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Abstract 

Approximately 50 million individuals globally are suffering from Alzheimer's disease (AD) and 

other forms of dementia, which not only affects them but also has an impact on their families and 

caregivers. As a result, there is a growing interest in discovering new methods for accurately 

predicting the progression of AD. Early detection of AD and its prodromal stages, such as mild 

cognitive impairment (MCI), is crucial for a possible illness delay. One of the numerous 

biological indicators of the illness is known to be sensitive to structural abnormalities of the brain, 

which may be shown on neuroimaging biomarkers such as magnetic resonance imaging (MRI) 

scans. Automatic categorization of AD may be possible with machine learning (ML) models by 

using MRI scans, and with deep learning (DL) approaches that can extract features from high-

dimensional data like MRI. 

In terms of context, the aim of this dissertation is to aid neuroradiologists in their 

clinical judgment regarding the early detection of AD by using DL. To that aim, the system 

design research methodology is suggested in this dissertation for achieving three goals.  

 The first goal is to investigate the DL models that have performed well at identifying 

patterns associated with AD, as well as the accuracy so far attained, limitations, and gaps. A 

systematic review of the literature (SLR) revealed a shortage of empirical studies on the early 

identification of AD through DL. In this regard, thirteen empirical studies were identified and 

examined. We concluded that  three-dimensional (3D) DL models have been generated far less 

often and that their performance is also inadequate to qualify them for clinical trials.  

The second goal is to provide the neuroradiologist with the computer-interpretable 

information they need to analyze neuroimaging biomarkers. Given this context, the next step in 

this dissertation is to find the optimum DL model to analyze neuroimaging biomarkers. It has 

been achieved in two steps. In the first step, eight state-of-the-art DL models have been 

implemented by training from scratch using end-to-end learning (E2EL) for two binary 

classification tasks (AD vs. CN and AD vs. stable MCI) and compared by utilizing MRI scans 

from the publicly accessible datasets of neuroimaging biomarkers. Comparative analysis is carried 

out by utilizing efficiency-effects graphs, comprehensive indicators, and ranking mechanisms. For 

the training of the AD vs. sMCI task, the EfficientNet-B0 model gets the highest value for the 

comprehensive indicator and has the fewest parameters. DenseNet264 performed better than the 
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others in terms of evaluation matrices, but since it has the most parameters, it costs more to train. 

For the AD vs. CN task by DenseNet264, we achieved 100% accuracy for training and 99.56% 

accuracy for testing. However, the classification accuracy was still only 82.5% for the AD vs. 

sMCI task. In the second step, fusion of transfer learning (TL) with E2EL is applied to train 

the EfficientNet-B0 for the AD vs. sMCI task, which achieved 95.29% accuracy for training 

and 93.10% accuracy for testing. Additionally, we have also implemented EfficientNet-B0 for 

the multiclass AD vs. CN vs. sMCI classification task with E2EL to be used in ensemble of 

models  and achieved 85.66% training accuracy and 87.38% testing accuracy. 

To evaluate the model’s robustness, neuroradiologists must validate the implemented 

model. As a result, the third goal of this dissertation is to create a tool that neuroradiologists 

may use at their convenience. To achieve this objective, this dissertation proposes a web-

based application (DEEP-AD) that has been created by making an ensemble of Efficient-

Net B0 and DenseNet 264 (based on the contribution of goal 2). 

The accuracy of a DEEP-AD prototype has undergone repeated evaluation and 

improvement. First, we validated 41 subjects of Spanish MRI datasets (acquired from HT 

Medica, Madrid, Spain), achieving an accuracy of 82.90%, which was later verified by 

neuroradiologists. The results of these evaluation studies showed the accomplishment of such 

goals and relevant directions for future research in applied DL for the early detection of AD in 

clinical settings. 

Keywords :  Alzheimer's; Deep Learning; End-to-End Learning; Transfer Learning; Ensemble 

Learning; Convolutional Neural Network; Mild Cognitive Impairment; MRI; EfficientNet; 

DenseNet; Spanish MRI Dataset. 
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 Chapter 1: Introduction 
 

Summary: This chapter outlines the overall research context of the dissertation, the research 

question, the major goals, and the approach used to achieve them. The dissertation is about using 

techniques based on machine learning (ML) and neuroimaging biomarkers to find early signs 

of Alzheimer's disease (AD). More specifically, we want to provide conceptual and technical 

tools to help professionals (such as neuroradiologists and doctors) make decisions about the 

diagnosis of the various stages of AD. Additionally, we want to increase the existing, sparse corpus 

of empirical research on the effects of various ML-based strategies for analyzing high-dimensional 

medical data.  

We suggest three key contributions in line with the System Design Research Methodology 

to tackle the current issues with early detection of AD: an analysis of the impact of machine 

learning (ML)-based strategies for diagnosing AD, the identification and implementation of 

the optimum deep learning (DL) models, and a web-based tool to assist in the prediction of 

various stages of AD. The contributions have been assessed and improved throughout the course 

of the study, utilizing thirteen empirical investigations for the early diagnosis of AD using ML-

based techniques as well as a series of experiments with neuroradiologists. 

1.1 Motivation 

The most prevalent kind of dementia is AD. It is a neurodegenerative disorder that progresses and 

cannot be reversed. There are no reports of any proven disease-altering treatments. Many 

researchers believe that AD has a slow-moving course that probably starts many years before any 

clinical symptoms appear [1] . By the year 2022, there were around 6.5 million Americans living 

with AD, and it has been estimated that by the year 2050, this number would increase to about 14 

million [2]. In the USA, the cost of managing AD in 2022 was anticipated to be over USD 321 

billion, including social, medical, and economic losses to patients' family members. By 2050, this 

expenditure might reach USD 1 trillion. Maria Luisa Carcedo, Spain's Minister of Health, 

Consumption, and Social Welfare, has outlined the key areas of the nation's National Alzheimer's 

Plan 2019–20231 , where she hopes to enhance AD diagnosis.  

 
1 https://www.alzheimer-europe.org/news 
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To categorize individuals who are in the early stages of their clinical development of AD, 

the term "mild cognitive impairment" (MCI) is used. Clinical trials  focused on these patients [3]. 

MCI could be viewed as a stage of transition between AD and normal aging. In order to aid in the 

early detection of AD, it will be useful to distinguish between MCI patients who will gradually 

advance to AD and those who do not exhibit any clinical signs of AD. Consequently, a multi-class 

decision system is needed to distinguish AD and its many stages from normal controls. Since AD 

may be detected without the help of any specialists or skills when it is too late for therapy, it is 

crucial to distinguish it from MCI or normal individuals. The biggest difficulty is differentiating 

MCI from normal controls and predicting the development of MCI into AD in order to provide 

patients with prompt therapy. 

A rapid advancement in neuroimaging methods, such as magnetic resonance imaging 

(MRI), positron emission tomography (PET), and functional MRI (fMRI), produces a large amount 

of high-dimensional neuroimaging data that is used by neuroradiologists and in ML approaches 

for the automatic early detection of AD. Competitions like the Alzheimer's disease Big Data 

Competition [4] and the challenge of detecting MCI using MRI data[5] also increased the interest 

of researchers in solving this issue. These competitions aimed to utilize an open science strategy 

to swiftly uncover reliable predictive biomarkers for AD that may be used by the research, 

pharmaceutical, and regulatory communities to advance the diagnosis and treatment of AD. Many  

Multiple ML methods have been developed and have shown excellent performance [6]–[11].  

Several ML pattern analysis methods, including support vector machines (SVMs), logistic 

regression (LR), and SVM-recursive feature elimination [12], have been successful in detecting 

AD. Automated SVM-based diagnostic ML models for neuropsychiatric illnesses, on the other 

hand, need human-created features because they are unable to extract adaptive characteristics. 

These approaches also need technical expertise and go through numerous phases of 

optimization [13], which may be time-consuming and difficult. Extraction of features, feature 

selection, dimension reduction, and the use of a classification algorithm are the four main phases 

involved. However, problems in reproducing these implementations have emerged [14].  

Because of the rising power of GPUs, DL methods for image classification applications 

have evolved. DL is a subset of ML that models how the human brain works to identify complex 

patterns. It learns features, latent interpretations, and disease-related designs through spontaneous 

training and explore associations in different parts of images. Researchers from different fields, 
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such as high-dimensional medical image analysis, image segmentation, object recognition, and 

disease detection, have been utilizing DL models. Statistical ML methods were initially effective 

in automating the diagnosis of AD, but recent advances in DL methods like convolutional neural 

network (CNN) and sparse autoencoders [15]–[22]  have outperformed them. The use of CNNs 

has rapidly spread into a variety of domains, beginning with AlexNet  outstanding performance in 

ImageNet large-scale visual recognition challenge [23] and then expanded into medical image 

analysis, started with 2D images,  such as chest X-rays [24], and then progressed onto 3D images, 

including MRI. End to End Learning (E2EL)  approach serves as the bedrock of DL. The primary 

advantage of E2EL [25] is that it may potentially improve all stages of the training pipeline 

simultaneously. 

Transfer learning (TL) is becoming more popular in the field of DL because it allows for 

successful DL training even when there is a lack of data [26], [27] . Human behavior, which 

involves learning from the past to solve difficult challenges, is the basis for the TL concept. TL 

aids in the acceleration of the training process and the enhancement of the performance of DL 

architectures. DL approaches based on CNN have shown excellent performance, especially for 

networks with similar training and testing parameters [28]. This is also correct in the context of 

AD-related research, as the majority of them have utilized the public data set of the  ADNI [29] 

for training and testing. One limitation of DL is that it is difficult to adjust the possible bias in the 

network once the complexity is extremely high to assure reproducibility and transparency. 

Diagnosing AD accurately and efficiently is crucial for starting appropriate therapy. Anticipatory 

diagnosis of AD is particularly important for the advancement of therapeutics and, eventually, for 

successful patient care. More recent applications of DL strive to achieve analysis speeds and 

accuracy that surpass those of human practitioners. 

