2γ ,δ when (2.9) holds (close to
C0), and GSW solutions for small c2s − c2γ ,δ under the conditions
given in (2.10) and close to C1. Note that, in the latter case, in
view of (1.2), it is not possible to have a, c < 0, b > 0, d = 0.
Hence, from (2.9) and (2.10), we may distinguish the cases (A1)
to (A6) shown in Table 1.

In addition, when cs < cγ ,δ , close to C2, CSW’s of nonmono-
tone decay are shown to exist. They have also been observed
numerically close to C3, cf. Section 2.2. Table 2 shows the re-
lation between the classification (i)–(vii) of parameter cases for
the study of well-posedness (cf. the Introduction and [1]) and
(A1)–(A6).
4

Table 2
Relation between the cases (i)–(vii) of [1],
and (A1)–(A6) and D = 0 for existence
of solitary waves according to the Normal
Form Theory.

(i) ↔ (A6)
(iv)
(vi)
(vii)

⎫⎬⎭ ↔ D = 0

(ii) ↔

{
(A2)
(A3)

(iii) ↔ (A1) (v) ↔

{
(A4)
(A5)

For a particular case of D = 0 (‘classical Boussinesq’ b =

, d > 0, a = c = 0) existence and numerical generation of
SW are studied in [35], cf. also [36] for the analogous case of
urface waves. In other cases where D = 0, numerical evidence
f existence of CSW’s is presented in [2].

.1.2. Toland’s theory
For larger deviations cs − cγ ,δ or other conditions on the speed

cs, several general theories may be used to analyze the existence
of classical solitary waves: Toland’s Theory, [18], Concentration–
Compactness Theory, [19], and Positive Operator Theory, [20]. In
the first case, and in order to apply the results of [18] to study
the existence of CSW’s, note that system (2.1) may be written in
the form

S1v′′
+ S2v + ∇g(vβ, ζ ) = 0, (2.12)

here v = (vβ, ζ )T and

1 = −

( a
cs

b
d (1−γ )c

cs

)
, S2 = −

(
−1

cs(δ+γ )
1

1 −
(1−γ )

cs

)
, (2.13)

g(vβ, ζ ) = −
(δ2 − γ )
cs(δ + γ )2

ζv2
β

2
= −

κγ ,δ

2cs
ζv2
β
,

where κγ ,δ is defined in (2.1) and vβ = (1 − β∂xx)−1u. Note that
the theory of [18] can be applied here in the symmetric case
b = d, and may be used to give existence results for classical
solitary waves for specific systems in terms of cs, γ and δ or,
alternatively, in terms of cs, cγ ,δ , cf. (2.2). We recall the relevant
result for existence of solitary waves derived in [18], in the form
given in [37].

Theorem 2.1. Let S1, S2 be symmetric, g ∈ C2(R2) such that
g,∇g,∇2g are zero at (0, 0). Let Q and f be given for u :=

(u1, u2)T ∈ R2 by

Q (u) = uT S u, f (u) = uT S u + 2g(u), (2.14)
1 2
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nd assume that:

(I) det(S1) < 0 and there are two linearly independent vectors
v1, v2 such that Q (v1) = Q (v2) = 0.

(II) There is a closed plane curve F with (0, 0) ∈ F such that

(i) f = 0 on F and F\{(0, 0)} ⊂ {u|Q (u) < 0}.
(ii) f (u1, u2) > 0 in the (nonempty) interior of F .
(iii) F\{(0, 0)} is strictly convex.
(iv) ∇f (u1, u2) = 0 on F ⇔ (u1, u2) = (0, 0).

Then there is an orbit γ̃ of (2.12) in the (vβ(0), ζ ) plane, which is
homoclinic to the origin and

(a) (vβ(0), ζ (0)) ∈ Γ where Γ is the segment of F including the
origin between P1, P2 with Pj satisfying

⟨∇f (Pj), vj⟩ = 0, j = 1, 2.

(b) vβ, ζ are even functions on R.
(c) (vβ(ξ ), ζ (ξ )) is in the interior of F for all ξ ̸= 0.
(d) γ̃ is monotone.

The application of this theory can be made in a similar way
to the case of Boussinesq systems for surface waves, [38]. In our
context, from (2.12), (2.13) and assuming a, c ⩽ 0, b = d > 0, we
have

f (vβ, ζ ) = vT S2v + 2g(v)

=
1
cs

(
−

v2
β

(δ + γ )

(
1 +

(δ2 − γ )
(δ + γ )

ζ

)

− (1 − γ )ζ 2 + 2csζvβ

)
. (2.15)

The quadratic form Q defined in (2.14) is indefinite, and its diag-
onal form (used to identify two linearly independent directions
in which Q vanishes) is of the following types:

(1) If a < 0 then

Q (U1,U2) = −
a
cs
U2
1 +

D
acs

U2
2 ,

where here D = b2c2s − (1 − γ )ac ⩾ 0 and

U1 = u1 +
bcs
a

u2, U2 = u2.

In this case the two linearly independent directions where
Q = 0 are given by

U2 = ±
a

√
D
U1 ⇒ u2 =

a
√
D − bcs

u1,

u2 = −
a

√
D + bcs

u1.

(2) When a = 0, c < 0 then

Q (U1,U2) = −(1 − γ )
c
cs
U2
1 +

bcs
c(1 − γ )

U2
2 ,

with

U1 = u1 +
bcs

c(1 − γ )
u2, U2 = u2.

Now Q = 0 when

U2 = ±
c(1 − γ )

cs
√
b

U1 ⇒ u2 = −
c(1 − γ )

cs
√
b(1 +

√
b)

u1

u2 =
c(1 − γ )

cs
√
b(1 −

√
b)

u1.
5

(3) When a = c = 0, then Q (u1, u2) = −2bu1u2, and the two
independent directions are clearly u1 = 0 and u2 = 0.

s we are investigating existence of classical solitary waves, we
ill apply Theorem 2.1 for the cases (A3)–(A6) in Table 1. Note
hat the condition det(S1) < 0 in (I) of Theorem 2.1 implies that
> 0, where D is given by (2.5). By way of illustration, we

consider the simplest case (3). The condition Q < 0 (see (II)(i) of
Theorem 2.1) implies that u1, u2 are taken in the first or the third
(vβ, ζ ) quadrant. The resulting solitary waves are, respectively, of
levation or of depression type, and this is determined by the sign
f κγ ,δ . Since the linearly independent directions are given in this
ase by v1 = (1, 0)T , v2 = (0, 1)T , the points P1, P2 must satisfy

f (P1) = f (P2) = 0,
∂ f
∂u1

(P1) =
∂ f
∂u2

(P2) = 0,

which means, following [38],

−κ1u2
1 − κγ ,δu2

1u2 − κ2u2
2 + 2csu1u2 = 0, (2.16)

−κ1u1 − κγ ,δu1u2 + csu2 = 0, (2.17)

−κγ ,δu2
1 − 2κ2u2 + 2csu1 = 0, (2.18)

here κ1 =
1
δ+γ

and κ2 = 1 − γ . The components of P1 must
satisfy (2.16), (2.17) and those of P2(2.16), (2.18). Solving (2.16),
(2.17) leads to u1 = u2 = 0 and

u1 =
c2s − c2γ ,δ
csκγ ,δ

, u2 =
cs
κ2

u1, (2.19)

hile solving (2.16), (2.18) yields

±

1 = 2
cs ∓ cγ ,δ
κγ ,δ

, u±

2 = ±

√
κ1

κ2
u±

1 . (2.20)

e now consider the components of P1 and P2 by using the re-
uirement that they must be in the first or third (vβ, ζ ) quadrant.
ssume first that cs > 0. Then u1 and u2 in (2.19) have always
he same sign, while in the case of (2.20) this holds only for u+

1
nd u+

2 . Therefore, P1 has the components given by (2.19), and
rom (2.20)P2 = (u+

1 , u
+

2 ). It is not hard to check that P1 and P2
re in the first (vβ, ζ ) quadrant when (cs − cγ ,δ)κγ ,δ > 0 and
n the third quadrant when (cs − cγ ,δ)κγ ,δ < 0. Then, according
o the conclusions of Theorem 2.1, for initial data on Γ = P1P2,
he corresponding classical solitary waves are of elevation when
cs − cγ ,δ)κγ ,δ > 0 and of depression when (cs − cγ ,δ)κγ ,δ < 0. The
rbit γ̃ and the segment Γ for several values of the speed cs are
hown in Figs. 2(a) and (b) respectively.
If we assume that cs < 0, then u1 and u2 from (2.19) have

lways opposite sign. Then necessarily P1 = (0, 0). The same
rgument as before leads again to obtain P2 = (u+

