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Summary 
 

English 

The rise of digitalization and increasing competitiveness has increased the interest 

in process optimization in industry. Decisions in industry are usually based on the 

automation pyramid. The automation pyramid has different layers that cover the different 

decisions to be made for different time horizons. One of them is Real-Time Optimization, 

known by its acronym RTO. Traditional RTO uses a steady-state nonlinear model of the 

process to optimize a plant's economic objective subject to process constraints. This is the 

technology currently used in commercial RTO applications. However, no model is a 

perfect representation of reality, and structural and parametric model uncertainties make 

the optimum calculated by RTO do not match those of the actual process. One way to 

address this problem is to modify the optimization problem so that the Necessary 

Conditions of Optimality (NCO) of the problem match those of the actual plant. This 

strategy is known as Modifier Adaptation (MA) methodology.  

The MA methodology requires the gradient values of the real plant and the model 

to calculate the modifiers. There are several ways to accurately estimate model gradients, 

but estimation of the real process gradients are more difficult. In addition, the need to use 

stationary data is a limitation of RTO with MA, especially for slow dynamic systems. 

Objectives 

This thesis focuses on ways to mitigate the weaknesses of RTO and MA unification 

that we consider most critical for its application in industry. To this end, it is proposed to 

couple the RTO and control layers with the concepts of the Modifier Adaptation (MA) 

methodology by estimating process gradients or directly the MA modifiers using transient 

data. It also aims to apply the developed algorithms in different simulation case study, in 

a laboratory plant and in an industrial case. 

Methodology 

To achieve the objective, the methodology followed consisted of studying the 

fundamentals of predictive control and MA, as well as the problems posed by the 

estimation of gradients using transient data. Optimization methods were used to estimate 

these gradients/modifiers. 
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In addition, different case studies were studied: Williams Otto Reactor, Hybrid Pilot 

Plant, and Propane-Propylene Fractionator. A first-principles dynamic model was 

developed for each case study. In the case of the propane-propylene fractionation unit, 

the model was also validated with real process data. In addition, data reconciliation was 

used to deal with the presence of unreliable measurements in the plant. Subsequently, an 

economic predictive control (eMPC) architecture integrated with MA is proposed to bring 

a process to its true optimal operating point. To accelerate the time to optimum, it is 

proposed to update the MA modifiers at the same frequency as the controller. For this 

purpose, the process gradients or directly the MA modifiers should be estimated using 

process transient data. 

Then, two proposals for estimating process gradients or modifiers, Dynamic 

Modifier Estimation (DME) and Transient MA (TMA), were studied. The DME 

algorithm aims to directly estimate the MA modifiers without the need to explicitly 

calculate the process and model gradients. The DME uses an optimization problem that 

attempts to minimize the difference between the modified cost function or constraints and 

the transient process measures using a moving horizon. The decision variables of the 

optimization problem are the dynamic modifiers that will match the static modifiers 

required by MA when the process reaches steady state. 

On the other hand, the TMA is based on previous work using a Taylor series 

expansion that relates the outputs, inputs, and gradients of the process to be estimated. 

The previous method was formulated for an RTO (Real Time Optimization) context and 

did not take into account dynamic effects, so only the dependence of past decision 

variables was considered. Therefore, optimization and control were applied to different 

time scales. In this thesis, the Taylor series has been extended to include the effect of time 

(the derivative over time). This derivative can be estimated by a polynomial 

approximation that requires past data using the Nordsieck vector. Once the time 

dependence is computed, recursive identification algorithms can be implemented to 

estimate an approximation of the dynamic derivatives of the process with respect to the 

decision variables. 

Results and conclusions 

Both DME and TMA algorithms were first applied to a simulation of the Williams-

Otto reactor. The results with the DME algorithm showed that this new approach can 
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reach values quite close to the actual economic operating optimum, despite the parametric 

and structural mismatch between the model and the process. The TMA algorithm was 

also able to reach the process optimum in the Williams-Otto example with or without 

active constraints.  

The TMA algorithm has also been applied in a hybrid laboratory plant that mimics 

the behavior of a CSTR with Van de Vusse reactions. The concept of hybrid plants is 

based on the fact that some process phenomena can be replaced by computations of 

measured variables and their effect on the process can be physically implemented, at least 

partially, by suitable actuators. The inclusion of the modifiers calculated with the TMA 

has significantly increased the process benefit for both experimental examples, reducing 

the suboptimality related to the process-model mismatch. 

Finally, the two proposed methods were applied in a virtual environment similar to 

the real process of a propane-propylene fractionator of a refinery located in northern Spain. 

For this case study, the TMA method was modified to improve its performance. The 

results presented show that both DME and TMA could improve the process performance 

during the transient period for some cases. However, the applicability of MA with 

transient data depends on the process under consideration. 
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Español 

 

La expansión de la digitalización y la creciente competitividad aumentó el interés 

en la optimización de procesos en la industria. Las decisiones en la industria normalmente 

se basan en la pirámide de automatización. Sus diferentes capas abarcan las diferentes 

decisiones que se debe tomar para diferentes horizontes de tiempo. Una de ellas es la 

Optimización en Tiempo Real, conocida por la sigla en inglés RTO. El RTO tradicional 

usa un modelo no lineal estacionario del proceso para optimizar un objetivo económico 

de la planta frente a restricciones del proceso. Esta es la tecnología usada actualmente por 

las aplicaciones comerciales de RTO. Sin embargo, ningún modelo es una representación 

perfecta de la realidad y las incertidumbres estructurales y paramétricas de los modelos 

hacen que los óptimos calculados por la RTO no coincidan con los del proceso real. Una 

forma de abordar este problema es modificar el problema de optimización de modo que 

las condiciones necesarias de optimalidad del problema (NCO) se igualen a los de la 

planta real. Esa estrategia es conocida como la metodología de adaptación de 

modificadores (Modifier Adaptation, MA).  

La metodología MA necesita de los valores de gradiente de la planta real y del 

modelo para el cálculo de los modificadores. Hay diversas formas de estimar los 

gradientes del modelo con exactitud, sin embargo, la estimación en proceso real es más 

difícil. Además, la necesidad de usar datos en estacionario sigue siendo una limitación 

fundamental de la RTO con MA, principalmente para sistemas dinámicos lentos. 

Objetivos 

Esta tesis se enfoca en formas de mitigar las debilidades de la unificación RTO y 

MA que consideramos las más críticas para su aplicación en la industria. Para eso se 

propone que las capas de RTO y control se unan con los conceptos de la metodología de 

adaptación de modificadores (Modifier Adaptation, MA) estimando los gradientes de 

proceso o directamente los modificadores de MA usando datos de transitorio. Además 

tiene como objetivo aplicar los algoritmos desarrollados en diferentes casos de estudio en 

simulación, en una planta de laboratorio y en un caso industrial. 
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Metodología 

Para alcanzar el objetivo, la metodología seguida consistió en estudiar los 

fundamentos de control predictivo y MA así como los problemas que presentaba la 

estimación de gradientes en transitorio. Se utilizaron métodos de optimización para 

estimar estos gradientes/modificadores. 

Además se estudiaron los distintos casos de estudio: Reactor Williams Otto, Planta 

Piloto Híbrida y fraccionadora de propano-propileno. Para cada caso de estudio, se 

desarrolló un modelo dinámico de primeros principios. En el caso de la fraccionadora de 

propano-propileno, el modelo también se validó con datos reales del proceso. Además, se 

recurrió a la reconciliación de datos para hacer frente a la presencia de mediciones poco 

fiables en la planta. 

En seguida, se propuso una arquitectura de un controlador predictivo económico 

(eMPC) integrado con MA de forma que permita a llevar un proceso a su punto de 

operación óptimo real. Con el objetivo de acelerar el tiempo al óptimo, se propone que 

los modificadores del MA se actualicen a la misma frecuencia del controlador. Para ello, 

los gradientes de proceso o directamente los modificadores del MA son estimados usando 

datos del transitorio del proceso. 

 Las dos propuestas presentadas para esa estimación son el Dynamic Modifier 

Estimation (DME) y Transient MA (TMA). El algoritmo de DME tiene como objetivo 

estimar directamente los modificadores de MA, sin necesidad de calcular explícitamente 

los gradientes del proceso y del modelo. El DME utiliza un problema de optimización 

que trata de minimizar la diferencia entre la función costo o restricciones modificadas con 

las medidas del proceso en transitorio usando un horizonte móvil. Las variables de 

decisión del problema de optimización son los modificadores dinámicos que coincidirán 

con los modificadores estáticos requeridos por MA cuando el proceso alcance el estado 

estacionario. 

Por otro lado, el TMA está basado en un trabajo antecedente donde se utiliza una 

expansión en serie de Taylor que relaciona las salidas, entradas y gradientes del proceso 

que se desea estimar. El método anterior fue formulado para un contexto RTO (Real Time 

Optimization) y no tenía en cuenta los efectos dinámicos, por lo que sólo se consideró la 

dependencia de las variables de decisión pasadas. Debido a ello, la optimización y el 

control se aplicaron a diferentes escalas de tiempo. En esta tesis, la serie de Taylor fue 
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expandida de forma que considera el efecto del tiempo (la derivada en el tiempo). Esta 

derivada se puede estimar mediante una aproximación polinómica que requiere datos 

pasados utilizando el vector de Nordsieck. Una vez calculada la dependencia temporal, 

se pueden implementar algoritmos de identificación recursiva para estimar una 

aproximación de las derivadas dinámicas del proceso con respecto a las variables de 

decisión. 

Resultados y conclusiones 

Ambos algoritmos fueron primeramente aplicados a una simulación del reactor de 

Williams-Otto. Los resultados con el algoritmo de DME, demostraron que este nuevo 

enfoque puede alcanzar valores bastante cercanos al punto óptimo de funcionamiento 

económico real a pesar del desajuste paramétrico y estructural entre el modelo y el 

proceso. El algoritmo TMA también ha sido capaz de alcanzar al óptimo de proceso en el 

ejemplo de Williams-Otto con o sin restricciones activas.  

El algoritmo TMA también se ha aplicado en una planta de laboratorio híbrida que 

emula el comportamiento de un CSTR con las reacciones de Van de Vusse. El concepto 

de plantas híbridas se basa en que algunos fenómenos del proceso pueden ser 

reemplazados por cómputos de variables medidas y su efecto sobre el proceso puede ser 

implementado físicamente, al menos parcialmente, mediante actuadores adecuados. La 

inclusión de los modificadores calculados con el TMA ha aumentado significativamente 

el beneficio del proceso para ambos ejemplos experimentales, reduciendo la 

suboptimalidad relacionada con el desajuste proceso-modelo. 

Finalmente, las dos metodologías propuestas se aplicaron en un ambiente virtual 

similar al proceso real de una fraccionadora de propano-propileno de una refinería al norte 

de España. Para este estudio de caso, el método TMA fue modificado para mejorar su 

performance. Los resultados presentados muestran que tanto DME como TMA pueden 

mejorar la performance del proceso durante el periodo transitorio. La aplicabilidad del 

MA con datos transitorios depende del proceso considerado. 
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1 Introduction 
 

1.1 Current State of Real-Time Optimization Applications in the Process Industry 
 

The objective of process optimization is to make the right operational decisions that 

minimize production costs and maximize profits while fulfilling safety, environmental 

and quality constraints.  

Typically, industrial decision-making is organized as shown in Figure 1.1. Each 

layer uses different timescales and models to achieve its objectives. The first layer is 

Enterprise Resource Planning (ERP) and is responsible for production planning over a 

long time horizon. Most refineries and large chemical plants use linear programming (LP) 

with an economic objective for decision making in this layer. The next level corresponds 

to the Manufacturing Execution Systems (MES), which are responsible for scheduling 

operations and deal with the assignment of products and tasks to appropriate equipment 

and timing over a period of days or hours. Real-Time Optimization (RTO) comes next, 

using real-time process measurements to calculate the optimal setpoints to be applied to 

the process (the solid line indicates this real-time communication, while the dashed lines 

in ERP and MES may not be automatic or real-time). Typically, a Model Predictive 

Control (MPC) layer and then a Distributed Control System (DCS) layer with the basic 

controller, actuators and sensors in the field are responsible for making the process 

achieve these setpoints. 

 

Figure 1.1: Industry Decision Hierarchy (Darby et al., 2011) 

 



 

18 
 

In this thesis, special attention is given to the RTO and MPC layers. The RTO is a 

set of algorithms and techniques that automatically compute, using real-time data, an 

estimate of the optimum operating point of a process at steady state, taking into account 

economic criteria. Ideally, a perfect RTO layer would solve the problem (1.1), where 𝜙𝜙𝑝𝑝 

is the process cost function to be minimized, 𝒖𝒖 are the decision variables between the 

lower and upper limits [𝒖𝒖𝐿𝐿 ,𝒖𝒖𝑈𝑈] , 𝒚𝒚𝑝𝑝  are process variables, 𝒈𝒈𝑝𝑝  a set of inequality 

constraints and 𝒇𝒇𝑝𝑝  the “real” process model in steady state. The subscript p indicates that 

the variable or function corresponds to the real process. 

min
𝒖𝒖
𝜙𝜙𝑝𝑝�𝒖𝒖,𝒚𝒚𝑝𝑝� 

𝑠𝑠. 𝑡𝑡  𝒈𝒈𝑝𝑝�𝒖𝒖,𝒚𝒚𝑝𝑝� ≤ 0   

𝒇𝒇𝑝𝑝�𝒖𝒖,𝒚𝒚𝑝𝑝� = 0 

𝒖𝒖𝐿𝐿 ≤ 𝒖𝒖 ≤ 𝒖𝒖𝑈𝑈 

(1.1) 

 

Since the correct mapping between input and output 𝒇𝒇𝑝𝑝 is generally unknown, the 

RTO layer uses a rigorous nonlinear steady-state model 𝒇𝒇𝑚𝑚 that attempts to predict both 

𝒇𝒇𝑝𝑝  and constraints 𝒈𝒈𝑝𝑝 , equation (1.2). Therefore, the performance of RTO is highly 

dependent on the accuracy of the model 𝒇𝒇𝑚𝑚, 𝒈𝒈𝑚𝑚, and on reliable measured data. A good 

RTO model should represent the process under a wide range of operating conditions, 

match the real process optimum, and not violate the constraints during optimization. In 

addition, the time to solve the RTO optimization problem must be less than the considered 

frequency of execution of the RTO (in traditional RTO, this would be the time to reach 

steady state), so there is a trade-off between model accuracy and computational 

complexity. 

min
𝒖𝒖
𝜙𝜙𝑚𝑚(𝒖𝒖,𝒚𝒚) 

𝑠𝑠. 𝑡𝑡  𝒈𝒈𝑚𝑚(𝒖𝒖,𝒚𝒚) ≤ 𝟎𝟎   

𝒇𝒇𝑚𝑚(𝒖𝒖,𝒚𝒚) = 0 

𝒖𝒖𝐿𝐿 ≤ 𝒖𝒖 ≤ 𝒖𝒖𝑈𝑈 

(1.2) 

 

Equation (1.2) can be rewritten as equation (1.3) using 𝒇𝒇𝑚𝑚(𝒖𝒖,𝒚𝒚) to make the cost 

function and constraints dependent on the inputs 𝒖𝒖.  
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min
𝒖𝒖
𝜙𝜙(𝒖𝒖) 

𝑠𝑠. 𝑡𝑡  𝒈𝒈(𝒖𝒖) ≤ 𝟎𝟎   

𝒖𝒖𝐿𝐿 ≤ 𝒖𝒖 ≤ 𝒖𝒖𝑈𝑈 

(1.3) 

 

As it is well known, even a really good model does not exactly match the real 

process due to three factors: parametric uncertainty (model parameters are different from 

the process), structural mismatch (simplification of complex phenomena, omission of 

some dynamics in the model), and process disturbances (Marchetti et al., 2016).  

An intuitive strategy to address the model-process mismatch is to perform a model-

parameter adaptation, using process data to update the parameters of the nonlinear steady-

state model before solving the economic optimization. This idea is also referred to as the 

two-step approach, and it is probably the only strategy applied in commercial RTO 

systems today (Câmara et al., 2016).   

A commercial RTO application will have a structure similar to Figure 1.2. In 

practice, the measurements need to be pre-processed before they can be used in a steady-

state optimization algorithm. The first thing to check is the variable range or variable rate 

change of the variables. Then another steps are performed and should take into account  

(Bhat and Saraf, 2004): 

• Steady State Detection (SSD): detects when the steady state has been reached. SSD 

uses statistical methods to verify this. 

• Gross Error Detection (GED): this step verifies instrument failure, measurement bias, 

presence of leaks that can add errors to the measurements 

• Data Reconciliation (DR): this step aims to eliminate the random noise from the 

measurements so that they satisfy the material and energy balances. Then the 

parameters of the 𝒇𝒇𝑚𝑚 model are updated to best fit the online process data (model 

parameter update). 

• Optimization: subsequently, the optimization problem (1.3) is solved using the 

updated model. 
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Figure 1.2: Inside a RTO application. 

 

The performance issues of the current commercial RTO applications have been 

previously reported by Câmara et al. (2016), D. Quelhas et al. (2013) and Darby et al. 

(2011).  One of the main challenges reported by the authors is the plant-model mismatch. 

Model uncertainty or mismatch is one of the main causes of suboptimal operating 

conditions, violation of constraints and the long period of time to achieve final process 

stabilization with no guarantee that the process will achieve an optimal operation (D. 

Quelhas et al., 2013). If the model is structurally correct, the online model parameter 

adaptation (the two-step approach) can converge to the plant optimum in one iteration 

(Chachuat et al., 2009).  However in case of structural mismatch between process and 

model, this strategy does not guarantee to find the process optimum when convergence is 

achieved (Chachuat et al., 2009; D. Quelhas et al., 2013; Yip and Marlin, 2004).  

In order to minimize the problems related to the structural uncertainty of the model, 

other algorithms have been studied. These algorithms consider different ways of using 

process measurements to compensate for the mismatch problem, such as: Direct Input 

Adaptation (Self-Optimizing Control or Extremum seeking) and Modifier Adaptation 

(Chachuat et al., 2009). A brief description of these algorithms is given in the following 

sections. 

Besides structural mismatch, another challenge for current commercial RTO 

applications is that some industrial processes never reach steady state due to frequent 

disturbances, changing parameters and demand. In these processes, the frequency 
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execution of a traditional RTO could be very large, making the use of these applications 

questionable. In this case, the idea of considering the dynamics of the process should be 

useful and then Dynamic RTO or economic MPC (eMPC) have been proposed. They are 

also presented in the following sections. 

 

1.2 Direct Input Adaptation: Self-Optimizing control and Extremum seeking control 
 

Unlike the model-parameter adaptation algorithms presented in the two-step 

approach, the Direct Input Adaptation does not require the solution of successive 

optimization problems. The main objective of these algorithms is to use feedback control 

to maintain some variables related to optimal plant performance at their set points values.  

Therefore, the challenge is to choose the right variables to control that will drive the plant 

to its optimal operation, since these variables change with the active set. Self-optimizing 

control and Extremum seeking control are examples of direct input adaptation algorithms 

(Chachuat et al., 2009). 

Self-optimizing control aims to track a constant setpoint, as a function of the 

process variables, that is close to the process optimum, considering an acceptable loss, 

defined as the difference between the actual value and the true optimum value (Skogestad, 

2000). This set point can be a measurement, a linear combination of measurements, or 

the gradient of the economic cost function.  

The idea is to find a self-optimizing variable that is a constrained optimum or a 

flat optimum, cases (a) and (b) in Figure 1.3, respectively. The case (c) in Figure 1.3 is 

difficult to solve because the cost function is sensitive to the value of the self-optimizing 

variable. 

 

Figure 1.3: Problems in implementing self-optimizing control. 

(a) Constrained optimum, (b) Unconstrained flat optimum, and (c) Unconstrained sharp optimum 

(Skogestad, 2000). 
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Therefore, a good self-optimizing variable must satisfy these four requirements: 

a) Its optimum must be insensitive to the disturbances. 

b) It must be a variable that is easy to measure and control. 

c) Its value is sensitive to the manipulated variables. 

d) If there is more than one variable, they must not be closely correlated. 

Extremum seeking control aims to find and maintain the extremum value of a 

static map between input and cost function. In the classical approach, a slow periodic 

dither signal (sinusoidal wave) is superimposed on to the input signal, equation (1.4). 

𝑢𝑢(𝑡𝑡) = 𝑢𝑢 + 𝑎𝑎 sin𝜔𝜔𝜔𝜔 (1.4) 

A slow frequency 𝜔𝜔 is used so that the plant map could be considered static. This 

requires three different time scales between the plant (fast), the sinusoidal perturbation 

(intermediate) and a convergence to the optimum (slow). This separation of time scales 

can result in very slow convergence for most chemical or biochemical processes 

(Krishnamoorthy and Skogestad, 2022). 

 

1.3 Modifier Adaptation 
 

In order to incorporate ability to deal with structural mismatch into the two-step 

approach, further developments have incorporated process gradient information into the 

calculation to satisfy the necessary conditions of optimality (NCO) of the plant and the 

model. Roberts (1979) proposed a modification of the two-step approach to account for 

the differences between the process and model gradients. This idea was later given the 

acronym ISOPE, Integrated System Optimization and Parameter Estimation (Roberts, 

1995; Roberts and Williams, 1981).  

During this period, several variations of the ISOPE algorithm were developed to 

overcome some limitations of the original algorithm. BrdyŚ et al. (1986) presented a 

proposal to handle an optimization problem with process constraints in the outputs.  

Almost ten years later, Brdyś and Tatjewski (1994) included a dual control effect in the 

ISOPE framework to force the process to follow the optimum and to produce an output 

with sufficient excitation to compute the future control signals, including a constraint to 

guarantee the excitation needed to estimate the process gradients. 
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Then, almost twenty years later, Tatjewski (2002) concluded that adding a bias  

correction (model shift) term, equation (1.5), to the output of the predicted model would 

sufficient to satisfy the output-matching condition, equation (1.6). Including the bias, the 

value of the model outputs matches the process value without the need to update the 

model parameters.  

 

𝒚𝒚(𝒖𝒖𝑘𝑘,𝜽𝜽𝑘𝑘) = 𝒚𝒚𝑝𝑝(𝒖𝒖𝑘𝑘) (1.6) 

 

Subsequently, Gao and Engell (2005) proposed a new name for the algorithm: 

iterative gradient-modification optimization, since the name ISOPE is no longer 

appropriate (the parameter estimation step is not necessary). The authors also defined new 

modifiers for the constraints and proposed an alternative to keep the process excitation to 

estimate good gradients without the dual constraint.  

Finally, in 2009, Marchetti et al. (2009) formalized the Modifier Adaptation (MA) 

methodology. In the traditional MA (Marchetti et al., 2009), at the current steady state 𝑘𝑘,  

additional terms involving past inputs 𝒖𝒖𝑘𝑘−1∗  and modifiers 𝝀𝝀 , 𝜸𝜸 , 𝜀𝜀   are added to the 

original optimization problem in (1.2), formulating the modified problem as problem 

(1.7).  

min
𝒖𝒖
𝜙𝜙𝑀𝑀: = 𝜙𝜙(𝒖𝒖)+𝝀𝝀𝑘𝑘𝑇𝑇(𝒖𝒖 − 𝒖𝒖𝑘𝑘−1∗ ) 

𝑠𝑠. 𝑡𝑡   𝑔𝑔𝑀𝑀,𝑖𝑖(𝒖𝒖): = 𝑔𝑔𝑖𝑖(𝒖𝒖) + 𝜸𝜸𝑘𝑘,𝑖𝑖
𝑇𝑇 (𝒖𝒖 − 𝒖𝒖𝑘𝑘−1∗ ) + 𝜀𝜀𝑘𝑘𝑖𝑖 ≤ 0 , 𝑖𝑖 = 1, … , 𝑛𝑛𝑔𝑔 

𝒖𝒖𝑳𝑳 ≤ 𝒖𝒖 ≤ 𝒖𝒖𝑼𝑼 

(1.7) 

 

The variables 𝜙𝜙𝑀𝑀  and 𝑔𝑔𝑀𝑀,𝑖𝑖  are the modified cost function and constraints 

respectively, 𝒖𝒖𝑘𝑘−1∗  are the actual values of the manipulated variables calculated and 

applied to the process in the previous steady state. 𝑛𝑛𝑔𝑔  is the number of nonlinear 

constraints. The modifiers are given by equations (1.8)-(1.10).  

𝝀𝝀𝑘𝑘𝑇𝑇 =
𝜕𝜕𝜙𝜙𝑝𝑝
𝜕𝜕𝒖𝒖

�
𝒖𝒖𝑘𝑘−1
∗

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖
�
𝒖𝒖𝑘𝑘−1
∗

 (1.8) 

𝒂𝒂𝑘𝑘: = 𝒚𝒚𝑝𝑝(𝒖𝒖𝑘𝑘) − 𝒚𝒚(𝒖𝒖𝑘𝑘,𝜽𝜽𝑘𝑘) (1.5) 
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𝜸𝜸𝑘𝑘𝑇𝑇𝑖𝑖 =
𝜕𝜕𝑔𝑔𝑝𝑝𝑖𝑖
𝜕𝜕𝒖𝒖

�
𝒖𝒖𝑘𝑘−1
∗

−
𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝒖𝒖

�
𝒖𝒖𝑘𝑘−1
∗

 (1.9) 

𝜀𝜀𝑘𝑘𝑖𝑖 = 𝑔𝑔𝑝𝑝𝑖𝑖(𝒖𝒖𝑘𝑘−1
∗ ) − 𝑔𝑔𝑖𝑖(𝒖𝒖𝑘𝑘−1∗ ) , 𝑖𝑖 = 1, … , 𝑛𝑛𝑔𝑔  (1.10) 

 

𝝀𝝀𝑘𝑘𝑇𝑇 and 𝜸𝜸𝑘𝑘𝑇𝑇 are the first-order modifiers and correct the curvature of the model, and 

𝜀𝜀𝑘𝑘𝑖𝑖  is the zero-order modifier and corrects the offset for each constraint, see Figure 1.4.  

 

Figure 1.4: First order modification in the constraints (figure from Marchetti et al. (2016)) 

 

The total number of modifiers required depends on the number of constraints, 𝑛𝑛𝑔𝑔, 

and the number of inputs, 𝑛𝑛𝑢𝑢 as shown in equation (1.11). 

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑛𝑛𝑔𝑔 + 𝑛𝑛𝑢𝑢�𝑛𝑛𝑔𝑔 + 1� (1.11) 
 

Problem (1.7) is solved iteratively by calculating the values of 𝒖𝒖𝑘𝑘∗  that are applied 

to the process. When the next steady state is reached, the newly measured process outputs 

are used to update the modifiers. In general, to avoid excessive correction, the strategy 

used is to filter these modifiers before using the original values in the optimization 

problem, equation (1.12) where 𝐾𝐾 = diag�𝐾𝐾1, … ,𝐾𝐾𝑛𝑛𝑢𝑢�, 𝐾𝐾𝑖𝑖  ∈ (0,1]. 

𝝀𝝀𝑘𝑘 = �𝐼𝐼 − 𝐾𝐾𝝀𝝀�𝝀𝝀𝑘𝑘−1𝑇𝑇 + 𝐾𝐾𝝀𝝀 �
𝜕𝜕𝜙𝜙𝑝𝑝
𝜕𝜕𝒖𝒖

�
𝒖𝒖𝑘𝑘−1
∗

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖
�
𝒖𝒖𝑘𝑘−1
∗
� 

𝜸𝜸𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝜸𝜸)𝜸𝜸𝑘𝑘−1𝑇𝑇 + 𝐾𝐾𝜸𝜸 �
𝜕𝜕𝒈𝒈𝑝𝑝
𝜕𝜕𝒖𝒖

�
𝒖𝒖𝑘𝑘−1
∗

−
𝜕𝜕𝒈𝒈
𝜕𝜕𝒖𝒖
�
𝒖𝒖𝑘𝑘−1
∗
� 

(1.12) 
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𝜺𝜺𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝜺𝜺)𝜺𝜺𝑘𝑘−1𝑇𝑇 + 𝐾𝐾𝜺𝜺 �𝒈𝒈𝑝𝑝(𝒖𝒖𝑘𝑘−1∗ ) − 𝒈𝒈(𝒖𝒖𝑘𝑘−1∗ )� 

 

When the MA modifiers are computed correctly, the RTO problem reaches the 

process optimum by convergence, regardless of the quality of the model. However, the 

model must at least satisfy a model adequacy requirement: the reduced Hessian of the 

Lagrangian in the real optimum must be positive definite (François and Bonvin, 2013). 

Other equivalent formulations are possible, for example, in the output MA or MAy 

approach, the modifiers are used directly in the predicted output, instead of adding an 

additional term to the cost function (Papasavvas et al., 2019). 

 

1.4 Dynamic RTO and eMPC 
 

Many industrial processes with frequent grade changes would benefit from the 

use of dynamic information in the optimization layer. This dynamic information could be 

included in the RTO layer by replacing the steady-state optimization problem with a 

dynamic optimization problem as in a DRTO (dynamic RTO). The other option is to 

consider an economic optimization layer within the MPC (an economic MPC, eMPC). 

Both DRTO and eMPC use the economic information in the objective function 

and a dynamic model as a constraint in the optimization problem. The main difference is 

that DRTO is used in the same hierarchical structure of RTO and calculates the setpoints 

to a control layer, and eMPC calculates the control trajectory to achieve the economic 

objective function (Ellis et al., 2014). 

 

1.5 Using transient measurements for gradient estimation 
 

Mansour and Ellis (2003) present several algorithms for estimating process 

gradients using steady state and transient data. The advantage of using transient data is to 

avoid the waiting time for steady state. The idea is to identify a linear or nonlinear 

dynamic model online using the process measurements and then calculate the steady-state 

gradient from this model. 
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Others alternatives to using transient measurements in steady-state optimization 

have been studied. François and Bonvin (2014) presented an estimation of the gradients 

using Neighboring Extremals (NE). The method estimates the gradient based on a 

variational analysis around the nominal operating point for the nominal parameter values 

where the gradient is zero (unconstrained problem). However the method is not valid in 

the case of structural mismatch. Afterward, Rodríguez-Blanco et al. (2017) developed a 

method that uses a truncated Taylor expansion of the process cost combined with 

identification algorithms to estimate process gradients. This second method is able to 

estimate gradients in the presence of parameter or structural mismatch. 

 

1.6 Unification RTO + MPC + MA  
 

The mismatch between the RTO+MA and MPC models can lead to a poor 

economic performance if the setpoint calculated in the upper layer is unreachable by the 

controller layer. A logical way to solve this problem is to integrate these two layers. 

Recent works have presented different formulations of the RTO+MA+MPC 

problem. Vaccari and Pannocchia (2017) used the so-called economic MPC (eMPC), 

where the optimization problem has an economic objective function. Their contribution 

includes the modifiers from the MA methodology to achieve the NCO of the process 

despite the plant-model mismatch. The implementation has two layers: the first is a 

steady-state economic objective problem and the second is a dynamic optimization 

problem. The eMPC is applied to an example of a continuous stirred tank reactor using a 

state space model in the controller with a parameter mismatch. In this example, the steady 

state gradient of the process is assumed to be known for the calculation of the MA 

modifiers. Subsequently, Pannocchia (2018) and Vaccari and Pannocchia (2018) 

extended their previous work by estimating the process gradients from a local linear input-

output model obtained from online data and identification algorithms. To guarantee the 

necessary excitation, a random signal was included for a period of time, which increased 

the convergence time of the algorithm. 

Then, Hernández and Engell (2019) presented an alternative formulation for 

economic control based on MA, where the corrections are made in the nominal dynamic 

plant model instead of the objective function. They identified linear dynamic models to 

approximate the true plant map, and then computed the plant gradients. Since the 
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estimated linearized model is only valid in the neighborhood of the current state, the 

sequence of optimal control moves is limited to this region.   

Faulwasser and Pannocchia (2019) used the output modifier adaptation (MAy) 

and the eMPC from their previous work without the terminal constraint. The authors 

emphasized the importance of estimating correct plant gradients. In this work, the 

gradients were assumed to be known. After, Vaccari et al. (2020) presented a technique 

for direct estimation of the modifiers using steady-state perturbations and a Broyden 

update algorithm. Subsequently, Vaccari et al. (2021) presented an extension of Vaccari 

et al. (2020) to compare two techniques for estimating either plant gradients or modifiers 

using steady-state measurements via Broyden’s update and linear regression. The eMPC 

schemes were tested in simulation on two benchmark examples, highlighting the fact that 

the use of transient measurements to estimate the process gradients can be an interesting 

approach to speed up convergence. 

As can be seen from the aforementioned papers, the investigation of how to 

correctly estimate the process gradients/modifiers to be used in a framework for 

RTO+MA+MPC is an open issue.  

 

1.7 Motivation 
 

Although MA is a powerful methodology that guarantees the true optimum of a 

process despite the use of incorrect models, the industrial application of MA is almost 

non-existent (Marchetti et al., 2016). One of the reasons for this is that many industrial 

processes never reach a steady state due to frequent disturbances or slow dynamics, so 

there are not enough steady-state data for the gradient estimation step. 

The motivation of this thesis, therefore, is to develop, from the idea of the traditional 

MA, a new methodology that could be easily applied in an industrial process. This new 

methodology will consider the unification of RTO and MPC layers with MA and will use 

new algorithms to estimate the process gradients using transient measurements. 