  The famous Google research [30] on diabetic retinopathy diagnostics showed superior 

classification performance compared to that of a trained human expert. However, there are no DL-

based systems deployed in clinical settings to assist experts in taking decisions about the 

progression of AD. For DL to be useful in diagnostics, the predicted classifier must be 

interpretable, and performance consistency across situations is essential. Future research must 

inevitably replicate major discoveries from DL on completely independent data sets. This is now 

acknowledged in genetics [31], but has been sluggish to enter DL research using neuroimaging 
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data. Hopefully, the increasing open biology of medical research data, particularly in the area of 

AD and associated illnesses, will offer a foundation for addressing this issue. 

This chapter continues by outlining the efforts made in this dissertation to address such 

constraints. The dissertation's major purpose and the sub-goals under which the research issue was 

framed are described in Section 1.2; the dissertation's research method is outlined in Section 1.3; 

and the dissertation's organization and findings are summarized in Section 1.4. 

1.2 Dissertation Goals and Contributions 

In considering the preceding research context, this dissertation addresses the following 

overarching issue: 

“How can neuroradiologists be better assisted in determining the stage of AD so 

that appropriate therapy may be started without unnecessary delay?” 

In this dissertation, I want to find out how neuroradiologists can use neuroimaging biomarkers and 

DL-based strategies to track the progression of AD so that patients can get treatment right away. 

In addition, I want to understand and contribute with a series of empirical studies, the impact of 

DL-based tactics in real-world clinical settings and to acquire helpful insights for the creation of 

the conceptual and technical tools presented in the dissertation before offering such assistance. I 

suggest that the following three intermediate goals (see Figure. 1-1) be met to answer the research 

question posed in this dissertation: 

1. To understand the DL models that have performed well at identifying patterns 

associated with AD by using the neuroimaging biomarkers. 

DL-based techniques for medical image classification tasks may effectively learn features, 

hidden representations, disease-related patterns, and investigate correlations in diverse 

areas of images via impulsive learning. Researchers have had trouble putting DL-based 

strategies for early AD detection into place because of the unique properties of 

neuroimaging biomarkers, such as high-dimensional heterogeneous data, similar brain 

anatomies in MCI and AD patients, and the lack of a larger number of neuroimaging 

biomarkers. The use and acceptance of DL-based strategies in such environments are 

hindered by a lack of empirical proof of their efficacy in early AD detection. 

In view of this, the first major contribution of this dissertation (CONT#1) is a 

compilation of thirteen empirical studies analyzing the effect of the DL strategies on 

neuroimaging biomarkers for the early detection of AD. These analyses aim to 
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understand the effect of DL-based strategies for early detection of AD and to motivate the 

usefulness of technological systems supporting the use of these strategies in clinical 

settings. 

2. To provide the neuroradiologist with the computer-interpretable information they 

need to analyze an MRI scan. 

As mentioned before, the number of people with MCI is growing, and it's hard for 

neurologists to predict how the disease will progress. This makes it necessary to use 

automated methods to help in taking the decision about the progression of MCI. The 

computer-interpretable representation of neuroimaging biomarkers is presented as a 

potential solution for the automatic early detection of AD. Furthermore, this digital 

representation would allow successful DL models to be reused in the detection of other 

diseases. However, the current support of DL-based strategies is limited. Most current DL 

models stick with the same data source ADNI, and don't utilize E2EL; therefore, they can't 

provide a generic solution and aren't suitable for use in clinical settings.  

Therefore, one of the main contributions (CONT#2)of this dissertation is the 

identification and implementation of the optimum DL model based on a novel 

approach, "The Fusion of E2EL and 3D TL," and MRI scans that enable a good 

classification of MRI scans in various phases of AD. 

3. A tool that neuroradiologists may use at their convenience to evaluate the model’s 

robustness.  

As it was previously mentioned, the model's responsiveness must be verified, and 

the deployed system must also be conveniently accessible via some online medium in 

clinical settings to assist neuroradiologists. Therefore, "DEEP-AD," a web-based tool to 

aid neuroradiologists in their clinical judgment regarding the early detection of AD, 

is another significant contribution (CONT#3) of this dissertation. DEEP-AD is founded on 

an ensemble of 3D CNNs(EfficientNet-B0 and DenseNet-264 architectures) with E2EL 

and 3DTL. Furthermore, it has been validated on 41 individuals using Spanish MRI 

datasets, with an 88.70% success rate. This data collection was given by HT Medica of 

Spain. 
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Figure 1-1 General dissertation schema including the context, research question, goals, and contributions. 

1.3 Research Methodology 

Choosing a suitable research approach is crucial for achieving the goals. The term "methodology" 

is used to describe "the assumptions and attitudes that serve as a reason for study and the standards 

or criteria the researcher employs to analyze evidence and reach a conclusion" [32]. The study 

field, the research questions and goals, and the researcher's own personal philosophy all have a 

role in the decision on which research technique to use. Therefore, the researchers' worldview  or 

paradigm [33] is one of the first things they should think about before beginning the study process.   

According to Creswell and Poth [34] , there are four main worldviews, which vary in how this 

world is imagined (i.e., ontology) and how knowledge is generated (i.e., epistemology): Social 

constructivism, the transformational paradigm (advocacy/participatory), post-positivism, and 

pragmatism. 

My own perspective is more deterministic (every occurrence is determined by previously 

existing causes and circumstances) and hence more connected with the post-positivism worldview. 

According to this worldview, there is a single reality that can only be understood imperfectly and 
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probabilistically because of many aspects such as human environment, background, culture, genes, 

and so on . Furthermore, this worldview's philosophy is based on the objective creation of 

knowledge and the generalization of outcomes . 

Since most of the variables  in exact sciences like physics or chemistry are well-known and 

under human control, this strategy works effectively in those fields. Nevertheless, I discovered 

while pursuing my PhD that the social sciences face a unique set of challenges because of the sheer 

volume and complexity of the factors that influence human behavior. Therefore, while this reality 

can be quantified through probabilities based on various social factors such as background, it is 

also crucial to incorporate qualitative methods and subjective interpretations, such as observations 

and open-ended survey questions, to provide context and gain insights into individuals' emotions 

and perceptions, and to further comprehend the underlying causes of these probabilities. 

Thus, in this dissertation, we analyze the presence of a reality that, social circumstances may 

be understood differently by people and the knowledge can be attained via various ways and 

methodologies depending on the study purpose and environment. As a result, this way of 

understanding the world and constructing knowledge is better aligned with the pragmatist 

worldview [35]. According to this viewpoint, research must be contextualized, and information is 

gathered using both quantitative and qualitative approaches based on the study objectives, with an 

emphasis on the practical implications. 

As previously mentioned, this dissertation is structured in a multidisciplinary area where 

conceptual and technical contributions are intended to have an influence on the medical sector. As 

a result, we investigated many common research approaches, including the Engineering Method 

[36],  Design Science Research Methodology [37], and System Development Research 

Methodology [38]. Finally, the System Development Research Methodology (SDRM) was chosen 

as the best methodology for this dissertation for the reasons listed below. 

SDRM integrates research concerns often seen in the social (behavioral) and technical 

(software development) sectors, both of which are closely related to the aims of this dissertation. 

Also, SDRM is a good way to study because it includes system development as a major part of the 

study process. The overarching objectives of this dissertation, namely, the understanding of DL 

strategies in analyzing the neuroimaging biomarkers for early prediction of AD and providing an 

affordable tool to neuroradiologists through the development of technological and conceptual 

contributions, are completely aligned with the purposes for which this methodology was designed, 
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making it very suitable to achieve them. Finally, SDRM employs an iterative procedure to improve 

the contributions based on the experiences and information gathered throughout the research 

phase. As a result, this iterative procedure may assist to improve such contributions and better 

comprehend their true effect on the early detection of AD by the neuroradiologists. 

SDRM arranges research into a five-stage methodical iterative procedure [38].The five SDRM 

methodological phases and their use in this dissertation are discussed below (see Figure. 1-2). 

1. Build a conceptual framework. During this phase, researchers formulate a 

meaningful RQ, study system needs, and look for new ways and ideas in relevant areas. 

To that purpose, we conducted a SLR [39] during the first methodological cycle 

(Cycle 0), which assisted us in identifying a lack of empirical research done in clinical 

settings for the early prediction of AD and (ii) a lack of E2EL and 3D TL-based DL 

models. 

The first restriction prompted us to conduct thirteen empirical investigations (CONT 

#1) to better understand neuroradiologist demands, platform limits, and the findings of 

DL models utilizing neuroimaging biomarkers during Cycle 0. The results of the first 

cycle of research (literature review and empirical investigations) led us to define a set 

of traits and conditions that would make it easier to use DL-based techniques to 

diagnose the onset of MCI.  

2. Identification and implementation of the optimum DL model. The next step in the 

SDRM process is to offer the neuroradiologist computer-interpretable information 

for analyzing an MRI scan. Eight DL models based on 3D CNN from the DenseNet 

and EfficientNet families have been implemented to achieve this goal. Following this 

implementation, I conducted a comparative study utilizing an efficiency effects graph 

and a rank mechanism (Cycle 1) to choose the optimal model. The results of this 

analysis revealed that the EfficientNetB0 and DenseNet264 models performed the best 

among all models for binary classification tasks to categorize (AD, sMCI) and (AD, 

CN) subjects.  

3. Assess and enhance the model . In this step, we proposed and implemented a novel 

method termed "Fusion of E2EL and TL"(Cycle 2) to improve the accuracy of 

EfficienNet-B0 (identified in Cycle 1) for categorizing (AD , sMCI) subjects. This 

optimum model is one of the main contributions (CONT#2) of this dissertation. In 
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addition, for implementing the ensemble learning-based tool, we built a DL model for 

the multiclass classification task to categorize (AD, sMCI and CN) subjects. 