1 , u
+

2 ), with
+

1 , u
+

2 given by (2.20). Furthermore, in this case cs−cγ ,δ is always
egative and the condition for P2 to be in the first or third (vβ, ζ )
uadrant depends only on the sign of κγ ,δ . For initial data on
, the corresponding classical solitary wave is of elevation if
γ ,δ < 0 and of depression if κγ ,δ > 0.

emark 2.4. According to the previous arguments based on
oland’s theory, the speed cs must satisfy, in view of the equation
= 0, the speed–amplitude relation

s =
1
2µ

(
1

δ + γ

(
1 +

(δ2 − γ )
(δ + γ )

ζ (0)
)

+ (1 − γ )µ2
)

=
1
2µ

(
κ1 + κγ ,δζ (0) + κ2µ

2) , (2.21)

here µ = ζ (0)/vβ(0).
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2.1.3. Concentration–compactness theory
In the Hamiltonian case (b = d > 0) and when a, c <

, another result of existence of CSW’s can be obtained from
he application of the Concentration–Compactness (C–C) Theory.
he method was developed by Lions in [19] and has been used
or proving the existence of solitary-wave solutions of a great
umber of nonlinear dispersive equations. (An exhaustive list of
eferences can be found e. g. in [39]. For the case of Boussinesq
ystems for surface wave propagation, see [40].) Here, its appli-
ation is based on identifying solutions of (2.1) with solutions of
inimization problems of the form

r = inf{E(ζ , v) : (ζ , v) ∈ H1
× H1/F (ζ , v) = r}, (2.22)

for r > 0 where, in the case of the B/B systems at hand,

E(ζ , v) =

∫
∞

−∞

(
κ2

2
ζ Jcζ +

κ1

2
vJav − csζ Jbv

)
dx, (2.23)

F (ζ , v) = −
κγ ,δ

2

∫
∞

−∞

ζv2dx, (2.24)

nd

a = 1 +
a
κ1
∂xx, Jb = 1 − b∂xx, Jc = 1 + c∂xx. (2.25)

Existence of CSW’s by means of the C–C Theory has been recently
proved in [41] for another class of systems modeling internal
wave propagation, specifically belonging to the Boussinesq/Full
Dispersion (BFD) regime. The proof of [41] can be adapted to the
B/B system (2.1) leading to the following result. (The main steps
of the proof may be found in [2]).

Theorem 2.2. Let δ > 0, γ < 1 and assume that a, c < 0, b =

d > 0. If

|cs| ⩽ M := min{κ2
|c|
b
,
|a|
2b

}, (2.26)

then the system (1.1) admits a classical solitary wave solution ζ =

ζ (x − cst), v = v(x − cst) with (ζ , v) ∈ H∞
× H∞. Furthermore, ζ

nd v decay exponentially as x → ±∞ with

lim
x→±∞

eσa|x|v(x) = C1, (2.27)

lim
→±∞

eσ0|x|ζ (x) = C2, (2.28)

ith C1, C2 constants, σa =
√
κ1/|a| and σ0 ∈ (0, σa], σ0 <

√
|c|.
6

emark 2.5. We observe that it is not possible to have b = d in
he case (A2) of Table 1. In addition, Theorem 2.2 applies when
cs| < cγ ,δ . This should be compared with Toland’s theory, cf.
heorem 2.1, for which this condition was not required, cf. [2].

emark 2.6. In the case of surface waves and Hamiltonian sys-
ems there are additional existence and nonexistence results for
olitary waves. We first note that similar techniques to the ones
e have used here are employed in [40] to prove the existence of
olitary waves in the Hamiltonian case a, c < 0, b = d for speeds
s with |cs| < c0, where

c0 :=

{
min{1,

√
ac} b ̸= 0,

1 b = 0.

(In particular, cs may never reach 1, the speed of sound in
this case.) On the other hand, Corollary 1.1 in [11] establishes,
in the Hamiltonian case and for some range of values of a, c
‘dispersion-like’ parameters), among other results, nonexistence
f small zero-speed solitary waves, as well as the time interval
f existence of small solitary waves with nonzero speed, inde-
endently of how small the speed is. These results are revisited
n [12], for small a, c < 0, Corollary 2.1 asserts the nonexistence
f small solitary waves of speed greater than 2 when a = c ,
heorem 2.2 gives an interval of decay of solutions sharper than
hat in Corollary 1.1 of [11], precluding the existence of small-
peed solitary waves for some range of parameters, and, finally,
orollary 2.2 states that, for any values of a, c < 0, b, there are
o solitary waves of speed greater than 3.

.1.4. Positive operator theory
The Positive Operator theory can also be applied as in [42],

here some existence results of classical solitary wave solutions
f Boussinesq systems for surface waves were derived. In our
ase, if we take the Fourier transform in (2.1) we obtain

cs(1 + bk2) −κ1 + ak2

−κ2(1 − ck2) cs(1 + dk2)

)(
ζ̂ (k)
v̂β(k)

)
= κγ ,δ

(
ζ̂ vβ(k)
v̂2
β
/2(k)

)
. (2.29)

ystem (2.29) is invertible for all k ∈ R and for b, d > 0, a, c ⩽ 0
f

(k) = ∆0 +∆1k2 +∆2k4 ̸= 0, (2.30)

here

0 = c2s − c2γ ,δ, ∆1 = c2s (b + d) − c2γ ,δ(−c −
a
),
κ1
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2 = c2s bd − c2γ ,δ
ac
κ1

= c2s bd − (1 − γ )ac.

(Note that ∆2 is the determinant D given by (2.5).) We assume
that a, c ⩽ 0, b, d > 0, bd − ac/κ1 > 0 (case (A3) of Table 1), and
|cs| > cγ ,δ . Then ∆j > 0, 0 ⩽ j ⩽ 2, and we may write (2.29) in
the form

ζ̂ (k) =
κγ ,δ

∆(k)

(
cs(1 + dk2)ζ̂ vβ(k) + (κ1 − ak2)v̂2

β
/2(k)

)
β̂(k) =

κγ ,δ

∆(k)

(
cs(1 + bk2)v̂2

β
/2(k) + κ2(1 − ck2)ζ̂ vβ(k)

)
.

s in [42], this leads to an integral form of (2.1)

ζ = k12 ∗ (ζvβ) +
1
2
k22 ∗ (v2

β
),

vβ = m12 ∗ (ζvβ) +
1
2
m22 ∗ (v2

β
),

where the integral kernels are

k12(x) =
csκγ ,δ
2∆2

(
1 − dr2

−

r−(r2+ − r2−)
e−r−|x|

−
1 − dr2

+

r+(r2+ − r2−)
e−r+|x|

)
k22(x) =

κγ ,δ

2∆2

(
κ1 + ar2

−

r−(r2+ − r2−)
e−r−|x|

−
κ1 + ar2

+

r+(r2+ − r2−)
e−r+|x|

)
12(x) =

κγ ,δ

2∆2

(
κ2(1 + cr2

−
)

r−(r2+ − r2−)
e−r−|x|

−
κ2(1 + cr2

+
)

r+(r2+ − r2−)
e−r+|x|

)
22(x) =

csκγ ,δ
2∆2

(
1 − br2

−

r−(r2+ − r2−)
e−r−|x|

−
1 − br2

+

r+(r2+ − r2−)
e−r+|x|

)
,

ith

2
±

=
1

2∆2

(
∆1 ±

√
∆2

1 − 4∆0∆2

)
.

hen κγ ,δ > 0, the Positive Operator theory is applied, as in [42],
on the cone of continuous real-valued functions (f , g) on R which
re even, positive and non-increasing on (0,∞), while if κγ ,δ < 0,
he cone consists of continuous real-valued functions on R which
re even, negative and non-decreasing on (0,∞). Then we have

heorem 2.3. Assume that b, d > 0, a, c ⩽ 0, and bd−ac/κ1 > 0.
f |cs| > cγ ,δ , then the system (2.1) admits classical solitary wave
olutions of elevation if κγ ,δ > 0 and of depression if κγ ,δ < 0.