1.8 Objectives   

 

The general objective of this thesis is to study strategies to make RTO with MA 

applicable in slow dynamic processes. This thesis proposes the unification of the RTO 
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and control layers and the use of transient data to estimate the steady-state gradients 

required by MA. Moreover, the proposed tools are applied to a simulation case, an 

experimental laboratory plant, and then to a real industrial process.  

Along this line, in order to achieve the main objective, the following specific 

objectives are proposed: 

• Study the Modifier Adaptation Methodology 

• Study Aspen DMC  

• Identify the main challenges of the Modifier Adaptation methodology to 

be applied in slow process. 

• Propose a unification of the Real-Time Optimization layer, the MPC layer 

and Modifier Adaptation 

• Propose new methods to estimate MA modifiers using transient 

measurements that can be performed with the same sampling time of the 

MPC, with the aim of reducing the convergence time of the method in 

processes with slow dynamics.  

• Application of the proposed solutions in a simulation case 

• Application of the proposed solutions in a laboratory plant 

• Application of the proposed solutions in an industrial case 
 

1.9 Organization of the thesis  

 

The thesis is divided into 7 chapters as follows: 

Chapter 2 presents a proposal of RTO, MPC and MA unification. 

Chapter 3 presents the first proposed algorithm that directly estimates the MA 

modifiers, the Dynamic Modifier Estimation algorithm. This chapter shows the 

application of the method in the Williams-Otto reactor case study. 

Chapter 4 presents the second proposed algorithm that is able to improve the 

performance of the RTO using an identification algorithm and transient measurements, 

the TMA. This method is applied in simulation in the Williams-Otto reactor case study. 

Chapter 5 presents the results of the TMA algorithm applied to a laboratory plant. 

The plant consists of a hybrid reactor based on the Van der Vusse reactions. 
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Chapter 6 presents the application of the DME and a modification of the TMA 

algorithms applied to an industrial case: a propane-propylene splitter. 

Chapter 7 presents the conclusions. 
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2 Economic MPC with MA (eMPC+MA) 
 

This chapter presents a unification of RTO, MPC, and MA architecture that is 

simple enough to be applied to real processes. The proposed architecture is shown in 

Figure 2.1. It is composed of three modules: a module integrating RTO, MPC and MA, 

which performs the core task, i.e., an economic MPC (eMPC) with MA, a Moving 

Horizon Estimator (MHE) for estimating states and disturbances, and a third one for 

computing the values of the MA modifiers. This scheme is executed at regular time 

intervals denoted by the sub-index 𝑘𝑘. 

 
Figure 2.1: Architecture of eMPC+MA. 

 

At each iteration 𝑘𝑘, which coincides with the sampling time of all modules, the 

values of the manipulated variables applied to the process in the past interval 𝒖𝒖𝑘𝑘−1 and 

the current process measurements 𝒚𝒚𝑘𝑘  are collected and sent to the MHE module to 

estimate the current model states 𝒙𝒙�𝑘𝑘 and disturbances 𝒗𝒗𝑘𝑘. The solution given by the MHE 

module (𝒙𝒙�𝑘𝑘 and 𝒗𝒗𝑘𝑘∗ ), is used by the MA modifiers estimation module with current values 

of the process economic cost function 𝜙𝜙𝑝𝑝,𝑘𝑘 and constraints 𝒈𝒈𝑝𝑝,𝑘𝑘, to estimate online the 

values of the cost and constraints modifiers λ𝑘𝑘 , 𝛄𝛄𝑘𝑘  and ε𝑘𝑘 , after filtering. Next, the 

modifiers are used in the eMPC+MA to compute new control actions over a given 

horizon. Then, the first control action of the horizon, corresponding to the current time 

𝒖𝒖𝑘𝑘 , is applied to the process at time 𝑘𝑘 . Finally, at the next sample time, the whole 

procedure is repeated, following a moving horizon policy, as in MPC. All of the three 

modules presented here are described in the following sections. 
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2.1 Economic MPC with MA (eMPC+MA) 
 

This module incorporates an economic target and the modifiers from the MA 

methodology into a dynamic optimization problem, searching for the control moves 

∆𝒖𝒖𝑘𝑘+𝑖𝑖 𝑖𝑖 = 0,1,2, … ,𝑛𝑛𝑢𝑢 − 1,  that minimize the cost function (2.1) subject to constraints 

(2.2) to (2.8). Note that the problem is formulated in the continuous time domain (𝑡𝑡). The 

cost function (2.1) considered is in steady state, so its value is calculated at the end of the 

prediction horizon, 𝜙𝜙�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�,  and  using the value of the manipulated variable, in steady 

state, 𝒖𝒖�  in MA terms. 

The process is represented by a continuous dynamic model (2.2) and (2.3), which 

is assumed to be continuously differentiable. In problem (2.1)-(2.9), 𝒙𝒙 𝜖𝜖 ℝ𝑛𝑛𝑥𝑥  represent 

the states, 𝒖𝒖 𝜖𝜖 ℝ𝑛𝑛𝑢𝑢  the control actions, 𝒚𝒚 𝜖𝜖 ℝ𝑛𝑛𝑦𝑦  the measured outputs, 𝒙𝒙 �𝜖𝜖 ℝ𝑛𝑛𝑥𝑥  and 

𝒗𝒗𝑘𝑘 𝜖𝜖 ℝ𝑛𝑛𝑣𝑣  are the actual states and disturbances, estimated by the MHE module (section 

2.2). Since the model is formulated in continuous time, 𝒙𝒙, 𝒖𝒖 and 𝒚𝒚 are functions of 𝑡𝑡, but 

for simplicity this dependence has been omitted throughout the document unless 

necessary (e.g. (2.7)). Using a control vector parameterization approach, the control 

actions are only allowed to change at regular time intervals ∆𝑡𝑡 = 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1. Denoting 𝑘𝑘 

the current sampling time, the control actions 𝒖𝒖𝑘𝑘 𝜖𝜖 ℝ𝑛𝑛𝑢𝑢, computed and applied at time 𝑡𝑡𝑘𝑘, 

are kept constant within each time interval [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1), as in (2.7). The current and future 

control moves, denoted as ∆𝒖𝒖𝑘𝑘+𝑖𝑖, 𝑖𝑖 = 0,1,2, … ,𝑛𝑛𝑢𝑢 − 1 defined in (2.6), are the decision 

variables of problem (2.1)-(2.9). The selection of the control horizon 𝑛𝑛𝑢𝑢 and other tuning 

parameters follows the usual rules of MPC (Shah and Engell, 2011).  

The model allows to compute predictions of the cost function and constraints over 

a future horizon from 𝑡𝑡𝑘𝑘 to the final prediction horizon  𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, long enough for the model 

to reach steady state. 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 refers to the number of time instants from 𝑡𝑡𝑘𝑘 to reach 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

The control moves are computed every sampling time from the current time 𝑡𝑡𝑘𝑘 to 

a control horizon 𝑡𝑡𝑘𝑘+𝑛𝑛𝑢𝑢 , after which, ∆𝒖𝒖𝑘𝑘+𝑖𝑖 = 0, but only the first control move ∆𝒖𝒖𝑘𝑘 is 

applied to the process.  
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The cost function (2.1) consists of three terms: 

 

1. The first term, 𝜙𝜙�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�, corresponds to an economic objective computed with the 

value of the model variables and control actions at the end of the prediction horizon 

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , where the variables are expected to reach steady state. The objective is to 

achieve and maintain the process operating steadily at the real process optimum. 

Examples of economic objectives can be: maximizing benefits or production, or 

minimizing costs or energy. We assume that the value of 𝜙𝜙𝑝𝑝,𝑘𝑘 at any time instant 𝑘𝑘 

can be computed from process measurements and control actions.  

2. The second one, 𝝀𝝀𝑘𝑘𝑇𝑇(𝒖𝒖� − 𝒖𝒖𝑘𝑘−1) , is an additional MA-type term responsible for 

modifying the economic cost function 𝜙𝜙 to match the NCO of the real plant in steady 

state. Here  𝒖𝒖� = 𝒖𝒖𝑘𝑘−1 + ∑ ∆𝒖𝒖𝑘𝑘+𝑖𝑖
𝑛𝑛𝑢𝑢−1
𝑖𝑖=0  is the final value of the control actions. Note 

that this term is equivalent to the term added to the cost function in the traditional MA 

formulation. The modifier λ𝑘𝑘 is computed at each sampling time 𝑘𝑘 by the external 

module DME and is held constant as 𝛄𝛄𝑘𝑘 and ε𝑘𝑘 in problem (2.1)-(2.9).  

3. Finally, the third term, ∑ ∆𝒖𝒖𝑘𝑘+𝑖𝑖𝑇𝑇𝑛𝑛𝑢𝑢−1
𝑖𝑖=0 𝑸𝑸𝑢𝑢∆𝒖𝒖𝑘𝑘+𝑖𝑖 penalizes changes in the manipulated 

variables, which increases stability and contributes to model adequacy and 

convexification (François and Bonvin, 2013). 𝑸𝑸𝑢𝑢 is a positive definite matrix, with 

weighting factors on the control moves ∆𝒖𝒖, which can be considered as tuning factors 

for normalization and stabilization, as in the current practice of MPC.  

min
∆𝒖𝒖𝑘𝑘+𝑖𝑖

𝑖𝑖=0,1,…𝑛𝑛𝑢𝑢−1

𝜙𝜙�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� + λ𝑘𝑘
𝑻𝑻(𝒖𝒖� − 𝒖𝒖𝑘𝑘−1) + � ∆𝒖𝒖𝑘𝑘+𝑖𝑖𝑇𝑇

𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

𝑸𝑸𝑢𝑢∆𝒖𝒖𝑘𝑘+𝑖𝑖 

 

(2.1) 

𝑠𝑠. 𝑡𝑡.     𝒇𝒇(𝒙̇𝒙,𝒙𝒙,𝒖𝒖,𝒗𝒗𝑘𝑘) = 𝟎𝟎,  ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 
𝒉𝒉(𝒙𝒙,𝒖𝒖,𝒚𝒚,𝒗𝒗𝑘𝑘) = 𝟎𝟎, ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 

(2.2) 
(2.3) 

𝒈𝒈(𝒖𝒖) + 𝛄𝛄𝑘𝑘𝑇𝑇(𝒖𝒖� − 𝒖𝒖𝑘𝑘−1) + ε𝑘𝑘 ≤ 𝟎𝟎,  ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� (2.4)  
              𝒖𝒖𝑳𝑳 ≤ 𝒖𝒖𝑘𝑘+𝑖𝑖 ≤ 𝒖𝒖𝑼𝑼, 𝑖𝑖 = 0,1, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 (2.5) 

 
𝒖𝒖𝑘𝑘+𝑖𝑖 = 𝒖𝒖𝑘𝑘+𝑖𝑖−1 + ∆𝒖𝒖𝑘𝑘+𝑖𝑖, 𝑖𝑖 = 0,1, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 (2.6) 

 
𝒖𝒖(𝑡𝑡) = 𝒖𝒖𝑘𝑘+𝑖𝑖 , 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘+𝑖𝑖, 𝑡𝑡𝑘𝑘+𝑖𝑖+1], 𝑖𝑖 = 0,1, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 (2.7) 

 
∆𝒖𝒖𝑘𝑘+𝑖𝑖 = 0 ,   𝑖𝑖 = 𝑛𝑛𝑢𝑢, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 (2.8) 

 
𝒙𝒙(𝑡𝑡𝑘𝑘) = 𝒙𝒙�𝑘𝑘 (2.9) 
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The cost function is subjected to the model (2.2), (2.3), and the inequality 

constraints (2.4) and (2.5). In (2.4), 𝒈𝒈(𝒖𝒖)  are computed using (2.2) and (2.3), the 

constraint modifiers 𝜸𝜸𝑘𝑘 and ε𝑘𝑘 are calculated in the MA modifiers estimation module, 

and are kept constant at each iteration 𝑘𝑘. 

To solve (2.1)-(2.9), at each sampling time 𝑘𝑘, the initial value of the model states 

𝒙𝒙(𝑡𝑡𝑘𝑘) and the disturbances are initialized to the value 𝒙𝒙�𝑘𝑘 and 𝒗𝒗𝑘𝑘 respectively (2.9), values 

estimated by the MHE module. 

The eMPC+MA presented in (2.1)-(2.9) was proposed considering the standard 

formulation (1.7) of MA, but other alternative and equivalent formulations are possible if 

the output MA (MAy) (Papasavvas et al., 2019) approach is chosen. In this case, the 

modifiers are used directly in the predicted output, instead of adding an extra term to the 

cost function. Similarly, the dynamic optimization problem could had been formulated as 

a two-step problem, as in (Vaccari et al., 2020), where a static optimization is first 

performed to compute optimal steady-state objectives, and then the results are used as 

terminal constraints in a horizon optimal control problem (FHOCP). Nevertheless, in the 

formulation of Vaccari et al. (2020), it may happen that the targets computed by the 

objective optimization problem are not achievable by the FHOCP because path 

constraints are not considered in the computation of the optimal targets. This problem can 

be mitigated by the proposed formulation (2.1)-(2.9), where the search takes place only 

within the feasible region. 
 

2.2 Moving Horizon Estimation (MHE) 
 

To provide offset-free behavior for the eMPC+MA problem (2.1)-(2.9), as well 

as to compute the initial values of states and disturbances, an augmented state estimator 

can be employed. Extended Kalman Filter (EKF) or Moving Horizon Estimation (MHE) 

are two well-known methods for this task, and either of them could be used in our scheme. 

Nevertheless, MHE was chosen because it fits better into the optimization framework, 

allows estimation of specific disturbances affecting the nonlinear model, and includes 

constraints in the formulation when necessary (Huang et al., 2010; Rawlings et al., 2019; 

Vaccari and Pannocchia, 2018). The MHE uses past information from measurements and 

control actions to estimate the values of the states and disturbances 𝒗𝒗, solving the dynamic 

optimization problem (2.10)-(2.17).  
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min𝒙𝒙𝑘𝑘−𝑛𝑛𝑛𝑛𝒗𝒗𝑘𝑘−𝑖𝑖
𝑖𝑖=1,…,𝑛𝑛𝑒𝑒

 � ∆𝒚𝒚𝑘𝑘−𝑖𝑖𝑇𝑇

𝑛𝑛𝑒𝑒−1

𝑖𝑖=0

𝑸𝑸𝑦𝑦∆𝒚𝒚𝑘𝑘−𝑖𝑖 +  ∆𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
𝑇𝑇 𝑸𝑸𝑥𝑥∆𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒 +�𝒗𝒗𝑘𝑘−𝑖𝑖𝑇𝑇

𝑛𝑛𝑒𝑒

𝑖𝑖=1

𝑸𝑸𝑣𝑣𝒗𝒗𝑘𝑘−𝑖𝑖 

 

(2.10) 

𝑠𝑠. 𝑡𝑡.         𝒇𝒇(𝒙̇𝒙,𝒙𝒙,𝒖𝒖,𝒗𝒗) = 𝟎𝟎, ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� , 𝒙𝒙�𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒� = 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒 (2.11) 
𝒉𝒉(𝒙𝒙,𝒖𝒖,𝒚𝒚,𝒗𝒗) = 𝟎𝟎,  ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� (2.12) 

    𝒈𝒈(𝒖𝒖,𝒚𝒚) ≤ 𝟎𝟎,  ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� (2.13) 
𝒖𝒖(𝒕𝒕) = 𝒖𝒖𝒌𝒌−𝒊𝒊, 𝒗𝒗(𝒕𝒕) = 𝒗𝒗𝑘𝑘−𝑖𝑖, 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘−𝑖𝑖, 𝑡𝑡𝑘𝑘−𝑖𝑖+1], 𝑖𝑖 = 1, … ,𝑛𝑛𝑒𝑒 (2.14) 

𝒗𝒗𝑳𝑳 ≤ 𝒗𝒗𝑘𝑘−𝑖𝑖 ≤ 𝒗𝒗𝑼𝑼, 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒 (2.15) 
Δ𝒚𝒚𝑘𝑘−𝑖𝑖 = 𝒚𝒚𝑘𝑘−𝑖𝑖 − 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑖𝑖, 𝑖𝑖 = 0, … ,𝑛𝑛𝑒𝑒 − 1 (2.16) 

Δ𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒 = 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒 − 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒 (2.17) 
 

Problem (2.10)-(2.17), has also been formulated in continuous time, and it is 

executed at each sampling time 𝑘𝑘, using the same nonlinear model (2.11), (2.12) of the 

eMPC+MA problem, considering a past horizon 𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘�. In this past horizon, the 

control variables 𝒖𝒖𝑘𝑘−𝑖𝑖  applied to the process in [𝑡𝑡𝑘𝑘−𝑖𝑖, 𝑡𝑡𝑘𝑘−𝑖𝑖+1] , and the process 

measurements collected in 𝑡𝑡𝑘𝑘−𝑖𝑖, i.e., 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑖𝑖, are known. The past horizon of the MHE is 

illustrated in Figure 2.2. 

 
Figure 2.2: Past values for the MHE estimation. 

 

Note that the decision variables of the MHE problem are the values of the states 

at time 𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 (𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒), represented by a red “x” in  Figure 2.2, and the past disturbances 

𝒗𝒗𝑘𝑘−𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛𝑒𝑒, represented by yellow lines in  Figure 2.2. The MHE assumes that if 

𝒖𝒖𝑘𝑘−𝑖𝑖 and 𝒗𝒗𝑘𝑘−𝑖𝑖 were applied to the model (2.11) and (2.12) starting from 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒, then the 

corresponding model output at sampling times 𝑘𝑘 − 𝑖𝑖,  𝑖𝑖 = 0, … ,𝑛𝑛𝑒𝑒 − 1, i.e.,  𝒚𝒚𝑘𝑘−𝑖𝑖, must 
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be as close as possible to 𝒚𝒚𝑃𝑃,𝑘𝑘−𝑖𝑖. This aim corresponds to the first term in the cost function 

(2.10), which also incorporates two additional terms: the last one minimizes the 

magnitude of the estimated disturbances 𝒗𝒗𝑘𝑘−𝑖𝑖, while the second one is a prior weighting 

that penalizes the distance of the decision variable 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒 , with respect to the one that was 

previously estimated at sampling time 𝑘𝑘 − 𝑛𝑛𝑒𝑒 (𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒), as in (2.17). 𝑸𝑸𝒙𝒙 , 𝑸𝑸𝒗𝒗, and 𝑸𝑸𝒚𝒚 are 

positive definite matrices, with weighting and normalization factors. The problem also 

includes inequality constraints to bind the disturbances in the allowed range (2.15), as 

well as others (2.13) to avoid unwanted values of the variables. 

The solution of problem (2.10)-(2.17) gives 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗  and 𝒗𝒗𝑘𝑘−𝑖𝑖∗ , 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒 . This 

implies that once problem (2.10)-(2.17) has been solved, its solution can be used to 

estimate the initial value of the model state at time 𝑡𝑡𝑘𝑘, i.e., 𝒙𝒙�𝑘𝑘, which is required by the 

eMPC+MA problem in (2.9). To obtain 𝒙𝒙�𝑘𝑘 the model equations (2.18) must be integrated 

over 𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘�  starting from 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗ , using the estimated disturbances 𝒗𝒗𝑘𝑘−𝑖𝑖∗ ,  𝑖𝑖 =

1, … , 𝑛𝑛𝑒𝑒, and applying 𝒖𝒖𝑘𝑘−𝑖𝑖. 

 

𝒇𝒇(𝒙̇𝒙,𝒙𝒙,𝒖𝒖,𝒗𝒗∗) = 0 , ∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 , 𝑡𝑡𝑘𝑘� , 𝒙𝒙�𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒� = 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗  (2.18) 

 

Once (2.18) has been solved, the states calculated at time 𝑡𝑡𝑘𝑘 are defined as the 

initial value for problem (2.1)-(2.9) as it is stated in (2.19). Note that is (2.9) is similar to 

equation (2.19), the difference being the order of assignment. 

 

𝒙𝒙�𝑘𝑘 = 𝒙𝒙(𝑡𝑡𝑘𝑘) (2.19)  

 

The value of the disturbances 𝒗𝒗𝑘𝑘 required in the eMPC+MA problem (2.1)-(2.9), 

is taken as the estimation given by the MHE at the last sampling period 𝒗𝒗𝑘𝑘−1∗ , this is 𝒗𝒗𝑘𝑘 =

𝒗𝒗𝑘𝑘−1∗ .  

 

2.3 MA modifiers estimation using transient measurements 
 

When proposing a method for on-line estimation of process derivatives, the 

overall performance of the algorithms must be taken into account. Accurate estimation of 

the static process gradients, which requires collecting information about the process in 

this state, allows precise detection of the true optimum of the process. However, the time 
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spent in the estimation is an important issue, since it affects the time of operation in 

suboptimal conditions. It may even make the implementation of MA impractical for 

processes with long settling times when process gradients are estimated with steady-state 

data. Then, the use of transient measurements seems to be an interesting alternative to 

reduce the convergence time for all the RTO+MA+MPC approaches already mentioned 

in Section 1.6. 

The MA modifiers estimation module in Figure 2.1 is responsible to calculate the 

MA modifiers to be used in the controller.  In this thesis, two different algorithms have 

been developed. The first one is the Dynamic Modifier Estimation (DME) and the second 

one is the Transient MA (TMA). This module will have different steps depending on the 

algorithm chosen: 

 

1. Choose between the process gradient estimation (TMA) or modifier 

estimation (DME). 

2. If the TMA is selected:  

a. Estimate the process gradient using TMA algorithm 

b. Calculate the model gradient using the finite difference method 

c. Calculate the modifiers as in (1.8) and (1.9) 

3. If DME is used 

a. Calculate the modifiers using the DME algorithm 

4. Calculate the zero order modifiers as in (1.10) 

5. Apply the filter as in (1.12) 

 

In the next chapters 3 and 4, the DME and TMA methods are explained in detail 

with the results of the application to the Williams-Otto Reactor case study. In a few words, 

DME uses an on-line optimization algorithm to make the estimated modifiers converge 

to the steady-state modifiers required by MA. TMA estimates directly the dynamic 

gradients using the available transient measurements and an identification algorithm and 

makes small corrections to improve the process performance. Neither method requires an 

input-output process model to compute the process gradients or modifiers from transient 

data. Table 2.1 shows the main features of the two algorithms. 
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Table 2.1: Main features of the proposed algorithms. 

 Dynamic Modifier 

Estimation 

Transient MA 

Type of data Transient measurements Transient measurements 

Type of problem Optimization problem Identification Algorithm 

Result of the problem Estimation of MA modifiers Estimation of dynamic process 

gradients 
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3 Dynamic Modifier Estimation (DME) 
 

This chapter presents an algorithm to estimate the MA modifiers during the 

transient, called Dynamic Modifier Estimation (DME). DME is used in the eMPC+MA 

architecture presented earlier and is applied to a benchmark example, the Williams-Otto 

reactor. 

 

3.1 DME algorithm 
 

DME has the task of computing the modifiers 𝝀𝝀𝑘𝑘 ,𝜸𝜸𝑘𝑘  used in the eMPC+MA 

module (Figure 2.1), while 𝜺𝜺𝑘𝑘 can be directly computed from (1.10). From their 

definitions in (1.8) and (1.9), several approaches have been proposed in the literature to 

compute modifiers based on the estimation of the process gradients from available 

measurements. As mentioned above, the use of transient measurements to estimate 

modifiers opens the door to the application of MA in slow dynamic processes. Win this 

sense, the MA modifiers could be seen as correction terms that are added to the economic 

optimization problem so that the modified problem solution matches the process 

optimum. From this point of view, they can be estimated directly without explicitly 

computing process and model gradients. DME will try to estimate the modifiers directly 

using historical data, which, after filtering, will be incorporated into the eMPC+MA 

module. 

The idea behind the DME approach is explained next, considering only the 

economic cost function in a continuous form for simplicity. Consider a vector 𝜽𝜽 such that, 

if given an appropriate value, the modified cost function appearing in equation (3.1) 

reproduces the measured process cost function 𝜙𝜙𝑝𝑝  over the past time interval  𝑡𝑡 =

[𝑡𝑡𝑘𝑘−𝑛𝑛𝑑𝑑 , 𝑡𝑡𝑘𝑘] as in Figure 3.1. 𝑛𝑛𝑑𝑑 is a small integer number, the DME past horizon, which 

may or may not coincide with the past horizon of the MHE.  

 

𝜙𝜙𝑝𝑝(𝑡𝑡) ≈ 𝜙𝜙(𝑡𝑡) + 𝜽𝜽(𝑡𝑡)𝑇𝑇Δ𝒖𝒖(𝑡𝑡) + 𝛥𝛥𝒖𝒖(𝑡𝑡)𝑇𝑇𝑸𝑸Δ𝒖𝒖(𝑡𝑡) + � Δ𝒖𝒖𝑗𝑗(𝑡𝑡)𝑇𝑇𝑸𝑸Δ𝒖𝒖𝑗𝑗(𝑡𝑡)
𝑛𝑛𝑢𝑢−1

𝑗𝑗=1

 (3.1) 

 

Where 𝜙𝜙𝑝𝑝(𝑡𝑡)  and 𝜙𝜙(𝑡𝑡)  represent, respectively, the measured process cost 

function at a given time 𝑡𝑡 in the past interval, and the model-estimated cost obtained with 
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the Δ𝒖𝒖 applied to the process in the interval of the DME past horizon. Both 𝜙𝜙𝑝𝑝 and 𝜙𝜙 are 

time functions obtained either by interpolation of measured values or by model 

integration. In equation (3.1), the term 𝛥𝛥𝒖𝒖(𝑡𝑡)𝑇𝑇𝑸𝑸(𝑡𝑡)Δ𝒖𝒖(𝑡𝑡) + ∑ Δ𝒖𝒖𝑗𝑗(𝑡𝑡)𝑇𝑇𝑸𝑸Δ𝒖𝒖𝑗𝑗(𝑡𝑡)𝑛𝑛𝑢𝑢−1
𝑗𝑗=1  

corresponds to the optimal value of the quadratic term in (2.1), computed in the resolution 

of the eMPC+MA at the past time 𝑡𝑡 = [𝑡𝑡𝑘𝑘−𝑛𝑛𝑑𝑑 , 𝑡𝑡𝑘𝑘] . The control moves Δ𝒖𝒖(𝑡𝑡)   in 

𝜽𝜽(𝑡𝑡)𝑇𝑇Δ𝒖𝒖(𝑡𝑡) and 𝛥𝛥𝒖𝒖(𝑡𝑡)𝑇𝑇𝑸𝑸Δ𝒖𝒖(𝑡𝑡) are those actually applied to the process in the past, and 

the summation term is the future moves calculated but not applied to the process due to 

the moving horizon strategy of the eMPC+MA.  

Considering that the output variables are functions of the manipulated variables 

𝒖𝒖, one can compute the derivative of both sides of (3.1) w.r.t. 𝒖𝒖 applied to the process 

and obtain (3.2). Note that the derivative of the summation term in (3.1) is zero because 

this term does not have the variable 𝒖𝒖 applied to the process: 
 

𝜕𝜕𝜙𝜙𝑝𝑝
𝜕𝜕𝒖𝒖

≈
𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖

+ 𝜽𝜽𝑇𝑇 + 2𝛥𝛥𝒖𝒖𝑇𝑇𝑸𝑸𝑢𝑢 (3.2)  

 

Now, if we rearrange equation (3.2) and use the definition of the modifiers, we 

could obtain an estimation of 𝝀𝝀 using (3.3) at any transient time by calculating the vector 

𝜽𝜽  that matches the past process cost as in (3.1). 

 

𝝀𝝀𝑇𝑇 =
𝜕𝜕𝜙𝜙𝑝𝑝
𝜕𝜕𝒖𝒖

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖

≈ 𝜽𝜽𝑇𝑇 + 2𝛥𝛥𝒖𝒖𝑇𝑇𝑸𝑸𝑢𝑢 (3.3) 

 

In this way, we could consider the value of 𝜽𝜽𝑇𝑇 + 2𝛥𝛥𝒖𝒖𝑇𝑇𝑸𝑸𝑢𝑢 at 𝑡𝑡𝑘𝑘 as an estimation 

of the cost modifiers at 𝑘𝑘. Thus, when the system reaches steady state, 𝜽𝜽𝑇𝑇 + 2𝛥𝛥𝒖𝒖𝑇𝑇𝑸𝑸𝑢𝑢 

will correspond to the steady-state modifiers.  
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Figure 3.1. Past process cost function and evolution of the extended model cost function 

corresponding to past values of control actions and values of 𝜽𝜽𝑘𝑘−𝑖𝑖  and 𝒖𝒖𝑘𝑘−𝑖𝑖. 

 

Finding such values of 𝜽𝜽 can be formulated as an optimization problem in the 

interval �𝑡𝑡𝑘𝑘−𝑛𝑛𝑑𝑑 , 𝑡𝑡𝑘𝑘� , where the cost process evolution 𝜙𝜙𝑝𝑝 and the applied control moves 

are known. The cost function of the optimization problem would include the squared 

difference between the process cost and the RHS of equation (3.1) in the previous 

sampling times. Then, the value of the modifiers (3.3) corresponding to the last interval 

[𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘]  is used in the eMPC+MA problem to compute the next optimal control moves. 

The same idea can be extended to compute the constraints modifiers 𝜸𝜸, using in the cost 

function the squared difference between the process and the modified constraint from 

(2.4). 

Formally, the DME problem can be formulated as in (3.4)-(3.9) for 𝝀𝝀𝑘𝑘, and (3.11)-

(3.16) for 𝜸𝜸𝑘𝑘. At iteration 𝑘𝑘 we know the past actions applied 𝒖𝒖𝑘𝑘−𝑖𝑖 and the vectors 𝝀𝝀𝑘𝑘−𝑖𝑖 

and 𝜸𝜸𝑘𝑘−𝑖𝑖 used in previous iterations, as well as the values of the process cost function 

φ𝑝𝑝,𝑘𝑘−𝑖𝑖 and the constraints 𝒈𝒈𝑝𝑝,𝑘𝑘−𝑖𝑖 obtained. The only unknowns are 𝜽𝜽 and 𝜸𝜸𝐷𝐷𝐷𝐷𝐷𝐷 , which 

are conveniently parameterized. In (3.4)-(3.9) and (3.11)-(3.16), 𝑛𝑛𝑑𝑑  is the DME past 

horizon. 
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min
𝜽𝜽𝑘𝑘−𝑖𝑖−1,

𝑖𝑖=0…𝑛𝑛𝑑𝑑−1

𝜎𝜎𝜙𝜙 � Δ𝜙𝜙2𝑑𝑑𝑑𝑑
𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−𝑛𝑛𝑑𝑑

+ � (∆𝜽𝜽𝑘𝑘−𝑖𝑖−1𝑇𝑇 𝑸𝑸𝜃𝜃∆𝜽𝜽𝑘𝑘−𝑖𝑖−1)
𝑛𝑛𝑑𝑑−1

𝑖𝑖=0

  (3.4) 

𝑠𝑠. 𝑡𝑡.  𝒇𝒇(𝒙̇𝒙,𝒙𝒙,𝒖𝒖,𝒗𝒗𝑘𝑘) = 𝟎𝟎 
𝒉𝒉(𝒙𝒙,𝒖𝒖,𝒚𝒚,𝒗𝒗𝑘𝑘) = 𝟎𝟎 (3.5) 

Δ𝜙𝜙(𝑡𝑡) = φ𝑝𝑝(𝑡𝑡) − [φ(𝑡𝑡) + 𝜽𝜽(𝑡𝑡)𝑇𝑇∆𝒖𝒖(𝑡𝑡) + 𝑺𝑺(𝑡𝑡)] 
𝑺𝑺(𝑡𝑡) = ∆𝒖𝒖(𝑡𝑡)𝑇𝑇𝑸𝑸𝒖𝒖∆𝒖𝒖(𝑡𝑡) (3.6) 

𝜽𝜽(𝑡𝑡) = 𝜽𝜽𝑘𝑘−𝑖𝑖−1, 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘−𝑖𝑖−1, 𝑡𝑡𝑘𝑘−𝑖𝑖], 𝑖𝑖 = 0, … ,𝑛𝑛𝑑𝑑 − 1 
 

𝜽𝜽𝑘𝑘−𝑖𝑖−1 = 𝜽𝜽�𝑘𝑘−𝑖𝑖−1 − ∆𝜽𝜽𝑘𝑘−𝑖𝑖−1  , 𝑖𝑖 = 0, … ,𝑛𝑛𝑑𝑑 − 1 
 

(3.7) 

𝒖𝒖(𝑡𝑡) = 𝒖𝒖𝑘𝑘−𝑖𝑖−1 , 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘−𝑖𝑖−1, 𝑡𝑡𝑘𝑘−𝑖𝑖], 𝑖𝑖 = 0, … ,𝑛𝑛𝑑𝑑 − 1 
∆𝒖𝒖𝑘𝑘−𝑖𝑖−1 = 𝒖𝒖𝑘𝑘−𝑖𝑖 − 𝒖𝒖𝑘𝑘−𝑖𝑖−1  ,     𝑖𝑖 = 0,1, …𝑛𝑛𝑑𝑑 − 1 

 
(3.8) 

𝒙𝒙�𝑡𝑡𝑘𝑘−𝑛𝑛𝑑𝑑� = 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑑𝑑  (3.9) 
 

In the first term of the cost function (3.4), expanded in (3.6), 𝑺𝑺 is the value of the 

quadratic term that penalizes changes in the manipulated variable from (2.1) solved in the 

previous iteration. 𝜎𝜎𝜙𝜙 is a scalar weight for this difference. Note that (3.4), (3.6) also 

include another quadratic term that tries to smooth the changes over the values computed 

in the previous iterations (3.7) and helps to convexify the problem, where 𝑸𝑸𝜃𝜃 ∈ ℝ𝒏𝒏𝒖𝒖×𝒏𝒏𝒖𝒖 

a diagonal matrix with weighting factors for each manipulated variable. The optimization 

is subject to the dynamic model (3.5). The problem uses the value 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑑𝑑  that was 

estimated by the MHE as the initial state (3.9) and includes the disturbances 𝒗𝒗𝑘𝑘  to 

maintain consistency with the other modules. Note also that 𝜙𝜙 and 𝜙𝜙𝑝𝑝 are computed as 

continuous functions interpolating the past iterations 𝑘𝑘 − 𝑖𝑖. 𝜽𝜽� is the vector of optimal 

solutions of the problem (3.4)-(3.9) obtained in the last iteration. 