4. Deploy the model (DEEP-AD). This phase entails the creation of a system 

prototype, DEEP-AD (CONT#3). The system prototype helped to (1) fulfill the 

requirements identified as essential to support the neuroradiologists; (2) show the 

viability of the ensemble of models (i.e., EficientNet-B0, DenseNet264); and (3) assess 

their usefulness in real-world scenarios (Cycle 3). In addition, the design of the 

interfaces was modified throughout the development process in accordance with the 

technologies employed. 

5. Observe and evaluate the DEEP-AD. During this phase, researchers (1) assess the 

system's performance and usability, (2) confirm the system's level of support for the 

established criteria, and (3) monitor the effect on people. Given this context, in the first 

assessment iteration, a data set of 41 MRI scans of Spanish Subjects was used, which 

were verified by neuroradiologists from HT Medical in Spain.  

In the second iteration, Dr. Alvero Berbis, Head of the Neurology Department at 

HT Medica, Spain, further validated the tool. This gave me the useful information that 

allows me to judge the success of the linked dissertation goals in a positive way. 

1.4 Document Structure 

The following is the structure of this dissertation.  

Chapter 2 delves into the theoretical and practical background of the dissertation research context.       

This includes the main ideas behind (i) AD, including the differences between stable and 

progressive MCI, clinical requirements to treat AD patients on time, and current drawbacks; (ii) 

ML and DL approaches for early detection of AD, including the differences with other similar 

concepts, DL models used to automate the classification of AD, and associated orchestration tasks; 

and (iii) neuroimaging biomarker datasets and preprocessing methods (iv)  the current state and 

limitations of DL strategies obtained through a systematic literature review . In addition, the 

dissertation's first contribution (CONT#1) is presented, which consists of thirteen empirical studies 

that were conducted utilizing several DL algorithms for the early detection of AD. The later 

sections of this chapter detail the research findings and provide possible design principles based 

on them. 
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In Chapter 3, we described the design and implementation of eight 3D CNN-based architectures 

employing E2EL and T1-weighted MRI biomarkers. The preprocessing techniques used for MRI 

input and the sources of MRI scans are also explained. In addition, the employed rank mechanisms, 

and efficiency effect graphs to compare the implemented models have also been presented. The 

analytical findings and empirically verified model results are outlined at the end of the chapter.  

In Chapter 4, we enhance Chapter 3 by suggesting a unique "fusion of E2EL and TL" strategy to 

improve the accuracy of classifying AD and sMCI subjects. For this task, 3D CNN EfficientNet-

B0 was used. In addition, we developed and implemented a 3D CNN model for multi-classification 

tasks for classifying AD, CN, and sMCI subjects. The chapter concludes with an overview of the 

analytical findings and experimentally validated model results. We have also shown the second 

main contribution of the dissertation (CONT#2), which is the best DL model, EfficienNet-B0, built 

using both E2EL and TL and having an accuracy of 93.10% for unseen data. This suggests that 

the model could be used in clinical settings to help neuroradiologists make decisions. 

In Chapter 5, we introduced the DEEP-AD, an online tool based on ensemble learning. Ensemble 

is created using the models described in Chapters 3 and 4. Since it is web-based and has an intuitive 

interface, neuroradiologist may utilize it with ease. Screenshots and a process flowchart describing 

how to use this tool are provided. DEEP-AD is the subpart of (CONT#3), developed to aid 

neuroradiologist in taking the decision about the progression of AD. 

DEEP-AD was validated in Chapter 6 by using the 50 MRI scans of Spanish data sets given by 

HT Medica, Spain. The models were not trained, validated, or tested using this data set. Our 

precision is 90.4%. Each patient's hospitalization information, MRI procedure date and time, 

neuroradiologist's name, and observations are also included. We have also included the findings 

from each MRI scan that were verified with DEEP-AD. The validation process is also a part of the 

(CONT#3).   



 
 

11 
 

Chapter 7 summarizes the whole dissertation, focusing on the implications and significance of 

this work for the field of applied machine learning in health. Future research directions that have 

arisen from the work done for this dissertation are also highlighted in this section. 

 

Figure 1-2  The System Design Research Methodology [38] life cycle (top), as well as the research procedure followed throughout 
this dissertation, including the relationship between the dissertation chapters (bottom). 

 

Finally, the appendices contain following supplemental information. 

• The pre-processing workflow and all the specifics of the DL models used in the thirteen 

empirical studies. 

• The results of all folds of the best model for AD vs. CN, AD vs. sMCI, and AD vs. CN vs. 

sMCI tasks.  
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• Link to the codes of all the implemented models proposed in chapters 3 and 4. 

• Description of the database and a link to preprocessed MRI images used during the training 

and validation process. 

• DEEP-AD Screenshots and feedback form for neuroradiologists. 

• Link to access the clinical reports and MRI scans of Spanish Datasets. 

• Letter of Validation of DEEP-AD from HT Medica, Spain. 
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 Chapter 2: Research Context 
 

Summary: This chapter presents the dissertation's background, concentrating on the challenges 

mentioned in the prior chapter. First, the chapter describes the existing landscape of early 

detection of AD by ML strategies, including its characteristics, advantages, and downsides. 

 One of the major limitations mentioned in the literature is the absence of ICT-based tools 

to assist neuroradiologists in making choices concerning the course of AD, which might possibly 

be addressed using DL methods. As a result, the concepts of TL and E2EL are presented, along 

with their theoretical foundations and ramifications for DL models throughout the various stages 

of training and validation.  

Then, we concentrate on neuroimaging biomarkers and their preprocessing strategies 

and available data sets, explaining the quirks that might impede the generalization of DL 

advantages reported in other fields. We present the results of a systematic literature review on the 

use of ML and DL techniques to shed light on the significance of DL tactics for early detection of  

ADs. Despite an increasing amount of research addressing DL in AD, the results demonstrate that 

there is a shortage of empirical studies done in real clinical settings, leaving insufficient evidence 

of the actual impact of DL-based interventions on neuroimaging biomarkers. The main problems 

brought up in the literature study and the solutions suggested for them are also looked at. 

2.1 Introduction 

The primary purpose of machine learning (ML) research in the health care domain is to facilitate 

and enhance decision-making regarding illness diagnosis or progression utilizing biomarkers 

through technology [40]–[42] . This chapter outlines the dissertation's primary pillars, which are 

framed within the broad domains of DL [13] and AD [43]. Both study areas have been extensively 

researched in the literature. However, combining these fields creates additional obstacles and 

research opportunities, which are also discussed in this chapter. 

 In the recent decade, there has been an explosion of interest in using deep learning (DL) to 

biological and healthcare analysis and diagnosis. Numerous successes [24], [30], [44]–[46] have 

been documented using the strategy for discovering relevant characteristics and completing tasks 

that were previously difficult to complete by other techniques and human specialists. However, 

specific characteristics related to early detection of AD (e.g., a massive number of dimensions and 

heterogeneity in neuroimaging biomarkers, similar anatomy of the brain in different stages of AD, 
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and the lack of empirical studies done in clinical settings) present several challenges to the 

development of a DL-based tool for clinical use. Based on the benefits seen in a number of health-

related problems, this dissertation suggests using DL (especially techniques based on TL and 

CNN) for early detection of AD. 

As background for this dissertation, Section 2.2 explains where AD comes from and how 

it differs from other health care problems that have been treated using ML methodologies. The 

theoretical foundations of these techniques for early AD prediction and their ramifications for 

clinicians are also introduced in Section 2.3, along with the notions of classic ML strategies, DL 

strategies using E2EL and TL, and hybrid approaches.  

Nevertheless, it's important to remember that the ML distinguishing properties may affect 

the development of a tool for early prediction of AD (see Section 2.3). The present panorama of 

ML strategies for AD is not fully established; hence, we recommend carrying out a systematic 

literature review to collect evidence on its potential advantages (see Section 2.4). The findings 

highlighted two significant restrictions, both of which are recommended to be solved in this 

dissertation. There are two main obstacles to the effective implementation of DL-based methods 

in AD contexts: (1) a dearth of corroborating empirical data and (2) an absence of technology 

mechanisms to facilitate their orchestration in clinical settings (see Figure. 1-1) 

2.2 Alzheimer’s Disease 

The cognitive and emotional declines that characterize dementia are hallmarks of the illness at the 

clinical level. Deterioration in memory, logic, language, and perceptual interpretation are common 

symptoms that have a negative impact on one's ability to go about one's everyday life.  Dementia 

is characterized by a wide range of cognitive decline, with AD accounting for 62% of all cases. 

Patients with AD often struggle to remember recent events and acquire new knowledge. Memory 

loss, cognitive decline, and alterations in behavior worsen with AD's latter stages. Symptoms often 

include disorientation and wandering, distrust of loved ones, prolonged difficulty with routine 

chores, and difficulties with communication and motor skills [2]. 

At the time Alzheimer's disease is identified, the neuronal damage has already progressed 

enough to be irreversible [47]. Damage cannot be undone when neurons die because, unlike other 

cells, they do not proliferate and replace one another [2]. Dementia must thus be identified in its 

very earliest stages in order to slow the rate of decline [48], [49]. A patient's quality of life may be 

improved by receiving the appropriate care by being detected early[50]. 



 
 

15 
 

Another thing to think about is the cost of dementia. The expenditures on health care and 

long-term care for those living with Alzheimer's or other dementias are significant, and dementia 

is one of society's most expensive diseases. Alzheimer's and associated dementias will cost the 

United States $321 billion in 2022, including $206 billion in Medicare and Medicaid 

expenditures[2]. Alzheimer's disease is expected to cost about $1 trillion by 2050 unless a 

medication to slow, halt, or prevent the illness is produced[2]. 

As a result, it is critical to create low-cost diagnostic and support systems to help minimize 

the rising costs associated with dementia. One of the planned approaches is to introduce e-health 

(the use of information and communication technology, or ICT) solutions to lower costs and make 

health systems and solutions more accessible to everyone [30], [51]–[53]. Prince et al. [54] 

highlighted the benefits of e-health technologies, such as increased access to health-care services 

by elderly individuals, cost-effectiveness, and efficiency in managing health resources.  