emark 2.7. Note that when b = d, Theorem 2.3 reproduces part
f the results of Toland’s theory in Theorem 2.1.

emark 2.8. The previous formulas can also be used to estimate
he asymptotic decay at infinity of the classical solitary waves.
n general, both ζ , vβ should behave as e−r−|x| as |x| → ∞. In
particular, for the cases b = d > 0, a = 0, c ⩽ 0 we may specify
− in . If a = 0, c < 0 then

2 = b2c2s , ∆1 = 2bc2s + cc2γ ,δ, ∆0 = c2s − c2γ ,δ,

nd ∆2
1 − 4∆0∆2 = c2c4γ ,δ + 4b(b + c)c2s c

2
γ ,δ > 0 (since b + c =

> 0). Therefore

lim
→±∞

e−r−|x|v(x) = C, r− =

(
1

2∆2
(∆1 −

√
∆2

1 − 4∆0∆2)
)1/2

,

nd C a constant. The argument used in Theorem 2.2 can be
pplied here as well to obtain (2.28) for some σ0 ∈ (0, r−], σ0 <

|c|.
On the other hand, if a = c = 0, then

r− =
1

√

√
1 −

cγ ,δ
,

b |cs|
7

and in this case

lim
x→±∞

e−r−|x|v(x) = C1, lim
x→±∞

e−r−|x|ζ (x) = C2,

or some constants C1, C2.

We also note that in [35] existence of even, classical solitary
aves of the ‘classical Boussinesq’ system (case (vii) with b =

, d > 0, a = c = 0, for which D = 0) is proved for speeds
s with |cs| > cγ ,δ and for δ2 − γ ̸= 0. The waves are of
levation when δ2 − γ > 0 and of depression otherwise. The

result is based on phase plane analysis of the system (2.1), which
is conservative in this case; see [43] for the case of surface waves.
In addition, for particular values of cs, some exact formulas for
classical solitary wave solutions of (1.1) of sech2 type may be
obtained using similar arguments to those of [37], valid in the
case of surface waves. They were derived in [1].

2.2. Numerical generation of solitary waves

In this section some classical and generalized solitary wave
profiles will be generated numerically. To this end and following
a standard procedure, cf. e. g. [44], the system (2.1) is discretized
on a long enough interval (−l, l) and with periodic boundary
conditions by the Fourier collocation method based on N col-
location points given by xj = −l + jh, j = 0, . . . ,N − 1 for
an even integer N ⩾ 1 and where h = 2l/N . If the vectors
ζh = (ζh,0, . . . , ζh,N−1)T and vh = (vh,0, . . . , vh,N−1)T denote,
respectively, the approximations to the values of ζ and vβ at the
xj, then the discrete system satisfied by ζh and vh has the form

SN

(
ζh
vh

)
= κγ ,δ

(
ζh.vh

(vh.2)/2

)
, (2.31)

where SN is the 2N-by-2N matrix

SN :=

(
cs(IN − bD2

N ) −(κ1IN + aD2
N )

−κ2(IN + cD2
N ) cs(IN − dD2

N )

)
, (2.32)

ith IN standing for the N-by-N identity matrix and DN denoting
he N-by-N pseudospectral differentiation matrix (scaled to the
nterval). The products of the nonlinear terms on the right hand-
ide of (2.31) are understood in the Hadamard (componentwise)
ense. In Section 3, devoted to the computational study of the
ynamics of these solitary waves, this method will be used to
iscretize in space the periodic ivp for (1.1).
The system (2.31), (2.32) is implemented in the Fourier space,

hat is for the discrete Fourier components of ζh and vh, leading
o a 2-by-2 system for each component of fixed-point form

(k)
(
ζ̂h(k)
v̂h(k)

)
= κγ ,δ

(
ζ̂h.vh(k)
ˆ(vh.2)/2(k)

)
, (2.33)

here

(k) =

(
cs(1 + b̃k2) −(κ1 − ãk2)

−κ2(1 − c̃k2) cs(1 + d̃k2)

)
, (2.34)

ith k̃ = πk/l,−N/2 ⩽ k ⩽ N/2 − 1 and ζ̂h(k), v̂h(k) denoting,
espectively, the kth discrete Fourier component of ζh and vh.

Assuming that S(k) given by (2.34) is nonsingular for all
,−N/2 ⩽ k ⩽ N/2 − 1, cf. (2.29), then the system (2.33) is
olved iteratively with the Petviashvili scheme, [21,22],

(k)

(
ζ̂

[ν+1]
h (k)

v̂
[ν+1]
h (k)

)
= m2

hκγ ,δ

(
ˆ
ζ

[ν]

h .v
[ν]

h (k)
ˆ((v[ν]

h ).2)/2(k)

)
,

ν = 0, 1, . . . , −N/2 ⩽ k ⩽ N/2 − 1, (2.35)
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Fig. 3. GSW generation. Case (A1) with δ = 0.9, γ = 0.5, c = −1/3, b = 0, d = 1, a = κ1(S(γ , δ) − b − c − d) ≈ −0.2022; cs = cγ ,δ + 0.02 ≈ 0.6176. (a) ζ and u
profiles; (b) ζ and u phase portraits.
where mh is the corresponding stabilizing factor

mh =

(
SN

(
ζ

[ν]

h
v

[ν]

h

)
,

(
ζ

[ν]

h
v

[ν]

h

))
N
/

((
ζ

[ν]

h .v
[ν]

h
((v[ν]

h ).2/2)(k)

)
,

(
ζ

[ν]

h
v

[ν]

h

))
N
,

with (·, ·)N denoting the Euclidean inner product in C2N . The
iterative procedure (2.35) is in some cases accelerated by using
vector extrapolation methods, [23]. For the application of these
techniques to the Petviashvili method for traveling wave compu-
tations see [45]. The benefits of their use include a reduction in
the number of iterations when Petviashvili’s method is conver-
gent, and the transformation of divergent cases into convergent.
Once the iteration is completed and approximations ζh and vh
have been computed, an approximation of u = (1 − β∂xx)vβ can
be obtained as uh = (IN − βD2

N )vh.
Some details on the implementation are now given. For the

experiments below h varies in a range between 6.25 × 10−2

and 2.5× 10−1. In all the computations the approximate profiles
for ζ and u and corresponding phase portraits are displayed.
The accuracy of the profiles is monitored in two ways. First, the
behavior of the residual error at each iteration

RES(ν) =

SN (ζ [ν]

h
v

[ν]

h

)
−

(
ζ

[ν]

h .v
[ν]

h
((v[ν]

h ).2)/2

) , (2.36)

where ∥ · ∥ denotes the Euclidean norm, is checked. The residual
error also controls the iteration, which is run while RES is above a
prefixed tolerance (or, by defect, a maximum number of iterations
is not attained). A second test of accuracy consists of integrat-
ing numerically the periodic ivp of (1.1) by some fully discrete
scheme, with the computed profiles as initial condition, and
monitoring several error indicators during the evolution of the
corresponding numerical solution. This was performed in the first
part of the study, [1] (see also [2]), using a fully discrete scheme
based on a Fourier pseudospectral discretization in space and,
as time integrator, a fourth-order Runge–Kutta (RK)-composition
method based on the implicit midpoint rule. The fully discrete
method and the evolution experiments will be used in Section 3
in the sequel for the computational study of the solitary wave
dynamics.

In the rest of the present section we illustrate several cases of
numerically generated solitary waves. In each one of the figures
we present the profiles of the ζ - and u-solitary waves, and their
phase space diagrams. We refer to the extended version of the
paper, [2], for more experiments and more details on the tests
for accuracy monitoring (2.36) and on the fully discrete scheme.
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We start with an illustration of GSW’s, predicted by NFT. Fig. 3
corresponds to the case (A1) with

δ = γ = 0.5, c = −1/3, b = 0, d = 1,
a = κ1(S(γ , δ) − b − c − d) ≈ −0.2022.

