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Abstract
Objective To evaluate the impact of glucose variability on the relationship between the GRI and other glycemic metrics in a
cohort of pediatric and adult patients with type 1 diabetes (T1D) using intermittent scanning continuous glucose monitoring
(isCGM).
Methods We performed a cross-sectional study of 202 patients with T1D under intensive insulin treatment (25.2% CSII)
using isCGM. Clinical, metabolic, and glycemic metrics were collected, and the GRI was calculated with its hypoglycemia
(CHypo) and hyperglycemia (CHyper) components. The correlation between the GRI and other classical glycometrics in
relation to the coefficient of variation (CV) was evaluated.
Results A total of 202 patients were included (53% male; 67.8% adults) with a mean age of 28.6 ± 15.7 years and
12.5 ± 10.9 years of T1D evolution (TIR 59.0 ± 17.0%; CV 39.8 ± 8.0%; GMI 7.3 ± 1.1%). The mean GRI was 54.0 ± 23.3
with a CHypo and CHyper component of 5.7 ± 4.8 and 23.4 ± 14.3, respectively. A strong negative correlation was observed
between the GRI and TIR (R=−0.917; R2= 0.840; p < 0.001), showing differences when dividing patients with low
glycemic variability (CV < 36%) (R=−0.974; R2= 0.948; p < 0.001) compared to those with greater CV instability (≥36%)
(R=−0.885; R2= 0.784; p < 0.001). The relationship of GRI with its two components was strongly positive with CHyper
(R= 0.801; R2= 0.641; p < 0.001) and moderately positive with CHypo (R= 0.398; R2= 0.158; p < 0.001). When the GRI
was evaluated with the rest of the classic glycemic metrics, a strong positive correlation was observed with HbA1c
(R= 0.617; R2= 0.380; p < 0.001), mean glucose (R= 0.677; R2= 0.458; p < 0.001), glucose standard deviation
(R= 0.778; R2= 0.605; p < 0.001), TAR > 250 (R= 0.801; R2= 0.641; p < 0.001), and TBR < 54 (R= 0.481; R2= 0.231;
p < 0.001).
Conclusions The GRI correlated significantly with all the glycemic metrics analyzed, especially with the TIR. Glycemic
variability (GV) significantly affected the correlation of the GRI with other parameters and should be taken into
consideration.
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Introduction

In recent years, the widespread use of continuous glucose
monitoring (CGM) has led to a paradigm shift in glycemic
control in patients with type 1 diabetes mellitus (T1D). An
increasing number of studies have related the use of CGM
to the improvement of metabolic control and quality of life
and the reduction of long-term complications in patients
with T1D [1–3]; however, the use of glycosylated hemo-
globin A1c (HbA1c) continues to coexist with CGM para-
meters in clinical practice [4].

The limitations of HbA1c are well known: the lack of
precision in laboratory measurement in common clinical
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situations (hemoglobinopathies, anemia, uremia, or preg-
nancy, among others), a half-life of around 3 months that
does not allow short-term changes to be evaluated, the weak
relationship with mean glucose at the individual level, as
well as the low sensitivity to hypoglycemic events [4]. The
CGM offers an interesting alternative, allowing a compre-
hensive assessment of interstitial blood glucose levels on a
continuous basis, with the time in range (TIR) of
70–180 mg/dl, the measure with the most support at present
[5]. In fact, its use has recently been recommended clini-
cally and in trials, given the need for an evaluation beyond
HbA1c of the different therapeutic measures in diabetes [6].

Due to both HbA1c and TIR being parameters of cen-
trality, several studies have shown a strong negative rela-
tionship between the two variables [7, 8]. However, this
correlation is directly influenced by the glycemic variability
(GV) measured as the coefficient of variation (CV) in both
T1D and type 2 diabetes mellitus (T2D) [9, 10]. In addition,
TIR does not show sufficient sensitivity in the hypoglyce-
mia range or in extreme glycemia values [6]. Therefore,
simultaneous assessment of the different glycemic metrics
of CGM is necessary for an adequate interpretation of
metabolic control, with the consequent time-consuming
workload for the professionals involved [6].