 

2.2.3 Ways of detecting Alzheimer’s  

Alzheimer's symptoms are being researched to enhance the outcomes of existing methodologies 

or to develop novel and more accurate diagnostic tools based on new low-cost and widely 

accessible technology. Methods for detecting Alzheimer's disease are divided into two groups. 

2.2.3.1 Invasive 

Invasive approaches need acquiring data from the patient's body through procedures such as 

lumbar puncture or blood retrieval. These invasive approaches aim to identify possible biomarkers 

that might be used to predict AD [55]. Most of them are not necessarily safe or suitable for the 

patient, and they may be very painful at times. On the contrary, non-invasive diagnostics are safer 

and more convenient throughout the diagnostic procedure.  

2.2.3.2 Non-invasive 

Due to the development of computer technology and the availability of new technologies, virtual 

environment (VE) and virtual reality (VR)-based techniques are now being examined for 

diagnosing AD. Immersive VE technology has significant benefits as a tool for psychological 

study, enhancing experimental realism and enabling impossible alterations of reality [56]. Multiple 

studies have demonstrated that virtual environments (VEs) can be used for neurophysiological 
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assessment [57], and new technologies, such as emerging head-mounted displays, multi-sensory 

interaction devices, and three-dimensional (3D) smart technologies, can facilitate medical tests 

and therapies [58]. The objective is to provide more accurate and non-invasive diagnostics at home 

and in nursing homes. Non-cognitive and cognitive tests may also be classified as approaches to 

AD detection. These treatments are non-invasive and simple to apply. Cognitive tests comprise 

the methods used to measure the cognitive abilities of patients.  

 Methods based on problem-solving exercises and questions are among the most widely 

used for detecting cognitive impairment. This is the standard approach used by medical 

professionals. The MMSE, Mini-Cog test, and Saint Louis University Mental Status (SLUMS) 

[59] are only some of the tools that may be used to assess cognitive function. One of the most 

popular and often administered assessments is the Mini-Mental State Examination (MMSE)[60] .    

Orientation, registration, attention, arithmetic, memory, naming, repetition, understanding, 

writing, and construction are just a few of the 10 areas tested throughout the MMSE's 20 activities. 

While the Mini-Mental State Examination (MMSE) is sufficient for screening late-stage AD, it 

does not detect MCI, as Mitchell [61] argues. Since the MMSE is not difficult enough for 

individuals with high IQs, he also outlines some of the restrictions that are featured on the MMSE 

and other cognitive tests, such as the ceiling effect. When it comes to spotting signs of AD early 

on, the Mini-Cog test outperforms the MMSE [62].  

There are a total of eleven parts to SLUMS, with a maximum score of 30 [63]. It measures 

things like orientation, memory, reasoning, and executive functioning and takes around seven 

minutes to complete. The SLUMS test has been shown to be effective in detecting Alzheimer's 

disease, as shown by Szcze sniak et al. [64]. The findings of this test are associated with those of 

other tests like the Mini-Mental State Examination. Its specificity and sensitivity for detecting MCI 

are also higher than those of the Mini-Mental State Examination for MCI. 

Non-cognitive testing, on the other hand, comprises all other approaches used to identify and 

diagnose dementia. Several non-invasive, non-cognitive tests are used to find out about AD in its 

early stages. Some of them are discussed below.  

i) Neuroimaging Techniques : Neuroimaging methods, such as magnetic resonance 

imaging (MRI) and computed tomography (CT), are used to identify disease-related 

brain alterations in patients [2], [65]. One of the advantages of neuroimaging is its 

simplicity of execution. It often requires little more than lying still and remaining 
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motionless while the scan is performed around you. These cutting-edge procedures 

allow physicians to map the brain's regions and functions noninvasively. 

Agüera-Ortiz et al. [66] presents a research that uses several MRI procedures, including 

Diffusion Tensor Imaging (DTI) and Fluid-attenuated Inversion Recovery (FLAIR), to 

connect the apathy of AD patients with alterations in white and grey matter.  

However, inter-individual variability in the processing of life experiences and 

fundamental emotions likely contributes to contradictory results across studies [61]. In 

neuroimaging research, it is difficult and complicated to control for symptom 

uniformity, nonspecific characteristics linked to psychotherapists, the subtleties of the 

procedures utilized, as well as the qualitative processing of subjective experiences. 

ii) Behavior Analysis: Approaches based on the examination of behavior attempt to 

identify atypical responses to common situations or challenges in everyday life. 

Methods for assessing cognitive impairments in everyday life activities often entail the 

use of external equipment for a length of time in order to analyze the behavior of 

patients [68], [69]. For instance, Aztiria et al. [68] put a sensor on the patient's foot in 

order to analyze their gait (step length and step height), which represents the severity 

of dementia in patients. However, the gait-measuring approach has significant 

limitations, such as requiring the patient to wear a gadget for extended periods of time.  

The primary difficulty with these approaches is that the resulting data are 

insufficiently precise to inform an appropriate strategy for early-stage dementia 

diagnosis[69], [70]. Among the disadvantages of these techniques are the need for the 

patients' permission to install the sensors and security issues that might lead to an 

invasion of privacy. 

Emotional analysis is one of the additional approaches to behavior. As noted in 

[71], the deterioration of social cognition is one of the indications of AD; hence, several 

recommendations [72], [73]concentrate on the patient's capacity to recognize emotions. 

In contrast, some methodologies analyze patients' responses to certain inputs. Due to 

the significance of emotion detection in several areas, such as neuroscience and 

psychology, several approaches for recognizing human emotions have been presented 

[74]. Several approaches attempt to analyze these reactions/emotions by using various 

data, such as electroencephalogram (EEG), eye tracking data, audio, and facial 
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movements. Some dementias, such as dementia with Lewy bodies, cause a lack of 

facial expression; hence, facial expression analysis is implausible. However, these 

treatments may be especially beneficial in AD, when cognitive impairment is coupled 

with greater facial expression [75]. 

When compared to fluid biomarkers, neuroimaging techniques have a greater degree of spatial 

sensitivity[50], [76], [77], making them a potential tool for assessing disease development at 

different stages. Considering the above, we have decided to use neuroimaging methods as one of 

the inclusion criteria for SLR. 

2.3 Machine Learning Strategies for Alzheimer’s Detection 

The objective of ML, which is a subfield of artificial intelligence, is to create strategies that allow 

computers to learn. As stated by Rogers et al.[78], it seeks to identify relationships between input 

factors and related responses that permit the prediction of reactions to new input variables. Using 

data from patients' tests and tasks or medical data and their related classifications, such as healthy 

or unhealthy subjects, ML approaches might establish relationships between data and labels. For 

instance, Souza et al.  [79] uses SVM, Nave Bayes, and optimal-path forest (OPF) classifiers to 

distinguish between healthy and Parkinson's patient handwriting. Depending on the number of 

labels to be identified, cognitive impairment screening methods often use binary classification, or 

multiclass classification techniques. These methods are mostly used by AD detection strategies 

that classify vast quantities of data. The simplest classification tasks involve categorizing data into 

two categories, or the binary classification issue. Multiclass challenges demand classifying the 

data provided into more than two categories. Multiple binary classifiers or a multiclass classifier 

may be used to tackle this challenge. 

 In the last decade, it has been found that ML approaches are very useful for the diagnosis 

of AD [80], [81]. SVM, artificial neural networks (ANN), and DL are the approaches for 

classification that are most often utilized. The nature of the optimization problem is the 

fundamental distinction between SVM and ANN. SVM provides a globally optimal solution, while 

ANN provides a locally optimal solution [82]. Feature extraction is a crucial stage in both SVM 

and ANN. Shi et al.[83]  postulated that a mix of neural networks and intelligent agents may be 

advantageous for medical picture processing. Nevertheless, deep learning includes feature 

extraction in the learning model itself. Deep learning is beneficial for huge datasets, particularly 
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image data [84]. Some studies have employed ensemble approaches to increase the accuracy of 

AD and other diseases categorization [85]–[88]. 

In the next section, we'll talk about how ML is used to find the early stages of AD by 

categorizing it in to three subtypes. This will help us understand it better and, as a result, lower our 

SLR inclusion criteria.  

2.3.1 Traditional Machine Learning Methods  

SVM  is a very robust  and commonly used ML approach for regression and classification problems 

[7], [89]. SVM employs the notion of maximum margin to categorize the data points. Many 

versions of SVM have been developed to improve its generalization ability and training duration. 

Twin support vector machine (TWSVM) and least-squares-based (LSTSVM) algorithms [90] are 

computationally efficient variations of SVM. Traditional ML algorithms place a significant 

emphasis on feature selection when classifying data.  

Vemuri et al. [91] discovered that combining demographic and genetic data with MRI 

scans improved the accuracy of distinguishing between CN and AD. A new parcellation approach 

for identifying small gray matter alterations is presented by Mesrob et al. [92]. Magnin et al. [93] 

introduced a technique for selecting features based on the histogram of areas of interest (ROIs) for 

CN vs. AD. Gerardin et al. [94] used shape characteristics of the hippocampus to differentiate 

between CN, MCI, and AD and discovered that shape deformation features are superior to 

volumetric features. Other approaches, such as SVM-RFE [95], are employed to identify 

significant brain characteristics for CN vs AD. EEG information is also used[96] for classifying 

CN vs AD using SVM.  

By giving researchers from all across the globe a common platform, competitions like the 

Alzheimer's disease Big Data Dream Challenge2 and the challenge of predicting MCI from MRI 

data 3 have shown their utility in the AD diagnosis process. Numerous ML algorithms have been 

developed because of these contests and evaluated. It is necessary to have a preset architectural 

design to employ these ML algorithms for classifications. A classification method must be 

implemented once the features have been extracted, chosen, and the dimensions have been 

 
2https://phidatalab.org/news/alzheimers-disease-big-data-dream-challenge/ 
  
3 https://www.kaggle.com/c/mci-prediction 
 

https://phidatalab.org/news/alzheimers-disease-big-data-dream-challenge/
https://www.kaggle.com/c/mci-prediction
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reduced, which amounts to four stages in total, which may be time-consuming. Additionally, each 

step of this process must be optimized, and professionals must be involved [13]. These 

implementations' reproducibility has been a problem [14]. 