The speed is cs = cγ ,δ+0.02 ≈ 0.6176. A wave of elevation results
and the corresponding phase portrait shows how the profile is
homoclinic to a periodic orbit at infinity. We checked that this
homoclinic orbit corresponds to region 3 of Fig. 1. (In the phase
portrait part of this and subsequent similar figures, the horizontal
axis z depicts the solitary-wave profiles ζ , resp. u, and the vertical
axis z ′

= zx depicts ζx, resp. ux.)
We turn now to the numerical generation of CSW’s. First we

illustrate the cases (A3)–(A6) of Table 1 with examples that are
covered by the other three theories considered in Section 2.1,
namely Toland’s Theory, Concentration–Compactness Theory and
Positive Operator Theory. The associated homoclinic orbits corre-
spond to region 2 of the (B, A)-plane in Fig. 1.

The case (A3) is exemplified in Figs. 4 and 5. In Fig. 4, we
took δ = 0.9, γ = 0.5, a = −1/3, c = −2/3, b = 1/3, d =

−(δ + γ )a − b − c +
1+γ δ

3δ(γ+δ) ≈ 1.1836, and cs = cγ ,δ + 0.5 ≈

1.0976. The resulting classical solitary wave is of elevation type.
It was also checked that ∆j > 0, 0 ⩽ j ⩽ 3, where ∆j are
given by (2.30). Hence this example illustrates Theorem 2.3, i. e.
is an application of Positive Operator Theory to (2.1). On the
other hand, an application of Theorem 2.2, deduced from the
Concentration–Compactness Theory, is shown in Fig. 5. In this
case, with the same values of δ and γ , a, and c , but different b
and d, the computed CSW is of depression type and has speed
cs = cγ ,δ − 0.25 ≈ 0.3476.

Toland’s theory may justify the example of Fig. 6, correspond-
ing to a Hamiltonian case of (A6). The numerical experiment is
performed using a variant of the Petviashvili method (2.35) as
follows. For a fixed speed cs, each iterate (v[ν]

h , ζ
[ν]

h ) of the method
is forced to be in the manifold {f = 0}, where f is given by (2.15).
This is accomplished by complementing the Petviashvili iteration
with a projection method, implemented in the standard way, [46].
For the particular example of Fig. 6, with speed cs = cγ ,δ + 0.5,
the points P1 and P2 of the segment Γ , cf. Theorem 2.1, have the
components (approximately)

P1 = (4.8825, 10.7182), P2 = (6.3226, 7.5569),

and the computed solitary wave profile has amplitude ζmax ≈

9.7566 with v ≈ 5.9357 and u ≈ 6.7788.
max max
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p

p

Fig. 4. CSW generation. Case (A3) with δ = 0.9, γ = 0.5, a = −1/3, c = −2/3, b = 1/3, d = −(δ + γ )a − b − c +
1+γ δ

3δ(γ+δ) ≈ 1.1836; cs = cγ ,δ + 0.5 ≈ 1.0976. (a) ζ
and u profiles; (c) ζ and u phase portraits.
Fig. 5. CSW generation. Case (A3) with δ = 0.9, γ = 0.5, a = −1/3, c = −2/3, b = d =
1
2 (−(δ + γ )a − c +

1+γ δ
3δ(γ+δ) ) ≈ 0.7585; cs = cγ ,δ − 0.25 ≈ 0.3476. (a) ζ and u

rofiles; (c) ζ and u phase portraits.
Fig. 6. CSW generation. Case (A6) with δ = 0.9, γ = 0.5, a = 0, c = 0, b = d =
1
2

1+γ δ
3δ(γ+δ) ≈ 0.1918; cs = cγ ,δ + 0.5 ≈ 1.0976. (a) ζ and u profiles; (c) ζ and u phase

ortraits.
9



V.A. Dougalis, A. Durán and L. Saridaki Physica D 428 (2021) 133051

a

c
e
w
p
0

t
e
o
t

a
d

Fig. 7. CSW generation with a = −1/9, c = −1/6, b = 0, d = −a/κ1 − c − b + S(γ , δ) ≈ 0.7058, δ = 0.9, γ = 0.5, and speed cs = cγ ,δ − 0.2 ≈ 3.9761 × 10−1 (a) ζ
nd u profiles; (c) ζ and u phase portraits.
Fig. 8. Speed–amplitude relation in (a) linear scale and (b) log–log scale. Case (A6) with δ = 0.9, γ = 0.5, a = 0, c = 0, b = d =
1
2

1+γ δ
3δ(γ+δ) .
Recall that the theories examined in this paper exclude the
ase D = 0, where D is given by (2.5). However, some numerical
xperiments in that case suggest existence of classical solitary
aves. These may be seen in [2]. (Existence of CSW’s for the
articular case of the ‘classical Boussinesq’ system, with b =

, d > 0, a = c = 0, is a special case and is proved e. g. in [35].)
We complete this numerical study by illustrating the genera-

ion of CSW’s with non-monotonic decay predicted by NFT. An
xample appears in Fig. 7, which corresponds to a homoclinic
rbit belonging to the first-quadrant part of region 1 in Fig. 1 and
o the values

= −1/9, c = −1/6, b = 0,
= −a/κ1 − c − b + S(γ , δ) ≈ 0.7058, δ = 0.9, γ = 0.5,

and speed cs = cγ ,δ − 0.2 ≈ 3.9761 × 10−1. (A nonmonotone
CSW corresponding to the second quadrant of region 1 was also
generated, cf. [2].)

The last experiment in this section concerns the speed–
amplitude relation. Fig. 8 displays, in linear and log–log scales
and for fixed γ , δ, the amplitude of the computed profiles for
ζ , u and vβ as functions of the difference cs − cγ ,δ . The results
correspond to an experiment with δ = 0.9, γ = 0.5 and
parameters a = c = 0, b = d =

1 1+γ δ (case (A6) of
2 3δ(γ+δ)

10
Table 1 with Hamiltonian structure). Similar experiments were
made for different parameters leading to other CSW’s (including
those of nonmonotone decay) as well as GSW’s, and the results
resemble qualitatively those of this figure. The three maximum
values (for ζ , u and vβ) are increasing functions of cs − cγ ,δ , with
the amplitude of ζ increasing faster. Fig. 8(b), in log–log scale,
includes a dotted line of slope 1 for comparison purposes. The
representation of the amplitudes as affine functions for small
cs − cγ ,δ seems to fit the results (as expected). For larger values
of cs − cγ ,δ , the slope of the line for the ζ -amplitude is increasing
faster while the approximate linear fitting persists longer for the
velocity variables.

3. Computational study of solitary wave dynamics

In this section we present a computational study of the dy-
namics of some aspects of solitary waves, both classical and
generalized. To this end, and as mentioned in the introduction,
the periodic ivp for (1.1) on a long enough interval was dis-
cretized in space by a Fourier spectral method and in time by a
fourth-order RK-composition method, cf. [1], where the result-
ing fully discrete scheme was introduced and its accuracy was
checked with several numerical examples.
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In the present case the procedure, described in Section 2.2, for
the numerical generation of solitary waves suggests implement-
ing the spatial discretization in collocation form. Thus, for T > 0
and using the notation of Section 2.2, the semidiscrete solution
(ζN , vN ) satisfying (1.1) at the collocation points xj is represented
by the vectors of nodal values

ZN (t) = (ζN (xj, t))N−1
j=0 , VN (t) = (vN (xj, t))N−1

j=0 , 0 ⩽ t ⩽ T ,

that are solutions of the semidiscrete system

(IN − bD2
N )

d
dt

ZN + κ1(IN +
a
κ1

D2
N )DNVN

+ κγ ,δDN (ZN .VN ) = 0,

(IN − dD2
N )

d
dt

VN + (1 − γ )(IN + cD2
N )

×DNZN + κγ ,δDN (
VN .

2

2
) = 0, (3.1)

or 0 ⩽ t ⩽ T and where IN and DN are defined in (2.32). The ode
system (3.1) is integrated numerically in time with the 4th-order,
3-stage Runge–Kutta-composition method based on the implicit
midpoint rule, cf. [13,46].

The generic case (a, c < 0, b, d > 0) is considered for the
experiments. In this case we have existence of classical solitary
waves when κ1bd− ac > 0 (case (A3) of Table 1) and of general-
ized solitary waves when κ1bd−ac < 0 (case (A2) of Table 1). For
the computations in this section, we use the same values of the
stepsizes, mainly h = 1.25 × 10−1,∆t = 6.25 × 10−3, changing
the interval parameter L and the number N of collocation points
in order to maintain the same h up to the final time of integration.