The solution of (3.4)-(3.9), 𝜽𝜽𝑘𝑘−1∗ , is considered equal to 𝜽𝜽𝑘𝑘 and allows to estimate 

the cost modifiers in iteration 𝑘𝑘 using (3.10): 

 

𝝀𝝀𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜽𝜽𝑘𝑘𝑻𝑻 + 2𝛥𝛥𝒖𝒖𝑘𝑘−1𝑇𝑇 𝑸𝑸𝒖𝒖, 𝜽𝜽𝑘𝑘 = 𝜽𝜽𝒌𝒌−𝟏𝟏∗  (3.10)  
 

In the same way, we can formulate a similar problem (3.11)-(3.16) to compute the 

modifiers 𝜸𝜸 of each constraint. 𝝈𝝈𝑔𝑔 ≔ �𝜎𝜎𝑔𝑔,1, … ,𝜎𝜎𝑔𝑔,𝑛𝑛𝑔𝑔�
𝑇𝑇
 is a column vector with the weight 

values for each constraint and σγ
𝑗𝑗 ∈ ℝ𝑛𝑛𝑢𝑢×𝑛𝑛𝑢𝑢 a diagonal matrix with the weight values for 

each constraint modifier, 𝑗𝑗 = 1 …𝑛𝑛𝑔𝑔. 
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min
𝜸𝜸𝑘𝑘−𝑖𝑖−1
𝐷𝐷𝐷𝐷𝐷𝐷

𝑖𝑖=0…𝑛𝑛𝑑𝑑−1

�𝜎𝜎𝑔𝑔,𝑗𝑗 � Δ𝑔𝑔𝑗𝑗
2𝑑𝑑𝑑𝑑

𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−𝑛𝑛𝑑𝑑

𝑛𝑛𝑔𝑔

𝑗𝑗=0

+ �� �∆𝜸𝜸𝑘𝑘−𝑖𝑖−1
𝑗𝑗,𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇σγ

𝑗𝑗 𝐼𝐼∆𝜸𝜸𝑘𝑘−𝑖𝑖−1
𝑗𝑗,𝐷𝐷𝐷𝐷𝐷𝐷 �

𝑛𝑛𝑑𝑑−1

𝑖𝑖=0

𝑛𝑛𝑔𝑔

𝑗𝑗=1

 (3.11) 

𝑠𝑠. 𝑡𝑡.  𝒇𝒇(𝒙̇𝒙,𝒙𝒙,𝒖𝒖,𝒗𝒗𝑘𝑘) = 𝟎𝟎 
       𝒉𝒉(𝒙𝒙,𝒖𝒖,𝒚𝒚,𝒗𝒗𝑘𝑘) = 𝟎𝟎 

(3.12)  

Δ𝒈𝒈(𝑡𝑡) = 𝒈𝒈𝑃𝑃(𝑡𝑡) −𝒈𝒈(𝑡𝑡) − 𝜸𝜸𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡)∆𝒖𝒖(𝑡𝑡), 𝑖𝑖 = 0 …𝑛𝑛𝑑𝑑 − 1 (3.13)  

𝜸𝜸𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝜸𝜸𝑘𝑘−𝑖𝑖−1𝐷𝐷𝐷𝐷𝐷𝐷 , 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘−𝑖𝑖−1, 𝑡𝑡𝑘𝑘−𝑖𝑖], 𝑖𝑖 = 0, … ,𝑛𝑛𝑑𝑑 − 1 
∆𝜸𝜸𝑘𝑘−𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜸𝜸𝑘𝑘−𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 − 𝜸𝜸�𝑘𝑘−𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛𝑑𝑑 

(3.14) 

𝒖𝒖(𝑡𝑡) = 𝒖𝒖𝑘𝑘−𝑖𝑖−1, 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘−𝑖𝑖−1, 𝑡𝑡𝑘𝑘−𝑖𝑖], 𝑖𝑖 = 0, … ,𝑛𝑛𝑑𝑑 − 1 (3.15) 

𝒙𝒙�𝑡𝑡𝑘𝑘−𝑛𝑛𝑑𝑑� = 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑑𝑑 (3.16) 

 

The solution to problems (3.11)-(3.16) is γ𝑘𝑘−1
𝐷𝐷𝐷𝐷𝐷𝐷∗. Similar to the estimation of 𝜽𝜽𝑘𝑘, 

the value of γ𝑘𝑘
𝐷𝐷𝐷𝐷𝐷𝐷  is taken to be equal to γ𝑘𝑘−1

𝐷𝐷𝐷𝐷𝐷𝐷∗. Therefore, when the system reaches 

steady state, γ𝑘𝑘
𝐷𝐷𝐷𝐷𝐷𝐷 will be equal to the steady-state modifiers.  

Finally, (1.10), (3.4)-(3.16) give the new values of the cost and constraint 

modifiers 𝚲𝚲𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 = (𝝀𝝀𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 , γ𝑘𝑘
𝐷𝐷𝐷𝐷𝐷𝐷 , 𝜺𝜺𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷) , which, after filtering (3.17), can be used as 

estimations of the modifiers at iteration 𝑘𝑘 in the eMPC+MA problem. The value of 𝜺𝜺𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 

is obtained directly using (1.10), while the superscript “DME” has been added to 

differentiate this value from that applied to the eMPC+MA and MHE problems, obtained 

after filtering. The term 𝚲𝚲𝑘𝑘−1 is the vector of filtered modifiers applied to the process in 

the previous iteration 𝑘𝑘 − 1 and α is a gain matrix. 

𝚲𝚲𝑘𝑘 = α𝚲𝚲𝑘𝑘−1 + (𝑰𝑰 − α)𝚲𝚲𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 
𝚲𝚲𝑘𝑘 = (𝝀𝝀𝑘𝑘,𝜸𝜸𝑘𝑘 , 𝜺𝜺𝒌𝒌) 

(3.17)  

 

Where α  can be represented by a block-diagonal matrix given by (3.18). 

 

α ∶= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏1, … , 𝑏𝑏𝑛𝑛𝑢𝑢,𝑞𝑞1𝑰𝑰𝑛𝑛𝑢𝑢 , … , 𝑞𝑞𝑛𝑛𝑔𝑔𝑰𝑰𝑛𝑛𝑢𝑢 ,𝑑𝑑𝑰𝑰𝑛𝑛𝑔𝑔) (3.18)  
 

The gain entries 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛𝑢𝑢,𝑞𝑞1, … , 𝑞𝑞𝑛𝑛𝑔𝑔 ,𝑑𝑑 are taken in (0,1]. 𝑛𝑛𝑔𝑔 is the number of 

constraints 𝒈𝒈 in the problem and 𝑛𝑛𝑢𝑢 the number of manipulated variables. 
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eMPC+MA algorithm using DME to estimate MA modifiers.  

i. Initialization 

1. Collect 𝑁𝑁 ≔ max{𝑛𝑛𝑑𝑑 ,𝑛𝑛𝑒𝑒} previous data (controller sampling time) of variables 

𝒖𝒖𝑘𝑘−𝑖𝑖, 𝒚𝒚𝑝𝑝,𝑘𝑘−𝑖𝑖, 𝜙𝜙𝑝𝑝,𝑘𝑘−𝑖𝑖 , 𝒈𝒈𝑝𝑝,𝑘𝑘−𝑖𝑖 where 𝑖𝑖 = 1, … ,𝑁𝑁.  

MHE module: given 𝑸𝑸𝑥𝑥, 𝑸𝑸𝑦𝑦 and 𝑸𝑸𝑣𝑣  

2. Initialize 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒 

a. For measured states, consider 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒
𝑀𝑀 = 𝒚𝒚𝑝𝑝,𝑘𝑘−𝑛𝑛𝑒𝑒

𝑆𝑆 , being 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒
𝑀𝑀  the subset of 

states that are measured, and 𝒚𝒚𝑝𝑝,𝑘𝑘−𝑛𝑛𝑒𝑒
𝑆𝑆  the subset of 𝒚𝒚𝑝𝑝,𝑘𝑘−𝑛𝑛𝑒𝑒  containing the 

measured states in  𝑘𝑘 − 𝑛𝑛𝑒𝑒  

b. For unmeasured states, use the values predicted by the model with 𝒗𝒗𝑘𝑘−𝑖𝑖 =

𝟎𝟎, 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒 

3. Solve the MHE problem (2.10)-(2.17)  to find the past values of the states 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗  

and disturbances 𝒗𝒗𝑘𝑘−𝑖𝑖∗ , 𝑖𝑖 = 1 …𝑛𝑛𝑒𝑒. 

4. Evaluate the estimated state 𝒙𝒙�𝑘𝑘 integrating (2.18) from 𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 to 𝑡𝑡𝑘𝑘. Estimate the 

value of the disturbance using 𝒗𝒗𝑘𝑘 = 𝒗𝒗𝑘𝑘−𝑖𝑖∗  

5. Update 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒 = 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗ . 

DME module: given 𝝈𝝈𝜙𝜙, 𝑸𝑸𝜃𝜃, 𝝈𝝈𝑔𝑔, σγ
𝑗𝑗 where 𝑗𝑗 = 1 …𝑛𝑛𝑔𝑔 , and  𝜶𝜶 

6. Initialize previous values of 𝝀𝝀𝑘𝑘−𝑖𝑖 and  𝜸𝜸𝑘𝑘−𝑖𝑖, 𝑖𝑖 = 1 …𝑛𝑛𝑑𝑑, using an identification 

method such as recursive least squares. The idea here is to start with good 

estimators of the modifiers to improve the convergence of the DME module. 

7. Evaluate 𝜺𝜺𝑘𝑘−1 using (1.10) 

8. Solve problems (3.4) and (3.11) to obtain 𝜽𝜽𝑘𝑘−1∗ , γ𝑘𝑘−1
𝐷𝐷𝐷𝐷𝐷𝐷∗.   

9. Use (3.10) to obtain 𝝀𝝀𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷  and (4.c) to obtain 𝜺𝜺𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷. Make γ𝑘𝑘
𝐷𝐷𝐷𝐷𝐷𝐷 = γ𝑘𝑘−1

𝐷𝐷𝐷𝐷𝐷𝐷∗ 

10. Use (3.17) and get the filtered modifiers 𝚲𝚲𝑘𝑘.  

 

eMPC+MA module: given 𝑸𝑸𝑢𝑢 

11. Go to step 19 

 

ii. For next iterations 
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MHE module: 

12. Collect 𝑛𝑛𝑒𝑒  previous data of variables 𝒖𝒖𝑘𝑘−𝑖𝑖 , 𝒚𝒚𝑝𝑝,𝑘𝑘−𝑖𝑖 , 𝜙𝜙𝑝𝑝,𝑘𝑘−𝑖𝑖  , 𝒈𝒈𝑝𝑝,𝑘𝑘−𝑖𝑖  with  𝑖𝑖 =

1, … , 𝑛𝑛𝑒𝑒. 

13. Solve problem (2.10)-(2.17)  to find the past values of the states 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗  and the 

disturbances 𝒗𝒗𝑘𝑘−𝑖𝑖∗ . 

14. Evaluate the estimated state 𝒙𝒙�𝑘𝑘 integrating (2.18) from 𝑡𝑡𝑘𝑘−𝑛𝑛𝑒𝑒 to 𝑡𝑡𝑘𝑘. Estimate the 

value of the disturbance using 𝒗𝒗𝑘𝑘 = 𝒗𝒗𝑘𝑘−𝑖𝑖∗  

15. Update 𝒙𝒙�𝑘𝑘−𝑛𝑛𝑒𝑒 = 𝒙𝒙𝑘𝑘−𝑛𝑛𝑒𝑒
∗  

 

DME module: 

16. Solve problems (3.4) and (3.11) to obtain 𝜽𝜽𝑘𝑘−1∗ , γ𝑘𝑘−1
𝐷𝐷𝐷𝐷𝐷𝐷∗.  

17. Use (3.10) to obtain 𝝀𝝀𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷  and (1.10) to obtain 𝜺𝜺𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷. Make γ𝑘𝑘
𝐷𝐷𝐷𝐷𝐷𝐷 = γ𝑘𝑘−1

𝐷𝐷𝐷𝐷𝐷𝐷∗ 

18. Use (3.17) and get the filtered modifiers 𝚲𝚲𝑘𝑘.  

 

eMPC+MA module: 

19. Solve problem (2.1)-(2.9) using 𝒙𝒙�𝑘𝑘  and 𝒗𝒗𝑘𝑘  from MHE, and 𝚲𝚲𝑘𝑘  calculated in 

DME.  

20. Apply ∆𝒖𝒖𝑘𝑘 to the process.  

21. Wait for the next sampling time and update 𝑘𝑘 = 𝑘𝑘 + 1  

22. Go to step 12. 

 

3.2 Implementation in the Williams-Otto reactor case study  
 

The Williams-Otto reactor benchmark example (Williams and Otto, 1960) has 

been used by several authors to evaluate the performance of different RTO approaches. 

In this process, an intermediate component of the reactions is not considered in the model 

used in the optimization layer, which introduces an important structural model-process 

mismatch. In this section, the DME algorithm is used with the previously presented 

architecture of eMPC+MA to calculate the MA modifiers to make the process reach the 

true optimum.  
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3.2.1 Process Description  
 

The process consists of a continuous stirred tank reactor (CSTR) in which the 

reactants A and B are combined to produce four species C, E, G, P in three different 

reactions. Figure 3.2 shows the schematic of the simulated reactor operating at 

temperature 𝑇𝑇 . In Figure 3.2, 𝐹𝐹𝐴𝐴  and 𝐹𝐹𝐵𝐵  represent the volumetric flows of the feeds 

containing A and B at molar concentrations given by 𝑋𝑋𝐴𝐴0  and 𝑋𝑋𝐵𝐵0  respectively; 𝐹𝐹𝑅𝑅 

represents the volumetric flow of the reactor effluent with molar concentrations of the 

components denoted by 𝑋𝑋𝑖𝑖, 𝑖𝑖 ∈ {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐸𝐸,𝐺𝐺,𝑃𝑃}. The system has two degrees of freedom 

(𝐹𝐹𝐵𝐵 and 𝑇𝑇) that can be manipulated by a supervisory layer, while 𝐹𝐹𝐴𝐴 can be considered as 

a measured disturbance. Since the outlet of the reactor is located at the top of the vessel, 

the total reaction volume (𝑉𝑉𝑅𝑅) can be considered constant. In addition, the mixer makes it 

possible to assume that the system behaves as an ideal CSTR. It is also assumed that the 

measurements of the molar concentrations of C and B in the effluent are not available, 

while the other variables are measured. Products P and E are the valuable ones, while and 

G is a by-product and C is an intermediate component of the reactions. 

Figure 3.2: Schematic of the Williams-Otto reactor. 

 

The process-model mismatch has been emulated using a simplified dynamic 

model to solve the model-based optimization in the controller. The simplified model 

considers only two reactions and neglects the existence of component C, which implies a 

structural mismatch. In addition, parametric uncertainty has been incorporated by using 

different values for the model parameters and the real process model parameters. The 

model that emulates the real process and the simplified model are based on mass balances 

for each component and the elemental kinetics with Arrhenius temperature dependence. 

The equations of both models are presented below.  

 

 
 
 
 
 
 
 

 
 
 
 

 

𝐹𝐹𝐵𝐵 ,𝑋𝑋𝐵𝐵0 𝐹𝐹𝐴𝐴 ,𝑋𝑋𝐴𝐴0 

𝐹𝐹𝑅𝑅 ,𝑋𝑋𝐴𝐴 ,𝑋𝑋𝐵𝐵 ,𝑋𝑋𝐶𝐶 ,𝑋𝑋𝐸𝐸 ,𝑋𝑋𝐺𝐺 ,𝑋𝑋𝑃𝑃  

𝑇𝑇 
𝑉𝑉𝑅𝑅  
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3.2.2 Rigorous dynamic model 
 

A rigorous dynamic model is constructed and it will be used as a virtual plant.  

The three reactions are considered: 

𝐴𝐴 + 𝐵𝐵
𝑘𝑘1→ 𝐶𝐶 𝐵𝐵 + 𝐶𝐶

𝑘𝑘2→ 𝑃𝑃 + 𝐸𝐸 𝐶𝐶 + 𝑃𝑃
𝑘𝑘3→ 𝐺𝐺 

 

The rate of each reaction is given by equations (3.19)-(3.21). The rate constant of 

each reaction, 𝑘𝑘𝑖𝑖, is described by the Arrhenius equation (3.22), which depends on the 

pre-exponential factor 𝑘𝑘𝑖𝑖,0, the activation energy 𝐸𝐸𝑎𝑎𝑎𝑎 for each reaction, and 𝑇𝑇. 

𝑟𝑟1 = 𝑘𝑘1𝑋𝑋𝐴𝐴𝑋𝑋𝐵𝐵 (3.19) 

𝑟𝑟2 = 𝑘𝑘2𝑋𝑋𝐵𝐵𝑋𝑋𝐶𝐶 (3.20) 

𝑟𝑟3 = 𝑘𝑘3𝑋𝑋𝐶𝐶𝑋𝑋𝑃𝑃 (3.21) 

𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑖𝑖,0𝑒𝑒−(𝐸𝐸𝑎𝑎𝑎𝑎 𝑇𝑇⁄ ), 𝑖𝑖 = 1,2,3 (3.22) 

A cooling system maintains the temperature of the reactor around the desired 

value T. It is assumed that no significant change in the density or similar physical 

properties takes place.  

The nonlinear dynamics of the process is given by equations (3.23)-(3.28), which, 

together with the total mass balance (3.29), are used in a simulation of the real plant. 

Table 3.1 presents the parameters used in the simulation. 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0 − 𝐹𝐹𝑅𝑅𝑋𝑋𝐴𝐴 − 𝑉𝑉𝑅𝑅𝑟𝑟1 (3.23) 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐵𝐵
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝐵𝐵𝑋𝑋𝐵𝐵0 − 𝐹𝐹𝑅𝑅𝑋𝑋𝐵𝐵 − 𝑉𝑉𝑅𝑅𝑟𝑟1 − 𝑉𝑉𝑅𝑅𝑟𝑟2 (3.24) 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐶𝐶
𝑑𝑑𝑑𝑑

= −𝐹𝐹𝑅𝑅𝑋𝑋𝐶𝐶 + 𝑉𝑉𝑅𝑅𝑟𝑟1 − 𝑉𝑉𝑅𝑅𝑟𝑟2 − 𝑉𝑉𝑅𝑅𝑟𝑟3 (3.25) 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐸𝐸
𝑑𝑑𝑑𝑑

= −𝐹𝐹𝑅𝑅𝑋𝑋𝐸𝐸 + 𝑉𝑉𝑅𝑅𝑟𝑟2 (3.26) 

 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐺𝐺
𝑑𝑑𝑑𝑑

= −𝐹𝐹𝑅𝑅𝑋𝑋𝐺𝐺 + 𝑉𝑉𝑅𝑅𝑟𝑟3 (3.27) 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝑃𝑃
𝑑𝑑𝑑𝑑

= −𝐹𝐹𝑅𝑅𝑋𝑋𝑃𝑃 + 𝑉𝑉𝑅𝑅𝑟𝑟2 − 𝑉𝑉𝑅𝑅𝑟𝑟3 (3.28) 

𝐹𝐹𝑅𝑅 = 𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵 (3.29) 
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Table 3.1: Parameters of Williams-Otto reactor real process. 

𝑘𝑘1,0 9.9594 × 106   𝑙𝑙/(𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚) 
𝑘𝑘2,0 8.66124 × 109  𝑙𝑙/(𝑚𝑚𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚) 
𝑘𝑘3,0 1.6047 × 1013 𝑙𝑙/(𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚) 
𝐸𝐸𝑎𝑎1 6666.7 K 
𝐸𝐸𝑎𝑎2 8333.3 K 
𝐸𝐸𝑎𝑎3 11111 K 
𝑋𝑋𝐴𝐴0 10  𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑋𝑋𝐵𝐵0 10 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑉𝑉𝑅𝑅 2105  𝑙𝑙 
𝐹𝐹𝐴𝐴 112.35 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

 

3.2.3 Simplified dynamic model 
 

In the simplified model used in the supervisory layer, only five components and 
two reactions are considered: 

𝐴𝐴 + 2𝐵𝐵
𝑘𝑘1_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�⎯⎯⎯⎯⎯� 𝑃𝑃 + 𝐸𝐸 𝐴𝐴 + 𝐵𝐵 + 𝑃𝑃

𝑘𝑘2_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�⎯⎯⎯⎯⎯� 𝐺𝐺 

 

The rate of each reaction is given by equations (3.30) and (3.31). The rate constant 

of each reaction, 𝑘𝑘𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, is described by the Arrhenius equation (3.32), which depends 

on the pre-exponential factor, 𝑘𝑘𝑖𝑖,0_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , the activation energy 𝐸𝐸𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  for each 

reaction, and the temperature inside the reactor, 𝑇𝑇. 

𝑟𝑟1_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘1_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝐴𝐴𝑋𝑋𝐵𝐵2 (3.30) 

𝑟𝑟2_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘2_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝐴𝐴𝑋𝑋𝐵𝐵𝑋𝑋𝑃𝑃 (3.31) 

𝑘𝑘𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑘𝑖𝑖,0_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒−�𝐸𝐸𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇⁄ �, 𝑖𝑖 = 1,2 (3.32) 

 

The dynamic model includes the following equations, which represent the mass 

balances of the various components considered: 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0 − 𝐹𝐹𝑅𝑅𝑋𝑋𝐴𝐴 − 𝑉𝑉𝑅𝑅𝑟𝑟1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑅𝑅𝑟𝑟2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3.33) 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐵𝐵
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝐵𝐵𝑋𝑋𝐵𝐵0 − 𝐹𝐹𝑅𝑅𝑋𝑋𝐵𝐵 − 2𝑉𝑉𝑅𝑅𝑟𝑟1_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑅𝑅𝑟𝑟2_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3.34) 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐸𝐸
𝑑𝑑𝑑𝑑

= −𝐹𝐹𝑅𝑅𝑋𝑋𝐸𝐸 + 𝑉𝑉𝑅𝑅𝑟𝑟1_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3.35) 

 

𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝐺𝐺
𝑑𝑑𝑑𝑑

= −𝐹𝐹𝑅𝑅𝑋𝑋𝐺𝐺 + 𝑉𝑉𝑅𝑅𝑟𝑟2_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (3.36) 
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𝑉𝑉𝑅𝑅
𝑑𝑑𝑋𝑋𝑃𝑃
𝑑𝑑𝑑𝑑

= −𝐹𝐹𝑅𝑅𝑋𝑋𝑃𝑃 + 𝑉𝑉𝑅𝑅𝑟𝑟1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑅𝑅𝑟𝑟2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  (3.37) 

𝐹𝐹𝑅𝑅 = 𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵 (3.38) 
 

Model parameters are summarized in Table 3.2. 
Table 3.2: Parameters of Williams-Otto model. 

𝑘𝑘1,0_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 1.3134 × 108   𝑙𝑙/(𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚) 
𝑘𝑘2,0_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 2.586 × 1013  𝑙𝑙/(𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚) 
𝐸𝐸𝑎𝑎1_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 8077.6  K 
𝐸𝐸𝑎𝑎2_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 12438.5 K 
𝑋𝑋𝐴𝐴0 10  𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑋𝑋𝐵𝐵0 10 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑉𝑉𝑅𝑅 2105  𝑙𝑙 
𝐹𝐹𝐴𝐴 112.35 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

 

3.2.4 Comparison between process and model optimum 
 

The purpose of the optimal operation is to maximize the operating profit, which 

is computed as the difference between the value of the useful products 𝐸𝐸 and  𝑃𝑃 and the 

cost of the raw materials  𝐴𝐴 and 𝐵𝐵. Table 3.3 gives the prices of these products. If a perfect 

steady state model of the process were available and there were no disturbances, the 

optimal operating point could be obtained by solving the optimization problem (3.39).  

Here, the inflow 𝐹𝐹𝐵𝐵  and the reactor temperature 𝑇𝑇 are constrained to operate within a 

certain range. 

𝑚𝑚𝑚𝑚𝑚𝑚
𝒖𝒖=[𝐹𝐹𝐵𝐵,𝑇𝑇]

𝜙𝜙 = 𝐹𝐹𝑅𝑅(𝑋𝑋𝑃𝑃𝑝𝑝𝑃𝑃 + 𝑋𝑋𝐸𝐸𝑝𝑝𝐸𝐸)−𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0𝑝𝑝𝐴𝐴−𝐹𝐹𝐵𝐵𝑋𝑋𝐵𝐵0𝑝𝑝𝐵𝐵 

𝑠𝑠. 𝑡𝑡. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3.23) − (3.28) 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

180 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐹𝐹𝐵𝐵 ≤ 360 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

75º𝐶𝐶 ≤ 𝑇𝑇 ≤ 100ºC 

0 ≤ 𝑋𝑋𝐴𝐴 ≤ 1.2 mo𝑙𝑙/𝑙𝑙  

0 ≤ 𝑋𝑋𝐺𝐺 ≤ 0.5 mo𝑙𝑙/𝑙𝑙 

(3.39) 

 

The real optimum of the process in steady state is 𝐹𝐹𝐵𝐵 = 293.55 l/min  and 𝑇𝑇 =

89.98 ºC  and the value of the objective function is 𝜙𝜙 = 11594.40€  (black point in 

Figure 3.3). As can be seen in Figure 3.3, which displays the value of the benefit 𝜙𝜙 for a 

range of values of the manipulated variables, the cost is in a relatively flat zone, which 

can cause convergence problems for the optimizers.  
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Table 3.3: Cost of the reactants and price of products. 

𝑝𝑝𝐴𝐴 7.623 €/𝑚𝑚𝑚𝑚𝑚𝑚  
𝑝𝑝𝐵𝐵 11.434 €/𝑚𝑚𝑚𝑚𝑚𝑚 
𝑝𝑝𝑝𝑝 114.338 €/𝑚𝑚𝑚𝑚𝑚𝑚 
𝑝𝑝𝐸𝐸 5.184 €/𝑚𝑚𝑚𝑚𝑚𝑚 

 

 

 
Figure 3.3. Objective function values and feasible region of problem (3.39). The contour 1.2 (dotted line) 

and 0.5 (solid line) are the problem constraints in (3.39) for 𝑋𝑋𝐴𝐴 and 𝑋𝑋𝐺𝐺 respectively. The black and red 
dots correspond to the plant and model optimum, respectively. 

 

Actually, the mapping between input-output is unknown so, an RTO formulation 

for this process should be like problem (3.40).  The model optimum in steady state is 
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𝐹𝐹𝐵𝐵 = 292.26 l/min  and 𝑇𝑇 = 78.41 ºC and the value of the objective function in the real 

process is 𝜙𝜙 = 9075.3€  (red dot in Figure 3.3). 

𝑚𝑚𝑚𝑚𝑚𝑚
𝒖𝒖=[𝐹𝐹𝐵𝐵,𝑇𝑇]

𝜙𝜙 = 𝐹𝐹𝑅𝑅(𝑋𝑋𝑃𝑃𝑝𝑝𝑃𝑃 + 𝑋𝑋𝐸𝐸𝑝𝑝𝐸𝐸)−𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0𝑝𝑝𝐴𝐴−𝐹𝐹𝐵𝐵𝑋𝑋𝐵𝐵0𝑝𝑝𝐵𝐵 

𝑠𝑠. 𝑡𝑡. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3.30) − (3.37) 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

180 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐹𝐹𝐵𝐵 ≤ 360 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

75º𝐶𝐶 ≤ 𝑇𝑇 ≤ 100ºC 

0 ≤ 𝑋𝑋𝐴𝐴 ≤ 1.2 mo𝑙𝑙/𝑙𝑙  

0 ≤ 𝑋𝑋𝐺𝐺 ≤ 0.5 mo𝑙𝑙/𝑙𝑙 

(3.40) 

 

3.2.5 eMPC+MA + DME 
 

eMPC+MA solves the modified problem given by (3.41). The economic objective 

function considers the variables as computed at the end of the prediction horizon (denoted 

by a bar above the variables in part A of 𝜙𝜙𝑀𝑀). The states 𝑋𝑋�𝑃𝑃 and 𝑋𝑋�𝐸𝐸 are predicted using 

equations (3.30)-(3.37), adding the disturbances 𝒗𝒗 from MHE. The two terms with 𝜆𝜆1 and 

𝜆𝜆2 correspond to the MA cost modifiers for each control variable in part B of 𝜙𝜙𝑀𝑀. The 

last two terms are the penalties on the control efforts to smooth the control actions and 

contribute to model adequacy and convexity in part C. 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝒖𝒖=[𝐹𝐹𝐵𝐵,𝑇𝑇]

𝜙𝜙𝑀𝑀 = 𝐹𝐹�𝑅𝑅�(𝑋𝑋�𝑃𝑃)𝑝𝑝𝑃𝑃 + (𝑋𝑋�𝐸𝐸)𝑝𝑝𝐸𝐸�−𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0𝑝𝑝𝐴𝐴−𝐹𝐹�𝐵𝐵𝑋𝑋𝐵𝐵0𝑝𝑝𝐵𝐵�����������������������������
𝐴𝐴

+ 𝜆𝜆1,𝑘𝑘�𝐹𝐹�𝐵𝐵 − 𝐹𝐹𝐵𝐵,𝑘𝑘−1� + 𝜆𝜆2,𝑘𝑘(𝑇𝑇� − 𝑇𝑇𝑘𝑘−1)�����������������������
𝐵𝐵

+ 𝜎𝜎𝑢𝑢1 � �∆𝐹𝐹𝐵𝐵,𝑘𝑘+𝑖𝑖�
2

+ 𝜎𝜎𝑢𝑢2 � (∆𝑇𝑇𝑘𝑘+𝑖𝑖)2
𝑛𝑛𝑢𝑢−1

𝑖𝑖=1

𝑛𝑛𝑢𝑢−1

𝑖𝑖=1�������������������������
𝐶𝐶

 

𝑠𝑠. 𝑡𝑡. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3.30) − (3.37) with disturbances 𝑣𝑣 

∆𝐹𝐹𝐵𝐵,𝑘𝑘+𝑖𝑖 = 𝐹𝐹𝐵𝐵,𝑘𝑘+𝑖𝑖 − 𝐹𝐹𝐵𝐵,𝑘𝑘+𝑖𝑖−1, 𝑖𝑖 = 0 …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 
∆𝑇𝑇𝑘𝑘+𝑖𝑖 = 𝑇𝑇𝑘𝑘+𝑖𝑖 − 𝑇𝑇𝑘𝑘+𝑖𝑖−1, 𝑖𝑖 = 0 …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

𝐹𝐹𝐵𝐵(𝑡𝑡) = 𝐹𝐹𝐵𝐵𝑘𝑘+𝑛𝑛𝑢𝑢     ,   𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘+𝑛𝑛𝑢𝑢 , 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 
𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑘𝑘+𝑛𝑛𝑢𝑢   , 𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘+𝑛𝑛𝑢𝑢 , 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 

180
𝑙𝑙

𝑚𝑚𝑚𝑚𝑚𝑚
≤ 𝐹𝐹𝐵𝐵,𝑘𝑘+𝑖𝑖 ≤ 360

𝑙𝑙
𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑖𝑖 = 0 …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

75º𝐶𝐶 ≤ 𝑇𝑇𝑘𝑘+𝑖𝑖 ≤ 100ºC, 𝑖𝑖 = 0 …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

(3.41) 
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Note that the cost function has two objectives: to maximize the benefit at the end 

of the prediction horizon and to achieve a smooth and stable operation. This compromise 

is given by the weighting factors β𝑖𝑖. The MHE module provides the initial value for the 

state and disturbances at the current iteration 𝑘𝑘. 

Similarly, the DME problem solved at each sampling time 𝑘𝑘 is given by (3.42). 

Here, 𝜙𝜙𝑃𝑃 refers to the value measured in the process, as well as the concentrations 𝑋𝑋𝑝𝑝,𝑗𝑗 

(for each component 𝑗𝑗), while 𝜙𝜙 is a value estimated from the model (3.30)-(3.37) with 

disturbances. 𝜙𝜙𝑃𝑃  is calculated as a continuous function of time, interpolating the 

measurements in the interval [𝑡𝑡𝑘𝑘−3, 𝑡𝑡𝑘𝑘] . ∆𝒖𝒖  and 𝜽𝜽  are also calculated as continuous 

function of time 𝑡𝑡, using the equation in (3.42). 