2.3.2 Deep Learning 

Since 2014, there has been a considerable amount of interest in research on AD detection using 

DL. Figure 2-1 shows that the number of publications in this field has grown dramatically since 

2017. It has been found that deep models are better at finding AD than traditional ML methods. 

 

                                                 Figure 2-1 Number of papers used deep learning to find AD over the years. 

Litjens et al.[97] did a review of how DL methods can be used to analyze medical images. 

Even though deep learning models are called "black boxes," it is said that some statistical 

techniques can be used to estimate the network's uncertainty. Shen et al. [84] did a survey on how 

deep learning could help people with Alzheimer's. 

The issue with conventional ML approaches has been resolved by DL (7), which has 

transformed the process of feature engineering into a learning step. In other words, instead of 

manually extracting features, DL merely requires a data set and, if required, minimal 

preprocessing. It then discovers on its own the useful representations [13] . Thus, feature 

engineering is now performed by computers rather than humans. This indicates that non-experts 
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in machine learning may use DL for their own research and/or applications, particularly in medical 

picture analysis. Deep learning's exceptional success is largely attributable to the following factors: 

• Technological advancements in central processing units and graphics processing 

units. 

• The availability of vast quantities of data. 

• innovations in DL algorithms [30], [41], [50], [98] 

DL is technically superior to ordinary artificial neural networks because it permits the 

building of networks with numerous (more than two) layers. Hierarchical feature representations 

that allow higher-level characteristics to be generated from lower-level features may be discovered 

using deep neural networks [13]. DL has achieved record-breaking performance in a range of 

artificial intelligence applications and grand challenges [99] due to the ability of these algorithms 

to build hierarchical feature representations exclusively from data. Specifically, advancements in 

computer vision spurred the application of DL in medical image analysis, including image 

segmentation, image registration, image fusion, image annotation , computer-aided diagnosis, and 

prognosis[13]. 

When a large number of examples are provided during the training phase, DL techniques 

are particularly successful. In the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 

for instance, there were more than one million labeled images offered[100] . However, in most 

medical applications, there are far fewer images. Therefore, the restricted amount of training 

examples available to develop deep models without overfitting is a significant obstacle in the 

application of DL to medical images. 

Researchers have developed a variety of strategies to address this issue, such as using either 

2D or 3D image patches rather than the full-sized images as input to reduce input dimensionality 

and, consequently, the number of model parameters; expanding the data set by artificially 

generating samples via affine transformation (i.e., data augmentation) and then using the expanded 

data set to train their network from scratch (end to end learning) [101]; Instantiation model 

parameters using those of pretrained models from nonmedical or natural images(transfer 

learning)[24], then fine-tuning network parameters using task-relevant data.   

In terms of input formats, deep models may be categorized as multilayer neural networks 

that accept vector-format (i.e., unstructured) data and convolutional networks that accept 2D or 

3D (i.e., structured) values. CNNs  have got a lot of attention in the field of medical image analysis 
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because of how images are structured [98]. The structural or configurational information in nearby 

pixels or voxels is also an important source of information.  

Overfitting has also played a major role in DL history [102], with attempts being made to 

tackle it at the architecture level. One of the earliest models devised to tackle the overfitting issue 

was the Restricted Boltzmann Machine (RBM). Stacking RBMs led to the formation of deeper 

structures known as Deep Boltzmann Machines (DBM). The Deep Belief Network (DBN) is a 

supervised learning system that uses data extracted from each stacked layer to link unsupervised 

characteristics [103]. DBN was discovered to outperform other models, which is one of the reasons 

why deep learning has grown in popularity. While DBN tackles the overfitting issue by employing 

RBM to lower weight initialization, CNN efficiently reduces the number of model parameters by 

introducing convolution and pooling layers, resulting in a reduction in complexity. CNN is 

frequently employed in the area of visual recognition because of its efficacy when given adequate 

data.  Transfer learning (TL), which allows DL training to be successful in the situation of limited 

data, has emerged as being quite popular in the area of DL, according to recent research [26] . TL 

is suggested when compared to human behavior since we may use the information, we've acquired 

to solve new, challenging situations. 

When compared to distinguishing between progressing MCI and stable MCI, the 

classification of AD and normal controls is straightforward. Furthermore, compared to the first 

task, the quantity of neuroimaging data for the categorization of stable MCI vs. progressive MCI 

(sMCI vs. pMCI) is much smaller, yet both task types shared similar types of biomarkers [50]. 

Numerous studies have used local TL because of this impression. The purpose of local TL 

is to classify sMCI vs. pMCI using the final weights from the AD vs. CN classifier as the initial 

weights. Additionally, several studies employed pre-trained 2D CNN-based architectures like 

VGG16 and ResNet [24], [104], [105] to initialize the weights for the classification tasks and 

achieved higher results. TL aids in accelerating the training process and enhancing the 

functionality of DL architectures. When deep learning is used together with traditional machine 

learning methods, i.e., SVM as a classifier, it is referred to as a “hybrid method.” 

 The following points outlines the problems with the traditional ML, DL, and hybrid 

approaches for utilizing neuroimaging data to diagnose the early stages of AD. Table 2-1 

summarizes some of the highest reported accuracy by ML, DL, and hybrid approaches [41], [50]. 

While standard ML techniques like SVM have shown promising results, DL techniques like CNN 
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and sparse autoencoders have outperformed ML techniques[50]. In hybrid approaches, classic ML 

techniques like SVM is used with DL for feature extraction and classification[106]. For the early 

identification of AD (sMCI vs. pMCI task), the SVM for classification and the stacked autoencoder 

(SAE) for feature selection obtained accuracy levels of up to 83.3%. Maximum reported accuracy 

for the DL approach is 82.4%, while for the ML method is 82.5% [41], [50], [106]. Traditional 

ML and DL models have a limitation in that they only use samples from a particular domain, which 

affects their accuracy when the number of samples is small [13]. TL makes use of samples from 

both the target domain and several auxiliary domains[106]. 

Methods Algorithm AD vs. CN sMCI vs. pMCI Ref. 

Machine 

Learning 

Linear-SVM 88.90% 70.70% [7] 

Temporally 

Structured (TS)-

SVM 

- 82.50% [8] 

Linear-SVM 93.01% 75.00% [9] 

 Least Absolute 

Shrinkage and 

Selection 

Operator 

(LASSO)- SVM 

95.10% 65.40% [10] 

Radial Basis 

Function (RBF) - 

SVM  

81.25% 69.23% [11] 

Deep 

Learning 

CNN 92.87% 76.21% [107] 

Deep Boltzmann 

Machine (DBM) 

90.00% 78.00% [88] 

Deep Neural 

Network (DNN) 

84.60% 82.40% [108] 

CNN 91.09% 76.90% [109] 

Hybrid  

SAE & SVM 98.80% 83.30% [110] 

DBM & SVM 93.52% 74.58% [111] 

RBM & SVM 91.40% 57.40% [112] 
  

Table 2-1 Accuracies reported for binary classification tasks for classifying different stages of AD 

The hybrid methods produce good results with a limited amount of data, but they do not 

fully utilize DL [41]. The concept of TL employing pre-trained CNN networks entered the picture 

at this point. Pre-trained CNN networks are trained on datasets including millions of images over 

the course of several weeks on multiple servers with the assistance of experienced specialists. By 

fine-tuning the last layers of the CNN, these networks can be utilized with tiny datasets[98]. 
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Considering all of this, we chose DL algorithms implemented with TL as one of the most important 

criteria for SLR.  

2.4 Systematic Literature Review  

I have conducted a SLR that included papers published in the previous ten years. The studies covered in 

this review concentrate on DL architectures, TL, and neuroimaging data to classify the different stages of 

AD. SLR was carried out in stages in accordance with PRISMA [113] methodology.  

The primary goal was to discover gaps in the state-of-the-art ML applications in the AD research 

domain. The research questions (RQs) were first identified. Second, the search strategy was implemented, 

and the inclusion and exclusion criteria for picking relevant articles were defined. Finally, data extraction 

was performed to respond to the RQs. Furthermore, responses to these RQs were provided while 

emphasizing the field's challenges, limitations, and future potential. These steps were discussed in the sub-

sections that follow. 

2.4.1 Research Questions 

Examining the critical components of the current literature is required to support future research activities. 

The goal is to contribute to the development of a better decision-support system for the early detection of 

AD. Following an anticipatory data reduction approach, the SLR was framed into eight separate research 

questions (RQs) to steer this process [114]. 

• RQ1: Which DL models and TL strategies have been utilized to capture AD-related patterns? 

• RQ2: Which neuroimaging biomarkers and parameters are utilized? 

• RQ3: Which pre-processing methods are used to deal with neuroimaging biomarkers, and how is 

input for DL models managed? 

• RQ4: What are the current levels of accuracy and other performance indicators? 

• RQ5: What are the publicly available data sources? 

• RQ6: Which software systems are utilized to pre-process neuroimaging data and execute deep 

learning algorithms? 

• RQ7: What methods have been used to lessen overfitting? 

• RQ8: What are the ongoing research opportunities, gaps, and challenges? 

2.4.2 Methodology 

Search Procedure: The Science Direct, IEEE Xplore, Web of Science, ACM Digital 

Library, and PubMed databases were considered. These databases were chosen because they are 
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the most reliable sources and include the pertinent peer-reviewed papers. The following search 

term was used: “Deep Learning” & “Alzheimer” & “Neuroimaging” & “Transfer Learning”.   

Sysrev [115] was used for the search. This tool enables collective data abstraction from 

online-accessible documents and supports it by creating article filters using machine learning. 