3.1. CSW dynamics. Numerical experiments

The experiments in this section concern the evolution of solu-
tions emanating from small and larger perturbations of CSW’s, as
well as head-on and overtaking collisions of CSW’s. For simplicity,
only the results for the numerical ζ -component ζN will be shown.

3.1.1. Small perturbations of a CSW
In order to illustrate the evolution of a perturbed CSW in the

generic case, we take the specific values

γ = 0.5, δ = 0.9, a = −1/3, c = −2/3, b = 1/3,

d = −
a
κ1

− b − c +
1 + γ δ

3δ(γ + δ)
≈ 1.1836. (3.2)

typical experiment consists of generating a corresponding ap-
roximate CSW profile (ζh, uh) for these values (here with specific
ata l = 256,N = 4096, cs = cγ ,δ + 0.1 ≈ 0.6976, starting from
sech2-initial profile), taking a perturbation

N (0) = Aζh, uN (0) = Auh, (3.3)

ith A constant as initial condition and monitoring the resulting
umerical solution up to some final time T , which was taken
n the experiments to be up to T = 800. The time step was
t = 6.25 × 10−3.
For A = 1.1 the results are given in Figs. 9 and 10. Fig. 9 shows

he evolution of the numerical approximation at several time
nstances. In this small perturbation case, a new CSW emerges,
ith a small-amplitude tail of dispersive nature following the
ain wave and shown in detail in Fig. 9(d).
The structure of such dispersive tails can be analyzed from the

ehavior of small-amplitude solutions of the linearized system
ssociated to (1.1) in a frame y = x − cst moving with the speed
s of the CSW, given by

1 − b∂ )(∂ − c ∂ )ζ + κ ∂ J v = 0, (3.4)
yy t s y 1 y a β
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(1 − d∂yy)(∂t − cs∂y)vβ + κ2∂yJcζ = 0, (3.5)

here Ja, Jc are given by (2.25). Applying the operator (1 −

∂yy)(∂t − cs∂y) to (3.4) and using (3.5) we obtain the high-order
ave equation

1 − d∂yy)(1 − b∂yy)(∂t − cs∂y)2ζ − κ1κ2∂
2
y JaJcζ = 0. (3.6)

Plane wave solutions ζ (y, t) = ei(ky−ω(k)t) of (3.6) satisfy the linear
dispersion relation

ω(k) = ω±(k) = −kcs ± cγ ,δkφ(k2),

where φ : [0,∞) → R is the function

φ(x) =

√
(1 − ãx)(1 − cx)
(1 + bx)(1 + dx)

, ã =
a
κ1
.

This leads to a local phase speed (relative to the speed of the
CSW)

v±(k) = −cs ± cγ ,δφ(k2). (3.7)

ome properties of the function φ can explain the behavior of
3.7). These are:

(1) φ(x) ⩾ 0, x ⩾ 0, φ(0) = 1.
(2) From the condition κ1bd − ac > 0, characterizing (A3), we

have

lim
x→∞

φ(x) = φ∗ :=

√
ac
κ1bd

< 1.

(3) Let

p1 = ãc(b + d) + bd(̃a + c),
p2 = 2(̃ac − bd) < 0 (cf. (A3)),

p3 =
1 + γ δ

3δ(γ + δ)
> 0. (3.8)

Then

φ′(x) =
P(x)

2φ(x)(1 + bx)2(1 + dx)2
, P(x) = p1x2 + p2x − p3.

(3.9)

Therefore, the monotonicity of φ depends on the polynomial
P(x), in particular on the sign of p1. Let ∆ = p22 + 4p1p3 be
the discriminant of the equation P(x) = 0. Then we have the
cases:

(i) p1 < 0. In this case ∆ ⩽ 0. Then P(x) has the same
sign for all x ⩾ 0. Since P(0) = −p3 < 0, then
P(x) < 0, x ⩾ 0. Therefore, φ(x) is decreasing for x ⩾ 0.
On the other hand, when ∆ = 0 then P(x) has a double
root at x = x∗ = −p2/2 > 0, where P(x) attains a
minimum. Thus:

(1) If 0 ⩽ x ⩽ x∗, then φ(x) is decreasing with
1 > φ(x) ⩾ φ(x∗).

(2) If x∗ ⩽ x, then φ(x) is increasing with φ(x∗) ⩽
φ(x) ⩽ φ∗ < 1.

(ii) p1 = 0. In this case P(x) = p2x − p3 has only the root
x = p3/p2 < 0 and therefore φ(x) is decreasing for
x > 0 with 0 ⩽ φ(x) ⩽ φ(0) = 1.

(iii) p1 > 0. This implies ∆ > 0 and the existence of two
simple roots of P(x), one positive x∗ =

1
2 (−p2 +

√
∆)

and one negative. The behavior is then similar to the
case ∆ = 0 in (i), that is

(1) If 0 ⩽ x ⩽ x∗, then φ(x) is decreasing with
1 > φ(x) ⩾ φ(x ).
∗
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Fig. 9. Evolution of a CSW perturbed slightly. Case (A3) with (3.2), (3.3) A = 1.1, cs = cγ ,δ + 0.1. (a)–(c) ζ component of the numerical solution; (d) Magnification
of (c) between x = −200 and x = 0.
Fig. 10. Evolution of a CSW perturbed by a small amount. Case (A3) with (3.2), (3.3) A = 1.1, cs = cγ ,δ + 0.1. Evolution of amplitude and speed of the ζ component
f the main pulse.
w
(2) If x∗ ⩽ x, then φ(x) is increasing with φ(x∗) ⩽

φ(x) ⩽ φ∗ < 1.

With all these properties we have

−cs − cγ ,δ < v−(k) < −cs < v+(k) < −cs + cγ ,δ.

f we assume cs > cγ ,δ , then we conclude that plane wave
components of the dispersive tail, traveling to the right or to
the left, trail the solitary wave with an absolute phase speed
satisfying v+(k) + cs < cγ ,δ and |v−(k) + cs| < cγ ,δ . Furthermore,
omponents with smaller k (long wavelength) are faster than
hose with larger k (short wavelength).

For the group velocities we have

′ (k) = −c ± c ψ(k2),

± s γ ,δ

12
here ψ : [0,∞) → R is the function

ψ(x) = 2xφ′(x) + φ(x), (3.10)

The behavior in this case seems to be similar to that of φ, cf. [2].
Different values of the parameters (always in the generic case and
with the condition κ1bd − ac > 0) seem to suggest the existence
of a minimum, to the left of which 0 ⩽ ψ(x) ⩽ 1 and after which
ψ grows up to

lim
x→∞

ψ(x) = φ∗ :=

√
ac
κ1bd

< 1.

Under these conditions, we would have

−c − c < ω′ (k) < −c < ω′ (k) < −c + c .
s γ ,δ − s + s γ ,δ
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Fig. 11. Evolution of a perturbed CSW. Case (A3) with (3.2), (3.3) A = 2.1, cs = cγ ,δ + 0.1. (a), (b) ζ component of the numerical solution; (c) First structure of the
component of the numerical solution; (d) Second structure.
c

f we assume cs > cγ ,δ again, this would imply the existence
f two dispersive groups, one traveling to the left and one to
he right following the solitary wave, with group velocity smaller
han cs with |ω

′
±
(k) + cs| < cγ ,δ . In Fig. 9(c) a first tail, close to

he main wave and traveling to the right is observed, while a sec-
nd wave packet of smaller amplitude appears in the magnified
ig. 9(d). At t = 200, this wavelet is traveling to the left with
ffective support in [−130,−90] (cf. [47] for a similar wavelet in
ome cases of surface waves).
Finally, Fig. 10 shows the evolution of the amplitude and

peed of the ζ component of the numerical approximation of the
ain pulse for the system with parameters given by (3.2). In this
xample, the emerging solitary wave is faster and larger than the
erturbed initial profile.

emark 3.1. A similar study can also be applied to the rest of
he cases (A4)–(A6) of Table 1. Thus, in the cases (A4) and (A5),
e have p1 < 0, while in the case (A6), p1 = 0. Then, analogous
esults to those of the generic case (A3) of CSW’s hold.