 

min
𝜽𝜽𝑘𝑘−𝑖𝑖−1

𝑖𝑖=0…𝑛𝑛𝑑𝑑−1

𝜎𝜎𝜙𝜙 � Δ𝜙𝜙2𝑑𝑑𝑑𝑑
𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘−𝑛𝑛𝑑𝑑

+ (∆𝜽𝜽𝑘𝑘−𝑖𝑖−1𝑇𝑇 𝑸𝑸𝜃𝜃∆𝜽𝜽𝑘𝑘−𝑖𝑖−1) 

 
𝑠𝑠. 𝑡𝑡. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3.30) − (3.37)  with disturbances 𝑣𝑣 

Δ𝜙𝜙(𝑡𝑡) = �𝜙𝜙𝑝𝑝(𝑡𝑡) − (𝜙𝜙(𝑡𝑡) + 𝜽𝜽𝑇𝑇∆𝒖𝒖(𝑡𝑡) + ∆𝒖𝒖(𝑡𝑡)𝑇𝑇𝑸𝑸𝑢𝑢∆𝒖𝒖(𝑡𝑡))� 
𝜙𝜙𝑝𝑝(𝑡𝑡) = 𝐹𝐹𝑅𝑅�𝑋𝑋𝑝𝑝,𝑃𝑃(𝑡𝑡)𝑝𝑝𝑃𝑃 + 𝑋𝑋𝑝𝑝,𝐸𝐸(𝑡𝑡)𝑝𝑝𝐸𝐸� − 𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0𝑝𝑝𝐴𝐴−𝐹𝐹𝐵𝐵𝑋𝑋𝐵𝐵0𝑝𝑝𝐵𝐵 
𝜙𝜙(𝑡𝑡) = 𝐹𝐹𝑅𝑅(𝑋𝑋𝑃𝑃(𝑡𝑡)𝑝𝑝𝑃𝑃 + 𝑋𝑋𝐸𝐸(𝑡𝑡)𝑝𝑝𝐸𝐸) − 𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0𝑝𝑝𝐴𝐴 − 𝐹𝐹𝐵𝐵,𝑘𝑘−𝑖𝑖𝑋𝑋𝐵𝐵0𝑝𝑝𝐵𝐵 

𝒖𝒖𝑘𝑘−𝑖𝑖−1 = �𝐹𝐹𝐵𝐵,𝑘𝑘−𝑖𝑖−1 𝑇𝑇𝑘𝑘−𝑖𝑖−1�
𝑇𝑇

, 𝑖𝑖 = 0 …𝑛𝑛𝑑𝑑 − 1 
𝒖𝒖(𝑡𝑡) = 𝒖𝒖𝑘𝑘−𝑖𝑖−1 , 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘−𝑖𝑖−1, 𝑡𝑡𝑘𝑘−𝑖𝑖], 𝑖𝑖 = 0, … ,𝑛𝑛𝑑𝑑 − 1 

𝜽𝜽(𝑡𝑡) = 𝜽𝜽𝑘𝑘−𝑖𝑖−1, 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘−𝑖𝑖−1, 𝑡𝑡𝑘𝑘−𝑖𝑖], 𝑖𝑖 = 0, … ,𝑛𝑛𝑑𝑑 − 1 
∆𝜽𝜽𝑘𝑘−𝑖𝑖−1 = 𝜽𝜽𝑘𝑘−𝑖𝑖−1 − 𝜽𝜽�𝑘𝑘−𝑖𝑖−1−1  , 𝑖𝑖 = 0 …𝑛𝑛𝑑𝑑 − 1 

(3.42) 

 

The solution 𝜽𝜽𝑘𝑘−1∗  of (3.42) after filtering (3.17) is used to compute 𝝀𝝀𝑘𝑘  as in 

equation (3.10). Now, the problem (3.41) has all the information it needs to be solved.  
 

3.2.6 Results  
 

The results of the proposed method are given next. The starting point is given in 

Table 3.4 and corresponds to a value of the process states far from the optimum.  
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Table 3.4:  Starting point of the simulation. 

𝑋𝑋𝐴𝐴 0.8264 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑋𝑋𝐵𝐵 4.8075 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑋𝑋𝐶𝐶 0.0843 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑋𝑋𝐸𝐸 1.2618 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑋𝑋𝐺𝐺 0.2059 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
𝑋𝑋𝑃𝑃 1.0558 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 
FB 350 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 
T 82 º𝐶𝐶 

 

The eMPC+MA problem could be solved numerically using either simultaneous 

or sequential approaches. The first one implies a full discretization of the model, e.g. 

using orthogonal collocation on finite elements, which transforms the dynamic 

optimization into an NLP problem that can be solved with algorithms such as IPOPT 

(Wächter and Biegler, 2006). This approach significantly increases the size of the 

problem to be solved, but allows a good treatment of path constraints and facilitates the 

use of automatic differentiation to calculate exact derivatives. Depending on the specific 

case considered, the sequential approach may also offer a good alternative by combining 

a dynamic simulation of the model with an NLP solver like SNOPT (Gill et al., 2005). 

An advantage of this method is the smaller size of the optimization problem and the fact 

that it does not require state discretization, but it requires integration of the extended 

system to compute exact derivatives, and it is more difficult to deal with path constraints 

and unstable systems. For the MHE problem, similar numerical methods can be used. In 

the presented case study, a sequential approach was used. 
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Table 3.5:  Parameters used in the simulation for eMPC+MA+DME. 

Module Parameter Value 
MHE 𝜎𝜎𝒚𝒚  

(𝑸𝑸𝒚𝒚 = 𝜎𝜎𝒚𝒚𝑰𝑰) 
250 

MHE 𝜎𝜎𝒙𝒙  
(𝑸𝑸𝒙𝒙 = 𝜎𝜎𝒙𝒙𝑰𝑰) 

1 × 10−2 

MHE 𝜎𝜎𝒗𝒗  
(𝑸𝑸𝒗𝒗 = 𝜎𝜎𝒗𝒗𝑰𝑰) 

1 × 10−5 

MHE 𝑛𝑛𝑒𝑒 3 
DME 𝜎𝜎𝜙𝜙 10 
DME 𝑸𝑸𝜃𝜃 �4 0

0 2� 
DME 𝑛𝑛𝑑𝑑 3 

eMPC+MA 𝜎𝜎𝑢𝑢1 0.05 

eMPC+MA 𝜎𝜎𝑢𝑢2 0.44 

eMPC+MA 𝛼𝛼 0.95 
eMPC+MA 𝑛𝑛𝑢𝑢 3 
eMPC+MA 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 30 

 

The reactor and the three dynamic optimization problems eMPC+MA, MHE and 

DME, are formulated in the continuous domain in the simulation environment 

EcosimPro/Proosis (EA Int., 2020), a modern object-oriented software. They are solved 

with a sampling time of 2 minutes. The optimization problems have been solved using a 

sequential approach in which a dynamic simulation of the model is connected to SNOPT, 

a reduced-space SQP optimization algorithm. Exact derivatives of cost functions and 

constraints are generated by integrating of the extended system as provided by the IDAS 

integration software.   The entire problem is solved in an average time of 3 seconds per 

iteration on a PC running Windows10 with a four-core i7 processor running at 3GHz and 

with 16 GB of memory. The eMPC+MA module starts at time 𝑡𝑡 = 8 𝑚𝑚𝑚𝑚𝑚𝑚 to collect past 

measurements. The MHE, DME and eMPC+MA parameters used are listed in Table 3.5. 

Figure 3.4 shows the states estimated by the MHE (blue line) along with the 

measured values from the process (red line). The estimated disturbances for the five states 

of the model appear at the bottom. 
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Figure 3.4. Results of the MHE module 

 

The lambda modifiers computed by DME after filtering are presented in Figure 

3.5. Figure 3.6 shows the time evolution of the process cost function and Figure 3.7 shows 

the manipulated variables. 
 

 

Figure 3.5. Values of lambda modifiers calculated from the solution of the online DME. 
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Figure 3.6. Cost function value during simulation eMPC+MA+DME. 

  

Figure 3.7. Manipulated variables over time eMPC+MA+DME. 

 

As can be seen, after an initial transient, the closed loop system stabilizes at about 

140 minutes, which is less than four times the open-loop response of the reactor (40 

minutes), reaching an average benefit quite close to the real process optimum.  

The next figures (Figure 3.8 and Figure 3.9) compare the results of using eMPC 

without modifiers, eMPC+MA+DME and eMPC+MA with correct modifiers. The 

application of eMPC+MA (dark blue line) clearly improves the cost function of the 

process compared to the application of the eMPC without the correction in the economic 

function (green line). For comparison, the closed-loop evolution of the eMPC+MA with 

real optimum modifiers (assuming they were known) is also added (orange line). It can 

be seen that using the real values of the modifiers in the steady state, the system reaches 

the optimal operation in 50 minutes, which is almost a third of the convergence time of 

the eMPC+MA using DME to estimate the modifiers. This reduction in the performance 

of the proposed algorithm can be explained by the use of transient measurements (rather 

than steady-state measurements) to estimate the modifiers. Nevertheless, the algorithm 

was able to reach a stationary point in the neighbourhood of the process optimum in a 

short time. The small errors obtained can be attributed to the low sensitivity that this 

variable can have in 𝜙𝜙𝑝𝑝 close to the optimum (flat zone commented from Figure 3.3).  

The order of magnitude of the ratio between the time to convergence using DME and 

considering the known gradients reaches a value of about 3 (140 minutes /50 minutes).  
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Figure 3.8: Comparison of the cost function with eMPC+MA+DME (dark blue), eMPC+MA with perfect 

modifiers (orange) and without MA (green). The light blue line corresponds to the plant optimum. 

 

    
Figure 3.9: Comparison of the control actions with eMPC+MA with DME (dark blue), MA with perfect 

modifiers (orange) and without MA (green). The light blue line corresponds to the plant optimum. 

 

Finally, noise has been added to the process, which is reflected in 4% oscillations 

in the cost function, as shown in Figure 3.10.  The noise degrades the performance of the 

DME algorithm by creating a small offset in the decision variables. 
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Figure 3.10:  Up: Cost function without (dark blue) and with (orange) noise added to the process. Bottom: 

control efforts without (dark blue) and with (orange) noise added to the process. The light purple line 
corresponds to the plant optimum. 

 

3.2.7 Conclusions 
 

In this chapter, we presented the DME algorithm that aims to estimate the MA 

modifiers directly, without the need to explicitly calculate the process and model 

gradients. The case study presented showed that the eMPC+MA+DME approach can 

achieve values quite close to the real economic optimum operating point, despite the 

parametric and structural mismatch between model and process. Therefore, the DME 

algorithm seems to be a powerful tool to be applied in real processes with slow dynamics. 
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4 Transient MA (TMA) 
 

This chapter presents an algorithm to estimate the dynamic process gradients 

during the transient, called Transient MA (TMA). TMA is used in the eMPC+MA 

architecture presented in Chapter 2 and is applied to the same benchmark example, the 

Williams-Otto reactor, described in Section 3.2. 

 

4.1 TMA algorithm 
 

For generalization purposes, let us define the variable 𝒛𝒛𝑝𝑝𝑘𝑘 as the set of process 

variables for which we need to estimate the derivatives, i.e., 𝒛𝒛𝑝𝑝𝑇𝑇𝑘𝑘 ≔ �𝝓𝝓𝑝𝑝𝑘𝑘
,𝒈𝒈𝑝𝑝𝑇𝑇𝑘𝑘 �. The 

dynamical behaviour of a system from a certain instant in time can be approximated as a 

contribution of  the free dynamic evolution of the process and the effect of current and 

future input moves from the steady state. The approximation is correct for linear systems 

and may contain some error for nonlinear systems. 

 

4.1.1 On-line predictions of 𝐳𝐳𝑝𝑝𝑘𝑘  
 

We are interested in developing an expression for the value of 𝐳𝐳𝑝𝑝 at time 𝑘𝑘 using 

plant information up to time 𝑘𝑘 − 1.  The contribution of what can be called the free 

dynamic evolution of a variable of a process can be computed from data using the values 

of the variable 𝐳𝐳𝑝𝑝  available at time 𝑘𝑘 − 1  and previous time instants, e.g. using a 

polynomial approximation that goes through the previous 𝑘𝑘 − 𝑛𝑛 values of 𝐳𝐳𝑝𝑝   as in Figure 

4.1. This polynomial can then be used to extrapolate the values of the variable at time 𝑘𝑘. 

For extrapolation, values of the time derivatives of 𝐳𝐳𝑝𝑝𝑘𝑘−1  are required, and we can 

perform first, second or higher-order extrapolations with these derivatives. 
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Figure 4.1: Polynomial approximation of a function. 

 

In the context of numerical methods to solve time-dependent systems of 

differential equations (ODE), Backward Differentiation Formulas give approximations to 

a derivative of a dependent variable 𝒛𝒛(𝑡𝑡) at a time 𝑡𝑡𝑘𝑘, in terms of the value of 𝒛𝒛𝑘𝑘 and 

earlier values (Bank et al., 1993). In addition, Nordsieck (1962) derived a procedure based 

on a polynomial expression of 𝑛𝑛𝑡𝑡ℎ order to estimate the time derivatives for numerical 

integration methods of ODE systems. Combining these two approaches, one can 

implement an estimator for the time derivative of process variables using, for instance, a 

third-degree Nordsieck vector using past data, as presented in equation (4.1). 
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For example, a first-order estimation of the free evolution of 𝐳𝐳𝑝𝑝𝑘𝑘  could be 

computed using (4.1) as in Equation (4.2). 

𝐳𝐳𝑝𝑝𝑘𝑘,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≈ 𝐳𝐳𝑝𝑝𝑘𝑘−1 +
d𝒛𝒛𝑝𝑝
d𝑡𝑡

�
�
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(4.2) 
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Notice that equation (4.1) also calculates higher-order terms with respect to time 

that can be used in higher-order extrapolations. 

Obviously, equation (4.2) reflects the influence of almost all past control actions 

on the evolution of the system except the effect of the recent control actions ∆𝒖𝒖𝑘𝑘−1 

performed at time 𝑘𝑘 − 1 that also impact on the value of 𝐳𝐳𝑝𝑝𝑘𝑘. Notice that, if there is a 

delay 𝑑𝑑, this comment extends to ∆𝒖𝒖𝑘𝑘−𝑑𝑑. So, in order to predict correctly the value of 

𝐳𝐳𝑝𝑝𝑘𝑘 , we have to consider the additional effects of the changes of these control variables 

on 𝐳𝐳𝑝𝑝𝑘𝑘 . The corresponding changes on 𝐳𝐳𝑝𝑝𝑘𝑘 ,  ∆𝐳𝐳𝑝𝑝𝑘𝑘,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , have to be estimated as if the 

plant were at steady state at the moment when the changes in ∆𝒖𝒖𝑘𝑘−1 took place, to make 

them independent of the evolution due to its past history as reflected in (4.2). 

Approximations of different orders for this component ∆𝐳𝐳𝑝𝑝𝑘𝑘,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  can be obtained by 

means of the expansion (4.3), where it is clear that the ∆𝐳𝐳𝑝𝑝𝑘𝑘,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  depends only on the 

most recent actions and not on past history: 

∆𝐳𝐳𝑝𝑝𝑘𝑘,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≈
∂𝒛𝒛𝑝𝑝
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Here ∆𝒖𝒖𝑘𝑘−𝑖𝑖  refers to ∆𝒖𝒖𝑘𝑘−𝑖𝑖 ≔  𝒖𝒖𝑘𝑘−𝑖𝑖 −  𝒖𝒖𝑘𝑘−𝑖𝑖−1,   and ∂𝒛𝒛𝑝𝑝
∂𝒖𝒖𝑘𝑘−𝑖𝑖

�
𝑘𝑘−𝑖𝑖

stands for the partial 

derivative of 𝒛𝒛𝑝𝑝 with respect to the decision variables applied at 𝑡𝑡𝑘𝑘−𝑖𝑖, estimated at time 

instant 𝑡𝑡𝑘𝑘−𝑖𝑖 starting from steady state. 

Joining together (4.2) and (4.3), “free response” and “forced response”, we can 

write an expression for the prediction of 𝐳𝐳𝑝𝑝𝑘𝑘  based on plant data such as the equation 

(4.4):  

∆𝐳𝐳𝑝𝑝𝑘𝑘 = 𝐳𝐳𝑝𝑝𝑘𝑘 − 𝐳𝐳𝑝𝑝𝑘𝑘−1

=
∂𝒛𝒛𝑝𝑝
∂𝒖𝒖𝑘𝑘−1

�
𝑘𝑘−1

∆𝒖𝒖𝑘𝑘−1 +
1
2
∆𝒖𝒖𝑘𝑘−1𝑇𝑇

∂2𝒛𝒛𝑝𝑝
∂𝒖𝒖𝑘𝑘−1

2�
𝑘𝑘−1

∆𝒖𝒖𝑘𝑘−1 +
d𝒛𝒛𝑝𝑝
d𝑡𝑡

�
𝑘𝑘−1

∆𝑡𝑡

+ 𝑅𝑅𝑛𝑛 

(4.4) 

where Δ𝒛𝒛𝑝𝑝𝑘𝑘 represents the current change in the process variables with respect to the ones 

measured in the previous sampling time. 𝑅𝑅𝑛𝑛 is a noise term that reflects the different 

errors that result from the polynomial approximations and for adding (4.2) and (4.3) as 
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the system is normally nonlinear. (4.4) shows a first order approximation of the “free” 

response but other higher order approximations could have been used. 

The interest of (4.4) resides in the fact that we have process data and the 

(unknown) process gradients related to the ones necessary for MA in the same expression. 

However, it is important to remark that the derivatives estimated from equation (4.4) are 

not the steady-state process gradients, but dynamic ones, that change at every time step. 

The derivatives in (4.4) describe the effect of a change in 𝒖𝒖 on 𝒛𝒛𝑝𝑝 from steady state at a 

certain time instant during the transient. 

The problem now is to estimate the unknown process gradients. The terms of 

equation (4.4) can be truncated including terms up to a certain order, as in equation (4.5), 

where we considered, for instance, that the delay is one sampling period, using a second-

order approximation with respect to the decision variables and a first-order one w.r.t. 

time.  

Δ𝒛𝒛𝑝𝑝𝑘𝑘 =
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After that, one can rearrange the terms of equation (4.4), defining a vector 𝝋𝝋𝑘𝑘−1 

with known variables (measured or estimated), and the vector 𝜽𝜽�𝑘𝑘−1 with the coefficients 

to be estimated, as equation (4.6) shows.  

Δ𝒛𝒛𝑃𝑃𝑘𝑘 = 𝜽𝜽�𝑘𝑘−1𝝋𝝋𝑘𝑘−1
𝑇𝑇 + 𝑅𝑅𝑛𝑛 
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(4.6) 

Here, vector 𝜽𝜽�𝑘𝑘−1 contains the unknown values to be estimated, where the gradients of 

the process variables with respect to the decision variables appear in the first positions of 

the vector. Vector 𝝋𝝋𝑘𝑘−1
𝑇𝑇  contains values of past moves known at time 𝑘𝑘 or that can be 

computed with information up to time 𝑘𝑘  as the time derivatives. To consider the 

estimation error of the time derivatives, an additional coefficient 𝜂̂𝜂 has been defined. As 

equation (4.6) has the form of a typical model used in parameter identification problems, 
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current data of the measured Δ𝒛𝒛𝑃𝑃𝑘𝑘  and 𝝋𝝋𝑘𝑘−1
𝑇𝑇  can be used to estimate the process 

derivatives by solving a recursive identification problem.  

During the transient, the estimated gradients are not the required gradients for MA, 

so that, over this time, the controller will only implement partial corrections. These partial 

corrections made during the transient will improve the overall performance of the real 

process in comparison with a standard RTO. 

 
4.1.2 Identification algorithm 
 

As we mentioned before, equation (4.6) has the form of a typical linear model 

used in parameter identification problems, so that we can use a recursive identification 

algorithm to estimate the unknown vector 𝜽𝜽 containing the process derivatives.  

Notice that 𝜽𝜽 is a time-varying vector, as it contains the dynamic gradients, so that 

the recursive identification should take into account this circumstance. Also, notice that 

only the identified components of 𝜽𝜽 corresponding to the first-order gradients ∂𝒛𝒛𝑝𝑝 ∂𝒖𝒖⁄   

are required for the MA corrections. As the iterations run, if the identification algorithm 

performs well, and the process converges to a steady state, the identified gradients will 

be closer and closer to the ones computed at steady state.  

Of course, the success of this scheme is linked to the ability of the identification 

algorithm to converge to the time-varying parameters, which depends for each particular 

application on both the identification method chosen and the excitation of the control 

signals. 

In this work, the normalized least mean square algorithm (NLMS) has been used 

as identification algorithm. NLMS is formulated in the parameter space, using as target 

to minimize directly the module of the distance, 𝑉𝑉, from the current estimate of 𝜽𝜽 to the 

real value of the parameters 𝜽𝜽∗  as in equation (4.7). The NLMS algorithm has been 

chosen because it is easy to implement, and it is computationally less expensive than other 

recursive methods (Isermann and Münchhof, 2011). Furthermore, the gain of the 

estimator is different from zero, so it can be applied to time-varying problems (Goodwin 

and Sin, 1984). In equation (4.8), 𝜎𝜎 is a small positive constant to prevent the numerical 

difficulties associated with a denominator close to zero, and 𝜇𝜇 is a gain constant that must 
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be between 0 and 2 in order to decrease the difference between the current estimate of 𝜽𝜽 

and the real one (Richalet, 1991). 

𝑉𝑉 = ‖𝜃𝜃 − 𝜃𝜃∗‖ (4.7) 

𝜽𝜽�𝑘𝑘 = 𝜽𝜽�𝑘𝑘−1 + 𝜇𝜇
�Δ𝒛𝒛𝑃𝑃𝑘𝑘−1 − 𝝋𝝋𝑘𝑘

𝑇𝑇𝜽𝜽�𝑘𝑘−1�
𝜎𝜎 + ‖𝝋𝝋𝑘𝑘

𝑇𝑇‖2 , 0 < 𝜇𝜇 < 2   (4.8) 

 

NLMS is globally exponentially convergent to the real 𝜽𝜽 if some conditions are 

fulfilled (Goodwin and Sin, 1984).  

Figure 4.2: eMPC+TMA architecture. 

 

After estimating the process gradients, equations (1.8)-(1.10) are applied to finally 

calculate the modifiers. Notice that the estimated gradients are not exactly the ones 

required by MA, as they correspond to the change of 𝒛𝒛𝑝𝑝 w.r.t 𝒖𝒖 computed at steady state 

and not to the change of the steady value of 𝒛𝒛𝑝𝑝 w.r.t. 𝒖𝒖, but they will be used as the best  

approximation available to the true process gradients. Figure 4.2 describes the two-step 

identification procedure proposed (TMA), coupled with the eMPC+MA problem. In 

Figure 4.2 and hereafter, the hat over the variables stands for estimated quantities.  
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4.2 Possible modification of TMA algorithm: TMAm 
 

TMA is not able to estimate the process gradient at steady state, but at a time prior 

to steady state. In fact, if we consider a step model, the value estimated by TMA is the 

first coefficient 𝑔𝑔1, see Figure 4.3. If the MVs are kept constant after this step, the process 

would reach the steady state with a final value of 𝑔𝑔𝑛𝑛. Since the present splitter case study 

has a dynamic behaviour with a similar gain around the operating point, so a constant 

relationship between these coefficients could be calculated. 

To improve the TMA algorithm, a correction to the estimated process gradient 

was added. It consists of changing the estimated process gradient by a factor equal to the 

difference between the steady-state gradient of the model and the current model gradient. 

Note that in our case, since the model is linear and invariant, this correction factor is equal 

to 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑔𝑔𝑛𝑛 − 𝑔𝑔1  of each submodel, which can be seen in Figure 4.3. 𝑔𝑔1  is 

estimated by the TMA algorithm presented previously, then the process gradient at steady 

state can be approximated as 𝑔𝑔𝑛𝑛 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑔𝑔1 . 𝑔𝑔𝑛𝑛 is the process gradient value used 

to calculate the modifiers.  

 
Figure 4.3: Step model of the process. 

 

This strategy will be tested in the case study of Chapter 6. The TMA algorithm with 

this new approach, will be referred to as TMAm. 
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4.3 Implementation in the Williams-Otto reactor case study 
 

4.3.1 eMPC+MA+TMA 
 

To evaluate the performance of the TMA algorithm, again, the Williams-Otto case 

study mentioned in Chapter 3 was again selected. This time, two scenarios were 

considered. The first scenario, represented by equation (4.9), and it consists of optimizing 

an economic objective function with no inequality constraints in the dependent variables, 

which implies that only the modifiers of the objective function are used. The second 

scenario, defined as equation (4.10), includes constraints on the molar concentration of A 

and G in the effluent. The upper bounds for 𝑋𝑋𝐴𝐴 and 𝑋𝑋𝐺𝐺 have been chosen such that these 

constraints are active in the optimum of the process. This implies that the modifiers of 

these constraints are necessary for the convergence of the algorithm.  

max
Δ𝐹𝐹𝐵𝐵𝑘𝑘+𝑖𝑖,Δ𝑇𝑇𝑘𝑘+𝑖𝑖

 𝑖𝑖=0…𝑛𝑛𝑢𝑢−1

�𝐹𝐹�𝑅𝑅(𝑋𝑋�𝑃𝑃𝑝𝑝𝑃𝑃 + 𝑋𝑋�𝐸𝐸𝑝𝑝𝐸𝐸) − 𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0𝑝𝑝𝐴𝐴 − 𝐹𝐹�𝐵𝐵𝑋𝑋𝐵𝐵0𝑝𝑝𝐵𝐵

+ 𝜆𝜆1,𝑘𝑘�𝐹𝐹�𝐵𝐵 − 𝐹𝐹𝐵𝐵,𝑘𝑘−1� + 𝜆𝜆2,𝑘𝑘(𝑇𝑇� − 𝑇𝑇𝑘𝑘−1)

+ 𝛽𝛽1 � �Δ𝐹𝐹𝐵𝐵,𝑘𝑘+𝑖𝑖�
2

𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

+ 𝛽𝛽2 � (Δ𝑇𝑇𝑘𝑘+𝑖𝑖)2
𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

� 

s.t. nonlinear simplified dynamic model plus disturbances from MHE, 

∀𝑡𝑡 ∈ �𝑡𝑡𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 

𝐹𝐹𝐵𝐵(𝑡𝑡) = 𝐹𝐹𝐵𝐵𝑘𝑘+𝑖𝑖, 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘+𝑖𝑖, 𝑡𝑡𝑘𝑘+𝑖𝑖+1], 𝑖𝑖 = 0, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑘𝑘+𝑖𝑖, 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘+𝑖𝑖, 𝑡𝑡𝑘𝑘+𝑖𝑖+1], 𝑖𝑖 = 0, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

𝐹𝐹𝐵𝐵𝑘𝑘+𝑖𝑖 = 𝐹𝐹𝐵𝐵𝑘𝑘+𝑖𝑖−1 + Δ𝐹𝐹𝐵𝐵𝑘𝑘+𝑖𝑖, 𝑖𝑖 = 0, … ,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

𝑇𝑇𝑘𝑘+𝑖𝑖 = 𝑇𝑇𝑘𝑘+𝑖𝑖−1 + Δ𝑇𝑇𝑘𝑘+𝑖𝑖, 𝑖𝑖 = 0, … ,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

∆𝐹𝐹𝐵𝐵𝑘𝑘+𝑖𝑖 = 0, 𝑖𝑖 = 𝑛𝑛𝑢𝑢, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

∆𝑇𝑇𝑘𝑘+𝑖𝑖 = 0, 𝑖𝑖 = 𝑛𝑛𝑢𝑢, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

180
𝐿𝐿
𝑚𝑚𝑚𝑚𝑚𝑚

≤ 𝐹𝐹𝐵𝐵𝑘𝑘+𝑖𝑖 ≤ 360
𝐿𝐿
𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑖𝑖 = 0 …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

75º𝐶𝐶 ≤ 𝑇𝑇𝑘𝑘+𝑖𝑖 ≤ 100ºC, 𝑖𝑖 = 0 …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

(4.9) 
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max
Δ𝐹𝐹𝐵𝐵𝑘𝑘+𝑖𝑖,Δ𝑇𝑇𝑘𝑘+𝑖𝑖

 𝑖𝑖=0…𝑛𝑛𝑢𝑢−1

�𝐹𝐹�𝑅𝑅(𝑋𝑋�𝑃𝑃𝑝𝑝𝑃𝑃 + 𝑋𝑋�𝐸𝐸𝑝𝑝𝐸𝐸) − 𝐹𝐹𝐴𝐴𝑋𝑋𝐴𝐴0𝑝𝑝𝐴𝐴 − 𝐹𝐹�𝐵𝐵𝑋𝑋𝐵𝐵0𝑝𝑝𝐵𝐵

+ 𝜆𝜆1,𝑘𝑘�𝐹𝐹�𝐵𝐵 − 𝐹𝐹𝐵𝐵,𝑘𝑘−1� + 𝜆𝜆2,𝑘𝑘(𝑇𝑇� − 𝑇𝑇𝑘𝑘−1)

+ 𝛽𝛽1 � �Δ𝐹𝐹𝐵𝐵,𝑘𝑘+𝑖𝑖�
2

𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

+ 𝛽𝛽2 � (Δ𝑇𝑇𝑘𝑘+𝑖𝑖)2
𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

� 

s.t. nonlinear simplified dynamic model and same constraints from 

(4.9) 

𝑋𝑋𝐴𝐴�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� + 𝛾𝛾1,𝑘𝑘�𝐹𝐹�𝐵𝐵 − 𝐹𝐹𝐵𝐵,𝑘𝑘−1� + 𝛾𝛾2,𝑘𝑘(𝑇𝑇� − 𝑇𝑇𝑘𝑘−1) +  𝜀𝜀1,𝑘𝑘 ≤ 0.8 

𝑋𝑋𝐺𝐺�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� + 𝛾𝛾3,𝑘𝑘�𝐹𝐹�𝐵𝐵 − 𝐹𝐹𝐵𝐵,𝑘𝑘−1� + 𝛾𝛾4,𝑘𝑘(𝑇𝑇� − 𝑇𝑇𝑘𝑘−1) +  𝜀𝜀2,𝑘𝑘 ≤ 0.35 

(4.10) 

 

In both scenarios, the MHE module provided the initial states and the disturbances 

considered at each iteration k of the controller. To evaluate the effect of the proposed 

eMPC+TMA algorithm, each problem was solved with three strategies: (a) estimating the 

process gradients using the TMA, (b) estimating the process gradients neglecting the time 

derivative in equation (4.4), equivalent to the gradient estimation strategy proposed by  

Rodríguez-Blanco et al. (2017), and (c) solving the eMPC without modifiers (equivalent 

to setting the value of the modifiers to zero). In addition, another experiment was 

performed for problem (4.9), including an additive Gaussian noise in the measurements 

of the molar concentrations of the effluent. This experiment was solved only with strategy 

(a), as the objective was to evaluate the effect of the measurement noise on the behavior 

of the TMA.  

The simulation of the reactor and the dynamic optimization problem in the MHE 

and the economic controller were formulated in a continuous-time domain in MATLAB. 

The controller was implemented using the nlmpc object. Both the MHE and the controller 

were solved using the sequential quadratic algorithm, available in the fmincon NLP 

solver. On average, the whole problem (MHE + controller) took 6 seconds to be solved 

in each sampling time of the supervisory layer, on a PC running Windows10, Intel Core 

i5 processor running at 3.2GHz, and 16GB of memory.  

For problems (4.9) and (4.10), the monitoring layer was executed every 2 minutes. 

The control and prediction horizons were set to as 𝑛𝑛𝑢𝑢 = 3 and 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 30, respectively. 
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The MA filter was set to 𝐾𝐾 =  0.7 and the move suppression parameter for both decision 

variables was 𝛽𝛽1 = 𝛽𝛽2 = 0.5. The NLMS parameters were set to 𝜇𝜇 = 0.1 and 𝜎𝜎 = 1𝑒𝑒 −

4. The first 8 minutes were used to collect the data needed for the identification algorithm. 

The controller started at minute 10. 

 

4.3.1.1 Unconstrained Problem 
 

Figure 4.4 shows the trajectories of the objective function and the decision 

variables using the three solution strategies tested in problem (4.9). It can be seen that 

each algorithm reaches a different steady state, depending on the method used to estimate 

the value of the modifiers. 

 

  

 
Figure 4.4: Evolution of cost function and manipulated variables for problem (4.9). 

 

For the case of the eMPC, as no correction is implemented in the objective 

function, the controller drives the process into the optimum of the model (𝐹𝐹𝐵𝐵 =

307.2 𝐿𝐿/min  and 𝑇𝑇 = 79.8º𝐶𝐶), which is identical to the expected results of RTO without 

the modifiers to correct the structural uncertainty. These decision variables applied to the 

simplified stationary model without MHE corrections (the same dynamic model where 

0 10 20 30 40 50 60 70 80 90 100

Time (min)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

C
os

t f
un

ct
io

n 
($

)

10 4

0 20 40 60 80 100

Time (min)

200

250

300

350

F
B

 (l
/m

in
)

0 20 40 60 80 100

Time (min)

78

80

82

84

86

88

90

92

94

T 
(ºC

)

 

 
 

 Plant optimum  eMPC  eMPC+MA without time derivatives  eMPC+TMA



 

69 
 

the derivatives are set to zero) would result in a profit of ~11259 €. However, as can be 

seen in Figure 4.4, these values applied to the real process achieve a much lower profit 

(~8686€). Meanwhile, for the case of the eMPC+TMA algorithm, the controller detects 

the real optimum of the process and drives the system to a profit of ~11593 €, a value far 

greater than the profit obtained without MA. Also, notice that in the eMPC+TMA case 

the closed-loop system stabilizes around 50 min, which is, approximately, twice the time 

of the reactor open-loop response time (30 min), and similar to the stabilization time of 

the eMPC. As the system converges on the expected value, it can be assumed that the 

TMA allows a correct approximation of the process gradients. This implies that the first-

order correction of the objective function agrees in finding the stationary condition of the 

process. It can be noticed that before 𝑡𝑡 ≈ 25 min the decision variables proposed by the 

controller are closer to the optimum of the process, but after this time the supervisory 

layer suggests a different steady state condition that is kept until the end of the 

experiment. The failure in detecting the optimum for the eMPC+MA can be explained 

considering that in the interval from 20 to 25 min the changes in the decision variables 

become smaller than the previous ones; however, the cost function is affected by the 

process dynamics. This implies that the effect of time in the objective function emerges 

as relatively more important than the effect of the decision variables, a condition that 

produces a miscalculation in the gradient of the process due to not including the time 

derivative in this case.  