Figure 2-2 displays the relevance of significant phrases found by Sysrev for our search; early and 

late MCI, which is luckily also of utmost importance, is given the most weight. There were 215 

total articles obtained, including 161 from Science Direct, 15 from the Web of Science, 6 from 

PubMed, 25 from ACM, and 8 from IEEE Xplore. The inclusion and exclusion criteria were used 

to further evaluate and analyze the papers. Redundancy was carefully avoided throughout the 

filtering process. Sysrev aided with the screening process. 

 

 

Figure 2-2 Significance of key phrases determined through Sysrev 

Criteria for Inclusion and Exclusion: The selection of publications that are important and 

consistent with the research goals depends heavily on the inclusion and exclusion criteria. For the 

diagnosis and early detection of AD, we considered articles that used DL architecture with TL and 

neuroimaging biomarkers. Cross validation and at least two prediction matrices were also 
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considered. One of the criteria for inclusion was the thorough description of the data sources and 

pre-processing techniques used for the biomarkers. Survey papers, dissertations, patents, 

handbooks, and encyclopedia entries were not included. 

Study Assortment: The PRISMA flow diagram, shown in Figure 2–3, was used to outline the 

search strategy and research selection. 215 articles were found after the articles were located using 

the search approach. In total, 15 duplicates were eliminated. The remaining 200 items underwent 

a second screening. The titles and abstracts of the research were used to determine their 

significance. 165 publications were excluded because they did not satisfy the inclusion criteria as 

shown in the PRISMA flow diagram. Out of the 35 articles, 12  [116]–[127]  were excluded 

because either they did not perform the  classification task sMCI vs. pMCI / sMCI vs. AD or   did 

not employ TL techniques. Due to the lack of at least two prediction matrices or not implementing 

cross-validation during the training, five articles [128]–[132] were excluded. Two articles [133], 

[134] were excluded because they didn't provide the necessary insights for input management. 

The remaining two articles [133], [135] were excluded because they did not use 

neuroimaging data. Lastly, the research provided by [136] was excluded since it attempted to 

differentiate between AD and Parkinson's. The remaining thirteen articles [19], [22], [137]–[147] 

were included in this systematic evaluation. These studies are pertinent to addressing the questions 

posed at the beginning of this section. The Journal of Neuroscience Methods, Neuroimage, Clinical 

and Behavioral Brain Research, and Medical Image Analysis are the top journals in this field of 

study. According to Google Scholar, the most referenced articles are [137], [144], [145], [147]. 

Nine studies from Science Direct, two from IEEE Xplore, one from PubMed, and one from 

Web of Science were included. We found only eligible published articles between 2017 and 2020 

according to inclusion criteria—one study in 2017, five studies in 2018, three studies in 2019, and 

four studies in 2020. Table 2-2 contains information on the included work, year, journal name, 

database, country, and citations. 

Risk of bias: The primary drawback of undertaking a systematic evaluation of the literature is that 

it may be biased. To prevent this situation as much as possible, a search key has been created by 

combining keywords and logic operators. In accordance with the PRISMA principles, I have 

attempted to adhere to the most optimal review criteria and procedures. Early researchers published 

a number of reviews[41], [50], [106] of ML and DL approaches for the categorization of AD. 
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However, they did not cover all these RQs; TL methodology-related procedures were notably 

absent. 

Jo et al. [41] did an in-depth study of research published between 2013 and 2018, 

comparing the diagnostic classification accuracy of pure DL and a mix of DL and ML approaches. 

They also looked at the variation in accuracy based on the type of biomarker. Tanveer et al. 

provided a review of papers published between 2005 and 2019 and performed an in-depth analysis 

based on three categories, namely state vector machine, artificial neural network, and deep learning 

models. Ebrahimighahnavieh et al. provide the most recent findings and advancements in the field 

of AD detection using DL. Specifically, valuable biomarkers and characteristics, pre-processing 

procedures, and various approaches to dealing with neuroimaging data from single-modality and 

multi-modality experiments. 

The primary distinction between previous studies and this SLR is that they did not do a 

comprehensive analysis of the change in accuracy based on the DL and TL combinations, as well 

as the kind of biomarker and input management approach. As a result, this work may assist in 

determining the most successful combination of the DL model with TL and in selecting the most 

appropriate preprocessing approach. Furthermore, in the previous studies, there was no 

consideration of new biomarkers such as amyloid-PET and tau-PET [65]. This SLR study 

investigated the use of these biomarkers in future research. The answers to all the RQs are covered 

in detail in the next section. Appendix A contains technical insights, datasets, and a category-wise 

study of several pre-processing strategies for neuroimaging biomarkers, as well as the software 

tool utilized for pre-processing. 
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Figure 2-3  PRISMA flow diagram 

Articles Identified: 161 in Science Direct, 
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15 Duplicates Removed 

165 Articles Excluded  

- Not in English Language. 

- Book Chapters. 

- Survey Papers. 

- Thesis. 

- Patents. 

- Handbooks. 

- Encyclopedia. 

- Related to Biology and Medicines 

- Analysis of other diseases {Autism and Breast Cancer}. 

- Conference Abstract 
 

215 Merge Articles 

200 Articles Screened 

35 Full Text Articles 

Accessed 

 22 Articles Excluded  
- 12 Articles were excluded as they did not use any Transfer 

Learning approach or not performed the prognostic 

prediction of AD. 

- 5 Articles were excluded as they did not provide at least 2 

prediction matrices or not performed Cross-Validation of the 

data. 

- 2 Articles were excluded as they did not use Neuroimaging 

Data. 

- 2 Articles were excluded as they did not provide the insights 

for input management {pre-processing of Neuroimaging 

data}. 

- 1 Article was excluded as they referred to DL but did not 

implement it. 

13 Articles are included in analysis 

- Transfer Learning, DL Architectures 

- AD/CN Classification, MCI/AD Conversion Prediction 

- Neuroimaging Data, clear approach for input management 

- At-least 2 Prediction Matrices and Cross validation 

- Clear Description for Data Sources  
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Table 2-2 Publication details of the included articles 

 

 

 

Ref. Year Journal Name Database Country Citations 

[147] 2017 

International Conference 

on Bioinformatics and 

Biomedicine (BIBM) 

IEEE Xplore Canada 9 

 [140] 2018 
ELSEVIER 

/ NeuroImage: Clinical 
Science Direct Saudi Arabia 4 

[19] 2018 
NCBI/Quantitative imaging 

in medicine and surgery 
PubMed China 3 

[143] 2018 

DEStech Transactions/ 

Computer Science 

& Engineering 

IEEE Xplore China 1 

[144] 2018 
ELSEVIER / Medical Image 

Analysis 
Science Direct Canada 39 

[145] 2018 
ELSEVIER / Behavioural 

Brain Research 
Science Direct Korea 55 

[137] 2019 
Springer/Journal of 

Medical Systems 
Science Direct Italy 47 

[141] 2019 
natureresearch/ 

scientific reports 

Web of 

Science 
Korea 12 

[138] 2019 
       ELSEVIER / Journal of 

Neuroscience Methods 
Science Direct China 10 

 2020 
       ELSEVIER / Journal of 

Neuroscience Methods 
Science Direct USA 1 

[46] 2020 
ELSEVIER / Medical Image 

Analysis 
Science Direct France 1 

[52] 2020 
ELSEVIER /Saudi Journal 

of Biological Sciences 
Science Direct China 1 

[55] 2020 
ELSEVIER / NeuroImage: 

Clinical 
Science Direct USA 0 
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2.4.3 RQ1. Deep learning and Transfer learning architectures 

The first RQ is about the kinds of DL architectures and TL techniques that have been implemented 

for the early detection of AD by using neuroimaging biomarkers. To find the answer to this RQ, 

the author has analyzed the DL algorithms based on the types of learning employed, as discussed 

below. 

1. Unsupervised DL: To deal with data scarcity and high dimensionality, unsupervised 

learning can be used [102]. It is utilized to achieve a task-specific representation, which is 

especially useful when there is limited labeled data but a large quantity of unlabeled data. 

In such situations, autoencoders (AEs) are the most often employed technique. AE variants 

such as CAE4, ICAE5, and SAE6 [26], [84] have been employed  for feature extraction, 

dimension reduction, and TL.  

2. Supervised DL: Supervised DL is comparable to the human learning concept. Well-labeled 

data are used to train supervised DL architectures. It teaches the learning algorithm how to 

apply what it has learned from the training data to new scenarios[13], [28], [102]. The 

model is evaluated on a portion of the testing set to predict the output when the training 

procedure is complete. As a result, datasets with accurate inputs and outputs are essential 

since they speed up the model's learning.  

Overfitting has played a significant role in the development of DL [102] , and attempts 

have been made to resolve it at the architectural level. The RBM7  was one of the first 

models created to address the overfitting issue [148]. The DBM8 was created by stacking 

RBMs, which led to the formation of deeper structures [149] . Deep Belief Network (DBN) 

is a supervised learning technique for connecting unsupervised features by pulling data 

from each stacked layer (Hinton et al., 2006). DBN was discovered to outperform other 

models, which is one of the reasons why deep learning has become so popular (Bengio, 

2009). CNN efficiently decreases the amount of model parameters by introducing 

convolution and pooling layers, which leads to a reduction in complexity, while DBN 

tackles the overfitting issue by decreasing the weight initialization using RBM. CNN is 

 
4 Convolutional autoencoder 
5 Inception CAE 
6 Stacked AE 
7Restricted Boltzmann Machine  
8 Deep Boltzmann Machine 
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frequently employed in visual recognition as a result of its efficacy when given sufficient 

data. DNNs9 have exhibited amazing performance in challenging machine learning tasks 

including image classification and voice recognition[150]. CNNs have a much less number 

of parameters than DNNs due to shared weights and pooling layers[50], [102], 

[142].Another model employed is RNNs [41], it can describe the temporal behavior of a 

time series effectively, with the output dependent on the previous calculations. RNN has 

been used with CNN in some studies. The need for a big dataset might be seen as a 

shortcoming of these models [76]. 