.1.2. Larger perturbation of a CSW
Increasing the value of the perturbation parameter A leads,

in our example, to the generation of another solitary wave; no
instability was observed. Fig. 11 illustrates the experiment with
A = 2.1 (the spatial and temporal step sizes are the same as
those of the previous experiments). The evolution of the nu-
merical approximation (see Fig. 11(a), (b)) shows, in addition
to the generation of a dominant, emerging solitary wave, (a bit
taller than that of the perturbed initial data for the example at
hand, cf. [2]), the formation of two other structures. Immedi-
ately behind the main wave, a nonlinear wave of solitary-wave
type seems to be forming, along with a dispersive tail trailing
it and traveling to the right, as Fig. 11(c) reveals. The nature
of the second structure on the left of the main wave (see the
13
magnification in Fig. 11(d)) is not so clear. Apparently, the wave
contains some dispersive component (as in the experiment with
small perturbations in the previous section) but its persistence
during the evolution may suggest the existence of something
that does not disperse strongly. Similar conclusions hold from
the experiments (not shown here) with A = 3.1. This behavior
also suggests, as the structure seems to be moving to the left,
the formation of a wavelet, or a superposition of them, such as
observed in Boussinesq systems for surfaces waves, see e. g. [48].
Nevertheless, the possibility of the formation of a CSW with
nonmonotone decay is not to be discarded.

These observations persist when the value of A is taken to
be larger. In order to illustrate this, we show the analogous
experiment corresponding to A = 6.1, in Fig. 12. For this larger
perturbation, the initial perturbed wave gives rise to a main
solitary-wave pulse and seems to exhibit a sort of stronger reso-
lution property, with a solitary wave of elevation forming behind
and following the main wave, see Fig. 12(c). As for the second
structure, the possible formation of a CSW of depression with
nonmonotone decay is more clearly observed (Fig. 12(d)) than in
the previous experiment.

3.1.3. Overtaking collisions
Overtaking collisions are illustrated in the following experi-

ment. With the same values of the parameters given by (3.2),
we generate two approximate CSW profiles with speed c(1)s =

cγ ,δ + 0.5 ≈ 1.0976 centered at x(1)0 = 0, and speed c(2)s =

γ ,δ + 0.2 ≈ 0.7976 centered at x(2)0 = 20, respectively. The
superposition of these profiles is taken as initial condition for the
numerical method. The ensuing evolution is shown in Fig. 13(a)
and (b), while Fig. 13(c) and (d) are magnifications of 13(b).

The experiment shows that after the one-way collision, two
solitary waves emerge. The amplitude of the larger one, com-
pared to that of the corresponding wave before the collision, has
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Fig. 12. Evolution of a perturbed CSW. Case (A3) with (3.2), (3.3) A = 6.1, cs = cγ ,δ + 0.1. (a)–(b) ζ component of the numerical solution; (c) first structure of the
component of the numerical solution; (d) second structure.
ecreased slightly; the relative difference is 9.7 × 10−6. In the
ase of the second, smaller solitary wave, the comparison shows
n increase of the amplitude after the collision, which in relative
erms is about 2.0×10−6. The effect in the corresponding speeds
is qualitatively similar to the experimental speed–amplitude re-
lation shown in Section 2, as the taller wave reduces slightly
its speed after the collision, while that of the shorter one is
increasing, cf. [2].

Additional features of this inelastic interaction are shown in
Figs. 13(c) and 13(d). Behind the shorter emerging wave a small
dispersive tail is generated, while a second, wavelet-type struc-
ture is observed to have formed and to be traveling to the left.

3.1.4. Head-on collisions
The following experiment on head-on collisions is reported

here. With the same parameters as in (3.2), we follow the evo-
lution of the superposition of two approximate CSW-profiles of
equal heights, initially centered at x = ±20, with opposite speeds
of absolute values equal to cs = cγ ,δ + 0.5 ≈ 1.0976. The waves
undergo a symmetric head-on collision, shown in Figs. 14(a)–(d).

The outcome of the collision is symmetric as well. After the
interaction, there emerge two solitary waves and structures trav-
eling behind them, similar to ones already observed in other
experiments. In this case, the amplitude of the emerging right-
traveling CSW is smaller than that of the initial one with a relative
difference of about 1.8 × 10−3. The emerging waves are also
slightly slower than the initial ones, with a relative decrease of
6.4 × 10−4 in their speeds.

The structures behind the solitary waves, shown in more
detail in Figs. 14(c) and 14(d), are of bigger size than those of
the previous experiment of overtaking collision, but seem to be
again of dispersive and nonlinear type. The form of the nonlinear
structure, however, is not yet clear from Fig. 14(d).
14
Remark 3.2. A second experiment, concerning a non-symmetric
head-on collision, was made, cf. [2]. In this case the initial condi-
tion is a superposition of two approximate CSW profiles, one with
amplitude 11.101, speed c(1)s = cγ ,δ + 0.5 ≈ 1.0976 (traveling to
the right) and centered at x = −20, and a second one with ampli-
tude 4.8324, absolute value of speed equal to c(2)s = cγ ,δ+0.25 ≈

0.8476 traveling to the left and centered at x = 20. After the
non-symmetric interaction, the taller emerging CSW has smaller
amplitude than before the collision (with a relative difference of
about 6.3×10−4, but the amplitude of the shorter emerging CSW
has decreased more (about 5.2×10−3; the corresponding figures
can be seen in [2]). Consequently, the emerging CSW’s are slower
than their corresponding counterparts before the collision. The
tails trailing the emerging waves are not symmetric either and
they seem to have a similar structure to those of the symmetric
head-on collision shown in Fig. 14: A wavelet-type form in front
and a strong dispersive component behind.

3.1.5. Resolution property
In addition to the evidence of generation of more than one

CSW observed in the evolution of initial profiles with larger per-
turbations in Section 3.1.2, the resolution into solitary waves also
appears in the evolution of other types of initial conditions. This
is illustrated in Fig. 15, which represents the temporal behavior
of the ζ -component of the numerical solution emerging from an
initial Gaussian pulse ζ (x, 0) = Ae−τx2 , u(x, 0) = ζ (x, 0), with A =

2, τ = 0.01. In this example, a train of solitary waves of elevation
is formed, followed by a left-traveling dispersive structure, see
Figs. 15(c) and 15(d). The evolution of the maximum of the
ζ -component of the numerical solution stabilizes to around
4.1790, which is the amplitude of the leading solitary wave profile
of the train. The speed, computed from the point where the
maximum is attained, cf. [47], is about 8.1779 × 10−1.
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Fig. 13. Overtaking collision of CSW’s. (a)–(b) ζ component of the numerical approximation; (c) Magnification of (b); (d) magnification of (c).
.2. GSW dynamics. Numerical experiments

In this section we illustrate some aspects of the dynamics of
SW’s in the generic case (A2) of Table 1. As in the previous
ection, the experiments are concerned with perturbations and
ollisions of GSW’s.

.2.1. Perturbations of GSW
We consider the parameters

= 0.5, δ =
γ +

√
γ 2 + 8
2

≈ 1.6861,

c = −1/6, b = 1/9, d = 4/3,
a = κ1(1/6 − b − c − d) ≈ −0.5083, (3.11)

and generate the corresponding approximate GSW, with ampli-
tude 4.5728×10−2 and speed 4.8824×10−1. (The values of γ and
δ in (3.11) are taken appropriately to ensure that the parameters
a, b, c and d satisfy the conditions in (A2) in Table 1.) The first
experiment consists of perturbing the two components (ζNs , u

N
s )

of the GSW with the same quantity A = 1.01, i. e. considering

ζN (0) = AζN , uN (0) = AuN , (3.12)
s s

15
as initial condition of the numerical method, and monitoring the
evolution of the corresponding numerical solution. This is shown
in Fig. 16: This small perturbation of the GSW generates a new
GSW.

The evolution of the amplitude and speed of the emerging
wave suggests that its parameters stabilize at slightly larger val-
ues than those of the initial condition. Specifically, the amplitude
of the perturbed initial GSW is of about 4.612× 10−2 and that of
emerging GSW is between 4.61 × 10−2 and 4.62 × 10−2. In the
case of the speed, the relative difference is about 3.26×10−4. The
structure of the ripples appears to be the same. We expect that
the small perturbation will generate some sort of dispersion, for
this experiment the dispersive oscillations are apparently of very
small size and are probably hidden in the ripples.