The recent development of the glycemia risk index (GRI)
aims to solve some of these drawbacks by summarizing the
overall quality of a given patient’s glycemic control in a
single parameter. It arises from the analysis of the different
scores given by 330 international experts in T1D to the
CGM data of 225 insulin-treated patients. The GRI is cal-
culated from the time below range (TBR) of <70 mg/dl and
the time above range (TAR) of >180 mg/dl and gives
greater weight to the extreme values of interstitial glucose
[11]. This composite metric describes the quality of glyce-
mia in CGM in a simple way and from a global point of
view. Its simultaneous use with the “classic” glycometrics
features may show some advantages; it encompasses
metabolic control in a single parameter on a scale from 0
(very good control) to 100 (very poor control), allowing to
prioritize or monitor the evolution of the same or different
patients; the simple and easily automated calculation inte-
grates into the Ambulatory Glucose Profile, an intuitive
graphical representation and assessment with a clinical, not
exclusively mathematical, background. In fact, a recent
international consensus on CGM metrics for clinical trials
suggested using the GRI for objective measures of gly-
caemic control derived from CGM [6].

Despite the possible advantages of integrating this new
glucometry into routine clinical practice, its relationship
with other glucose parameters, specifically the influence of
GV on the GRI, has not yet been elucidated.

The present study aimed to evaluate the effect of glucose
variability on the relationship between the GRI and other

glycemic metrics and its clinical implications in a cohort of
pediatric and adult patients with T1D using intermittently
scanned continuous glucose monitoring (isCGM) treated
with continuous subcutaneous insulin infusion (CSII) or
multiple daily insulin injections (MDI).

Methods

Study population

We performed a cross-sectional study of a cohort of 202
patients with T1D on intensive insulin treatment and
isCGM (FreeStyle Libre, Abbott Diabetes Care, Witney,
UK) under follow-up in the Pediatric Endocrinology (<19
years old) and Endocrinology Departments at Hospital
Clínico Universitario de Valladolid, Spain.

Procedures

All patients with T1D and isCGM with a scheduled
appointment between February 2019 and March 2019
were consecutively enrolled. Data on the use of the system
and metabolic control was collected by analyzing down-
loaded device information. The last 14 days of isCGM
prior to the patient’s visit were downloaded and analyzed,
in all cases, after a minimum of 3 months of using the
device. HbA1c was also measured between 7 and 10 days
before the patient’s visit by turbidimetric inhibition
immunoassay standardized to the National Glycohe-
moglobin Standardization Program (Roche Diagnostics,
Geneva, Switzerland). Exclusion criteria were patients
with inadequate use of the system (percentage of use less
than 70% in the last 14 consecutive days) [6], or changes
in their insulin regimen within the last 6 months (insulin
type or CSII initiation) or who were less than 1 year after
the onset of T1D. None of the patients met the exclusion
criteria (Fig. 1)

Glucometric data of isCGM were defined as mean glu-
cose (mg/dl), glucose management indicator (GMI) %, TIR
(% of the time with glucose levels between 70–180mg/dl),
TAR (% of time above 180mg/dl), TBR (% of the time
below 70mg/dl) and the number of daily scans. The GV was
determined through CV% and standard deviation (SD) in
mg/dl. TAR and TBR were also classified as very low
glycemia level <54mg/dL (<3.0 mmol/L)–TBR < 54; low
glycemia level 54–70mg/dL (3.0–3.9 mmol/L)–TBR 54–70;
high glycemia level 181–250mg/dL (10.1–13.9 mmol/
L)–TAR 180–250; very high glycemia level > 250 mg/dL
(>13.9 mmol/L)–TAR > 250. Hypoglycemia (CHypo)
[TBR < 54 + (0.8 × TBR 54–70)] and hyperglycemia com-
ponent (CHyper) [TAR > 250+ (0.5 × TAR 180–250)], as
well as GRI [(3.0 × CHypo)+ (1.6 × CHyper)] were
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calculated from original isCGM data, as previously descri-
bed [11].

Statistical analysis

The quantitative data were expressed as mean and SD if
normally distributed, or median and interquartile range
(25–75 percentile P25–75) if the TBR < 54 and TAR > 250.
Qualitative variables were expressed in terms of percen-
tages. The normal distribution of the variables was analyzed
using the one-sample Kolmogorov–Smirnov test. The
quantitative variables with normal distribution were ana-
lyzed using a bilateral Student’s t-test, and non-parametric
variables were evaluated by using the Mann–Whitney U
test. If necessary, categorical variables were assessed using
the Chi-square test or the Fisher exact test. The association
of quantitative variables was calculated using Pearson’s
linear correlation coefficient. To evaluate high GV, a CV
over 36% was selected as the cut-off point [6]. The
p-values < 0.05 were considered statistically significant. The
statistical package SPSS version 23.0 (SPSS Inc., Chicago,
IL, UEA) and RStudio (2022) (RStudio: Integrated Devel-
opment for R. RStudio, PBC, Boston, MA) were used for
the analysis.