Figure 4.5 presents the evolution of the eMPC+TMA with measurement noise in 

the molar concentrations. Note that the algorithm is capable of finding the optimum of 

the process, stabilizing the system in about 60 minutes, which is 20% larger than the 

noise-free example. This difference can be attributed to the oscillations that the 

temperature presents before minute 25, and because of the additional time that the 

controller needs to bring the value of 𝐹𝐹𝐵𝐵 closer to the optimum. This is a consequence of 

the effect that noise has in the MHE and in the gradient estimation step, probably related 

to the linear model assumed in time dependence. The loss of optimality associated with 

the extra time needed to converge, due to the additive noise of a standard deviation of 5% 

with respect to the expected span of the measurement, seems reasonable, especially 

considering that the process optimum was detected despite the measurement noise.  
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Figure 4.5: Evolution of cost function and manipulated variables for problem (4.9) with measurement 

noise. 

 

4.3.1.2 Constrained Problem 
 

The evolution of the cost function, molar fractions of A and G, and decision 

variables for problem (4.10) are presented in Figure 4.6 for the three strategies tested. 

Similar behavior to the one observed for the unconstrained case can be seen, i.e., the value 

of the modifiers determines the steady state reached. As in this case the NCO of the 

process implies that the inequality constraints on 𝑋𝑋𝐴𝐴 and 𝑋𝑋𝐺𝐺 are active, the accuracy of 𝝀𝝀, 

𝜸𝜸, and 𝜺𝜺 is relevant to detect the optimum of the process. The eMPC converges to a point 

that is the model optimum at steady state and is not the process optimum, as the eMPC 

problem does not consider first and zeroth-order corrections in the model. The effect of 

using these corrections can be seen in the trajectory of the eMPC+TMA. Notice that this 

controller is capable of detecting the optimum of the process and converges to this value, 

which implies an increase in the profit of the process of almost 20% as a result of the 

correct estimation of the modifiers using the TMA strategy. Also, notice that both 

constraints are satisfied after a while, even though 𝑋𝑋𝐴𝐴 starts at an unfeasible value. The 
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evolution of the process using eMPC+MA shows that the algorithm cannot converge to 

the process optimum, although the modifiers have been included. As discussed for the 

unconstrained case, this difference can be attributed to the effect of the miscalculation of 

the modifiers because the value of the time derivatives is neglected in this process 

gradient estimation procedure. This miscalculation becomes more critical when the 

system tends to stabilize, as can be observed in the interval from 𝑡𝑡 = 20 to 𝑡𝑡 = 40 min. 

In this interval, the decision variables remain practically constant while the cost function 

and the constrained variables are still changing in time because of the inertia of the 

process. These findings support the need to include the dynamics in the process gradient 

estimation step to calculate the modifiers used in the eMPC+MA formulation. An 

additional consequence of not including the dynamics in the calculation of the modifiers 

is the increment in the settling time of the controller because of the changes in the value 

of the proposed steady state.  

  

 
 

 
Figure 4.6: Evolution of cost function and manipulated variables for problem (4.10). 
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4.3.2 Conclusions 
 

In this chapter, we presented the second algorithm developed to estimate the 

dynamic process derivatives, which is based on the use of a two-step identification 

algorithm named TMA. The TMA uses the available measurements from the process to 

estimate the time derivative using the Nordsieck’s vector, followed by the estimation of 

the process dynamic derivatives with respect to the decision variables using a recursive 

normalized least squares algorithm. Although the algorithm does not estimate the steady-

state gradients of the cost function and constraints, but those at each time step, the results 

obtained in the Williams-Otto simulation were better than the standard eMPC. In fact, 

considering good initial values for the estimation, the result could also achieve the true 

optimum of the plant.  

It can also be concluded that for a better estimation of the dynamic process 

gradients from the transient measurements using the proposed approximated model of the 

dependent variables, it is necessary to include not only the decision variables but also the 

dependence on time. Besides, it is important to ensure that the process has the necessary 

excitation so that the identification method can correctly estimate the gradients. 
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5 Hybrid Laboratory Plant Case Study 
 

Chapter 5 presents the results of a second case study for evaluating the 

performance of the TMA methodology. Now in real time, operating a plant of the Process 

Control Laboratory of the ISA Department, University of Valladolid.  

 

5.1 Description of the process 
 

The second case study for evaluating the performance of the TMA methodology 

is a system implemented in a hybrid laboratory plant (Figure 5.1) that emulates the 

behaviour of a CSTR with the Van de Vusse reactions (Van de Vusse, 1964). Hybrid 

plants are real processes with some simulated components. They have been used in 

metallurgical processes as an alternative to validate the performance of supervisory 

algorithms in more realistic situations than those given by computational experiments 

(Bergh and Yianatos, 2014; Navia et al., 2019, 2016). The concept of hybrid plants is 

based on the fact that some process phenomena can be replaced by computations of 

measured variables and their effect on the process can be physically implemented, at least 

partially, by means of proper actuators. In our case, fluid dynamics and thermal effects 

can be emulated using an experimental setup and a fluid with characteristics similar to 

the original, while chemical mechanisms can be emulated using a first-principles model 

that uses the experimental measurements to close the degrees of freedom. This 

configuration allows the definition of two kinds of decision variables: experimental and 

virtual. Experimental decision variables are associated with the variables that can be 

manipulated in the actual experimental setup, such as flows, pressures, or liquid levels. 

Virtual decision variables can be any variable that affects the output of the process, such 

as the simulated properties of the raw materials. The use of hybrid plants permits the study 

of the effect of experimental errors on the behaviour of supervisory control algorithms, 

knowing part of the modelling mismatch, and facilitates the maintenance of pilot plants 

in a laboratory.  

The schematic of the experimental setup is presented in Figure 5.1 (Montes et al., 

2021). It consists of an exothermic CSTR with four temperature sensors (TT-01 to 04) 

and two flowmeters (FT-01 and 02). The final control elements (experimental decision 

variables) are the peristaltic reagent pump (P-101) and the coolant valve (V-101). The P-

102 pump allows emulating the reactants leaving the reactor by overflow. The power of 
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two heating coils located at the bottom of the vessel can be manipulated by a power 

amplifier in J-101. The system uses water as the working fluid and the chemical reactions 

are simulated using a chemical model running in real time with process data. The heat 

released by the chemical reactions is computed by the simulation and its value is applied 

to the process using the J-101 power amplifier as if a true exothermic reaction were taking 

place in the reactor.  

 

 
Figure 5.1: Laboratory plant P&ID. 

 

The chemical model, integrated into the process as component UX-100, was 

obtained from the description of the system. The process consists of the three Van de 

Vusse reactions, where component B is the desired product: 

𝐴𝐴
𝑘𝑘1→ 𝐵𝐵

𝑘𝑘2→𝐶𝐶 

2𝐴𝐴
𝑘𝑘3→𝐷𝐷 

 

Assuming that the physical properties of water are constant within the range of 

the operating conditions and that the vessel is perfectly agitated, a first-principles model 

of the reactions can be derived based on mass balances for each component. Equations 

(5.1) to (5.4) represent the dynamic mass balances for each compound, whereas equations 

(5.5) to (5.7) describe the respective reaction rates, assuming elemental kinetics and 

Arrhenius dependence with temperature. As mentioned earlier, equation (5.8) computes 

the heat that is applied to the reactor by the J-101 amplifier in real-time. 
 

𝑉𝑉
𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑞𝑞(𝐶𝐶𝐴𝐴0 − 𝐶𝐶𝐴𝐴) + 𝑉𝑉(−𝑟𝑟1 − 2𝑟𝑟3) 
(5.1) 
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𝑉𝑉
𝑑𝑑𝐶𝐶𝐵𝐵
𝑑𝑑𝑑𝑑

= −𝑞𝑞𝐶𝐶𝐵𝐵 + 𝑉𝑉(𝑟𝑟1 − 𝑟𝑟2) 
(5.2) 

𝑉𝑉
𝑑𝑑𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑

= −𝑞𝑞𝐶𝐶𝐶𝐶 + 𝑉𝑉𝑟𝑟2 
(5.3) 

𝑉𝑉
𝑑𝑑𝐶𝐶𝐷𝐷
𝑑𝑑𝑑𝑑

= −𝑞𝑞𝐶𝐶𝐷𝐷 + 𝑉𝑉𝑉𝑉3 
(5.4) 

𝑟𝑟1 = 𝑘𝑘10𝑒𝑒
−𝐸𝐸1𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴 (5.5) 

𝑟𝑟2 = 𝑘𝑘20𝑒𝑒
−𝐸𝐸2𝑅𝑅𝑅𝑅𝐶𝐶𝐵𝐵 (5.6) 

𝑟𝑟3 = 𝑘𝑘30𝑒𝑒
−𝐸𝐸3𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴2 (5.7) 

𝑃𝑃 =
1000

60
𝑉𝑉�−𝑟𝑟𝑗𝑗∆𝐻𝐻𝑗𝑗

3

𝑗𝑗=1

 
(5.8) 

 

where 𝐶𝐶𝑖𝑖  is the molar concentration of component 𝑖𝑖  in the effluent, 𝑞𝑞  is the total 

volumetric flow, 𝐶𝐶𝐴𝐴0 is the molar concentration of component A in the influent, and 𝑉𝑉 is 

the reaction volume. For the kinetic expressions, 𝑟𝑟𝑗𝑗 , 𝑘𝑘𝑗𝑗0 , and 𝐸𝐸𝑗𝑗  are the reaction rate, 

exponential constant, and activation energy of reaction 𝑗𝑗, respectively, while 𝑇𝑇 is the 

temperature in the reactor. Equation (5.8) defines the conversion between the heat 

generated by the reactions (Δ𝐻𝐻𝑗𝑗   is the heat of the reaction 𝑗𝑗) and the heat power supplied 

by the electrical resistances, denoted by 𝑃𝑃.  

To clarify the relationship between the experimental and the simulated variables, 

Table 5.1 summarizes how the value of each variable is obtained. Note that as 𝐸𝐸𝑗𝑗, 𝑘𝑘𝑗𝑗0 and 

Δ𝐻𝐻𝑗𝑗 are parameters that are assumed to be known so that the model of the process can be 

simulated.  

 

 

 

 

 

 

 

 

 

 



 

76 
 

Table 5.1: Description of the source of the variables for the hybrid process. 

Variable Source 

𝐶𝐶𝑖𝑖, 𝑖𝑖 ∈ {𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷} Calculated from the chemical model 

𝑟𝑟𝑗𝑗 , 𝑗𝑗 = {1,2,3} Calculated from the chemical model 

𝑃𝑃 Calculated from the chemical model 

𝑞𝑞 Measured from FT-01 

𝑇𝑇 Measured from TT-04 

𝑉𝑉 Defined as the volume of the vessel 

𝐶𝐶𝐴𝐴0 Defined by the user (fixed value) 

 

The value of the heat of reaction calculated from the chemical model is used as 

the set-point of J-101, which makes it possible to emulate the effect of the exothermic 

reactions in the experimental setup.   

In the control layer (eMPC+TMA and MHE), a simplified nonlinear dynamic 

model has been implemented that neglects the existence of reaction 3 and component D, 

which defines a structural uncertainty in the available model. The experimental system 

has two decision variables: the flow rate of the reactants (manipulated with P-101) and 

the flow rate of the coolant (manipulated with V-101). The model is based on mass and 

energy balances and a description of how heat is transferred from the vessel to the coolant. 

Equations (5.9) to (5.16) summarize the model. 

𝑉𝑉
𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑞𝑞(𝐶𝐶𝐴𝐴0 − 𝐶𝐶𝐴𝐴) + 𝑉𝑉(−𝑟𝑟1) (5.9) 

𝑉𝑉
𝑑𝑑𝐶𝐶𝐵𝐵
𝑑𝑑𝑑𝑑

= −𝑞𝑞𝐶𝐶𝐵𝐵 + 𝑉𝑉(𝑟𝑟1 − 𝑟𝑟2) (5.10) 

𝑉𝑉
𝑑𝑑𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑

= −𝑞𝑞𝐶𝐶𝐶𝐶 + 𝑉𝑉𝑟𝑟2 (5.11) 

𝑟𝑟1 = 𝑘𝑘10𝑒𝑒
−𝐸𝐸1𝑅𝑅𝑅𝑅𝐶𝐶𝐴𝐴 (5.12) 

𝑟𝑟2 = 𝑘𝑘20𝑒𝑒
−𝐸𝐸2𝑅𝑅𝑅𝑅𝐶𝐶𝐵𝐵 (5.13) 

𝜌𝜌𝐶𝐶𝑝𝑝𝑉𝑉
𝑑𝑑𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑞𝑞𝐶𝐶𝑝𝑝(𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜) − 𝑄𝑄 − 𝑉𝑉�𝑟𝑟𝑗𝑗∆𝐻𝐻𝑗𝑗

2

𝑗𝑗=1

 (5.14) 

𝜌𝜌𝐶𝐶𝑝𝑝𝑉𝑉𝑐𝑐
𝑑𝑑𝑇𝑇𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜

𝑑𝑑𝑑𝑑
= 𝐹𝐹𝑅𝑅𝜌𝜌𝐶𝐶𝑝𝑝�𝑇𝑇𝑐𝑐,𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜� + 𝑄𝑄 (5.15) 

𝑄𝑄 = 𝛼𝛼1𝐹𝐹𝑅𝑅
𝛼𝛼2  (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜) (5.16) 
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where 𝑇𝑇 and 𝑇𝑇𝐶𝐶 are the temperatures of the reactant and coolant streams, respectively. 

The sub-indexes 𝑖𝑖𝑖𝑖 and 𝑜𝑜𝑜𝑜𝑜𝑜 indicate whether the temperature is of the inlet or outlet 

stream. 𝐶𝐶𝑝𝑝 and 𝜌𝜌 are the heat capacity and density of the coolant, respectively.  𝑄𝑄 is the 

heat transfer, 𝐹𝐹𝑅𝑅 is the coolant flow rate, and 𝑉𝑉𝐶𝐶 is the volume of the cooling coil.  Note 

that equation (5.16) approximates Newton’s law of cooling, where the total heat transfer 

coefficient has been defined as a function of the coolant flow rate with parameters 𝛼𝛼1 and 

𝛼𝛼2. 

The values of the parameters used in this case study are given in Table 5.2.  In 

Table 5.2 and hereafter, “Chemical model” refers to the model used to emulate the 

physicochemical mechanisms in the hybrid plant (equations (5.1) to (5.8)), while “eMPC 

model” refers to the model implemented in the supervisory layer (equations (5.9) to 

(5.16)).  
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Table 5.2: Value of the parameters used in the case study.  

Parameter 
Chemical 

Model 

eMPC 

Model 
Parameter 

Chemical 

Model 

eMPC 

Model 

𝑘𝑘10 (min−1) 
9.95

× 1010 

6.40

× 109 

∆𝐻𝐻3 (kJ ∙

mol−1) 
−66.54 - 

𝑘𝑘20 (min−1) 
9.99

× 1011 

4.84

× 1010 
𝑉𝑉 (L) 11.5 11.5 

𝑘𝑘30 

(L

∙ mol−1

∙ min−1) 

9.99

× 1012 
- 𝑉𝑉𝑐𝑐 (L) - 1.0 

𝐸𝐸1 (kJ ∙ mol−1) 59.0 52.1 𝜌𝜌 (kg ∙ L−1) - 1.0 

𝐸𝐸2 (kJ ∙ mol−1) 77.62 70.0 

𝐶𝐶𝑝𝑝 

(kJ ∙ kg−1

∙ ℃−1) 

- 4.18 

𝐸𝐸3 (kJ ∙ mol−1) 71.11 - 
𝐶𝐶𝐴𝐴0 (mol ∙

L−1) 
5.0 5.0 

∆𝐻𝐻1 (kJ ∙

mol−1) 
−21.22 −48.75 𝛼𝛼1 - 1.8 

∆𝐻𝐻2 (kJ ∙

mol−1) 
−2.68 −34.50 𝛼𝛼2 - 0.8 

 

Note that the uncertainty of the model-based optimization can be considered 

structural because both reaction 3 and component D have been ignored and the heat 

transfer model is a simplification. In addition, there is parametric uncertainty as shown in 

Table 5.2.   

The aim of the supervisory layer is to maximize the economic benefit, which can 

be defined as the income related to selling the desired product B minus the costs of the 

reactants and coolant, manipulating 𝑞𝑞 and 𝐹𝐹𝑅𝑅. Analogous to Section 4.3, two dynamic 

optimization problems have been considered for this case study. The first problem 

consists in the optimization of the benefit with no inequality constraints in the dependent 

variables, implying that only the modifiers of the cost function are needed as presented 
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in equation (5.17). The second problem includes an additional inequality constraint on 

the reactor temperature. For this constrained problem, we have used the output MA 

(MAy) formulation to solve the optimization problem. This MAy formulation includes 

the modifiers in the output variables as presented in equation (5.18). According to 

Papasavvas et al. (2019), this formulation improves the convergence of the MA type 

algorithms. In both problems, their formulations follow the structure of eMPC+MA 

presented in Chapter 2, while the value of the prices and costs are given in Table 5.3. 

max
Δ𝑞𝑞𝑘𝑘+𝑖𝑖,Δ𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖

 𝑖𝑖=0…𝑛𝑛𝑢𝑢−1

�𝑞𝑞�(𝐶𝐶𝐵𝐵𝑝𝑝𝐵𝐵 − 𝐶𝐶𝐴𝐴0𝑝𝑝𝐴𝐴) − 𝐹𝐹�𝑅𝑅𝑝𝑝𝑅𝑅 + 𝜆𝜆1,𝑘𝑘(𝑞𝑞� − 𝑞𝑞𝑘𝑘−1)

+ 𝜆𝜆2,𝑘𝑘�𝐹𝐹�𝑅𝑅 − 𝐹𝐹𝑅𝑅𝑘𝑘−1�

+ 𝛽𝛽1 � (∆𝑞𝑞𝑘𝑘+𝑖𝑖)2 + 𝛽𝛽2 � �∆𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖�
2

𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

�   

(5.17) 

s.t. Nonlinear model (5.9) to (5.16) plus disturbances from MHE , ∀𝑡𝑡 ∈

�𝑡𝑡𝑘𝑘, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 

𝑞𝑞(𝑡𝑡) = 𝑞𝑞𝑘𝑘+𝑖𝑖, 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘+𝑖𝑖, 𝑡𝑡𝑘𝑘+𝑖𝑖+1], 𝑖𝑖 = 0, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

𝐹𝐹𝑅𝑅(𝑡𝑡) = 𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖, 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘+𝑖𝑖, 𝑡𝑡𝑘𝑘+𝑖𝑖+1], 𝑖𝑖 = 0, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

𝑞𝑞𝑘𝑘+𝑖𝑖 =  𝑞𝑞𝑘𝑘+𝑖𝑖−1 + Δ𝑞𝑞𝑘𝑘+𝑖𝑖, 𝑖𝑖 = 0, … ,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖 =  𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖−1 + Δ𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖, 𝑖𝑖 = 0, … ,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

Δ𝑞𝑞𝑘𝑘+𝑖𝑖 = 0, 𝑖𝑖 = 𝑛𝑛𝑢𝑢, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

Δ𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖 = 0, 𝑖𝑖 = 𝑛𝑛𝑢𝑢, …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 

0.3
L

min
≤ 𝑞𝑞𝑘𝑘+𝑖𝑖 ≤ 1.2

L
min

, 𝑖𝑖 = 0 …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1  

6
L

min
 ≤ 𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖 ≤ 15 

L
min

, 𝑖𝑖 = 0 …𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1 
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max
Δ𝑞𝑞𝑘𝑘+𝑖𝑖,Δ𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖

 𝑖𝑖=0…𝑛𝑛𝑢𝑢−1

�𝑞𝑞��𝐶𝐶𝐵𝐵,𝑀𝑀𝑀𝑀𝑝𝑝𝐵𝐵 − 𝐶𝐶𝐴𝐴0𝑝𝑝𝐴𝐴� − 𝐹𝐹�𝑅𝑅𝑝𝑝𝑅𝑅

+ 𝛽𝛽1 � (∆𝑞𝑞𝑘𝑘+𝑖𝑖)2 + 𝛽𝛽2 � �∆𝐹𝐹𝑅𝑅𝑘𝑘+𝑖𝑖�
2

𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

𝑛𝑛𝑢𝑢−1

𝑖𝑖=0

�   

 
(5.18) 

s.t. Same constraints from problem (5.17) 

𝐶𝐶𝐵𝐵,𝑀𝑀𝑀𝑀 = 𝐶𝐶𝐵𝐵��� + 𝜆𝜆1,𝑘𝑘(𝑞𝑞� − 𝑞𝑞𝑘𝑘−1) + 𝜆𝜆2,𝑘𝑘�𝐹𝐹�𝑅𝑅 − 𝐹𝐹𝑅𝑅𝑘𝑘−1� + ε1,𝑘𝑘 

𝑇𝑇𝑅𝑅,𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑅𝑅��� + 𝛾𝛾1,𝑘𝑘(𝑞𝑞� − 𝑞𝑞𝑘𝑘−1) + 𝛾𝛾2,𝑘𝑘�𝐹𝐹�𝑅𝑅 − 𝐹𝐹𝑅𝑅𝑘𝑘−1� +  ε2,𝑘𝑘 

𝑇𝑇𝑅𝑅,𝑀𝑀𝑀𝑀  ≤ 38ºC 

 

Table 5.3: Costs and prices for the case study.  

Parameter Description Value 

𝑝𝑝𝐵𝐵 Price of component B 18.0 € ∙ mol−1 

𝑝𝑝𝐴𝐴 Cost of component A 0.2 € ∙ mol−1 

𝑝𝑝𝑅𝑅 Cost of coolant 3.0 € ∙ L−1 

 

5.2 Results 
 

To evaluate the effect of the proposed algorithm, each problem was solved with 

two strategies: (a) estimating the process gradients using the TMA and (b) solving the 

eMPC without modifiers. For both problems, the simulation of the equations of the hybrid 

process (the chemical model) was developed with EcosimPro (EA Int., 2020) and 

encapsulated as an OPC-DA server generated in the same environment.  

 

5.2.1 Unconstrained Problem 
 

For problem (5.17), the control and the prediction horizons were defined as 𝑛𝑛𝑢𝑢 =

3 and 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 60 respectively, and the move suppression parameter was fixed to 𝛽𝛽1 =

𝛽𝛽2 = 0.5. The parameters for the NLMS algorithm were set to 𝜇𝜇 = 1.6 and 𝜎𝜎 = 1𝑒𝑒 − 4. 

The dynamic optimization problem was solved using the simultaneous approach, 

discretizing the dynamic model using the orthogonal collocation method. The resulting 
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algebraic problem was implemented in Pyomo (Hart et al., 2017, 2011), using IPOPT as 

an NLP solver. The supervisory layer started at time t = 3 min and was executed every 

30s, with an average computation time of 0.5s in a PC under Windows10, Intel Core i5-

4460 processor at 3.2GHz and 8GB of RAM.  

Figure 5.2 shows the evolution of the objective function and the decision variables 

of two experiments carried out under similar conditions with the eMPC+TMA (left) and 

the eMPC without correction (right). The two lines that appear in each figure of 𝑞𝑞 and 𝐹𝐹𝑅𝑅 

correspond to: the dashed line is the setpoint (decision variable) of a PID that governs this 

variable (i.e., is the decision variable generated by the controller) and the continuous line 

is the current value of the variable. Both experiments started from the same initial steady 

state point: 𝑞𝑞 = 0.7𝐿𝐿/𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐹𝐹𝑅𝑅 = 5.7 𝐿𝐿/𝑚𝑚𝑚𝑚𝑚𝑚.  It can be noticed that both algorithms 

converge to different steady states. Table 5.4 summarizes the 99% confidence intervals 

for the mean of the profit and the decision variables at the end of the experiments for both 

algorithms.  

 
Table 5.4: 99% confidence intervals of the mean of the convergence point for both algorithms in problem 

(5.17). 

Variable eMPC+TMA eMPC 

Profit (€/min) [32.1, 33.5]  [26.7 , 28.4]  

𝑞𝑞 (L/min) [1.18, 1.20]  [1.19 , 1.20]  

𝐹𝐹𝑅𝑅 (L/min) [5.8, 6.2]  [10.8 , 11.3]  

 

In terms of profit, the inclusion of the modifiers represents a significant 

improvement in the economic results of the process, averaging of 19%. Table 5.4 shows 

that the confidence interval of the decision variables obtained with the eMPC is very close 

to the optimum of the model, which is consistent with the results obtained for the case 

study in section 4.3. The convergence point of the eMPC+TMA supports the hypothesis 

that the inclusion of the modifiers allows improving the performance of the process by 

correcting the optimum computed with a model with structural modeling mismatch. 

However, it is not possible to evaluate whether the steady state obtained by the 

eMPC+TMA is the process optimum, since a “perfect model” is never available when 

dealing with real processes. Nevertheless, some observations can be made by analyzing 

the results, the prices, and the predicted consequences of the modeling mismatch. From 



 

82 
 

the economic point of view, as the price of B is three orders of magnitude larger than the 

price of A and two orders of magnitude larger than the price of the coolant, it is expected 

that the process optimum result increases the production of component B as much as 

possible. Therefore, the flow of 𝑞𝑞 is set to its upper bound, which is achieved for both 

algorithms (no statistical differences are observed for 𝑞𝑞 in Table 5.4). Since 𝑞𝑞 is fixed in 

the optimum, the remaining degrees of freedom (𝐹𝐹𝑅𝑅) must be selected to maximize the 

concentration of B. Assuming unlimited cooling capacity, this is equivalent to finding the 

value of 𝑇𝑇𝑅𝑅 that maximizes 𝐶𝐶𝐵𝐵 using equations (5.1) to (5.7) for the process and equations 

(5.9) to (5.13) for the model, both in steady state. Unlike the original problem, the cooling 

assumption removes the experimental uncertainty, and a comparison can be made by 

solving this surrogate steady-state optimization problem with fixed 𝑞𝑞 = 1.2 L min−1, and 

using the parameters given in Table 5.2. The solution shows that the process optimal 

temperature is 8ºC higher than the model optimum. This difference in temperature 

between process and model implies that the correct process optimum should reduce the 

use of coolant, as is observed in Figure 5.2, where 𝐹𝐹𝑅𝑅 is close to its lower bound at the 

end of the experiment.  

From the point of view of the process dynamic behaviour, since the system 

reaches a steady state in both cases, the inclusion of the modifiers does not affect the 

stability of the controller for this case study. However, from the evolution of the objective 

function, it can be noticed that the closed-loop system stabilizes in around 60 minutes for 

the eMPC+TMA, which is twice the stabilization time of the eMPC. This could be 

explained by comparing the transient behaviour of 𝐹𝐹𝑅𝑅 for both algorithms. Notice that the 

eMPC detects a target value that remains constant during the whole experiment, unlike 

the eMPC+TMA that changes three times the target value of 𝐹𝐹𝑅𝑅: (1) for 𝑡𝑡 < 8 min the 

system behaves in a similar way than the eMPC, looking for the optimum of the model; 

(2) from 𝑡𝑡 = 10 to 𝑡𝑡 = 32 min the controller proposes a decrease in 𝐹𝐹𝑅𝑅 which improves 

the objective function; and (3) from 𝑡𝑡 = 35 min ahead, where the expected optimum of 

the process is identified. The observed changes in the target value of 𝐹𝐹𝑅𝑅 are similar to the 

behavior of the decision variables from section 4.3 when the estimation of the process 

gradients neglects the effect of time (denoted as eMPC+MA in Figure 4.4 and Figure 4.6). 

Probably due to the presence of measurement noise in the experimental variables, the 

assumption of linear dependence on time in the TMA is not enough to detect the correct 

value during the transient. However, as the identification algorithm implemented in the 
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TMA (NLMS) is recursive, the increase of its accuracy as more data is available produces 

successive changes in the decision variable, improving the objective function as a 

consequence of including the time dependency, which makes the algorithm converge to 

the expected value.  With respect to the value of 𝑞𝑞, the model and the process coincide, 

and the eMPC+TMA continuously drives the process to the right value, regardless of the 

assumed estimation error of the experimental gradient. 

An alternative to avoid the undesired behaviour observed in 𝐹𝐹𝑅𝑅 and to reduce the 

convergence time of the algorithm can be adding additional time dependencies in the 

TMA using higher-order Taylor expansions. This may be an interesting future research 

direction.  
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Figure 5.2: Cost function and manipulated variables over time for problem (5.17). 

 

5.2.2 Constrained Problem 

For this example, an additional constraint in the upper bound of the reactor 

temperature 𝑻𝑻𝑹𝑹 ≤ 𝟑𝟑𝟑𝟑º𝑪𝑪  has been introduced to modify the expected optima of the 

unconstrained case, where its final measured value was 𝑻𝑻𝑹𝑹 = 𝟑𝟑𝟑𝟑.𝟓𝟓º𝑪𝑪. The MAy (output 

MA) approach has been implemented in the modified problem (5.18), so the first and 

zeroth-order modifiers have been calculated for 𝑪𝑪𝑩𝑩  and 𝑻𝑻𝑹𝑹 , which are the dependent 

variables that explicitly appear in the objective function and the inequality constraint. The 

first-order modifiers for 𝑪𝑪𝑩𝑩 (𝝀𝝀𝟏𝟏 and 𝝀𝝀𝟐𝟐) and for 𝑻𝑻𝑹𝑹 (𝜸𝜸𝟏𝟏 and 𝜸𝜸𝟐𝟐) were calculated using 
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their respective process gradients estimated by the TMA approach. This implies that in 

this example 𝒛𝒛𝑷𝑷 ≔ [𝑪𝑪𝑩𝑩,𝑻𝑻𝑹𝑹] for the TMA. 

The control and the prediction horizons were defined as 𝑛𝑛𝑢𝑢 = 3 and 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 60, 

respectively. The suppression parameters were set to 𝛽𝛽1 = 0.004 and 𝛽𝛽2 = 0.002. The 

parameters for the NLMS algorithm were set to 𝜇𝜇 = 0.05 and 𝜎𝜎 = 1𝑒𝑒 − 4. The rest of 

the specifications are the same as for the unconstrained case. Both experiments started 

from the same initial point: 𝑞𝑞 = 0.7𝐿𝐿/𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐹𝐹𝑅𝑅 = 5.7 𝐿𝐿/𝑚𝑚𝑚𝑚𝑚𝑚. 

The evolution of the objective function, the reactor temperature (constrained 

variable) and the decision variables are shown in Figure 5.3 for the eMPC+TMA (left) 

and the eMPC (right). 
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Figure 5.3: Cost function, constrained variable, and manipulated variables over time for problem (5.18). 

 

Figure 5.3 shows a similar behavior as the previous examples, with both strategies 

converging to different steady states, indicating that the value of the modifiers affects the 

economic objective of the controller. The 99% confidence intervals for the objective 

function, reactor temperature, and decision variables obtained with both strategies are 

summarized in Table 5.5.  
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Table 5.5: 99% confidence intervals of the mean of the convergence point for both algorithms for 

problem (5.18). 

Variable eMPC+TMA eMPC 

Profit (€/min) [21.0, 22.0]  [8.6 , 9.9]  

𝑇𝑇 (ºC) [37.2, 37.4] [30.1, 30.2] 

𝑞𝑞 (L/min) [1.02, 1.04]  [0.67 , 0.68]  

𝐹𝐹𝑅𝑅 (L/min) [7.5, 7.8]  [7.3 , 7.6]  

 

Table 5.5 shows that the profits obtained with the two methods are significantly 

different with a 99% confidence. This difference implies that the use of the eMPC+TMA 

in this process reports an average 130% increase in the economic benefit of the process 

compared to the eMPC results. Since the upper bound of the temperature is smaller than 

its final value for the unconstrained case, it is expected that the algorithm proposes a final 

condition such that this constraint is active, increasing the coolant flow rate with respect 

to previous results while keeping the value of 𝑞𝑞  in its upper bound. The confidence 

intervals of 𝐹𝐹𝑅𝑅  from Table 5.4 and Table 5.5 show that the eMPC+TMA proposes a 

significant increase of 27% with respect to the unconstrained example. However, Table 

5.5 and Figure 5.3 show that the algorithm is not able to detect the active constraint of 

𝑇𝑇𝑅𝑅 , even though its value is close to the upper bound. The observed “experimental 

optimality gap” could be caused by a constant error in the estimation of the first-order 

modifiers for 𝑇𝑇𝑅𝑅 as a consequence of the experimental noise, which can also explain the 

decrease of the final value of 𝑞𝑞 by 13% with respect to its upper bound.  