The study of the structure of dispersive tails via the linearized
system (3.4), (3.5), made in Section 3.1 for the generic case (A3)
of classical solitary waves can be adapted to the generic case (A2)
for generalized solitary waves (see [2] for the details). Now, for
sufficiently large |k|, we have
−cs − cγ ,δ < v−(k) < −cs < v+(k),
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Fig. 14. Symmetric head-on collision of CSW’s. (a)–(b) ζ component of the numerical approximation; (c) magnification of (b); (d) magnification of (c) left.
nd v+(k) > −cs + cγ ,δ . This implies the existence of plane wave
components of small amplitude traveling to the right and in front
of the GSW. Similarly, the formation of two dispersive groups,
one traveling to the left behind the solitary wave and one to the
right in front of it, is suggested by the form of the corresponding
function ψ , given by (3.10), for the case (A1).

As the perturbation parameter A grows, new phenomena ap-
pear in the dynamics. This is illustrated in Fig. 17, which corre-
sponds to (3.11), (3.12) with A = 4.1 (cf. also [2]). The experiment
uggests that the perturbed initial GSW evolves into a new GSW
hich seems to require a longer time to stabilize. Behind the
ain wave, similar structures to those observed in the case of

arge perturbations of CSW’s (cf. Fig. 11) seem to be generated,
uperimposed on the ripples. In addition, some perturbation tails
adiate in front of the main emerging wave. This fact and the
onger time required for the stabilization of the main wave may
uggest some kind of instability.

.2.2. Resolution
In order to study the resolution property in systems with

eneralized solitary wave solutions, we consider again the values
f the parameters given by (3.11) and use, as initial condition,
he same Gaussian pulse as that considered in Section 3.1 for
SW’s, of the form ζ (x, 0) = Ae−τx2 , with A = 2, τ = 0.01, and

u(x, 0) = ζ (x, 0). The evolution of the numerical approximation
is illustrated in Fig. 18.

The behavior of the approximation of ζ may be compared with
that of the CSW case (Fig. 15). Now, the Gaussian profile seems
to evolve into a train of solitary waves of elevation, followed by
some structures of different form. They are displayed in more
detail in Fig. 19. Fig. 19(a) is a magnification of the tail formed
just behind the solitary wave train and Fig. 19(b) is a detail of the
16
solution between two solitary waves. Some dispersive pulses are
radiated in front of each profile. These are also observed behind
the wave train of solitary waves, see Fig. 19(c). A third structure,
magnified in Fig. 19(d), seems to consist of a train of classical
solitary waves with non-monotonic decay and a dispersive tail.

3.2.3. Head-on collisions
The interactions of GSW’s are illustrated with experiments

of head-on collisions. The first experiment shown in the sequel
is concerned with a symmetric head-on collision of GSW’s. For
the system with parameters given by (3.11), a superposition of
approximate GSW profiles with absolute values of the speed cs =

cγ ,δ + 10−2
≈ 4.8824 × 10−1, traveling to the right and to the

left and centered at x0 = −20 and x0 = 20 respectively, is
taken as initial condition, and the simulation of the evolution is
represented in Fig. 20. The initial amplitudes are about 4.5654 ×

10−2.
The temporal interval of collision lasts approximately from

t = 30 to t = 50; thereafter two symmetric GSW’s emerge. The
evolution of the amplitude of the ζ component of the numerical
solution seems to stabilize to a value around 4.62 × 10−2; so
the emerging waves are taller (and hence faster), and the relative
difference in amplitude is about 1.2 × 10−2. We note that after
the collision the amplitude of the ripples is larger.

From the experiments (not presented here, cf. [2]) to illustrate
the dynamics of non-symmetric head-on collisions, similar effects
to those of the symmetric collision case are observed.

3.3. Dynamics of classical solitary wave solutions with non mono-
tone decay

In this section we present some experiments concerning the
dynamics of CSW solutions of (1.1) with non monotone decay,
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Fig. 15. Resolution property. Initial Gaussian pulse ζ (x, 0) = Ae−τx2 , u(x, 0) = ζ (x, 0), with A = 2, τ = 0.01. Case (A3). (a)–(b) ζ component of the numerical solution;
c) magnification of (b); (d) magnification of (c).
Fig. 16. Small perturbation of a GSW. Case (A2) with (3.11), (3.12) with A = 1.01. (a) Perturbed GSW profile; (b) ζ component of the numerical solution.
hose existence was justified by an application of the Normal
orm Theory in Section 2.1, and for speeds smaller than the
orresponding speed of sound cγ ,δ . For simplicity we focus on the
ehavior under small and large perturbations of the type (3.12)
s those used in Sections 3.1 and 3.2 .
We consider the numerical profile obtained in Section 2.2 from

he parameters

= 0.5, δ = 0.9,

a = −1/9, b = 0, c = −1/6,

d = S(γ , δ) −
a

− b − c ≈ 0.7058. (3.13)

κ1
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The ζ component has a maximum negative excursion of about
−2.8740 and the speed is cs = cγ ,δ − 0.2 ≈ 0.3976. The ζh and
vh components are perturbed in amplitude with a perturbation
factor A = 1.1. The perturbed wave (Aζh, Avh) is taken as initial
condition of the numerical method to approximate (1.1) with L =

1024, and the evolution of the resulting numerical approximation
is monitored up to t = 800 and shown in Fig. 21.

During the evolution, a new solitary wave of the same type
is formed. Compared to the initial perturbed wave, whose maxi-
mum negative excursion was approximately −3.1614, the emerg-
ing wave dips to about −3.1376. The wave is slower, with a speed
around 0.3832.
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(

w

Fig. 17. Large perturbation of a GSW. Case (A2) with (3.11), (3.12) with A = 4.1. (a) Perturbed GSW profile; (b) ζ component of the numerical solution;
c) magnification of (b).
Fig. 18. Resolution property. Case (A2) with (3.11), and a Gaussian pulse ζ (x, 0) = u(x, 0) = Ae−τx2 , with A = 2, τ = 0.01, as initial condition. ζ component of the
numerical solution.
Behind and in front of the emerging solitary wave, some other
small structures form. They are observed in the magnification of
Fig. 21(b) given by Fig. 21(c) and (d).

The main character of these small-amplitude waves seems to
be dispersive. The generation of dispersive oscillations in front
of the emerging solitary wave can be justified from the study of
small-amplitude solutions of the linearized system (3.4), (3.5). In
this case we have a linear dispersion relation of the form

ω(k) = ω±(k) = −kcs ± cγ ,δkφ(k2),

where φ : [0,∞) → R is the function

φ(x) =

√
(1 − ãx)(1 − cx)

1 + dx
, ã =

a
κ1
,

ith a, c, d given by (3.13). The local phase speed (relative to the
speed of the CSW) is therefore

v±(k) = −cs ± cγ ,δφ(k2).

An analysis of φ similar to that made in Section 3.2 for the case
(A1) shows that for large |k|

v (k) > −c + c ,
+ s γ ,δ
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and most of the components of the dispersive tail travel to the
right and in front of the solitary wave. Similarly, for the group
velocities

ω
′

±
(k) = −cs ± cγ ,δψ(k2),

where ψ : [0,∞) → R is given by (3.10), and for |k| large
enough

ω
′

+
(k) ⩾ −cs + cγ ,δ > 0.

Hence one dispersive group travels to the right and in front of the
solitary wave.

We repeat now the analogous experiment with A = 2.1 in
(3.12), and the results are shown in Fig. 22. As the perturbation
factor A grows, the size of both tails also grows. In addition,
Figs. 22(c) and 22(d) suggest the formation of nonlinear struc-
tures, in the form of wavelets and perhaps some very small
CSW’s with non monotone decay. (These two structures were
conjectured in Fig. 21(d).) The emerging solitary wave is shorter
(its maximum negative excursion is approximately −5.233, com-
pared to −6.035 for the initial perturbed wave) and slower (the
speed is now about 0.237).
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Fig. 19. Resolution property. Case (A2) with (3.11), and a Gaussian pulse ζ (x, 0) = u(x, 0) = Ae−τx2 , with A = 2, τ = 0.01, as initial condition. Several structures of
the ζ component of the numerical solution at t = 800.
4. Concluding remarks

The present paper continues the study, initiated in [1], of
the so-called Boussinesq/Boussinesq (B/B) systems (1.1). They
model the propagation of the deviation of the interface in a two-
layer system of fluids, with the upper layer bounded above by
a horizontal rigid lid and the lower layer bounded below by an
impermeable, horizontal bottom, under a Boussinesq regime for
the flow in both layers, [3]. In [1], some theoretical results of
the ivp for (1.1), concerning linear and nonlinear well-posedness,
Hamiltonian structure, and conservation laws were established.
In addition, and for each nonlinearly well posed system, error
estimates for the spectral Fourier–Galerkin semidiscretization to
approximate the corresponding periodic ivp were derived in that
paper. We also introduced a full discretization by integrating in
time the spectral semidiscrete systems with a fourth-order RK
method of composition type based on the implicit midpoint rule.