All patients signed an informed consent for their inclu-
sion before participating in the study. The protocol was
approved by the Clinical Research Ethics Committee of our
Institution (PI 19-1390), and the study was conducted in
accordance with the Declaration of Helsinki.

Results

A total of 202 patients with T1D (53% male, 32.2% chil-
dren, and adolescents defined as <19 years of age, 25.2% on
CSII) were evaluated (Fig. 1). The mean age of the cohort
was 28.6 ± 15.7 years, with 12.5 ± 10.9 years of diabetes
evolution and a mean HbA1c of 7.3 ± 1.1%. The average
number of daily scans was 10.4 ± 5.7, and the mean

percentage of device use was 90.9 ± 10.3%. The glycemic
metrics obtained were mean glucose (163.2 ± 33.3 mg/dl),
mean SD (64.1 ± 19.0 mg/dl), GMI (7.3 ± 1.1%), CV
(39.8 ± 8.0%), TIR (59.0 ± 17.0%), TBR < 54 1.0 [P25–75
0.0–3.0]%, TBR 54–70 (4.6 ± 3.4%), TAR 180–250
(22.0 ± 8.8%), and TAR > 250 9.0 [P25–75 3.75–18.0]%.
The mean GRI was 54.0 ± 23.3, with CHypo and CHyper of
5.7 ± 4.8 and 23.4 ± 14.3, respectively (Table 1). Differ-
ences between adult and pediatric populations and CSII and
MDI treatment are shown in Table 1. Pediatric patients and
those with CSII treatment show better GRI, despite a higher
CHypo than adults and MDI patients, respectively.

When correlating GRI values and their CHyper and CHypo
components with respect to classical glycometric parameters, a
statistically significant correlation between GRI and classical
glycemic metrics was observed. A strong GRI and TIR
negative correlation was analyzed (R=−0.917; R2= 0.840;
p < 0.001), and a strong positive between GRI and HbA1c
(R= 0.617; R2= 0.380; p < 0.001), mean glucose (R= 0.677;
R2= 0.458; p < 0.001), SD (R= 0.778; R2= 0.605;
p < 0.001), GMI (R= 0.650; R2= 0.422; p < 0.001), TBR <
54 (R= 0.481; R2= 0.231; p < 0.001), TAR > 250
(R= 0.801; R2= 0.641; p < 0.001), and CV (R= 605;
R2= 0.366; p < 0.001) were observed, as shown in Table 2.

When evaluating the relationship between the estimated
HbA1c and GRI, a strong positive correlation was found
(R= 0.650; R2= 0.442; p < 0.001). This correlation was
modified according to the degree of GV measured by the
CV; a statistically significant better correlation was
observed in those subjects with low glycemic variability
(CV < 36%) (R= 0.812; R2= 0.660; p < 0.001), compared
to those with higher GV (CV ≥ 36%) (R= 0.553;
R2= 0.306; p < 0.001). Furthermore, it was observed that
the slopes of both lines according to the CV run parallel to
each other, with those individuals with greater glucose
instability presenting lower HbA1c values for the same GRI
value compared to those with CV < 36% (Fig. 2).

Specifically, a strong negative correlation between the
GRI and TIR was found (R=−0.917; R2= 0.840;

Fig. 1 Flow chart showing
inclusion and exclusion criteria
and recruitment of patients for
the study. T1D: Type 1 diabetes;
isCGM: intermittently scanned
continuous glucose monitoring;
CSII: Continuous Subcutaneous
Insulin Infusion