3. Transfer Learning: Conventional ML/DL models employ just data from a single domain, 

which has a significant impact on their performance when the number of accessible 

samples is small. Transfer learning is a method that incorporates not just examples from 

the target domain, but also examples from a few auxiliary (similar) domains. 

  Oh et al. [141] used ICAE to extract sparse representations from MRI scans and use the 

encoded visual features for a binary classification task of AD vs. CN by using supervised learning, 

and then transferred the learned knowledge to classify (sMCI and pMCI tasks). They used 

unsupervised learning, supervised learning, and TL together. Donghuan Lu et al.[144] employed 

SAE to pre-train each of the proposed multiscale DNNs. They trained a single hidden layer at a 

time using greedy layer-wise training [76]. This was followed by supervised fine-tuning to develop 

the classifier to discriminate between pMCI and sMCI. 

Although many researchers opted to create their own CNN structures, some of them also 

make use of well-known pre-trained 2D CNN structures with TL, such as ResNet, deep-ResNet, 

CaffeNet, AlexNet, DenseNet, VGG16, GoogleNet, and Inceptionv4. ResNet-18 is used by 

Ramzan et al. [137] to initialize the weights of their 2D CNN before training the network. CaffeNet 

is used by Lin et al. [143] and Yang et al. [146]  used the AlexNet. In multiple classifications and 

estimates of conversion risk, Wu et al.[19] has  implemented two CNN architectures, GoogleNet 

and CaffeNet. with TL. A customized version of ResNet was suggested by Abrol et al. [22]  to 

evaluate neuroimaging data and predict the progression of MCI to AD. Two distinct pre-trained 

architectures, VGG16 and Inception V4, were employed by Hon et al [147]. An age-adjusted 3D 

CNN-based pre-training model was proposed by Gao et al[139] . Four distinct CNN 

 
9 Deep Neural Network 
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architectures—3D subject-level CNN, 3D ROI-based CNN, 3D patch-level CNN, and 2D slice-

level CNN—were proposed by Junhao Wen et al.[142]. Also, two different methods were used for 

transfer learning: ResNet for 2D CNNs and AE pre-training for 3D CNNs. Silvia Basaia et al. 

[140] used a 3D CNN to classify AD vs. CN using E2EL (training from scratch). They then used 

the final weights of the AD vs. CN classifier as the initial weights of the sMCI vs. pMCI classifier.  

Li et al. [138] presented a hybrid method for analyzing the hippocampus that used both 

convolutional and recurrent neural networks. The main points are summed up below. 

• For extracting features from neuroimaging biomarkers, the unsupervised DL architectures 

SAE, CAE, and ICAE can be utilized. They may be used to determine the starting weights 

for CNNs. A shortcoming of AEs is that they learn to record as much information as they 

can, not just pertinent information. Pretrained 2D CNN models can be also used to integrate 

the weights as well, but 3D data must first be converted into 2D slices to utilize them. 

 

• Most of the studies use CNN based supervised algorithms, which make it possible to 

combine feature selection and classification into a single algorithm. 3D CNNs 

demonstrated superior performance in the extraction of local features. However, the 

complexity of training is a restriction that may be overcome using ROI or patch-based pre-

processing techniques. 2D CNN, on the other hand, is simpler to train but insufficient for 

storing the spatial information of 3D data.  

2.4.4 RQ2. Neuroimaging Biomarkers and other parameters 

The second RQ addresses the neuroimaging biomarkers and the characteristics that are used to 

categorize and forecast the development of AD. Non-invasive biomarkers have been widely 

employed, including MRI and PET[19], [22], [132]–[142]. MRI makes it possible to examine the 

abnormal brain changes associated with AD, it creates a 3D representation of the bones and soft 

tissues using a magnetic field and radiofrequency pulses [151].  

There have been several MRI scan types employed. In [19], [22], [143], [147], structural 

MRI (sMRI) has been used. The capacity to trace brain shrinkage and aid in identifying a potential 

AD etiology are two additional benefits of sMRI, in addition to its excellent spatial resolution and 

accessibility [66], [152]. Blood flow variations are also shown by functional MRI (fMRI). Resting-

state fMRI (rs-fMRI) records changes in patients' blood oxygenation levels when they are at rest. 

As a consequence, different patterns of blood oxygenation levels may be seen in the areas of the 
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brain affected by neuronal degeneration [12], [18], [153]. The fMRI was used in one of the 

included studies [137].  

 Several authors have used T1-weighted scans (T1W). T1W scans, which are a component 

of MRI protocols, are considered the most anatomical scans10. One of the most important 

indicators for identifying AD progress are GM, WM, and CSF11 measures [154]. T1W scans 

provide the closest representation of these measures12. In [138]–[142] T1W scans has been used. 

Different forms of T1W scans "3T/1.5T" refers to a 3Tesla/1.5Tesla MRI 13, which is created by a 

magnetic field of either 3Tesla or 1.5 Tesla and produces a clearer and more comprehensive 

picture. Most T1W scans are captured by the magnetization-prepared rapid gradient-echo (MP-

RAGE) [155] procedure to capture strong tissue contrast and high spatial resolution with whole-

brain coverage. 

 A functional imaging technique in nuclear medicine called positron emission tomography 

(PET) [65], [156] is used to monitor the metabolic process in order to find AD. The most common 

form of PET scan is fluorine-18 fluorodeoxyglucose (18F-FDG) PET [157]. It gives a 

measurement of how well cells process glucose. It can help with the neurocognitive problems 

brought on by AD [77]. Since it may show the characteristic patterns of AD sooner than MRI for 

MCI people, it is primarily useful for the early identification of AD [65]. The assessment of brain 

amyloid deposition, one of the key neuropathological milestones of AD, is done using amyloid-

PET, a different form of PET [65], [157]. 

To increase the precision of AD diagnosis, several biomarker combinations were applied 

in many studies. Lu et al. [144] combined 18F-FDG-PET with sMRI, while choi et al. [145][66] 

combined 18F-FDG-PET with AV-45 (florbetapir) PET. Yang et al. [146] exclusively use 18F-

FDG-PET. 

Tau-PET imaging is an additional PET type [158]. Abnormal tau accumulation is a major 

contributor to neurodegenerative diseases such as Alzheimer's [65]. The development of tau-

specific PET tracers like THK5351 and THK5357 has been guided by improvements in 

neuroimaging technology [159]. We did not find any articles where authors used tau-PET to 

predict the course of AD using DL and TL techniques. 

 
10 https://radiopaedia.org/articles/mri-sequences-overview 
11 GM: Gray Matter, WM : White Matter, CSF: Cerebrospinal Fluid 
12 https://case.edu/med/neurology/NR/MRI%20Basics.htm 
13 https://www.mana.md/what-is-3t-mri/ 
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Gender, age, speech pattern, EEG, tau protein, Aβ protein, retinal abnormalities, postural 

kinematics analysis, MMSE and CDR score, logical memory test, and several genes thought to be 

important for AD are a few more characteristics that are relevant to AD identification [6]. Mean 

subcortical volumes, gray matter densities, cortical thickness, brain glucose metabolism, and 

cerebral amyloid-β accumulation are the most often selected characteristics from these biomarkers 

during ROI-based analysis. 

Figure 2-4 depicts healthy and AD biomarkers. Left to right, their clinical acceptability 

decreases. In the sMRI, grey matter volume is displayed in blue, in the 18F-FDG PET images, 

decreased metabolism is displayed in green, in the amyloid-PET images, the small amount of 

amyloid deposition is displayed in green or blue, and in the tau-PET images of AD patients, low 

tau-tracer retention is displayed in green or blue[65], [98].  TSPO14-PET [159] and SV2A15-PET 

[160] are two more types of potential PET scans that can be employed in future research. TSPO-

PET scans are shown as yellow or red axial slices, indicating neuroinflammation due to enhanced 

TSPO expression. The SV2A-PET scans show yellow or red, indicating normal synaptic density, 

and green, indicating decreased synaptic density. 

 Figure 2-5 summarize the distribution and maximum accuracy by the type of 

neuroimaging biomarkers, respectively. 70% of studies have used sMRI [19], [22], [138]–[143], 

[147], maximum accuracy achieved by combining 18-F FDG with AV-45 PET[145]. 

 

Figure 2-4 MRI and PET by distinct radiotracers [65] [98] 

 
14 translocator protein 
15 Synaptic vesicle glycoprotein 2A 
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Figure 2-5 DP: Distribution Percentage, ACC: Accuracy by the type of biomarkers 

2.4.5 RQ3. Pre-processing of Neuroimaging Biomarkers 

The third RQ is concerned with the preprocessing approaches and input management for 

neuroimaging biomarkers. Preprocessing is one of the most influential determinants of a 

classifier's performance. It eliminates artifacts and noise from the data to increase the quality of 

the picture and boost feature extraction [50]. The included studies used some of the following pre-

processing methods: 

Normalization of Intensity: The employment of various scanners and settings to examine people 

at different periods might result in significant changes in intensity. It may degrade future 

processing performance, including registration, segmentation, and tissue volume measurement. 

Normalization entails mapping the intensities of all voxels against a standard scale such that 

similar structures have equivalent intensities [50]. Utilizing the non-parametric, non-uniform 

intensity normalization (N3) algorithm is the most common strategy. This is used to address the 

non-uniformity of the intensity by sharpening the histogram peaks [161]. It has been implemented 

in [19], [137], [138]. Oh et al. [141]  standardized the MRI scan intensity to the interval [0, 1]. The 

brainstem area was employed for internal normalization in[145]  since it is not predicted to be 

impacted by AD; thus, the mean intensity in the brainstem region is determined and used to 

disperse the average intensities. 
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Spatial Smoothing: A Gaussian filter between 5- and 8-mm lowers noise and retains visual signals 

16. In three of the listed investigations[22], [137], [143], it has been used. 

Registration (also called "spatial normalization") is the process of mapping the neuroimaging scan 

to a reference brain space. It enables comparisons between people with diverse anatomies [50]. It 

standardizes neuroimaging scans in accordance with a standard template, such as MNI 17.  In [137], 

a linear transformation with 12 DOF (including translation, scaling, shear, and rotation) was 

implemented. Several articles [140], [141], [143] have used the DARTEL18 registration [162]. 