Concerning the eMPC results, notice that the evolution of 𝑇𝑇𝑅𝑅, and the confidence 

interval at steady state show that the modeling mismatch causes an overestimation of 𝑇𝑇𝑅𝑅 

(this can also be seen from the eMPC results for the unconstrained case). This 

overestimation is reflected in 50% reduction of the proposed value of 𝑞𝑞 with respect to 

the unconstrained solution of the eMPC. Finally, as commented before, the estimated 

value of the modifiers 𝛾𝛾1 , 𝛾𝛾2  in the eMPC+TMA case might have persistent errors, 

causing the constant gap in the NCO of the modified problem. Thus, it can be concluded 

that the overestimation of 𝑇𝑇𝑅𝑅 can be reduced by TMA, but it is still preserved.  
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5.3 Conclusions 
 

In this chapter, the eMPC+TMA has been tested in a laboratory case study with 

simulation and experimental components, in both cases solving optimization problems 

with and without uncertain inequality constraints.  

The results obtained in the hybrid plant show that the experimental errors affect 

the capacity of the eMPC+TMA to estimate the steady-state optimum of an uncertain 

process during the transient state. This can be seen in the use of more than one transition 

to estimate the target value or in the presence of an optimality gap that cannot be reduced 

by first order corrections. This allows us to conclude that it is necessary to evaluate the 

use of other approximations to describe the time dependence in a more robust way. 

However, it is important to remark that the inclusion of the modifiers calculated with the 

TMA has significantly increased the profit of the process for both experimental examples, 

reducing the optimality gap related to the process-modeling mismatch. 
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6 Industrial Case: Propylene-Propane Splitter 
 

This chapter presents the results of the application of eMPC+MA in an industrial 

case of a propane-propylene splitter. The study has been developed as a hardware-in-the-

loop system, combining a real-time optimization and control module with a rigorous 

dynamic simulation of the plant, as a first step to validate the developed system prior to 

its implementation in the process. The rigorous model has been validated using historical 

data. 

First, a rigorous model was developed in the EcosimPro simulation software. The 

simulation acted as the real plant in a virtual plant environment created to perform the 

eMPC+MA experiments prior to its implementation in the industry. The simulation in 

EcosimPro was then encapsulated in an OPC-UA deck and connected to a commercial 

Aspen DMC controller. The same DMC configuration and model of the real process was 

maintained. Finally, the eMPC+MA architecture presented in Chapter 2 was added to the 

control structure of the splitter, using the DME or TMA algorithm presented in Chapters 

3 and 4 to estimate the MA modifiers with transient data (Figure 6.1).  

 

 
Figure 6.1. Propylene-propane splitter automation pyramid proposal. 

 

Two economic optimization problems were defined for the splitter process. The 

purpose was to operate the splitter within specifications and at the best possible cost. The 

first problem considers the highest value product to be the column head product, 

propylene. In the second problem, the highest value product is considered to be the bottom 

product, propane. The economic optimization problem of the splitter will consider the 
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cost of steam and the profit obtained from the sale of the products while meeting the 

product quality constraints (minimum concentration of propylene in the distillate). 

 

6.1 Process description 
 

The case study is a simulation of a real propane-propylene splitter located 

downstream of a Fluid Catalytic Cracking (FCC) unit at the Petronor refinery in Muskiz, 

Vizcaya, in northern Spain. The splitter under study is designed to produce high purity 

propylene from a stream of propylene, propane and a small amount of impurities (C2-C4 

hydrocarbons). The splitter consists of a total condenser, a partial boiler, and 135 

equilibrium stages. The splitter is operated by a DMC controller to maintain the propylene 

concentration in the distillate product within a range (≥ 97.5% molar) by controlling the 

distillate, steam flow, and top pressure (Figure 6.2). The process also has controllers to 

maintain the level in the accumulator vessel and base at a set point by manipulating the 

reflux and bottoms flow rates, respectively. 

 
Figure 6.2. Current control structure of the propylene-propane splitter in the Petronor refinery. 

 

In this process, both propylene and propane are end products. The distillate below 

97.5% of propylene is considered out of specification. The out-of-spec product can also 

be sold, but at a much lower price. On the other hand, the price of the bottom product 

(propane) does not depend on the propylene concentration. However, a higher 



 

91 
 

concentration of propylene in propane reduces the amount of the more valuable product 

produced.  

The next subsection presents the model developed for the process. 

 

6.1.1 Model Development 
 

Dynamic models aim to simulate the behavior of a process over time and they are 

used at different stages of a plant’s life cycle. For example, in the design stage, a dynamic 

model is useful for operability and controllability studies. During operation, dynamic 

simulations are used to train operators, validate safety procedures, and study different 

operating conditions for optimization and control. In our case, we are trying to mimic the 

operation of the process in response to the controller actions and disturbances. 

There are several ways to describe a distillation column using a dynamic model. In 

general, these models use conservation laws such as mass, energy, and momentum, and 

time dependent constitutive equations that define the relationship between intensive 

variables and extensive variables (as equations of state and equilibrium equations). These 

equations form a system of differential-algebraic equations (DAE). 

A propane-propylene splitter is a super fractionator, i.e., a distillation column that 

performs the separation of components with quite low relative volatility (<1.2) between 

the components, so the number of equilibrium stages required is very high. 

The mathematical model takes into account the following simplifying hypothesis: 

• Constant pressure drop. 

• The feed consists of four components: propylene, propane, isobutane and ethane.  

• The condenser allows subcooling. 

• The column is insulated. 

 

The described nonlinear dynamic model was developed using EcosimPro (EA Int., 

2020). The model has 12090 equations and it was solved using the IDAS_SPARSE 

integration solver (Hindmarsh et al., 2005).  

All equations used in the model are presented below. 
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6.1.1.1 Internal Trays 
 

Equations (6.1) and (6.2) describe the total and individual component material 

balances for each stage. In equation (6.1), the variable 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 is the molar liquid holdup at 

stage 𝑛𝑛. 𝑛𝑛  is the number of stages in the column, varying between 𝑛𝑛 = 1, the base, and 

𝑛𝑛 = 136, the top. 𝑙𝑙𝑛𝑛+1 and 𝑙𝑙𝑛𝑛 represent the molar liquid flow (kmol/h) coming from the 

upper stage that goes to the downer stage, respectively, and, 𝑣𝑣𝑛𝑛−1 and 𝑣𝑣𝑛𝑛 are the vapor 

flows coming from the stage below the one that goes to the upper stage. 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑙𝑙𝑛𝑛+1 + 𝑣𝑣𝑛𝑛−1 − 𝑙𝑙𝑛𝑛 − 𝑣𝑣𝑛𝑛 (6.1) 

 

In equation (6.2), the term 𝑥𝑥𝑗𝑗,𝑛𝑛  corresponds to the liquid molar fraction of the 

component 𝑗𝑗 in the tray 𝑛𝑛 and 𝑦𝑦𝑗𝑗,𝑛𝑛 corresponds to the vapor molar fraction. 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛

𝑑𝑑𝑑𝑑
= 𝑙𝑙𝑛𝑛+1𝑥𝑥𝑗𝑗,𝑛𝑛+1 + 𝑣𝑣𝑛𝑛−1𝑦𝑦𝑗𝑗,𝑛𝑛−1 − 𝑙𝑙𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛 − 𝑣𝑣𝑛𝑛𝑦𝑦𝑗𝑗,𝑛𝑛 (6.2) 

 

The dynamics of the specific liquid internal energy depends mainly on the change 

in composition, which is assumed to be faster than the dynamics of the total mass. 

Therefore, its effect on the energy balance can be negligible, avoiding a high index 

problem associated with the calculation of the temperature (equation (6.3)). In equation 

(6.3), ℎ is the enthalpy of the liquid flow and 𝐻𝐻 is the enthalpy of the vapor flow. Also 

note that equation (6.3) is used to calculate the vapor flow in each tray, not the 

temperature. Temperatures are calculated using the thermodynamic equilibrium as 

explained next in the Thermodynamics section. 

ℎ𝑛𝑛
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛
𝑑𝑑𝑑𝑑

= ℎ𝑛𝑛+1𝑙𝑙𝑛𝑛+1 + 𝐻𝐻𝑛𝑛−1𝑣𝑣𝑛𝑛−1 − ℎ𝑛𝑛 𝑙𝑙𝑛𝑛 − 𝐻𝐻𝑛𝑛𝑣𝑣𝑛𝑛 (6.3) 
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6.1.1.2 Thermodynamics 
 

An equation of state (EoS) is a thermodynamic equation that describes the 

properties of pure substances and mixtures. The general form can be written as a function 

of the physical conditions, pressure 𝑃𝑃, volume 𝑉𝑉 and temperature 𝑇𝑇, equation (6.4). 

𝑓𝑓(𝑃𝑃,𝑉𝑉,𝑇𝑇) = 0 (6.4) 

 

The high pressures (>10 bar) inside the splitter required the use of a cubic equation 

of state (EoS), such as the Peng Robinson equation of state (Matsoukas, 2013). Peng 

Robinson is the most widely used EoS to model hydrocarbon and petroleum mixtures 

(Fahim, M. A.; Al-Sahhaf, T. A.; Elkilani, 2010) and it is represented by equation (6.5). 

𝑃𝑃𝑛𝑛 =  
𝑅𝑅𝑇𝑇𝑛𝑛

𝑉𝑉𝑛𝑛 − 𝑏𝑏𝑛𝑛
−

𝑎𝑎𝑛𝑛
𝑉𝑉𝑛𝑛2 + 2𝑏𝑏𝑛𝑛𝑉𝑉𝑛𝑛 − 𝑏𝑏𝑛𝑛

2 (6.5) 

 

The parameters 𝑎𝑎 and 𝑏𝑏 can be calculated for a pure substance as the parameters 𝑎𝑎𝑗𝑗, 𝑏𝑏𝑗𝑗, 

𝑑𝑑𝑎𝑎𝑗𝑗 𝑑𝑑𝑑𝑑⁄ , using the critical temperature and pressure constants (𝑇𝑇𝑐𝑐 and 𝑃𝑃𝑐𝑐) and acentric 

factor (ω) for each pure component 𝑗𝑗, equations (6.6). 

 

In the case of hydrocarbon mixtures, it is necessary to calculate the mixing parameters 

using the mixing rules 𝑎𝑎, 𝑏𝑏,𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, equations (6.7). 

𝑎𝑎𝑗𝑗,𝑛𝑛 = 0.45724
𝑅𝑅2𝑇𝑇𝑐𝑐𝑗𝑗

2

𝑃𝑃𝑐𝑐𝑗𝑗
�1 + Ω𝑗𝑗 �1 − 𝑇𝑇𝑟𝑟𝑗𝑗,𝑛𝑛

1/2��
2
 

𝑑𝑑𝑑𝑑𝑗𝑗,𝑛𝑛

𝑑𝑑𝑑𝑑
= −0.45724

𝑅𝑅2𝑇𝑇𝑐𝑐𝑗𝑗
2

𝑃𝑃𝑐𝑐𝑗𝑗

�1 + Ω𝑖𝑖 �1 −�𝑇𝑇𝑟𝑟𝑗𝑗,𝑛𝑛��Ω𝑗𝑗

�𝑇𝑇𝑟𝑟𝑗𝑗,𝑛𝑛

 

𝑇𝑇𝑟𝑟𝑗𝑗,𝑛𝑛 =
𝑇𝑇𝑛𝑛
𝑇𝑇𝑐𝑐𝑗𝑗

 

Ω𝑗𝑗 = 0.37464 + 1.54226ω𝑗𝑗 − 0.26992ω𝑗𝑗2 

𝑏𝑏𝑗𝑗 = 0.07780
𝑅𝑅𝑇𝑇𝑐𝑐𝑗𝑗
𝑃𝑃𝑐𝑐𝑗𝑗

 

(6.6) 
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𝑎𝑎𝑛𝑛 = ��𝑥𝑥𝑖𝑖,𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛�1 − 𝑘𝑘𝑖𝑖𝑖𝑖��𝑎𝑎𝑖𝑖,𝑛𝑛𝑎𝑎𝑗𝑗,𝑛𝑛
𝑗𝑗𝑖𝑖

 

𝑏𝑏𝑛𝑛 = �𝑥𝑥𝑗𝑗,𝑛𝑛𝑏𝑏𝑗𝑗
𝑗𝑗

 

𝑑𝑑𝑑𝑑𝑛𝑛
𝑑𝑑𝑑𝑑

=
1
2
��𝑥𝑥𝑖𝑖,𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛�1 − 𝑘𝑘𝑖𝑖𝑖𝑖��𝑎𝑎𝑖𝑖,𝑛𝑛𝑎𝑎𝑗𝑗,𝑛𝑛 �

1
𝑎𝑎𝑖𝑖,𝑛𝑛

𝑑𝑑𝑎𝑎𝑖𝑖,𝑛𝑛
𝑑𝑑𝑑𝑑

+
1
𝑎𝑎𝑗𝑗,𝑛𝑛

𝑑𝑑𝑎𝑎𝑗𝑗,𝑛𝑛
𝑑𝑑𝑑𝑑

�
𝑗𝑗𝑖𝑖

 

(6.7) 

 

Using equations (6.8) and 𝑎𝑎, 𝑏𝑏, the dimensionless parameters 𝐴𝐴𝑛𝑛  and 𝐵𝐵𝑛𝑛  of the cubic 

polynomial equation are calculated. 

𝐴𝐴𝑛𝑛 =  
𝑎𝑎𝑛𝑛𝑃𝑃𝑛𝑛

(𝑅𝑅𝑇𝑇𝑛𝑛)2 

𝐵𝐵𝑛𝑛 =  
𝑏𝑏𝑛𝑛𝑃𝑃𝑛𝑛
𝑅𝑅𝑇𝑇𝑛𝑛

 
(6.8) 

 

The cubic polynomial, equation (6.9), relates 𝐴𝐴𝑛𝑛  and 𝐵𝐵𝑛𝑛  parameters to the 

compressibility factor (𝑍𝑍𝑛𝑛). If there is more than one positive root in the solution, the 

value chosen depends on the phase of the mixture: for a liquid mixture, the smaller value 

is chosen; for a gas mixture, the larger value is chosen. 

𝑍𝑍𝑛𝑛3 + (𝐵𝐵𝑛𝑛 − 1)𝑍𝑍𝑛𝑛2 + 𝑍𝑍𝑛𝑛�𝐴𝐴𝑛𝑛 − 3𝐵𝐵𝑛𝑛2 − 2𝐵𝐵𝑛𝑛� − 𝐴𝐴𝑛𝑛𝐵𝐵𝑛𝑛 + 𝐵𝐵𝑛𝑛3 + 𝐵𝐵𝑛𝑛2 = 0 (6.9) 

 

The compressibility factor is related to the fugacity of liquid 𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖  and vapor 𝜙𝜙𝑣𝑣𝑣𝑣𝑣𝑣
𝑗𝑗 , 

equations (6.10).  

𝑙𝑙𝑙𝑙𝜙𝜙𝑖𝑖,𝑛𝑛 =
𝑏𝑏𝑖𝑖
𝑏𝑏𝑛𝑛

(𝑍𝑍𝑛𝑛 − 1) − 𝑙𝑙𝑙𝑙(𝑍𝑍𝑛𝑛 − 𝐵𝐵𝑛𝑛) −
𝐶𝐶𝑖𝑖,𝑛𝑛
2√2

ln �
�1 + √2�𝐵𝐵𝑛𝑛 + 𝑍𝑍𝑛𝑛
�1 − √2�𝐵𝐵𝑛𝑛 + 𝑍𝑍𝑛𝑛

� 

𝐶𝐶𝑖𝑖,𝑛𝑛 =
𝐴𝐴𝑛𝑛
𝐵𝐵𝑛𝑛

�−
𝑏𝑏𝑖𝑖
𝑏𝑏𝑛𝑛

+
2
𝑎𝑎𝑛𝑛
�𝑥𝑥𝑗𝑗,𝑛𝑛�𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗�1 − 𝑘𝑘𝑖𝑖𝑖𝑖�
𝑁𝑁

𝑗𝑗=1

� 

(6.10) 

 

The equilibrium composition in the vapor 𝑦𝑦𝑒𝑒𝑒𝑒 for each component is related to the K-

value and the fugacity coefficients by equations (6.11) and (6.12). 

𝐾𝐾𝑗𝑗,𝑛𝑛 =
𝑦𝑦𝑒𝑒𝑒𝑒 𝑗𝑗,𝑛𝑛

𝑥𝑥𝑗𝑗,𝑛𝑛
 (6.11) 
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𝐾𝐾𝑗𝑗,𝑛𝑛 =
𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗,𝑛𝑛

𝜙𝜙𝑣𝑣𝑣𝑣𝑣𝑣
𝑗𝑗,𝑛𝑛

 (6.12) 

 

The Murphree tray efficiency, 𝜀𝜀𝑛𝑛 , is used to calculate the actual performance of the 

splitter, equation (6.13).  

𝑦𝑦𝑛𝑛 = 𝜀𝜀𝑛𝑛�𝑦𝑦𝑒𝑒𝑒𝑒,𝑛𝑛 − 𝑦𝑦𝑛𝑛−1� + 𝑦𝑦𝑛𝑛−1 (6.13) 

 

Finally, the enthalpy is calculated using equation (6.14). 

𝐻𝐻𝑅𝑅
𝑛𝑛 = 𝑅𝑅𝑇𝑇𝑛𝑛(𝑍𝑍𝑛𝑛 − 1) +

𝑇𝑇𝑛𝑛(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)𝑛𝑛 − 𝑎𝑎𝑛𝑛
2√2𝑏𝑏𝑛𝑛

ln �
�1 + √2�𝐵𝐵𝑛𝑛 + 𝑍𝑍𝑛𝑛
�1 − √2�𝐵𝐵𝑛𝑛 + 𝑍𝑍𝑛𝑛

� 

𝐻𝐻𝑛𝑛 = �𝑥𝑥𝑖𝑖,𝑛𝑛𝐻𝐻𝑖𝑖,𝑛𝑛
𝑖𝑖𝑖𝑖 + 𝐻𝐻𝑅𝑅

𝑛𝑛
𝑖𝑖

 
(6.14) 

 

The thermodynamic equations above are used in each tray 𝑛𝑛 of the column.  

 

6.1.1.3 Column hydraulic 
 

A simple Francis weir equation is used to relate the liquid holdup in the tray to the 

liquid flow leaving the tray (Luyben, 1999), equation (6.15). The flow depends on the 

fluid mechanics of the tray. 𝑙𝑙_𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 is the liquid flow rate over the weir,  ℎ𝑜𝑜𝑜𝑜 is the liquid 

height over the weir, and 𝐿𝐿𝑤𝑤 is the length of the weir. 

𝑙𝑙_𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛 = 3.33𝐿𝐿𝑤𝑤ℎ𝑜𝑜𝑜𝑜
1.5 (6.15) 

 

6.1.1.4 Feed 
 

In the feed tray, the total, individual material balances are represented by 

equations (6.16) and (6.17), where 𝑓𝑓  is the feed molar flow and 𝑧𝑧𝑗𝑗  is the feed molar 

fraction for each component 𝑗𝑗. The subscript 𝑛𝑛𝑛𝑛 indicates the feed stage. 
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𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑓𝑓 + 𝑙𝑙𝑛𝑛𝑛𝑛+1 + 𝑣𝑣𝑛𝑛𝑛𝑛−1 − 𝑙𝑙𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑛𝑛𝑛𝑛 (6.16) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛𝑛𝑛

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝑧𝑧𝑗𝑗 + 𝑙𝑙𝑛𝑛𝑛𝑛+1𝑥𝑥𝑗𝑗,𝑛𝑛𝑛𝑛+1 + 𝑣𝑣𝑛𝑛𝑛𝑛−1𝑦𝑦𝑗𝑗,𝑛𝑛𝑛𝑛−1 − 𝑙𝑙𝑛𝑛𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑛𝑛𝑛𝑛𝑦𝑦𝑗𝑗,𝑛𝑛𝑛𝑛 (6.17) 

 

The energy balance is represented by equation (6.18), similar to equation (6.3) .  

ℎ𝑛𝑛𝑛𝑛
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑓𝑓ℎ𝑓𝑓 + ℎ𝑛𝑛𝑛𝑛+1𝑙𝑙𝑛𝑛𝑛𝑛+1 + 𝐻𝐻𝑛𝑛𝑛𝑛−1𝑣𝑣𝑛𝑛𝑛𝑛−1 − ℎ𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑛𝑛𝑛𝑛𝐻𝐻𝑛𝑛𝑛𝑛 (6.18) 

 

6.1.1.5 Top tray 
 

In the top tray, heat and mass balances similar to those for the inner trays could 

be considered (equations (6.19) through (6.21)), where 𝑛𝑛𝑛𝑛 refers to the top tray (𝑛𝑛 = 136) 

and 𝑟𝑟 is the molar reflux flow rate.  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝑟𝑟 + 𝑣𝑣𝑛𝑛𝑛𝑛−1 − 𝑙𝑙𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑛𝑛𝑛𝑛 (6.19) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛𝑛𝑛

𝑑𝑑𝑑𝑑
= 𝑟𝑟𝑥𝑥𝑗𝑗,𝑟𝑟 + 𝑣𝑣𝑛𝑛𝑛𝑛−1𝑦𝑦𝑗𝑗,𝑛𝑛𝑛𝑛−1 − 𝑙𝑙𝑛𝑛𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑛𝑛𝑛𝑛𝑦𝑦𝑗𝑗,𝑛𝑛𝑛𝑛 (6.20) 

ℎ𝑛𝑛𝑛𝑛
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛
𝑑𝑑𝑑𝑑

= ℎ𝑟𝑟𝑟𝑟 + 𝐻𝐻𝑛𝑛𝑛𝑛−1𝑣𝑣𝑛𝑛𝑛𝑛−1 − ℎ𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛 − 𝐻𝐻𝑛𝑛𝑛𝑛𝑣𝑣𝑛𝑛𝑛𝑛 (6.21) 

 

6.1.1.6 Base and reboiler 
 

The column base and the reboiler are assumed to be tray number 1. Equation 

(6.22) is the total mass balance at the base, where 𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the molar liquid holdup and 

𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the liquid molar flow. Equation (6.23) is the total mass balance in the reboiler, 

where 𝑏𝑏 is the bottom molar flow and 𝑣𝑣1  is the vapor flow leaving the reboiler. The 

equation (6.24) calculates the molar liquid holdup in the reboiler and the level 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 

Equation (6.25) corresponds to the material balances of the individual components inside 

the reboiler. Equation (6.26) is the energy balance in the reboiler. The heat dynamics is 

faster than the composition dynamics, so equation (6.26) is used to calculate the vapor 

flow in the base. Equation (6.27) calculates the heat generated 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 by the steam flow 
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𝐹𝐹𝑆𝑆 with a heat of vaporization ∆𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉 in the pressure 𝑃𝑃𝑆𝑆, considering a steam quality  𝜏𝜏𝑆𝑆.  

A  𝜏𝜏𝑆𝑆 of 0 indicates 100% liquid (condensate) and a  𝜏𝜏𝑆𝑆 of 1 indicates 100% steam. 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑑𝑑𝑑𝑑

= 𝑙𝑙2 − 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (6.22) 

𝑏𝑏 = 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑣𝑣1, 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�
𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 (6.23) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜌𝜌1

𝑀𝑀𝑀𝑀1
 (6.24) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑥𝑥𝑗𝑗,1

𝑑𝑑𝑑𝑑
= 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑥𝑥𝑗𝑗,2 − 𝑣𝑣1𝑦𝑦𝑗𝑗,1 − 𝑏𝑏𝑥𝑥𝑗𝑗,1 (6.25) 

𝑣𝑣1 =
ℎ2𝑙𝑙2 − ℎ1𝑏𝑏 + 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐻𝐻1
 (6.26) 

𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =   𝜏𝜏𝑆𝑆𝐹𝐹𝑆𝑆 ∙ ∆𝐻𝐻𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑆𝑆) (6.27) 

 

6.1.1.7 Condenser 
 

The splitter has a flooded condenser to control the top pressure by manipulating 

the flooded area of the condenser with a control valve located below. An increase in the 

condensate flow lowers the liquid level in the condenser and increases the area available 

for condensation (Luyben, 2017).  

Equations (6.28)-(6.35) describe the condenser with subcooling liquid. Equation 

(6.28) is the vapor-molar material balance inside the condenser. 𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the vapor 

holdup inside the condenser, 𝑣𝑣𝑛𝑛𝑛𝑛 is the vapor leaving the top tray, and 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the amount 

of vapor condensing to liquid. Equation (6.29) relates the molar liquid holdup in the 

condenser (𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) to the flow of liquid entering the liquid phase from condensation, 

𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,  and the flow of liquid going to the accumulator vessel, 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑
= 𝑣𝑣𝑛𝑛𝑛𝑛 − 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (6.28) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (6.29) 

Equations (6.30) and (6.31), respectively, represent the total latent heat lost by the 

vapor to condensate into a saturated liquid and the total sensible heat lost to cool the 
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saturated liquid to a temperature below the bubble point. Both latent and sensible heat 

transfer processes are very fast, so the dynamics are not considered.  

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐻𝐻𝑘𝑘 − ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠�  (6.30) 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 (6.31) 

 

Equations (6.32) and (6.33) describe the temperature change for the condensate 

flow and refrigerant flow, given the equipment design data and the condensate level in 

the condenser. The parameter α  describes the percentage of the area available for 

condensation, equation (6.34). 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑈𝑈𝑣𝑣(1− α)A𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑇𝑇𝑛𝑛𝑛𝑛 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑊𝑊� (6.32) 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑈𝑈𝑙𝑙αA𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑊𝑊� (6.33) 

α =  
𝑉𝑉𝑙𝑙_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑉𝑉𝑇𝑇_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (6.34) 

 

Finally, equation (6.35) represents the total heat removed from the process flow 

by the refrigerant. 𝐹𝐹𝑊𝑊  is the coolant flow, 𝐶𝐶𝑃𝑃𝑊𝑊  is the coolant capacity heat, and 

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑊𝑊,  𝑇𝑇𝑖𝑖𝑖𝑖𝑊𝑊 are the coolant outlet and inlet temperatures, respectively. 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝑊𝑊𝐶𝐶𝑃𝑃𝑊𝑊�𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑊𝑊 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑊𝑊� (6.35) 

 

The composition inside the condenser is assumed to be the same as the vapor to 

be condensed. 

6.1.1.8 Accumulator vessel 
 

The accumulator is a horizontal vessel that collects the liquid from the condenser. 

Part of the liquid is removed as distillate and the rest is returned to the splitter as reflux 

liquid. The total and partial mass balance can be written as (6.36) and (6.37). The 

accumulator vessel has a large volume, so an energy balance is also necessary (6.38). 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑟𝑟 − 𝑑𝑑 (6.36) 



 

99 
 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑗𝑗,𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑗𝑗,𝑛𝑛𝑛𝑛 − 𝑟𝑟𝑥𝑥𝑗𝑗,𝑟𝑟 − 𝑑𝑑𝑥𝑥𝑗𝑗,𝑑𝑑 (6.37) 

𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑑𝑑)
𝑑𝑑𝑑𝑑

= 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟ℎ𝑑𝑑 − 𝑑𝑑ℎ𝑑𝑑 (6.38) 

 

Note that, actually, 𝑥𝑥𝑗𝑗,𝑟𝑟 = 𝑥𝑥𝑗𝑗,𝑑𝑑  is the reflux and distillate concentration leaving 

the accumulator vessel.  

 

6.1.1.9 Pressure profile 
 

The rigorous model assumes that the gas accumulates in the condenser as shown 

in equation (6.28). The pressure drop is assumed to be constant along the column and the 

maximum pressure drop between the bottom and the top is approximately 1 bar. Equation 

(6.39) calculates the pressure profile in the column except for the top tray, which is given 

by equation (6.40) (Luyben, 1999). The term 𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the vapor phase holdup in the 

condenser and 𝑍𝑍𝑛𝑛𝑛𝑛 is the compressibility factor calculated by Peng Robinson presented in 

section 6.1.1.2. 

𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑛𝑛+1 + ∆𝑝𝑝 (6.39) 

𝑃𝑃𝑛𝑛𝑛𝑛 = 𝑍𝑍𝑛𝑛𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑅𝑅𝑇𝑇𝑛𝑛𝑛𝑛

𝑉𝑉𝑛𝑛𝑛𝑛
 (6.40) 

 

6.1.1.10 PI controllers 
 

The base/reboiler level, the accumulator level and the pressure PI controllers are 

modeled in the rigorous dynamic model. The first manipulates the bottom flow to 

maintain the level in the base, the second manipulates the reflux flow to maintain the level 

set point in the accumulator, and the last manipulates the liquid flow from the condenser 

to the accumulator to maintain the top pressure at the set point.  
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6.1.1.11 Parameters of the model 
 

Calibration of a dynamic simulation requires some information about the 

equipment involved in the process. The size of the condenser and its vapor phase heat 

transfer coefficient, the size of the reboiler, and the diameter, weir length, and height of 

the column were obtained from the respective equipment specification sheet. 

Thermodynamic data were obtained from the Simulis Thermodynamics software 

(“Simulis Thermodynamics,” 2021) and from Wauquier (1995). Other model parameters, 

such as the column efficiency, were obtained from operating data that matched the model 

and process responses for the same inputs using data reconciliation algorithms described 

later.   

 

6.1.1.12 Boundary conditions 
 

The boundary conditions for the full model are shown in Table 6.1. 

Table 6.1. Boundary conditions. 

 Variable 
1 Feed temperature 
2 Feed flow 
3 Feed pressure 
4 Feed composition 
5 Distillate flow 
6 Steam flow to reboiler 
7 Condenser refrigerant flow 
8 Condenser refrigerant inlet temperature 
9 Accumulator vessel  level set point 
10 Reboiler level set point 
11 Top pressure set point 

 

6.1.1.13 Initialization and convergence of the model 
 

The presented splitter rigorous model contains 12090 equations that require the 

initial values of 553 state variables and 549 algebraic variables (1102 variables in total). 

It is very difficult to find a set of initial values for all these variables that will allow the 

IDAS DAE integration algorithm to converge on the first try. For this reason, the 

methodology proposed below has been applied.  
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The methodology constructs simplified models based on the full rigorous model, 

using assumptions that may not be appropriate for the process under study, but reduce the 

number of initial values required. In each step, the simplified models approximate the full 

rigorous model until a subset of good initial values is found. 

The methodology applies to DAE systems with a large number of equations and 

requires multiple initial values for state and algebraic variables. The methodology 

consists of the following steps: 

 
1. Create the simplest possible model that can calculate the controlled variables with the 

minimum number of initial values required. To create this first simplest model, 

several assumptions were considered, even though they could not be applied to the 

problem studied.  

2. Use the design and/or operational data to predict the initial values for state and 

algebraic variables.  

3. Simulate the model and let it reach the steady state and save the new values for the 

state or algebraic variables. 

4. Discard one of the assumptions that does not apply to the problem and add the 

equations that describe the phenomena. A new set of initial values is now required, 

consisting of the previous set of initial values and a new set associated with the new 

equations added. The steady state results obtained from the previous step are used and 

the new initial values are again predicted from the design or operational data. 

5. Simulate the model and let it reach the steady state. Save the new initial values and 

repeat the step 4 until all incorrect assumptions have been discarded. 

 
Many of the initial values of the splitter model are difficult to predict, such as the 

composition of the components and the temperature in each tray. For this reason, five 

different models were constructed, from the simplest to the most complex necessary to 

predict well the behavior of the real plant. The simplest model considered was based on 

model 1 presented by Grassi in Luyben (2006). 

The complete rigorous model includes equations that describe each of the 

phenomena below: 
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a) Total material balances for each tray – liquid holdup dynamics 

b) Francis equation - liquid flow dynamics 

c) Component Material Balances and Equilibrium Relationships (Peng Robinson) – 

liquid and vapor composition dynamics 

d) PI level controllers – reflux flow dynamics and bottom flow dynamics 

e) Energy balances – temperature dynamics 

f) Condenser mass balance and head equation of state –  head pressure dynamics 

g) PI pressure controller 

h) Sensible heat equations – condenser subcooling 

 
Model 1 (System of equations of a + b + c) 

 
The first model considered the total and component mass balance and the Francis 

equation to calculate the liquid flow from each tray. The temperature gradient between 

top and bottom is known from the design data and a linear profile was used to calculate 

the liquid densities.  The vapor flow inside the column is constant and equal to the liquid 

evaporated in the reboiler. In this step, the bottom and reflux flows were set to a value 

between zero and the value from the total material mass, equation (6.1), at steady state 

(derivative equal to zero). 

The system of equations required six boundary conditions: the feed flow, the 

distillate flow, the vapor flow evaporated in the reboiler, and the feed composition. The 

values used for the boundary conditions were the splitter design data. 

The initial conditions required are the molar holdup, composition and equilibrium 

constant at each stage. In this step, the feed was assumed to contain 20% propane and 

80% of propylene, so the composition of isobutane and ethane was zero. A linear profile 

for propane and propylene was used, taking into account the expected  concentrations at 

the bottom and top from the design data. Equilibrium constant values were taken from 

the Scheibel and Jenny nomograph for light hydrocarbons (Hemptinne et al., 2012). After 

the previous simulation reached the steady state, the boundary conditions for the 
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concentration of isobutane and ethane were increased to the real values. Each composition 

was changed one by one, always waiting for the simulation to reach steady state. A 

qualitative assessment was made considering that the lighter components will have the 

higher composition in the top product and the heavier components will leave the bottom 

products. 

 
Model 2 (System of equations of a + b + c + d) 

 
Step 2 consists of the system of equations from Step 1 plus the PI controllers for 

the accumulator vessel level and bottom. These new equations require new initial values 

related to the integration term of the PI controller. These initial values can be set as the 

steady-state values from the previous step, the reflux flow values, and the bottom flow. 