Endocrine



p < 0.001). This correlation showed differences according to
the degree of GV measured by the CV, with a statistically
significant better correlation being observed in those sub-
jects with low GV (CV < 36%) (R=−0.974; R2= 0.948;
p < 0.001) versus those with higher GV (CV ≥ 36%)
(R=−0.885; R2= 0.784; p < 0.001) (Fig. 3). The cut-off
point between both lines was obtained at a GRI value of 23
and a TIR of 78%. The correlation between the GRI and
TIR remained stable when analyzing both the pediatric
group (R=−0.929; R2= 0.859; p < 0.001), adult group
(R=−0.925; R2= 0.855; p < 0.001), MDI (R=−0.924,
R2= 0.860; p < 0.001) or CSII (R=−0.865; R2= 0.789;
p < 0.001). However, the correlation between GRI and
CHypo showed a better correlation in those subgroups with
higher hypoglycemia risk, particularly the pediatric group
(R= 0.724, R2= 0.685, p < 0.001), than in adults
(R= 0.322, R2= 0.289, p < 0.001), respectively (Supple-
mentary Infomation)

When analyzing the relationship between the CHypo and
CHyper components of the GRI, a statistically significant
negative, weak correlation was observed between both
parameters (R=−0.223; R2= 0.049; p < 0.001). Those
individuals with CV ≥ 36% showed a heterogeneous

distribution with higher CHypo values and greater CHyper
variability, with respect to those with a CV below 36%, who
presented a greater clustering around the hyperglycemia
axis, with lower CHypo values (Fig. 4).

Finally, the results of the different glucometries were
analyzed according to the CV, with significantly lower
values of GRI (38.2 ± 23.8 vs. 61.7 ± 19.0; p < 0.001),
CHypo (2.1 ± 2.0 vs. 7.4 ± 4.9; p < 0.001), CHyper
(19.9 ± 16.1 vs. 25.1 ± 13.1; p= 0.024), GMI (7.0 ± 0.9 vs.
7.4 ± 1.1%; p= 0.039), SD (49.9 ± 13.0 vs. 71.0 ± 17.6 mg/
dl; p < 0.001), TBR < 54 mg/dl (0.5 ± 0.8 vs. 2.7 ± 3.1%;
p < 0.001), TBR 54–70 mg/dl (2.1 ± 1.7 vs. 5.9 ± 3.4%;
p < 0.001), TAR > 250 mg/dl (8.6 ± 11.3 vs. 14.2 ± 11.6%;
p= 0.001), and higher TIR values (66.1 ± 20.8 vs.
55.5 ± 13.5%; p < 0.001), with respect to those with greater
glycemic instability (CV ≥ 36%), as shown in Table 3.

Discussion

The multiple glycometric data provided by CGM systems
have allowed the development of new indices to measure
the glycemic control of patients with T1D. Although

Table 1 Baseline features of total patients and adult versus pediatric and mutiple dosis of insuline versus CSII

Total Patients Adult Patients Pediatric Patients p value CSII MDI p value

Number of patients 202 137 65 - 51 151 -

CSII (%) 25.2 22.6 30.8 ns - - -

Gender (% women) 47.0 48.2 44.6 ns 51.0 45.7 ns

Mean age (years) 28.6 (15.7) 36.7 (12.6) 11.7 (3.3) <0.01 26.3 (13.0) 29.4 (16.5) NS

Years of evolution 12.5 (10.9) 17.8 (11.3) 4.9 (3.5) <0.01 13.5 (10.7) 12.1 (11.0) NS

Nº daily scans 10.4 (5.7) 9.5 (5.1) 12.5 (6.8) <0.01 11.7 (7.6) 10.0 (5.0) NS

% Sensor use 90.9 (10.3) 91.8 (9.2) 88.8 (12.5) NS 90.8 (10.1) 90.9 (10.4) NS

Mean HbA1C (%) 7.3 (1.1) 7.4 (1.1) 6.7 (0.6) <0.01 7.0 (0.7) 7.3 (1.1) <0.01

Mean glucose (mg/dl) 163.2 (33.3) 170.7 (35.3) 147.5 (21.9) <0.01 154.2 (23.7) 166.2 (35.6) <0.01

GMI (%) 7.3 (1.1) 7.5 (1.2) 6.8 (0.6) <0.01 7.0 (0.7) 7.4 (1.2) <0.01

% TIR (70–180 mg/dL) 59.0 (17.0) 55.4 (17.5) 66.5 (13.1) <0.01 62.5 (11.5) 57.8 (18.3) =0.033

% TBR (54–69 mg/dL) 4.6 (3.4) 4.0 (3.0) 5.9 (3.8) <0.01 5.8 (3.2) 4.2 (3.4) <0.01

* % TBR (<54 mg/dL) 1.0 [0.0–3.0] 1.0 [0.0–2.0] 1.0 [0.0–4.0] NS 1.0 [0.0–3.0] 1.0 [0.0–3.0] NS