The present paper is focused on the existence and dynam-
ics of solitary-wave solutions of the B/B systems. Section 2 is
concerned with the existence and numerical generation of this
type of solutions. In the first part, Section 2.1, we apply standard
theories such as Normal Form Theory (NFT), Toland’s Theory,
Concentration–Compactness Theory (CCT), and Positive Operator
Theory (POT), in order to derive existence results. If we make use
of the linearization of the system for the solitary waves (2.1),
written as a first-order system (2.3), at the origin, NFT allows
us to establish the existence of Classical Solitary Waves (CSW’s)
and Generalized Solitary Waves (GSW’s), in two ‘generic’ cases
(cf. Table 1), respectively:

• a, c ⩽ 0, b, d ⩾ 0, bd − ac/κ > 0 (CSW),
1
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• a, c ⩽ 0, b, d ⩾ 0, bd − ac/κ1 < 0 (GSW),

where κ1 = 1/(δ + γ ), with δ and γ denoting, respectively,
the depth and density ratios of the two-layer system of fluids.
Existence of such solitary waves is ensured by the NFT when the
magnitude of the speed cs is greater than but close to the limiting
value cγ ,δ =

√
(1 − γ )/(δ + γ ) (speed of sound). In addition, NFT

also predicts periodic solutions close to the region of generation
of CSW’s, as well as classical solitary waves with non monotone
decay for speeds cs satisfying |cs| < cγ ,δ .

The remaining theories contribute more results for the exis-
tence of CSW’s of speeds not necessarily close to cγ ,δ . Thus:

• When a, c ⩽ 0, b = d > 0 (Hamiltonian case), Toland’s
theory ensures the existence of classical solitary waves. A
specific speed–amplitude relation of the form (2.21) holds.

• When a, c < 0, b = d > 0, CCT establishes the existence
of CSW’s for speeds cs satisfying a bound of the form (2.26)
and |cs| < cγ ,δ .

• The application of POT proves the existence of CSW’s when
b, d > 0, a, c ⩽ 0, and bd − ac/κ1 > 0, with speeds cs
satisfying |cs| > cγ ,δ .

These existence results are illustrated in Section 2.2, where
CSW and GSW solutions are numerically generated. The numer-
ical procedure consists of discretizing the system (2.1) of ode’s
satisfied by the solitary wave profiles, on a long enough interval
with periodic boundary conditions, by the Fourier collocation
method. In the Fourier space, the differential equation systems
for the profiles become algebraic systems, which are iteratively
solved by Petviashvili’s scheme, accelerated with vector extrap-
olation techniques. Each case is illustrated by exhibiting the ap-
proximate solitary-wave profiles (ζ and v components) and the
β
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Fig. 20. Symmetric head-on collision of GSW’s. Case (A2) with (3.11). (a), (b) ζ component of the numerical solution; (c), (d) magnifications of (a) and (b) respectively.
Fig. 21. Small perturbation of a CSW with nonmonotone decay. A = 1.1. (a), (b) ζ component of the numerical solution; (c), (d) magnifications of (b).
t
orresponding phase portraits, while the decrease of the residual
rror with the number of iterations was checked in order to verify
 m

20
he convergence of the iteration. In addition, numerical experi-
ents suggest in all cases, and for both CSW’s and GSW’s, that



V.A. Dougalis, A. Durán and L. Saridaki Physica D 428 (2021) 133051

t
c

o
t
l
i
d
T
0
a
(
G
S

Fig. 22. Perturbation of a CSW with nonmonotone decay. A = 2.1. (a), (b) ζ component of the numerical solution; (c), (d) magnifications of (b).
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he amplitude is an increasing function of the speed difference
s − cγ ,δ .
In Section 3 we make a computational study of some aspects

f the dynamics of classical and generalized solitary waves of
he B/B systems by solving numerically the periodic ivp on a
ong enough interval using the fully discrete method presented
n [1]. Section 3.1 is devoted to a computational study of the
ynamics of CSW solutions which are strictly positive or negative.
he experiments are made for the generic case a, c < 0, b, d >
, bd− ac/κ1 > 0 and describe the ensuing evolution from small
nd large perturbations of CSW’s, from superpositions of CSW’s
in order to study overtaking and head-on collisions), and from
aussian pulses, in order to study resolution into solitary waves.
ome of the main conclusions are reported here:

• Under small initial perturbations, the solution evolves into
a modified CSW with small dispersive tails following the
main wave. The generation and structure of these tails are
justified by an analysis of small-amplitude solutions of the
associated linearized system in a reference frame moving
with the speed of the solitary wave. In the case of these
strictly positive or negative classical solitary waves, the re-
sults predict the formation of two types of dispersive os-
cillation groups, trailing the solitary wave and traveling in
opposite directions.

• Increasing the size of the perturbation of the initial solitary
wave may lead to the generation of additional stable, non-
linear structures. They may consist of smaller CSW’s, CSW’s
of non monotone decay or others of wavelet type.

• The collisions are, as expected, inelastic. In both cases (over-
taking and head-on collisions), two CSW’s emerge; the ef-
fects of the inelastic interactions include the generation of
21
tails of dispersive nature and nonlinear structures of the
same type as those already mentioned.

• The evolution ensuing from initial Gaussian pulses shows
resolution into a train of CSW’s, leaving a small structure
behind which seems to be dispersive.

n Section 3.2 we carry out a corresponding computational study
f the dynamics of GSW’s. The experiments concern systems in
he generic case a, c < 0, b, d > 0, bd− ac/κ1 < 0 and are of the
same type as those in Section 3.1. The main conclusions are:

• The experiments with small perturbations of GSW’s suggest
that the question of stability of these waves is more intri-
cate, in the sense that the formation of emerging, stable
GSW’s seems to require smaller initial perturbations and
takes longer time than in the case of CSW’s. In some ex-
amples the dispersive tails are hard to observe, as they are
hidden in the ripples of the structure, being of much smaller
size.

• The experiments with larger perturbations of an initial GSW
show the formation of nonlinear structures of similar type
to those observed in the case of CSW’s, but overimposed on
the ripples. In addition, larger ripples along with dispersive
tails form in front of an emerging GSW, a fact that surely
affects its stability.

• The experiments show the evolution, from initial Gaussian
pulses, of a train of solitary-wave type pulses traveling to
the right. Ripples are formed between each pair of consec-
utive pulses, mixed somehow with dispersive tails. These
dispersive groups are also observed behind the train. Finally,
a second train of solitary-wave pulses is formed, traveling
to the left, consisting of nonmonotonically decaying solitary
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waves; thus each wave of this train should have speed less
than the limiting value cγ ,δ .

• The main effect observed in the experiments of overtaking
and head-on collisions of GSW’s is the formation of two
emerging GSW’s with ripples of different size, larger, in
general, than those of the initial GSW’s. Dispersive struc-
tures seem now to be smaller and are superimposed on the
emerging ripples.

The existence of nonmonotonically decaying classical solitary
waves, established in Section 2.1 and numerically generated in
Section 2.2, as well as their role in the dynamics of other solitary
waves, observed in the experiments of Sections 3.1 and 3.2,
motivate the numerical experiments of Section 3.3, devoted to a
computational study of the behavior of these waves under small
and large perturbations. The experiments suggest persistence and
stability of these waves. From small perturbations, a new solitary
wave of the same type is formed. The analysis of small-amplitude
plane wave solutions of the linearized system in a reference
moving with the speed of the solitary wave, shows now that
the main part of the dispersive oscillations travels to the right
in front of the solitary wave, with the rest traveling to the left,
behind it. When the perturbation factor grows, the formation
of a new solitary wave with nonmonotone decay is observed,
and now the dispersive tails seem to be accompanied by the
generation of small nonlinear structures, in the form of wavelets
or nonmonotone CSW’s.
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