The steady-state results from the previous step were used as the initial values in this step. 

Here, the controller was tuned and the steady-state results were saved for the next step. 

 
 
Model 3 (System of equations of a + b + c + d + e + f) 

 
Model 3 uses the initial values from the previous simulation, in addition to the 

temperature in each tray and the mass balance in the condenser. The linear temperature 

profile assumed earlier was kept as the initial values in this step. The equilibrium balances 

combined with the energy balances calculate the dynamic behavior of the temperature 

inside the column. The vapor mass balance inside the condenser and the equation of state 

calculate the pressure in the head. Here, the pressure control was considered perfect, so 

the liquid holdup inside the condenser is constant (𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ). 

 
Model 4 (System of equations of a + b + c + d + e + f + g) 

 
Model 4 considers the PI pressure controller. The results of the last simulation are 

used as initial values. The new initial value required is related to the integrator term of 

the pressure PI controller and is equal to the value of the flow to accumulator vessel.  

 
Model 5 (System of equations of a + b + c + d + e + f + g + h) 
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In plant operation, the condenser cools the top stream to less than 20 degrees 

below the boiling point. Product subcooling is typically used to prevent the pump 

cavitation due to the saturated liquid evaporation.  

The final model aims to incorporate the subcooling phenomena to simulate the 

operating conditions. First, the design boundary conditions are maintained and the 

subcooling equations are added to the model. The perfect pressure controller is also 

maintained.  

Then, the model is simulated with the design conditions and the results are 

compared with the design data as in the previous step. The results are saved as the new 

initial values. Finally, each boundary condition of Table 6.1 is changed to its real 

operating value. As the new steady state result is achieved, the results are saved as the 

new initial values until all the boundary conditions are adjusted.  

In conclusion, the proposed methodology was aimed at finding good initial values 

for a rigorous model of a superfractionator. The complete model was divided into four 

models. In each of them, some of the physical phenomena involved were progressively 

included until all the phenomena necessary to simulate the operating conditions of the 

plant were considered. Accordingly, some of the overall initial conditions were 

successfully computed in each step, resulting in a coherent set of values capable of 

initializing the full plant simulation. 

 

6.1.1.14 Data reconciliation 
 

Once we were able to run the simulation, we approached model validation in two 

steps. First, we tried to estimate some unknown model parameters and improve the quality 

of the process data that we would use for this purpose. This was done through steady-

state data reconciliation, taking into account the difficulties of a very large dynamic model 

like the one we were dealing with. Next, we compared the dynamic model and process 

responses to the same stimuli to assess the validity of the model as a representation of the 

plant behavior. 

To find any measurement errors caused by instrument malfunction, we used 

hourly data for almost 4 months in 2019 to verify the mass and energy balance equations.  
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First, since only the propylene concentration is measured in all the inputs and 

outputs, we consider the presence of only propane and propylene in the mixture. Then, 

the volumetric flow measurements were converted to mass flow, and the molar fractions 

were converted to mass fractions. Thus, the amount of total mass and propylene mass 

flowing into and out of the column during this time period could be calculated. We 

assume that by integrating the transient flow rates over a period greater than the time 

constant of the control volumes, the accumulation is negligible compared to the inflow 

and outflow values. We also assume that the analyzers are more reliable than the 

flowmeters, so the following optimization problem could be written as in equation (6.41), 

where 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐹𝐹, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐷𝐷 ,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐵𝐵 refer to the difference between the measured and the actual 

values of the feed, distillate and bottoms flows, respectively. 

min
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐹𝐹,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐷𝐷,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐵𝐵

𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝜀𝜀𝐶𝐶3𝐻𝐻6
2  

𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ [(𝐹𝐹𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐹𝐹) − (𝐷𝐷𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐷𝐷) − (𝐵𝐵𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐵𝐵)]𝑡𝑡𝑓𝑓
𝑡𝑡=0   

𝜀𝜀𝐶𝐶3𝐻𝐻6 = ∑ �(𝐹𝐹𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐹𝐹)𝑧𝑧𝑖𝑖,𝑡𝑡 − (𝐷𝐷𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐷𝐷)𝑥𝑥𝐷𝐷,𝑖𝑖,𝑡𝑡 − (𝐵𝐵𝑡𝑡 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐵𝐵)𝑥𝑥𝐵𝐵,𝑖𝑖,𝑡𝑡�
𝑡𝑡𝑓𝑓
𝑡𝑡=0   

s.t. steady state mass balances, 

process constraints 

(6.41) 

 

The problem was solved using the solver in Excel and the results founded were as 

follows: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐹𝐹 = 0.1624, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐷𝐷 = 0 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐵𝐵 = 0.0920. Two open-loop simulations 

were performed: the first with the input flow data and the second with the bias-corrected 

input flow data. The percentage difference results for the propylene molar fraction 

concentration in the distillate are shown in Figure 6.3. The bias correction applied to the 

process data reduced the difference between the simulation and process data. Similar 

results were obtained for other key simulation variables such as bottom propylene 

concentration, top and bottom temperatures and reflux flow. 
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Figure 6.3 Percentage difference between simulations with and without reconciliation and process data. 

 

Using the process data, the column efficiency 𝜀𝜀𝑛𝑛 in equation (6.13), was estimated 

to be 1. 

6.1.1.15 Model validation 
 

To validate the model, some of the historical process bias-corrected data were 

compared with the model results. To do so, process data from four consecutive days (one 

data per hour for four days in June 2019) were used as input to the EcosimPro simulation, 

including the values of the manipulated variables: distillate flow rate, steam flow rate to 

the reboiler, and the top pressure. This means that the following validation results do not 

consider the DMC controller (open loop simulation), while the process data were obtained 

in closed loop with the DMC operating the plant. Some of the input data used is shown 

in Figure 6.4 to Figure 6.7. The data has been normalized for confidentiality reasons. 

Figure 6.4: Normalized feed flow data used for model validation. 
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Figure 6.5: Normalized propylene concentration in feed data used for model validation. 

Figure 6.6: Normalized steam flow data used for model validation. 

Figure 6.7: Normalized distillate flow data used for model validation. 

 

Figure 6.8 and Figure 6.9 show the behavior of the molar fraction of propylene in 

the distillate and bottoms versus time.  
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Figure 6.8 Molar fraction of propylene in distillate, open loop. 

 

 
Figure 6.9 Molar fraction of propylene in bottoms, open loop. 

 

The figures show that the rigorous model and the process have a very similar 

dynamic behavior. Figure 6.8 shows that the process and simulation have similar gains, 

and a very small bias between the values. Figure 6.9 shows that the dynamic model is 

able to match the real gain most of the time. 
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Figure 6.10 and Figure 6.11 present the percentage difference between the 

temperature profile at the top of the column and the temperature at the bottom, 

respectively. The percentage difference is defined as equation (6.42). 

Percentage difference = |𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠|
�𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠�

2

× 100   (6.42) 

 

where 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the value measured and 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 is the value calculated by the simulation. 

The process data and simulation show almost an identical behavior with an 

insignificant offset. The value of the percentage difference is less than 1%. The reflux 

flow shown in Figure 6.12 also presents a dynamic behavior very similar to the process 

data. The percentage difference for this case is less than 2%. All these results show that 

the proposed model predicts the mass and energy dynamics of the column well. 

 
Figure 6.10 Percentage difference of temperature at the top, open loop. 
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Figure 6.11 Percentage difference of the temperature at the bottom, open loop. 

 
Figure 6.12 Percentage difference of reflux flow rate, open loop. 

 

A similar closed-loop simulation was then performed, with the Aspen DMC 

controller connected to the EcosimPro deck. This simulation used input data from 

approximately nine consecutive days (one data per hour during November 2021). More 

recent data was used because Petronor's DMC model was updated after September 2021, 
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and all of the algorithms presented in this thesis have already been updated with the 

current splitter DMC model used in the refinery. 

The comparison between the results of the Aspen DMC controller in simulation 

and the historical data is shown in Figure 6.13. All the results presented were normalized 

due to confidentially reasons. It can be seen that the dynamic behavior of the curves is 

quite similar, presenting a small offset between them. Probably due to noise in the signal 

from the instruments, the process data also shows a behavior with more peaks. 

 

 

 
Figure 6.13: Results for the closed loop validation. 

 

The rigorous dynamic model proposed for the splitter has a dynamic response and 

gains similar to the real process data. In conclusion, the present model is considered good 

enough for the purpose of mimicking the real plant. 
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6.2 RTO Architecture Proposal 
 

In the current operation of the splitter, the DMC controller manipulates only the 

steam and distillate flow, not the head pressure. These two variables manipulated by the 

DMC are directly related to the main costs (steam) and profits (distillate production) of 

this plant. Therefore, it seems logical to add a Real Time Optimization (RTO) layer 

capable of calculating the process optimum (the setpoints for the DMC); using an 

objective function that takes into account the prices of these two variables and other 

associated costs. Typically, a nonlinear model based on first principles is used in an RTO, 

but in our case, due to the large size, complexity, and maintenance requirements of such 

a model, its use is not recommended. Instead, our goal is to use the already developed 

linear model of the DMC for this purpose. However, using a model with large parametric 

and structural uncertainties, such as the linear DMC model, can lead to suboptimality in 

the process, which leads to the use of MA in the optimization. 

In addition, the splitter is a very slow dynamic process that takes about 18 hours 

to reach a steady state. Therefore, the idea of using MA to estimate the process gradients 

from the transient data and integrating optimization and control or considering dynamic 

RTO could reduce the waiting time and increase the performance. 

Two different structures were evaluated for the application of economic 

optimization with MA in the splitter case study: 

1- An integrated optimization and control layer (eMPC+MA) + Basic Control + 

Process. 

2- An optimization layer (eMPC+MA) + a control layer (Aspen DMC controller) + 

Basic Control + Process. 

The second option was preferred in order to minimize changes to the actual plant 

structure. In addition, in structure 2, the optimization layer can be quickly disconnected 

to return to the previous plant control structure. Therefore, structure 2 corresponds to:  

1- Optimization layer: it executes eMPC, eMPC+MA+DME or eMPC+MA+ 

TMAm using the dynamic linear model of the DMC. This layer calculates the 

manipulated variable setpoints for the controller. 

2- Controller layer: this layer corresponds to the Aspen DMC Controller with the 

External Target option enabled. 
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The optimization layer performs eMPC, eMPC+MA+DME or eMPC+MA+ TMAm 

calculations, depending on the user’s choice. eMPC corresponds to the economic 

optimization problem without MA. eMPC+MA+DME solves the same economic 

problem as eMPC, but adds the MA modifiers in the cost function and the constraints 

estimated by the DME algorithm. Finally, eMPC+MA+TMAm corresponds to the 

economic problem with MAy modifiers using a modification of the TMA algorithm of 

Section 4, which will be presented in the following sections, to compute the process 

gradients. 

 

6.3 Components of the Virtual Plant Architecture 
 

This section provides a brief description of the components and software used in 

the virtual plant architecture. The virtual environment will mimic different layers of the 

automation pyramid of the real process, as shown in Figure 6.14. The physical process 

and the basic controllers are represented by an EcosimPro simulation managed by a Real 

Time Manager (RTM) algorithm developed in Python. The simulation communicates via 

OPC UA with the MPC controller, represented here by an industrial controller, Aspen 

DMC. The optimization is represented by a dynamic RTO algorithm, which is 

implemented as a function developed in Matlab and called by the same RTM algorithm 

for maintaining synchronization between the virtual process dynamics and the 

optimization layer. 

 

Figure 6.14: Automation pyramid with the virtual plant. 

In the following sections, each part of the Virtual Plant environment will be 

described in detail. 
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6.3.1 Virtual Process  
 

To connect the simulation with the others applications, the EcosimPro model was 

converted into a deck. A deck is a simulation model designed to run as a standalone black 

box completely independent from the main program that can be generated in the 

EcosimPro environment. There are several types of decks, but the most interesting one 

from an industrial point of view is the Deck OPC UA Server, in which the experiment is 

encapsulated as a binary with an OPC-UA layer to act as a server in a network. Every 

Deck OPC UA Server generated from EcosimPro provides a common set of nodes (see 

Table 6.2) corresponding to deck variables and commands (nodes corresponding to 

actions expressed as a variable) that allows a step by step execution of the simulation. 

 

Table 6.2. Deck Variables and Commands. 

Tag Data Type Description 
TIME Double Simulation time 
CINT Double Communication interval 

TSTOP Double Simulation final time 
command_reset Int32 Resets the deck when 

assigned a number 
different from 0 

command_run Int32 The server runs the 
experiment defined in the 

deck when assigned a 
number 

different from 0 
command_integ_cint Int32 The server integrates 

CINT units of time when 
assigned a number 

different from 0 
 

For the simulation to evolve in real time, we need an external real time manager 

described next. 

 

6.3.2 Real Time Manager 
 

The real time manager (RTM) is an OPC UA client that communicates with the 

Deck OPC UA server that contains the simulation. RTM uses variables and commands 

that controls the pace of the simulation integration. 
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The RTM algorithm was programed in Python and the algorithm is presented in 

Figure 6.15. First, we must define time-related variables of our simulation, like the CINT, 

TSTOP, and, finally, a speedup factor (SX) if you wish to accelerate your simulation to 

get results in less time than real time. Next, the connection with the Deck OPC UA Server 

is established and CINT and TSTOP values are written to the simulation engine. Finally, 

an iterative loop is executed where the manager invokes the “command_integ_cint” 

command of the Deck OPC UA Server while calculating the computation time needed 

for that action (ET: Elapsed Time). With this time, the algorithm knows how much time 

to wait until next integration/iteration so the simulation can run in real time (subject to a 

possible speedup factor). 

 

 
Figure 6.15 RTM algorithm. 

 

Overall, this joint scheme of virtual plant and real-time manager implies that any 

third-party application with OPC UA capability could communicate with the model in the 
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same way as the real process. In our case study, these external components will be a DMC 

controller and a real-time optimizer, described in the next subsections. 

 

6.3.3 Aspen DMC controller  
 

DMC (Dynamic Matrix Controller) is a MPC controller that aims to minimize the 

difference between the prediction of the controlled variables and setpoints, penalizing the 

MV moves (Camacho and Bordons, 1999). The software DMC plus, and its recent 

generation DMC3 from AspenTech® is one of the current commercial software based in 

this technology.  

The Aspen DMC controller application has four components: model, filter, 

optimizer and controller (Figure 6.16). The model aims to calculate the outputs with 

respect to the change in the inputs. The filter is an observer that estimates the unmeasured 

disturbances to calculate the current prediction errors of the model. Then the conjunction 

of the model and filter determines the current dynamic state of the process and the future 

predictions. The optimizer calculates the best steady-state operating point subject to the 

constraints. Finally, the unconstrained controller finds the move plan to achieve the set 

points computed by the optimizer. All process constraints are treated in the optimizer 

component. To guarantee that a feasible solution will be find, it is possible to choose 

between minimize the global constraint violation or organize the CVs constraints into a 

priority order using ranking groups. 

 
Figure 6.16: Structure of a Aspen DMC Controller (Aspen Technology Inc, 2021). DVs are 

disturbance variables, MVs are manipulated variables, CVs are controlled variables and FVs are filter 
variables. 
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At each sampling time, Aspen DMC runs a two-layer architecture: the optimizer 

and then the controller. The optimizer calculates the future targets, subject to the process 

constraints, for the controller as shown in Figure 6.17. The unconstrained controller then 

calculates the future moves to achieve these targets and applies the first move to the 

process. 

 
Figure 6.17: (a): The two control layers in Aspen DMC and the connection with the basic control 

and process; (b) The controller component predicts the future values of the CVs and MVs, considering the 
set-points calculated from the optimizer (de Prada et al., 2017). 

 

6.3.3.1 Prediction Model 
 

The first step in developing an Aspen DMC application is to build a dynamic 

model. Aspen DMC uses the linear model FSR (Finite Step Response) obtained from an 

identification algorithm. 

The process input-output data used by the identification algorithm is obtained 

from a plant test. During the plant test, several step moves are performed in each MV and 

the plant data is collected. The plant test is the most critical part of the DMC project as it 

defines the accuracy of the model. An accurate model reduces the time spent in the next 

steps of controller configuration. 

The resulting model represents the open-loop time response of the dependent 

variable to a step change in each independent variable, while holding all other 

independent variables constant. For example, in Figure 6.18, each curve represents the 

behaviour of a dependent variable listed in the top row (AI-2020, AI-2021, AI-2022) for 

a step change in the corresponding independent variable listed in the left column (FIC-

2001, FIC-2002, etc.). 
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Figure 6.18: Example of a model for a complex fractionator (Aspen Technology Inc, 2021). 

 

The model obtained from the plant test is used to compute predictions of the future 

behaviour of the CVs in the process. The model uses the entire independent history of 

changes in the MVs up to one steady-state time in the past. The changes of more than one 

steady-state time in the past are no longer considered because they no longer affect the 

current behaviour of the process. 

 

6.3.3.2 Filter 
 

The filter is responsible to predict the unmeasured disturbances of the process. In 

Aspen DMC three different disturbance models are available for the FSR model: Full 

Feedback, First Order or Moving Average. Full Feedback uses the difference between the 

prediction and measurement to calculate a bias to be applied to the prediction for the FSR 

model. First Order is similar to Full Feedback but permits only a fraction of the 

differences to be applied to the prediction. Moving Average uses an average of past values 

of the differences to determine the final difference to correct the prediction. 
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6.3.3.3 Optimizer 
 

The optimizer uses the same linear model of the controller but in steady state. The 

optimizer calculates the best economic steady-state target for the CVs and MVs, and the 

CVs steady-state target becomes the set point for the controller. The process constraints 

are also considered in the optimizer component and, in fact, this is its main purpose: 

compute feasible targets at the end of the prediction horizon every sampling time, 

according to the current operating conditions. The constraints are treated in two different 

ways: minimizing the global violation of the constraints, and assigning a priority rank for 

each constraint. The user can select between a Linear Program (LP) or Quadratic Program 

(QP) solution type for each rank group in the constraints.  

The steady-state optimization problem has a feasibility step and an economic step. 

The first step has the objective of minimizing the give-up for each constraint rank. The 

user can select a LP or QP optimization for each unique rank. In the LP optimization, the 

objective function minimizes the weighted sum of the slack variables added to the 

constraint. In the QP optimization, the objective function minimizes the weighted sum of 

the squared slack variables added to the constraint. Table 6.3 presents the calculation  

performed for the LP and QP options, where 𝜀𝜀1, 𝜀𝜀2 are give-up or slack variables and 𝑊𝑊1, 

𝑊𝑊2 are weighting factors. In the feasibility step, the calculation starts with the lowest 

ranked constraint (the more important constraint) and makes it a hard constraint, i.e., the 

constraint is relaxed to make it feasible, and then it moves to the next highest rank and 

repeats the procedure. When all group ranks are hard constraints, the economic 

optimization step is solved, resulting in the actual steady-state targets. Therefore, the LP 

and QP differences are only related to the feasibility step. 

 
Table 6.3. Difference between LP and QP calculation. 

LP QP 

𝑚𝑚𝑚𝑚𝑚𝑚 𝜃𝜃 = 𝜀𝜀1𝑊𝑊1 + 𝜀𝜀2𝑊𝑊2 + ⋯ 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶 ≤ 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀1 

𝐶𝐶𝐶𝐶 ≥ 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀2 

𝜀𝜀 > 0 

𝑚𝑚𝑚𝑚𝑚𝑚 𝜃𝜃 = 𝜀𝜀12𝑊𝑊1 + 𝜀𝜀22𝑊𝑊2 + ⋯ 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶 ≤ 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀1 

𝐶𝐶𝐶𝐶 ≥ 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀2 

𝜀𝜀 > 0 
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In the economic optimization step, the following objective function (6.43) is 

minimized.  The objective function has two terms: an economic term and a CV steady-

state error penalty term. 

 

𝜃𝜃 = ∆(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑀𝑀 ∗ (𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) (6.43) 

 

In  equation (6.43) 𝑀𝑀 is a large positive number. The second term aims to eliminate the 

CV steady-state limit violation before minimizing operating cost. The operating cost is 

calculated as in equation (6.44). 

 

∆(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ∙ ∆𝑀𝑀𝑀𝑀𝑖𝑖

𝑛𝑛𝑀𝑀𝑀𝑀

𝑖𝑖=1

  

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 = 𝜕𝜕(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝜕𝜕(𝑀𝑀𝑀𝑀𝑖𝑖)

�
𝑀𝑀𝑀𝑀𝑗𝑗≠𝑖𝑖

, 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑀𝑀𝑀𝑀} 
(6.44) 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 is the steady-state cost defined as a value that represents the operating cost 

for a unitary change in 𝑀𝑀𝑀𝑀𝑖𝑖 variable, while holding all other MVs constant. The steady-

state costs are partial derivatives. These costs can be calculated using an off-line model 

if one is available. If not, the costs are calculated prior to the plant test performed for the 

model. A positive steady-state cost means that as the variable decreases, the cost 

decreases and the profit increases; a negative value means the opposite: as the variable 

increases, the cost decreases and the profit increases. In processes where there are a few 

MVs, only one or two MVs dominate the economic optimization. In this case, the user 

can choose a steady-state cost that has the desired effect. However, in more complex 

processes, there is no other way but to carefully calculate the steady-state costs as 

described above. Notice that the choice of the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 implies that the optimizer, in addition 

to finding feasible targets for the controller, will move these targets into a certain 

“optimal” operating region. 

Aspen DMC also permits the input of MVs or CVs as target values for the 

controller. When the External Targets (ETs) option is selected in the DMC application, 

the ET calculation is performed after the CV rank feasibility stage and before the 

economic optimization stage. The ET adds an upper and lower constraint to maintain the 

CV or MV at a certain value. 
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Finally, Figure 6.19 shows all the parameters and measurements involved in the 

computation of the optimum steady state. 

 

 
Figure 6.19: Optimizer component inputs-outputs in Aspen DMC (Aspen Technology Inc, 2021). 

 

6.3.3.4 Controller 
 

The controller aims to calculate the move plan to minimize the difference between 

the predicted value and the steady-state targets calculated in the optimizer. It means to 

approximate the residual, 𝒓𝒓, in equation (6.45) to zero.  

 

𝒓𝒓 = 𝑨𝑨∆𝒖𝒖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 – 𝒆𝒆 + ∆𝒖𝒖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑴𝑴𝑴𝑴∆𝒖𝒖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≈ 𝟎𝟎 (6.45) 

 

where 𝑨𝑨 is the dynamic matrix, ∆𝒖𝒖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 are the future moves to be calculated and 𝒆𝒆 is 

the error between the steady state targets and the open loop prediction (or free response) 

𝑨𝑨∆𝒖𝒖𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , (𝒆𝒆 = 𝑺𝑺𝑺𝑺 − 𝑨𝑨∆𝒖𝒖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). To avoid abrupt changes in the MVs, a second objective 

is added to minimize the magnitude of ∆𝒖𝒖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 calculated. 𝑴𝑴𝑴𝑴 is a matrix of weights 

called move suppression. Move suppression coefficients suppress aggressive changes in 

the MVs and condition the matrix prior inversion (Shridhar and Cooper, 1998). Aspen 

DMC also considers a parameter called the “move suppression increase factor”. This 

parameter primarily affects the MV move plan after the fifth move. From the fifth move 

to the last move in the plan, the move suppression is changed linearly over the remaining 

coefficients from the value of the move suppression to the value of the multiplication of 

the move suppression factor by the move suppression increase factor (Aspen Technology 

Inc, 2021).  
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In the controller component, the least squares method is applied to (6.45) and after 

taking the derivative w.r.t. ∆𝒖𝒖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and setting it to zero, one can find the control law as 

equation (6.46). 

 

∆𝒖𝒖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 = (𝑨𝑨𝑇𝑇𝑨𝑨)−𝟏𝟏𝑨𝑨𝑇𝑇𝒆𝒆  (6.46) 

 

In the case of a multivariable control, each CV has a different importance in the 

process. Multiplying a CV by an artificial coefficient will cause the residuals associated 

with each CV to be larger, and therefore the algorithm will try to minimize these errors 

with more emphasis. This coefficient is called the “Equal Concern Error” (ECE). The 

ECE does not mean that the controller allows that amount of error, but that it 

comparatively weights the errors in one CV more or less than another. 

 

6.3.4 Dynamic Real Time Optimization 
 

The dynamic optimization layer  is written in MATLAB® and it is called by the 

Python algorithm. The current “target type” of the CVs in Petronor’s original DMC 

application is “none”, i.e., the SPs are calculated from the LP (optimizer) as previously 

explained. To evaluate the optimization structure proposed in this thesis, the DMC 

application option is changed to type “IRV” (Ideal Resting Value) as shown in Figure 

6.19. The IRV mode allows external targets (ETs) to be sent to the Aspen DMC and these 

values are considered in the LP layer calculations. The IRV was chosen over the RTO 

because it is simpler than the RTO (the RTO mode in Aspen DMC requires setting five 

different parameters), there is no staleness check, and there is no steady-state cost 

exchange. 

All the optimizations performed in this layer was solved using the interior-point 

algorithm, available in the fmincon NLP solver of MATLAB®. 
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Figure 6.20: Target options in Aspen DMC. 

 

6.3.5 Database InfluxDB 
 

InfluxDB is an open source time series database (TSDB) developed by 

InfluxData. It is used for storing and retrieving time series data in areas such as 

operational monitoring, application metrics, Internet of Things (IoT) sensor data, and 

real-time analytics (Influxdb, 2023). 

The process variables of interest are stored in the InfluxDB database, and the 

software enables visualization, as shown in Figure 6.21. 

 

 
Figure 6.21: Process variables that are stored in InfluxDB. 
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6.3.6 Connection between the parts and possible layouts of the Virtual Plant 
 

Aspen DMC3 installations have an architecture as shown in Figure 6.22. The 

architecture consists of the following components: 

 

• Aspen DMC3 online applications server(s): the machine(s) that hosts the active 

operation of deployed Aspen DMC3 applications. The server receives data from the 

Aspen CIM-IO server and hosts security assignments.  

• IO sources(s): the machine(s) that provide an interface to the DCS (Distributed 

Control System). Here we use the Aspen CIM-IO Server. 

• DMC3 Builder client(s): machine(s) where Aspen DMC3 Builder is installed. These 

workstations are used by the engineering staff to develop, update, test and deploy 

modeling and controller systems. 

• Aspen APC Web Interface host: server that host the web site APC Web Interface. 

• Aspen APC Web Interface clients with web browser access: machine(s) from which 

clients can access the APC Web Interface, allowing the engineering staff to monitor 

the status and manipulate the activities of the deployed control systems. 

 

 
Figure 6.22: Architecture installation of Aspen DMC3 (Aspen Technology Inc, 2021). 
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The OPC-UA deck was connected to the Aspen DMC controller using the Aspen 

Cim-IO interface manager application. The same DMC application used in the process 

was changed to connect to the deck, updating the IO Tag in the Deployment section in 

DMC3 Builder, Figure 6.23. So the DMC used in the simulation and the plant are the 

same (same model and configuration). The DMC were monitored using the Aspen APC 

Web Interface, Figure 6.24.  

 
Figure 6.23: Connection between deck and Aspen DMC. 

 

  

 
Figure 6.24: Aspen APC Web Interface. 

 

The developed Virtual Plant can be used in 4 different architectures.  The first one 

is shown in Figure 6.25. In this architecture, the splitter is not connected to the DMC 
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controller, so its MVs (distillate flow and steam flow) can be changed manually inside 

the RTM code in Python or any other OPC UA client. 

 

 
Figure 6.25: Virtual plant in open loop. 

 

The second possible architecture is shown in Figure 6.26. In this architecture, the 

splitter has the same configuration as in the real plant: in closed loop with DMC 

controller. In this layout, the MVs targets are calculated by the DMC (subsection 6.3.3.3), 

which sends the values to the virtual plant via OPC UA. 

 

 
Figure 6.26: Virtual plant in closed loop using Aspen DMC. 

 

The third architecture, Figure 6.27, considers that the eMPC sends directly the 

moves to the plant, i.e., the RTO and MPC layers are combined into a single layer. This 
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layout could be interesting to make experiments faster than with the Aspen DMC 

Controller, as it will be explained next. 

 

 
Figure 6.27: Virtual plant in closed loop using eMPC. 

 

Finally, the last possible architecture is presented in Figure 6.28. This is the 

architecture of interest to test the expected benefits of using an upper supervisory layer 

based on the dRTO paradigm in the real process. 

 

 
Figure 6.28: Virtual plant in closed loop with Aspen DMC and optimization layer. 

 

The execution of any of the four configurations of the Virtual Plant is roughly 

done in the following steps: 

1. Run the Deck OPC UA Server  
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2. Start Influxdb to collect data 

3. If using DMC: Launch the DMC3 application using Aspen APC Web 

Interface 

4. Set the CINT, TIME, TSTOP, speedup factor in the RTM Python code 

5. Execute the RTM algorithm 

 

6.4 Results  
 

In this section, the results of the two economic optimization problems defined for 

the splitter process are presented. The optimization was performed in four different 

scenarios with and without disturbances. 

The DMC installed in Petronor refinery has a discrete step response model with a 

settling time of 18h. It was developed with a sampling time of 4.5 minutes and each 

submodel contains 240 coefficients. The model uses a Full Feedback filter and the 

optimizer uses the LP type for the constraint rank. 

Then, to analyse any result of an RTO, it is necessary to wait at least one steady-

state time (18h). In order to reduce the time spent on the experiments, it was necessary to 

speed up the execution of the virtual plant. For this purpose, the execution frequency of 

the DMC controller was reduced, decreasing the sampling period of the model. The 

ASPEN DMC controller performs several operations during the cycle period (such as 

reading the data, solving the linear programming, calculating the movements and then 

sending the data to the process), so a sampling period of less than 1 min is impracticable. 

Therefore, the actual value of 4.5 min was reduced to 1 min, and now one steady-state 

time of 18h can be simulated in 4h (a speed-up factor in the simulation of 4.5). It was also 

necessary to improve the performance of the ASPEN DMC server computer. All results 

presented below were performed on a PC running Windows Server 2019, with a 24-core 

i9 processor running at 3 GHz and with 128 GB of memory.  

The economic cost function in the RTO layer considers the steady state profit from 

selling propylene and propane minus the cost to produce steam. The profit, 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, is 

represented by equation (6.47), where 𝐹𝐹𝐷𝐷 ,𝐹𝐹𝐵𝐵 and 𝐹𝐹𝑊𝑊 are the distillate, bottoms and steam 

flow rates respectively. The bar above them indicates that the values are in steady state. 

𝑥𝑥𝑑𝑑  is the molar concentration of propylene in the distillate. 𝑝𝑝𝐶𝐶3𝐻𝐻6,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,  𝑝𝑝𝐶𝐶3𝐻𝐻6,𝑜𝑜𝑜𝑜𝑜𝑜 ,

𝑝𝑝𝐶𝐶3𝐻𝐻8,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑝𝑝𝐶𝐶3𝐻𝐻8,𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑝𝑝𝑊𝑊 are the prices of distillate on specification, distillate out of 
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specification, bottoms product on specification, bottoms product out of specification  and 

the cost to produce steam, respectively. The product prices depend on the propylene 

concentration in the distillate (≥ 97.5% molar), i.e., below this target, the price decreases 

as a function of the composition. All the distillate production is sent to a propylene 

spherical tank. When the tank is full, the final composition is measured and if it is within 

specification (≥ 97.5% molar propylene), the product can be sold. If the quality 

composition is not achieved, the product must be reprocessed, which significantly 

increases the production costs. To avoid this reprocessing, the dRTO problem will 

consider reducing the price of the off-spec product to compensate for the loss of profit in 

producing less distillate of higher purity. For example, if 96.5% propylene distillate is 

produced in a given time period, the same amount of higher purity propylene distillate 

(98.5%) must be produced to meet the specification in the tank. Thus, a vector of 

composition and prices has been constructed, see equation (6.47), and using the Modified 

Akima piecewise cubit hermit interpolation (makima function in Matlab®), the distillate 

price changes with the composition as shown in Figure 6.29. 