% TAR (181–250 mg/
dL)

22.0 (8.8) 24.3 (9.0) 17.2 (6.0) <0.01 20.5 (6.5) 22.5 (9.4) NS

* % TAR (>250 mg/dL) 9.0 [3.75–18.0] 13.0 [4.0–19.0] 6.0 [2.0–12.5] <0.01 7.0 [4.0–13.0] 10.0 [3.0–19.0] =0.012

SD (mg/dl) 64.1 (19.0) 64.6 (19.5) 62.9 (18.2) ns 63.5 (13.5) 64.3 (20.6) NS

CV (%) 39.8 (8.0) 38.6 (7.2) 42.4 (8.9) <0.01 41.0 (6.6) 39.4 (8.4) NS

GRI 54.0 (23.3) 56.8 (23.4) 48.0 (22.2) =0.011 51.0 (15.3) 55.0 (25.4) ns

Chypo 5.7 (4.8) 5.0 (4.5) 7.1 (5.1) <0.01 6.5 (4.1) 5.4 (5.0) <0.01

Chyper 23.4 (14.3) 26.5 (15.1) 16.8 (9.8) <0.01 19.6 (10.6) 24.6 (15.2) =0.042

Mean (Standard deviation) or * Median [Percentil25− Percentil75]

CSII Continuous Subcutaneous Insulin Infusion, TIR time in range, TAR time above range, TBR time below range, CV coefficient of glycemic
variability, GMI glucose management indicator, SD standard deviation, GRI glycemia risk index, Chypo hypoglycemia component, Chyper
hyperglycemia component, NS not significant, MDI multiple daily insulin injections
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HbA1c is the parameter with the greatest evidence for
predicting chronic complications to date, it is insufficient to
optimally assess the degree of glycemic control of a given
individual, and there are already studies that relate the TIR
to the risk of long-term complications [12, 13].

Nevertheless, the TIR alone shows certain limitations; it
does not take into account whether the time out of range
constitutes time in hypo- or hyperglycemia, it is not sensi-
tive to time in hypoglycemia, and it does not give greater
weight to the most extreme deviations from the TIR [2–4].
The large amount of data that the CGM provides demands a
significant amount of time and effort from the professionals
involved in the management of these patients [6, 14],
requiring new metrics that synthesize all this available
information.

The appearance of the GRI attempts to solve some of
these drawbacks since it is a single parameter whose value
ranges from 0 (best degree of glycemic control) to 100
(worst control), is actionable, calculated from a simple
formula that gives greater weight to extreme glycemic
values, is easily interpretable, and whose changes can be
evaluated over time. Moreover, it arises with the support of
many international experts in T1D [11]. The GRI uses only
four parameters from the AGP report (TBR < 54, TBR
54–70, TAR 180–250, and TAR > 250 mg/dL) and can be
easily applied in a wide variety of study designs and settings
that use CGM to assess outcomes. Recently, a 14-day
period of CGM data has been established as the most
appropriate for the calculation of the GRI [15].

To date, published results extensively analyzing the
correlation of GRI with other glycometric parameters cor-
respond to data collected from clinical trials in adults with
Dexcom G4 and G6 CGM systems (Dexcom Inc, San
Diego, CA, USA). Therefore, to our knowledge, this is the

Fig. 2 Scatter plot showing the correlation between gri and estimated
HbA1c stratified according to the coefficient of variation. Those
individuals with a coefficient of variation below 36% are shown in
blue, while those with CV equal to or greater than 36% are shown in
green. GMI: estimated glycosylated hemoglobin A1c or Glucose
Management Indicator; GRI: Glycemia Risk Index; CV: coefficient of
variation

Fig. 3 Scatter plot showing the correlation between GRI and TIR
stratified according to the coefficient of variation. Those individuals
with a coefficient of variation <36% are shown in blue, while those
with CV ≥ 36% are shown in green. TIR Time in Range, GRI Gly-
cemia Risk Index, CV Coefficient of Variation

Fig. 4 Scatter plot showing the correlation of the hypo and hyper-
glycemia components of the GRI. Those individuals with a coefficient
of variation below 36% are shown in blue, while those with CV equal
to or greater than 36% are shown in yellow. CV Coefficient of
Variation
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first study that investigates the consistency of these rela-
tionships in an actual clinical practice setting using isCGM
and a pediatric population. It also stratifies the GRI corre-
lation results according to GV, whose influence has already
been demonstrated in the relationship between TIR and
HbA1c by different authors [9, 10].

Our results demonstrate the correlation between the dif-
ferent glycemic metrics most commonly used in clinical
practice and the GRI and its components (Table 2). The
statistically significant relationship between practically all
the variables analyzed highlights the important inter-
relationship between the different parameters and empha-
sizes once again the difficulty of interpreting them
independently. Logically, glycemic parameters could be
grouped into measurements related to hyperglycemia
(HbA1c, mean glucose, SD, GMI, TIR, TAR, and CHyper)
and hypoglycemia (CV, TBR, and CHypo). The relation-
ship between HbA1c and TIR was congruent with that
found by Vigersky et al. (R=−0.84; R2= 0.71; p < 0.001)
[7] and Diaz-Soto et al. (R=−0.746; R2= 0.557;

p < 0.001) [10]. The GRI correlated significantly (and in
most cases, strongly) with all the parameters analyzed,
related to both hyper- and hypoglycemia, unlike its pre-
decessors (glycosylated hemoglobin A1c and TIR), which
did not correlate significantly or correlated weakly with
hypoglycemia parameters. This ability of the GRI to better
reflect changes in the area of hypoglycemia, which is
derived from its formula (focused on the most extreme
values of glycemia rather than on values of centrality), is
one of the fundamental differences with respect to HbA1c
and TIR and has been described in recent publications
[16, 17]. Our correlations are similar to those described by
Klonoff et al. [11] in the original GRI article, in which a
smaller number of variables were analyzed, agreeing on the
low correlation of TIR with parameters related to hypo-
glycemia such as TBR < 45 mg/dl (R=−0.11), TBR
70–45 mg/dl (R= 0.1), and CV (R=−0.27). Recently, a
new study has evaluated the GRI correlation against CHypo
and CHyper in T1D patients on an automated insulin
delivery system. The results found a significant GRI cor-
relation with TAR but not TBR [18]. These results are not
surprising due to the low risk of hypoglycemia in the
population evaluated even before the use of the automatic
insulin system (TBR around 3.9%). In fact, our findings are
in line with these results. Those subgroups of patients at
higher risk of hypoglycemia, especially the pediatric group,
showed significantly stronger correlations of GRI with
CHypo/TBR. Moreover, following this approach, we
should consider the lack of usefulness of the GRI in those
subgroups of patients with practically nonexistent TBR
or TAR.

The stratification of the correlation between the GRI and
GMI according to the CV showed two lines with parallel
slopes, with those patients with a CV ≥ 36% belonging to
the line that runs along the lower part of Fig. 2. According
to this, for the same HbA1c value, those patients with
greater CV instability showed higher GRI values than those
with lower GV. For example, for an estimated HbA1c of
7%, those individuals with a CV < 36% presented a mean
GRI of 39.7, while those with a CV ≥ 36% showed a GRI of
48.7 (a GRI 18.5% higher). This parallel relationship
between the two lines may be explained by the sensitivity of
the CV in assessing an individual’s risk of hypoglycemia
[18], the most penalized component in calculating the GRI.
This parallel relationship is also different from the pre-
viously published relationships of the CV in relation to the
TIR and GMI, where the lines crossed each other [9, 10],
demonstrating the weighting provided by the effect of the
GV all along the GRI calculation.

The relationship between the GRI and TIR in our work
is practically analogous to the results published by
Klonoff et al. in the original GRI article (R=−0.910;
p < 0.001) [11]. Moreover, this correlation was maintained

Table 3 Results of glycometric parameters stratified according to the
coefficient of variation

PARAMETERS CV Mean (SD) p value

GRI <36
≥36

38.2 (23.8)
61.7 (19.0)

<0.001

CHypo <36
≥36

2.1 (2.0)
7.4 (4.9)

<0.001

CHyper <36
≥36

19.9 (16.1)
25.1 (13.1)

0.024

HbA1c (%) <36
≥36

7.1 (1.0)
7.3 (1.0)

NS

Mean Glucose
(mg/dL)

<36
≥36

158.9 (32.7)
165.2 (33.5)

NS

SD (mg/dl) <36
≥36

49.9 (13.0)
71.0 (17.6)

<0.001

GMI (%) <36
≥36

7.0 (0.9)
7.4 (1.1)