 

𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝𝐶𝐶3𝐻𝐻6𝐹𝐹𝐷𝐷���+ 𝑝𝑝𝐶𝐶3𝐻𝐻8𝐹𝐹𝐵𝐵��� − 𝑝𝑝𝑊𝑊𝐹𝐹𝑊𝑊����, 

𝑥𝑥𝑑𝑑 = [0;  90;  95;  95.9;  96.7;  97.5;  98;  100] 

𝑝𝑝𝐶𝐶3𝐻𝐻6(𝑥𝑥𝑑𝑑) = [0;  0;  0;  0.9185;  0.9873;  1.0610;  1.0610;  1.0610] 
(6.47) 

 
Figure 6.29: Graphical representation of distillate price with the concentration of propylene, 

equation (6.47). 
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Four different scenarios with different characteristics were considered (see Table 

6.4). In scenario 1, the more valuable product is the distillate (propylene) and in scenario 

2, the more valuable product is the bottoms product (propane). Only in Scenario 2, the 

specification of propane is a maximum of 20% propylene in the bottoms product and the 

price of propane varies with the concentration of propane, as shown in Figure 6.30.  In 

Scenarios 1 and 2, the process disturbances (feed flow rate, feed composition, etc.) are 

held constant. Scenario 3 corresponds to the same prices as Scenario 1, but with 

disturbance values taken from the refinery’s historical data. Finally, Scenario 4 is similar 

to Scenario 3 but with a different objective function that it will be presented in the section 

6.4.4. 
Table 6.4. Scenarios considered in the simulation. 

Scenario 

Price 
Distillate 
on-spec 
𝑝𝑝𝐶𝐶3𝐻𝐻6,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
(€/tonne) 

Price 
Distillate 
off-spec 
𝑝𝑝𝐶𝐶3𝐻𝐻6,𝑜𝑜𝑜𝑜𝑜𝑜 
(€/tonne) 

Price 
Bottoms 
on-spec 
𝑝𝑝𝐶𝐶3𝐻𝐻8,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
(€/tonne) 

Price 
Bottoms 
off-spec 
𝑝𝑝𝐶𝐶3𝐻𝐻8,𝑜𝑜𝑜𝑜𝑜𝑜 
(€/tonne) 

Cost 
Steam 
𝑝𝑝𝑊𝑊 

(€/tonne) 

Presence of 
Disturbances 

1 1061 𝑝𝑝𝐶𝐶3𝐻𝐻6(𝑥𝑥𝑑𝑑) 634 - 34.0 No 
2 634 - 1061 𝑝𝑝𝐶𝐶3𝐻𝐻8(𝑥𝑥𝑏𝑏) 34.0 No 
3 1061 𝑝𝑝𝐶𝐶3𝐻𝐻6(𝑥𝑥𝑑𝑑) 634 - 34.0 Yes 
4* 1061 𝑝𝑝𝐶𝐶3𝐻𝐻6(𝑥𝑥𝑑𝑑) 634 - 34.0 Yes 

*different objective function 

 
Figure 6.30: Graphical representation of bottom product price with the concentration of propane for 

Scenario 2. 
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 Four different architectures were run for each scenario: 

1. Aspen DMC: simulation with the ASPEN DMC controller. The current 

configuration of the real plant.  

2. eMPC + Aspen DMC: simulation with the optimization layer without MA. For 

Scenarios 1 and 3, the optimization problem solved is problem (6.48), where a 

similar cost function of eMPC+MA is presented without the MA terms. 𝐹𝐹𝐷𝐷𝐿𝐿 and 

𝐹𝐹𝐷𝐷𝑈𝑈 are the lower and upper limits of the distillate flow rate, respectively. 𝐹𝐹𝑊𝑊𝐿𝐿 

and 𝐹𝐹𝑊𝑊𝑈𝑈 are the lower and upper limits for steam flow rate, respectively. Actual 

values are not shown for confidentiality reasons. In Scenario 2, the optimization 

problem solved is (6.50). 

3. eMPC + DME + Aspen DMC: simulation with the optimization layer with MA. 

The MA modifiers are calculated using the DME algorithm. In Scenarios 1 and 3, 

the optimization problem solved is problem (6.49) and for Scenario 2 the problem 

solved is (6.51). 𝑘𝑘 indicates the RTO iteration. Here, the MAy modifiers are used 

instead of the traditional ones. One reason for this is that in Chapter 5, MAy 

performed better in the constrained case without the need for a good initial point. 

Also, MAy requires a smaller number of modifiers in the case study.   

4. eMPC + TMAm + Aspen DMC: simulation using the optimization layer with MA. 

The MA modifiers are calculated using the TMAm algorithm. TMAm is a 

modification of the TMA algorithm presented in section 4 and it is introduced in 

the next section 4.2. Here, the MAy modifiers are also used instead of the 

traditional ones. The optimization problem to be solved is the same problem (6.49) 

for Scenario 1 and 3, and problem (6.51) for Scenario 2. 

min
𝐹𝐹𝐷𝐷,𝑖𝑖,𝐹𝐹𝑊𝑊,𝑖𝑖

�−𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜎𝜎𝑢𝑢1 ∑ �∆𝐹𝐹𝐷𝐷,𝑖𝑖�
2

+ 𝜎𝜎𝑢𝑢2 ∑ �∆𝐹𝐹𝑊𝑊,𝑖𝑖�
2𝑛𝑛𝑢𝑢

𝑖𝑖=1
𝑛𝑛𝑢𝑢
𝑖𝑖=1 �  

s.t. dynamic linear model of Aspen DMC 

97.5 − 𝑥𝑥𝑑𝑑��� ≤ 0 

𝐹𝐹𝐷𝐷𝐿𝐿 ≤ 𝐹𝐹𝐷𝐷 ≤ 𝐹𝐹𝐷𝐷𝑈𝑈 

𝐹𝐹𝑊𝑊𝐿𝐿 ≤ 𝐹𝐹𝑊𝑊 ≤ 𝐹𝐹𝑊𝑊𝑈𝑈 

−0.7 ≤ ∆𝐹𝐹𝐷𝐷 ≤ 0.7 

−0.5 ≤ ∆𝐹𝐹𝑊𝑊 ≤ 0.5 

(6.48) 
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−7.0 ≤��∆𝐹𝐹𝐷𝐷,𝑖𝑖�
2

𝑛𝑛𝑢𝑢

𝑖𝑖=1

≤ 7.0 

−5.0 ≤��∆𝐹𝐹𝑊𝑊,𝑖𝑖�
2

𝑛𝑛𝑢𝑢

𝑖𝑖=1

≤ 5.0 

 

min
𝐹𝐹𝐷𝐷,𝐹𝐹𝑊𝑊

�−𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑀𝑀 + 𝜎𝜎𝑢𝑢1 ∑ �∆𝐹𝐹𝐷𝐷,𝑘𝑘+𝑖𝑖�
2

+ 𝜎𝜎𝑢𝑢2 ∑ �∆𝐹𝐹𝑊𝑊,𝑘𝑘+𝑖𝑖�
2𝑛𝑛𝑢𝑢−1

𝑖𝑖=1
𝑛𝑛𝑢𝑢−1
𝑖𝑖=1 �  

s.t. dynamic linear model of Aspen DMC 

𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑀𝑀 = 𝑝𝑝𝐶𝐶3𝐻𝐻6,𝑀𝑀𝐹𝐹𝐷𝐷���+ 𝑝𝑝𝐶𝐶3𝐻𝐻8𝐹𝐹𝐵𝐵��� − 𝑝𝑝𝑊𝑊𝐹𝐹𝑊𝑊����, 

𝑝𝑝𝐶𝐶3𝐻𝐻6,𝑀𝑀 = 𝑝𝑝𝐶𝐶3𝐻𝐻6�𝑥𝑥𝑑𝑑���𝑀𝑀� equation (6.47) 

97.5 − 𝑥𝑥𝑑𝑑���𝑀𝑀 ≤ 0 

𝑥𝑥𝑑𝑑���𝑀𝑀 = 𝑥𝑥𝑑𝑑��� + 𝛾𝛾1.𝑘𝑘�𝐹𝐹𝐷𝐷��� − 𝐹𝐹𝐷𝐷,𝑘𝑘−1� + 𝛾𝛾2,𝑘𝑘�𝐹𝐹𝑊𝑊���� − 𝐹𝐹𝑊𝑊,𝑘𝑘−1� + ε1 

Modifiers are calculated using DME or TMAm 

𝐹𝐹𝐷𝐷𝐿𝐿 ≤ 𝐹𝐹𝐷𝐷 ≤ 𝐹𝐹𝐷𝐷𝑈𝑈 

𝐹𝐹𝑊𝑊𝐿𝐿 ≤ 𝐹𝐹𝑊𝑊 ≤ 𝐹𝐹𝑊𝑊𝑈𝑈 

−0.7 ≤ ∆𝐹𝐹𝐷𝐷 ≤ 0.7 

−0.5 ≤ ∆𝐹𝐹𝑊𝑊 ≤ 0.5 

−7.0 ≤��∆𝐹𝐹𝐷𝐷,𝑖𝑖�
2

𝑛𝑛𝑢𝑢

𝑖𝑖=1

≤ 7.0 

−5.0 ≤��∆𝐹𝐹𝑊𝑊,𝑖𝑖�
2

𝑛𝑛𝑢𝑢

𝑖𝑖=1

≤ 5.0 

(6.49) 

 

min
𝐹𝐹𝐷𝐷,𝑖𝑖,𝐹𝐹𝑊𝑊,𝑖𝑖

�−𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜎𝜎𝑢𝑢1 ∑ �∆𝐹𝐹𝐷𝐷,𝑖𝑖�
2

+ 𝜎𝜎𝑢𝑢2 ∑ �∆𝐹𝐹𝑊𝑊,𝑖𝑖�
2𝑛𝑛𝑢𝑢

𝑖𝑖=1
𝑛𝑛𝑢𝑢
𝑖𝑖=1 �  

s.t. dynamic linear model of Aspen DMC 

97.5 − 𝑥𝑥𝑑𝑑��� ≤ 0 

𝑥𝑥𝑏𝑏��� − 20.0 ≤ 0 

𝐹𝐹𝐷𝐷𝐿𝐿 ≤ 𝐹𝐹𝐷𝐷 ≤ 𝐹𝐹𝐷𝐷𝑈𝑈 

𝐹𝐹𝑊𝑊𝐿𝐿 ≤ 𝐹𝐹𝑊𝑊 ≤ 𝐹𝐹𝑊𝑊𝑈𝑈 

(6.50) 
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−0.7 ≤ ∆𝐹𝐹𝐷𝐷 ≤ 0.7 

−0.5 ≤ ∆𝐹𝐹𝑊𝑊 ≤ 0.5 

−7.0 ≤��∆𝐹𝐹𝐷𝐷,𝑖𝑖�
2

𝑛𝑛𝑢𝑢

𝑖𝑖=1

≤ 7.0 

−5.0 ≤��∆𝐹𝐹𝑊𝑊,𝑖𝑖�
2

𝑛𝑛𝑢𝑢

𝑖𝑖=1

≤ 5.0 

 

min
𝐹𝐹𝐷𝐷,𝐹𝐹𝑊𝑊

�−𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑀𝑀 + 𝜎𝜎𝑢𝑢1 ∑ �∆𝐹𝐹𝐷𝐷,𝑘𝑘+𝑖𝑖�
2

+ 𝜎𝜎𝑢𝑢2 ∑ �∆𝐹𝐹𝑊𝑊,𝑘𝑘+𝑖𝑖�
2𝑛𝑛𝑢𝑢−1

𝑖𝑖=1
𝑛𝑛𝑢𝑢−1
𝑖𝑖=1 �  

s.t. dynamic linear model of Aspen DMC 

𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑀𝑀 = 𝑝𝑝𝐶𝐶3𝐻𝐻6𝐹𝐹𝐷𝐷��� + 𝑝𝑝𝐶𝐶3𝐻𝐻8𝐹𝐹𝐵𝐵��� − 𝑝𝑝𝑊𝑊𝐹𝐹𝑊𝑊����, 

𝑝𝑝𝐶𝐶3𝐻𝐻8,𝑀𝑀 = 𝑝𝑝𝐶𝐶3𝐻𝐻8�𝑥𝑥𝑏𝑏���𝑀𝑀�  

𝑥𝑥𝑏𝑏���𝑀𝑀 − 20.0 ≤ 0 

𝑥𝑥𝑏𝑏���𝑀𝑀 = 𝑥𝑥𝑏𝑏��� + 𝛾𝛾3.𝑘𝑘�𝐹𝐹𝐷𝐷��� − 𝐹𝐹𝐷𝐷,𝑘𝑘−1� + 𝛾𝛾4,𝑘𝑘�𝐹𝐹𝑊𝑊���� − 𝐹𝐹𝑊𝑊,𝑘𝑘−1� + ε2 

Modifiers are calculated using DME or TMAm 

𝐹𝐹𝐷𝐷𝐿𝐿 ≤ 𝐹𝐹𝐷𝐷 ≤ 𝐹𝐹𝐷𝐷𝑈𝑈 

𝐹𝐹𝑊𝑊𝐿𝐿 ≤ 𝐹𝐹𝑊𝑊 ≤ 𝐹𝐹𝑊𝑊𝑈𝑈 

−0.7 ≤ ∆𝐹𝐹𝐷𝐷 ≤ 0.7 

−0.5 ≤ ∆𝐹𝐹𝑊𝑊 ≤ 0.5 

−7.0 ≤��∆𝐹𝐹𝐷𝐷,𝑖𝑖�
2

𝑛𝑛𝑢𝑢

𝑖𝑖=1

≤ 7.0 

−5.0 ≤��∆𝐹𝐹𝑊𝑊,𝑖𝑖�
2

𝑛𝑛𝑢𝑢

𝑖𝑖=1

≤ 5.0 

(6.51) 

 

All of the scenarios started from the same steady state. The eMPC layer uses the 

same parameters of Aspen DMC controller (move suppression values, control horizon, 

etc), and runs at the same frequency, 4.5 min (as explained before, in the experiments the 

simulation was accelerated and real frequency is 1.0 min).  

In all the simulations performed, the eMPC was started after 20 min and the DME 

or TMAm algorithm, if selected, was started after 1h in order to initialize the algorithms 
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properly. DME or TMAm initialize later than the eMPC because these algorithms requires 

some past data. In the case of TMAm, the identification algorithm requires a minimum 

excitation to make a good estimation of the parameters. At each iteration, the eMPC layer 

calculates the move plan and sends the first movement as an external target to the DMC 

controller. 
 

6.4.1 Scenario 1 
 

Table 6.5 presents the parameters used in the simulation of Scenario 1 to calculate 

the modifiers and gradients for the DME and TMAm algorithms. 

 
Table 6.5. Parameters used in DME and TMAm for Scenario 1. 

Parameters Values 

DME parameters 

𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷 = 3 

𝑄𝑄𝑥𝑥𝑑𝑑 = [0, 0] 

𝜎𝜎𝑥𝑥𝑑𝑑 = 0.1 

𝐾𝐾𝛾𝛾,𝜀𝜀 = 0.8 

TMAm parameter 
𝜇𝜇 = 1.0 

𝐾𝐾𝛾𝛾,𝜀𝜀 = 0.8 

 

 The optimal result is to maximize the distillate flow while maintaining the quality 

constraint at the lower limit (97.5%). The DMC optimizer uses the values of LPCost in 

order to maximize the distillate flow and minimize the steam flow. However, the cost of 

steam is not as significant as the price of distillate. 

Figure 6.31 shows that all the control architectures achieve the optimum in the 

steady state (after 80 hours of operation), but the performance in the transient period is 

very different. Figure 6.32 shows the cost function value (profit) of the process. The 

changes in the cost function in Figure 6.31 is directly associated with the constraint in 

Figure 6.32 and distillate flow in Figure 6.34. 
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Figure 6.31: Cost function from scenario 1 with different control architecture.  

 

 
Figure 6.32: Propylene concentration from scenario 1 with different control architecture.  

 

The profit at steady state is presented in Table 6.6. All the architectures performed 

similar and for this case, the inclusion of eMPC or eMPC+MA does not seem to increase 

the economic performance because for this case the model optimum is equal to the 

process optimum (at the constraint).  

 
Table 6.6. Profit at steady state for each architecture of scenario 1. 

Control Architecture Profit at steady state 
(€) 

Aspen DMC 17231.86 
eMPC + Aspen DMC 17232.51 

eMPC + DME + Aspen DMC 17232.34 
eMPC + TMAm + Aspen DMC 17233.53 
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The move plan of the MVs is shown in Figure 6.33 and Figure 6.34. From a 

control perspective, the application of an optimization layer allows for a smoother control 

because the eMPC objective function aims to maximize profit at steady state minimizing 

the control efforts. 

The TMAm presented a slower response probably because this method needs 

excitation and more information about the process as TMAm uses an identification 

algorithm to estimate the process gradients. 

 

 
Figure 6.33: Normalized steam flow rate from scenario 1 with different control architecture.  

 

 
Figure 6.34: Normalized distillate flow rate from scenario 1 with different control architecture.  
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6.4.2 Scenario 2 
 

Table 6.7 shows the parameters used in the Scenario 2 simulation to calculate the 

modifiers and gradients for the DME and TMAm algorithms, respectively. 

 
Table 6.7. Parameters used DME and TMAm for scenario 2. 

Parameters Values 

DME parameters 

𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷 = 3 

𝑄𝑄𝑥𝑥𝑏𝑏 = [0, 0] 

𝜎𝜎𝑥𝑥𝑏𝑏 = 0.1 

𝐾𝐾𝛾𝛾,𝜀𝜀 = 0.8 

TMAm parameters 
𝜇𝜇 = 1.0 

𝐾𝐾𝛾𝛾,𝜀𝜀 = 0.8 

 

The results of Scenario 2 are presented in Figure 6.35. In this scenario, the bottom 

product (propane) has the highest price and it varies with the propane concentration.  

In this scenario, we assume that LP prices are not recalculated for the Aspen DMC 

controller. Therefore, the performance would be the same as in scenario 1 and only the 

cost function is updated. Scenario 2 reinforces the advantage of the proposed eMPC 

architecture, which is the flexibility against product prices changes. In the current plant 

architecture, it would be necessary to recalculate the LP prices for the Aspen DMC 

controller using the strategy in Section 6.3.3.3. In the eMPC or eMPC+MA, on the other 

hand, the prices are changed directly in the algorithm and no prior calculation or analysis 

is required. It would also be necessary to include the modifiers for the new variable 𝑥𝑥𝑏𝑏 

and add the corresponding constraints. However, these changes could be implemented in 

the algorithm and used as needed by simply setting the modifiers to zero. 

The results show that eMPC and eMPC+MA reach a better profit than the current 

control structure.  Between eMPC, eMPC with DME and eMPC with TMA the profit at 

steady state is similar, as can be seen in the Figure 6.35. However, eMPC with TMA have 

more oscillations. 
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Figure 6.35: Cost function from scenario 2 with different control architecture. 

 

The optimum is like the Scenario 1, that you are maximizing the amount of the 

more valuable product in specification, in this case propane in bottoms. So in this 

scenario, the quality constraint is again active in the optimum, as can be seen in Figure 

6.36.  

 

 
Figure 6.36: Propylene constraint from scenario 2 with different control architecture. 

 

The profit at steady state is presented in Table 6.8. The profits of the eMPC have 

a larger increment compared to no optimization structure. In this case, the application of 

DME and TMAm algorithm do not increased the economic performance. However, the 

eMPC and DME maintain a smother control as expected by the objective function used. 
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TMAm had a oscillating behavior compared to the others optimization structures, 

maybe because a miscalculation in the modifiers, probably the constant gain 

approximation is not valid for this operating range or the gain value is different. 

 
Table 6.8. Profit at steady state for each architecture of scenario 2. 

Control Architecture Profit at steady-state 
(€) 

Aspen DMC 12604.10 
eMPC + Aspen DMC 12965.69 

eMPC + DME + Aspen DMC 12965.70 
eMPC + TMAm + Aspen DMC 12965.70 

 

Figure 6.37 and Figure 6.38 show the steam and distillate flow rates for each 

architecture. In the case of the distillate, the performance of DME is almost identical to 

that of the eMPC. In terms of control aspects, eMPC had a better performance with 

smoother movements than the other cases with eMPC. So, for this case, adding the MA 

modifiers using transient measurements does not improve the economic performance of 

the process. 

 

 
Figure 6.37: Steam flow from scenario 2 with different control architecture. 
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Figure 6.38: Distillate flow from scenario 2 with different control architecture.  

 

6.4.3 Scenario 3 
 

In this last scenario, the actual value of the process disturbances from historical 

data was used. The disturbances considered in the DMC model are the feed flow, the 

propylene concentration in the feed flow, the coolant temperature, and the steam pressure. 

Since these disturbances affect the values of the propylene concentration in the products 

and then the cost function and constraints, the MA modifiers related to these variables 

should also be included to have an accurate correction. Thus, the number of MA modifiers 

should increase from 3 to 7 when using the MAy modifiers. However, the gains related 

to the feed flow and concentration and the refrigerant are inferior to the gains related to 

the MVs. In fact, only the steam pressure gain is higher, but the price of steam does not 

interfere much with the cost function. For these reasons, and to simplify the calculations, 

the MA modifiers related to these disturbances have not been considered here. This means 

that the same optimization problem as in  Scenario 1 was applied and only the simulation 

inputs were changed.  

Table 6.9 shows the parameters used in the Scenario 3 simulation to calculate the 

modifiers and gradients for the DME and TMAm algorithms, respectively. 
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Table 6.9. Parameters used DME and TMAm for scenario 3. 

Parameters Values 

DME parameters 

𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷 = 3 

𝜎𝜎 = 10 

𝑄𝑄 = 0.1 

𝐾𝐾𝛾𝛾,𝜀𝜀 = 0.8 

TMAm parameters 
𝜇𝜇 = 1.5 

𝐾𝐾𝛾𝛾,𝜀𝜀 = 0.8 

 

The historical data from the real splitter were used as input information for the 

feed flow, feed composition of propylene, refrigerant temperature and pressure of the 

steam used in the reboiler are presented in Figure 6.39, Figure 6.40, Figure 6.41 and 

Figure 6.42, respectively. The data have been normalized for confidentiality reasons.  

 
Figure 6.39: Normalized feed flow of scenario 3. 

 

 
Figure 6.40: Normalized propylene composition of the feed of scenario 3. 
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Figure 6.41: Normalized cooling water temperature of scenario 3. 

 

 
Figure 6.42: Normalized steam pressure for reboiler of scenario 3. 

 

The Figure 6.43 shows the value of the cost function of the plant with the different 

architectures. The eMPC+DME+Aspen DMC architecture seems to maintain a higher 

value throughout the operation because the eMPC+DME compensates producing higher 

quality product when necessary, see Figure 6.44.   

 

 
Figure 6.43: Cost function from scenario 3 with different control architecture.  
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Figure 6.44: Propylene concentration from scenario 3 with different control architecture.  

 

The total cost was also calculated for this scenario and it is shown in Table 6.10. 

The results show that the corrections made by the MA modifiers increase the overall profit 

compared to the system with DMC only. DME performed slightly better than the 

architecture without MA. However, TMAm had less improvement compared to the system 

without MA modifiers. This is probably because the constant gain assumption is not valid 

in this scenario. 

It is important to note that only 3 of the 7 modifiers were included in this 

simulation, so the profit probably could be higher if the disturbances modifiers were 

included. But DME still performed according to the cost function considered. 

 
Table 6.10. Total profit for each architecture of scenario 3. 

Control Architecture Total Profit 
(€) 

Increment in profit 
(%) 

Aspen DMC 2.944 × 106 - 
eMPC + Aspen DMC 3.002 × 106 1.984 

eMPC + DME + Aspen DMC 3.024 × 106 2.721 
eMPC + TMAm + Aspen DMC 3.000 × 106 1.927 

 

Figure 6.45 shows the steam used during the process. The scenarios with eMPC 

performed better than the case with DMC only. The DMC optimizer considers a very low 

LPcost for the steam and keeps the steam flow at maximum all the time, even though in 

some moments the value could be decreased to reduce the cost. The main objective of the 

DMC controller is not to increase the economic performance of the process, but to keep 

the plant close enough to the desired operating point chosen previously. DME had a 

different performance compared to the eMPC and eMPC+TMA architectures. For the 

TMAm case, the behaviour is similar to the eMPC case without MA. 
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Figure 6.45: Steam flow from scenario 3 with different control architecture.  

 

Figure 6.46 shows the value of distillate flow value for all architectures. The 

distillate flow rate is directly related to the quality constraint. Starting at time 70 hours in 

Figure 6.39, there is a decrease in the feed flow that provokes the decrease in the product 

quality. In the DMC architecture, this change provokes an immediate decrease in the 

distillate production, which reduces the profit, since DMC does not care about the 

economic behaviour of the process. On the other hand, eMPC tries to maximize the profit, 

so the decrease in the feed flow reduces the distillate, which later also reduces the quality 

constraint, but after some time eMPC produces a distillate with higher quality to 

compensate. The DME maintains the cost function in the highest value most of the time 

compared to the other structures. The TMAm results are similar to the case of eMPC 

without MA modifiers. 

 

 
Figure 6.46: Distillate flow from scenario 3 with different control architecture.  
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6.4.4 Scenario 4 
 

After a technical meeting with Petronor engineers, it was decided to change the 

object function from the previous scenario 3. The change is to consider the pure propylene 

flow rate instead of the distillate flow rate considered in problem (6.51). Therefore, the 

new objective function is as shown in (6.52). According to them, this new objective 

function could better represent the current contracts they now have with different 

customers. 

min
𝐹𝐹𝐷𝐷,𝐹𝐹𝑊𝑊

�−𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑀𝑀 + 𝜎𝜎𝑢𝑢1 ∑ �∆𝐹𝐹𝐷𝐷,𝑘𝑘+𝑖𝑖�
2

+ 𝜎𝜎𝑢𝑢2 ∑ �∆𝐹𝐹𝑊𝑊,𝑘𝑘+𝑖𝑖�
2𝑛𝑛𝑢𝑢−1

𝑖𝑖=1
𝑛𝑛𝑢𝑢−1
𝑖𝑖=1 �  

𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑀𝑀 = 𝑝𝑝𝐶𝐶3𝐻𝐻6𝐹𝐹𝐶𝐶3𝐻𝐻6�������+ 𝑝𝑝𝐶𝐶3𝐻𝐻8𝐹𝐹𝐵𝐵��� − 𝑝𝑝𝑊𝑊𝐹𝐹𝑊𝑊���� 

𝐹𝐹𝐶𝐶3𝐻𝐻6 = 𝑥𝑥𝑑𝑑���𝑀𝑀𝐹𝐹𝐷𝐷
������������������� 

(6.52) 

 

In this last scenario only Aspen DMC, eMPC without MA and 

eMPC+DME+DMC algorithm were applied. As the TMA algorithm did not show good 

results in scenario 3 this algorithm was not applied. 

The Figure 6.47 shows the value of the cost function of the plant with the different 

architectures. It is not clear if the inclusion of the optimization layer improved the 

economic performance of the process. In Figure 6.48 the propylene concentration is 

presented.   

 

 
Figure 6.47: Cost function from scenario 4 with different control architecture. 
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Figure 6.48: Propylene concentration from scenario 4 with different control architecture.  

 

The total cost was also calculated for this scenario and it is shown in Table 6.11. 

The results show that the inclusion of a optimization layer slightly improved the economic 

performance of the process. However there is no significant differences between the 

application of MA in this case. 

 
Table 6.11. Total profit for each architecture of scenario 4. 

Control Architecture Total Profit 
(€) 

Increment in profit 
(%) 

Aspen DMC 2.395 × 106 - 
eMPC + Aspen DMC 2.414 × 106 0.800 

eMPC + DME + Aspen DMC 2.413 × 106 0.761 
 

Figure 6.49 and Figure 6.50 show the value of steam flowrate and distillate flow 

for all architectures, respectively. The case of eMPC without MA performed better in the 

control point of view comparing to the process without optimization and with 

optimization and MA. 

 

 
Figure 6.49: Steam flow from scenario 4 with different control architecture. 
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Figure 6.50: Distillate flow from scenario 4 with different control architecture. 

 

6.5 Conclusions 
 

In conclusion, the architecture of eMPC+MA+DMC controller with transient data 

can be easily implemented on top of the existing DMC layer since it was not necessary to 

develop a rigorous model for the optimization layer. It can also be concluded that the 

application of MA with transient data is valid for slow processes as the profit at steady 

state is achieved. Moreover, MA with transient data can also improve the economic 

performance of a process that suffers from constant disturbances and never reaches a 

steady state.  Nevertheless, it could be important to consider the MA modifiers related to 

these disturbances to increase the accuracy of the algorithms. However, the applicability 

of MA with transient data depends on the process under consideration as the performance 

is largely affected by the accuracy of the gradients/modifiers calculation.  

The main drawbacks for the application of DME are the tuning of the weighting 

parameters (𝜎𝜎𝜙𝜙,𝑸𝑸𝜃𝜃,𝝈𝝈𝑔𝑔, σγ𝑗𝑗). It is important to make a detailed study about the impact of 

these parameters on the performance of DME. Regarding TMAm, the algorithm still needs 

improvement, since in some cases it could not perform better than eMPC without MA.  
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7 Final Conclusions and Future Work 
 

7.1 Final Conclusions 
 

This thesis has presented contributions to the application of the MA methodology 

in slow dynamic processes by presenting a proposal to unify RTO and control layers. In 

addition, two algorithms were presented to estimate directly the MA modifiers and 

process gradients using transient data. The DME algorithm uses an optimization problem 

to estimate the first order modifiers. On the other hand, TMA tries to use a dynamic 

process gradient to enhance the economic performance of the process. This thesis also 

describes a methodology to find good initial values for the solution of complex DAE 

systems, which is usually not mentioned in the literature. The main contributions are listed 

below: 

 

• A methodology for finding good initial values for a rigorous dynamic model 

of a propane-propylene splitter in order to achieve convergence. First, the 

model structure for the splitter is built with all the mass and heat balance 

equations for each tray, boiler and condenser, in addition to the equilibrium 

equations describing the molar fraction relationship between the liquid and 

vapor phases. The proposed methodology then constructs simplified models 

based on the full rigorous model, using assumptions that may not be 

appropriate for the process under study, but reduce the number of initial values 

required. In each step, the simplified models approximate the full rigorous 

model and a subset of initial values is found. The proposed methodology has 

been presented in: “Oliveira-Silva, E., de Prada, C., "Methodology to achieve 

convergence in a rigorous dynamic model of a superfractionator", X Congress 

of Eurosim, Logroño, La Rioja, 2019.” 

 

• An integration of RTO layer with elements from MA and control layer. The 

proposed architecture includes a modified dynamic optimization, a module for 

estimating the model states, and an additional module for direct estimation of 

the modifiers during transients. This contribution was  presented in the paper: 

“Oliveira-Silva, E., de Prada, C., Navia, D., 2021. Dynamic optimization 

integrating modifier adaptation using transient measurements. Comput. 
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Chem. Eng. 149, 107282.” The module for direct estimation of modifiers is 

called Dynamic Modifier Estimation (DME) algorithm. The DME module 

aims to estimate the MA modifiers directly, without the need to explicitly 

calculate the process and model gradients. The DME uses an optimization 

problem that attempts to minimize the difference between the modified cost 

function and the constraints with the transient process measures using a 

moving horizon. The decision variables of the optimization problem are the 

dynamic modifiers that will match the static modifiers required by MA when 

the process reaches steady state. 

 

• A second algorithm that use transient measurements to estimate the process 

gradient modifiers, TMA algorithm. TMA uses a second-order approximation 

with respect to the decision variables and a first-order one w.r.t. time and an 

estimation method to estimate a dynamic gradient. It is important to remark 

that the derivatives estimated are not the steady-state process gradients, but 

dynamic ones, that change at every time step. The derivatives describe the 

effect of a change in the MVs in the cost function from steady state at a certain 

time instant during the transient. However, the application of these values 

increased the economic performance of the case studies presented. The 

contribution was presented in congress and journal: “Oliveira-Silva, E., de 

Prada, C., Navia, D. Economic MPC with Modifier Adaptation using 

Transient Measurements, ESCAPE-31, Istanbul 2021.” and “Oliveira-Silva, 

E., de Prada, C., Montes, D., Navia, D., 2023. Economic MPC with Modifier 

Adaptation using Transient Measurements. Comput. Chem. Eng. 108205.” 

The last paper also presented an application of the method in a laboratory 

hybrid plant that mimics the behaviour of a CSTR with Van de Vusse 

reactions. The inclusion of the modifiers calculated with the TMA algorithm 

has significantly increased the process benefit for this experimental example. 

 

• Development of a virtual platform to mimic a real industrial case to be used 

as a platform for RTO experiments.  A virtual environment of an industrial 

splitter has been developed to test a dynamic real-time optimizer prior to on-

site deployment. The architecture of the simulator represents the process using 

the EcosimPro© modelling and simulation software, and a real-time manager 
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to maintain a controlled pace of simulation progress. The virtual plant has 

been integrated with the same commercial predictive controller 

(Aspen©DMC) as installed in the plant (even with the same configuration) 

and a dynamic real-time optimizer has been developed in Matlab© and 

implemented on top of it, allowing the virtual process to test the optimizer 

before deployment in the real factory. The data generated by the plant is stored 

using InfluxDB©, a time series data platform, for further analysis. This 

contribution was presented in the congress: “Oliveira-Silva, E., de Prada, C., 

Navia, D., Simulation platform of an industrial propylene-propane splitter 

integrated to Advanced Process Control for Real Time Optimization 

experiments. Dycops 2022, Busan, 2022.” 

 

• The application of MA using an industrial controller (Aspen DMC) in an 

example of industrial interest and the use of the existing models from the 

advanced control layer, to reduce the implementation effort in a real process.  

The propane-propylene case study presented in Chapter 6 uses the linear 

dynamic model already developed for the DMC controller to optimize its 

operation. Traditional RTO requires a rigorous model of the process, but the 

application of MA required only the implementation of the dRTO optimization 

problem and the DME/TMA algorithm to estimate the MA modifiers. As a 

result, the effort associated with maintaining a rigorous model are eliminated.  

 

7.2 Future work 
 

In the future, we would like to continue research in the areas covered in this thesis. 

Among them, we would like to investigate the following:  

• The proposed algorithms for estimating the process gradients using transient 

data, TMA and TMAm, need further improvement. 

• Consider different structures for the eMPC economic objective function as 

the inclusion of an economic optimization during the transient and not only 

in steady state. 

• The application of the MA algorithms proposed in this thesis to biological 

processes. Biological processes are complex, non-linear and non-stationary, 

which makes modelling and parameter estimation a challenging task 
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(Rofifah, 2020). Since MA is able to find the true optimum with bad models, 

it could be an interesting solution to optimize biological processes. 

• Applying DME in batch processes. The DME algorithm was able to satisfy 

the constraints in all of the scenarios studied in Chapter 6. Thus, it seems 

that it could work well in batch processes subject to path constraints. Path 

constraints limit the inputs and outputs during the batch. 
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