0.039

* TBR < 54 mg/dL (%) <36
≥36

0.0 [0.0–1.0]
1.0 [0.0–4.0]

<0.001

TBR 54–70 mg/dL (%) <36
≥36

2.1 (1.7)
5.9 (3.4)

<0.001

TIR 70–180 mg/dL (%) <36
≥36

66.1 (20.8)
55.5 (13.5)

<0.001

TAR 180–250
mg/dL (%)

<36
≥36

22.5 (12.6)
21.7 (6.3)

NS

* TAR > 250 mg/dL (%) <36
≥36

4.0 [1.0–15.0]
12.0 [6.0–18.0]

<0.001

Mean (Standard Deviation) or * Median [Percentil25− Percentil75]

GRI glycemia risk index, CHypo component of hypoglycemia,
CHyper component of hyperglycemia, HbA1c glycosylated hemoglo-
bin A1c, SD standard deviation, GMI glucose management indicator,
TBR time below range, TIR time in range, TAR time above range, CV
coefficient of variation, NS not significant
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for patients with MDI and CSII. In the present work, we
also found a similar correlation between these two para-
meters in the pediatric and adult groups, which had not
been previously studied. When stratifying the data
according to the CV, it was observed that both regression
lines intersected at a value of GRI= 23 and TIR= 78%.
For a TIR value greater than 78%, the higher the CV, the
lower the GRI, while when the TIR is lower than 78%, the
GRI is higher as the CV increases (Fig. 3). This rela-
tionship can be partially explained by the distribution of
the CHypo and CHyper components that make up the GRI
(Fig. 4) and explains much of the variability in the cor-
relation between the GRI and TIR. When analyzing the
relationship between the CHypo and CHyper components
of the GRI according to GV, it was observed that those
with lower GV presented a greater clustering around the
hyperglycemia axis. In contrast, those with a high CV
showed a greater component of hypoglycemia and vari-
able of hyperglycemia, supporting the relationship
between CV and CHypo [19]. A recent study on an
automated insulin delivery system in adults supports our
findings because its low global CV showed a GRI clus-
tering around the hyperglycemia axis [18]

Finally, when analyzing the different glycometric para-
meters according to a CV greater or less than 36%
(Table 3), significant differences were observed for all
glycometric parameters except HbA1c, mean glucose and
TAR 180–250. As for the TIR, those patients with greater
variability showed a decrease of 11% with respect to those
with CV < 36%; however, for the GRI, the difference was
27 percentiles more in the group with higher variability,
which highlights the greater weight of variability (and,
ultimately, of hypoglycemia) in this new index. The fact
that significant differences were found for the GMI and not
for HbA1c (given that the mean and SD values are similar)
seems to be due to the study’s sample size. As shown in
Table 3, those patients with a CV ≥ 36% presented greater
GRI and lower TIR, with a marked component of hypo-
glycemia and a tendency to greater hyperglycemia than
those with low GV.

Limitations of the present study include the relatively
small sample size compared to large data studies; however,
this is a real-life cohort with stable control and compre-
hensive knowledge of glycometric and clinical variables
with a single CGM system. The non-incorporation of TIR in
the GRI calculation can be seen as a potential limitation,
being the only CGM parameter related to long-term com-
plications at present [11]; however, the high correlation
between TIR and GRI suggests that a similar correlation
exists between GRI and the existence of long-term com-
plications as recent studies support [20, 21]. More studies
are needed to relate this parameter to future complications,
its effect on the quality of life of patients with T1D, and its

evaluation in other subpopulations (T2D, hospitalized
patients). Finally, some studies have shown higher TBR in
FreeStyle Libre isCGM users [22]. This could increase
CHypo in our investigation. However, the use of the same
isCGM model and version throughout the study in all
patients ensures the representativeness of our results. As
strengths, it is worth highlighting the results, in line with
those previously published on the relationship of the GRI
with other glycometrics [11], as well as the influence of the
CV on the relationship between the different parameters of
glycemic control in adult and pediatric patients in a non-
selected population on different treatments [9, 10].

In conclusion, the GRI correlated significantly with all
the glycometric parameters analyzed, related to both hypo-
and hyperglycemia and especially closely with TIR. GV
measured as the CV significantly affected the correlation of
GRI with TIR and Glycosylated Hemoglobin A1c and
should be considered when metabolic control is assessed.
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