Using the SyN19 method [163], linear (affine) registration was carried out in [22]. In [142], the 

authors have used non-linear registration by using the unified segmentation strategy [164]. In 

[144], the authors registered images using a  non-rigid [107] registration approach LDDMM20.  

Co-registering various modalities is an additional registration method described in the 

literature. There are two major landmarks in the brain21: the anterior commissure (AC) and the 

posterior commissure (PC). The AC-PC line  has been adopted as a standard by the neuroimaging 

community and is often used as the reference plane for axial imaging to compare participants 

[165]. Choi et al. [145] registered PET scans such that the anterior and posterior axes of the patients 

were perpendicular to the AC–PC line. Li et al.[138] used the affine registration approach  to align 

MRI scans linearly to a template. Gao et al. [139] executed strict registration in the MNI-152 space 

to assure orientation and position consistency. The authors of [141], [143]  used interpolation 

techniques22 to convert data into voxel sizes and dimensions that were identical. 

Gradwrap: Restore geometry that has been distorted by gradient nonlinearity [166]. One research 

has employed it [19].                                                                                                                                                  

Tissue segmentation: Divide a neuroimaging modality into segments corresponding to various tissues 

such as GM, WM, and CSF in the case of MRI and probability maps and metabolic intensities of the ROI 

in the case of PET scans. This procedure has been used in [22], [140], [143], [144], [146] articles. 

 
16 Spatial Normalization - an overview | ScienceDirect Topics 
17 About the MNI space(s) – Lead-DBS 
18 Diffeomorphic Anatomical Registration Exponentiated Lie Algebra 
19 symmetric image normalization method 
20 Large deformation diffeomorphic metric mapping 
21 https://radiopaedia.org/articles/anterior-commissure-posterior-commissure-line-1 
 
22 Interpolation Methods For Image Registration (Biomedical Image Analysis) (what-when-how.com) 

https://www.sciencedirect.com/topics/medicine-and-dentistry/spatial-normalization
https://www.lead-dbs.org/about-the-mni-spaces/
https://radiopaedia.org/articles/anterior-commissure-posterior-commissure-line-1
http://what-when-how.com/biomedical-image-analysis/interpolation-methods-for-image-registration-biomedical-image-analysis/
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Bias field correction: The bias field signal, which is a low-frequency and very smooth signal, 

taints MRI images, particularly those made by outdated MRI equipment [167]. Results from DL 

methods that employ the grayscale values of picture pixels will not be adequate. Before presenting 

distorted MRI images to such algorithms, a pre-processing step is required to adjust for the bias 

field signal. The N41TK [168] algorithm was used in three articles [19], [141], [142] to carry out 

this operation. 

Brain extraction (Skull Stripping): The removal of tissues other than the brain from the neck 

and skull. Four articles [137], [138], [142] have used it. 

Motion Correction: Used to reduce the effect of head movements and improve their precision 

during data collection. One article [137] made use of it. 

High-pass filtering: It is used to get rid of low-frequency noise signals that are produced by 

psychological artifacts. One article [137] made use of it. 

The percentage of preprocessing techniques used is depicted in Figure 2-6. 

 

Figure 2-6 Utilization percentage of preprocessing techniques 
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Based on the derived characteristics from neuroimaging modalities, the handling of input data may 

be divided into four distinct categories. 

Voxel-based input management: In this technique, the voxel intensity values of whole 

neuroimaging modalities or tissue components of modalities are used. It requires a registration 

procedure to map all the images into a standard 3D space [50]. Basaia et al. [140]  used tissue 

segmentation and registration of MRI scans to create probability maps of GM, WM, and CSF 

tissue in MNI space. Using the DARTEL approach, Lin et al.[143] segmented the MRI scans into 

GM, WM, and CSF and then utilized PCA and SFS to precisely choose the best features. In several 

research articles [139], [141], [142],authors did the complete analysis of neuroimaging modalities. 

In [145], the authors conducted a multimodal study of the whole brain (18 FDG-PET and AV-45 

PET) and co-registration utilizing the AC–PC line. The benefit of a comprehensive brain analysis 

is that spatial information is fully incorporated; however, high dimensionality and processing effort 

are drawbacks of this strategy.  

Slice-base input management: Using either the researcher's reasoning or conventional 

projections, such as the horizontal plane, frontal plane, and median plane, 2D slices are derived 

from 3D scans [50]. All the data from 3D brain scans cannot be turned into a 2D slice,  this prevents 

a comprehensive analysis of the brain. Ramzan et al. [137] transform rs-fMRI scans into 2D slices 

along the image height and time axes and get 6160 2D slices per fMRI scan. In [19] Wu et al. 

transform each scan into 160 2D slices. Yang et al. [146]averaged 65 slices along the Z-axis for 

each scan. In [147] , Hon et al. selected the 32 most useful slices from the axial plane view of each 

scan using an entropy-based sorting technique. During the training and testing phase of the model, 

the number of parameters may be reduced from millions to hundreds using this method. Due to 

the use of 2D representations of 3D scans, the spatial dependence between consecutive 2D pictures 

is lost. 

ROI-based input management: For early diagnosis of AD, the informative components impacted 

in the early stages of the disease have been used[50], [142]. The hippocampus, amygdala, 

entorhinal cortex, grey matter, and temporal and parietal lobes are analyzed for categorization of 

AD or MCI[169], [170], while the amygdala and hippocampus are utilized to predict the 

progression of MCI to AD [171]. This method also needs prior knowledge of the brain atlas, such 

as from automated anatomical labeling (AAL)  or Kabbani's reference work [172], [173]. Abrol et 
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al.[22]  found the most discriminative brain areas for categorizing pMCI vs. sMCI by estimating 

occlusion sensitivity using the network occlusion technique [174] . 

Lu et al.[144] segmented the sMRI into GM and WM and split the GM into 85 cortical and 

subcortical anatomical ROIs. Li et al. [138] segmented the hippocampus from other areas and 

created a binary mask for each hippocampus. After calculating the centroid of each hippocampus, 

patches were taken from the centroid for further implementation. The ROI-based method has the 

benefit of minimal feature dimensions and simple interpretation, but it disregards any abnormality 

specifics.  

Patch-Based Input Management: In this method, disease-related patterns are found by extracting 

the features of patches or 3D cubes[50], [142]. The main challenge is to convey both patch-level 

and image-level properties by using the most discriminative patches [109]. The segmented ROI is 

divided into smaller, patches in [144].  Li et al. [138]  segmented hippocampus to form a binary 

mask, which was then cropped at the centroid to produce 3D patches.  This method has the 

advantage of being sensitive to minute changes, but it is still difficult to determine which patch 

will provide the most useful information. 

The main points are summed up below. 

• A 2D-slice input offers the benefit of fewer training parameters and a less sophisticated 

network, but the disadvantage of losing spatial dependence between adjacent slices. 

• Voxel-based input management takes all brain information into account but treats all areas 

identically, disregarding their biological structure, and has the disadvantage of high 

dimensionality. 

• An ROI-based input is easily interpretable, however, the absence of tiny aberrations in the 

ROI might cause harm to discriminative information and limit the real relevance of 

retrieved features. In Appendix A.2, you can find a summary of the preprocessing 

pipelines used by all the articles in this SLR.  

The percentage of input management techniques used is depicted in Figure 2-7. 
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Figure 2-7 Utilization percentage of input management techniques 

2.4.6 RQ4. Current level of accuracy and other performance metrics 

Two of the thirteen articles used multiclass classification, while eleven utilized binary 

classification. All of them used the accuracy performance measure uniformly. Ramzan et al. [137] 

classified multiclass (AD, NC, sMCI, pMCI, SMC, and MCI) with an average accuracy of 97.92%. 

Using GoogleNet and CaffeNet, Wu et al. [19] conducted three-way discrimination between the 

NC, sMCI, and pMCI and got an overall accuracy score of 83.23 and 87.78%, respectively. Table 

2-3 summarizes the achieved accuracy, DL models with TL approaches, and input management 

techniques with types of biomarkers. 

 The maximum accuracy for classifying sMCI vs. pMCI obtained was 87.78% by utilizing 

a CNN-based, pre-trained CaffeNet model and slice-based input management with the sMRI 

biomarker by Wu et al.[19]; however, this accuracy was attained during the multiclass 

classification. Using 3D CNN, local TL, and multimodalities (18F-FDG PET and AV-45 PET) 

with voxel-based input management, Choi et al.[145] obtained 96.0% and 84.2% accuracy for 

binary classification of AD vs. CN and sMCI vs. pMCI, respectively. Using 3D CNN with local 

TL and sMRI with voxel-based input management, Basaia et al. [140] achieved 98.20% accuracy 

for the AD vs. CN challenge. In future research, the accuracy of sMCI vs. pMCI task needs to be 

improved. 
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DL and TL combination Input Management  AD vs. CN pMCI vs. sMCI Ref. 

CNN Based ResNet-18 Slice Based & rs-fMRI 97.92% [Multiclass] 
 

[137] 

3D CNN & local TL Voxel Based & sMRI 98.20% 74.90% [140] 

3D CNN & CAE & local TL Voxel Based & sMRI 
85.24% ± 3.97% 73.23% ± 4.21% 

[141] 
86.60% ± 3.66% 73.95% ± 4.82% 

CNN & local TL 

Voxel Based & sMRI 85.00% ± 4.00% 73.00%± 5.00% 

[142] 
ROI Based & sMRI 88.00% ± 3.00% 78.00%±7.00% 

Patch Based & sMRI 83.00% ± 2.00% 77.00%±4.00% 

Slice Based & sMRI 79.00% ± 4.00% - 

CNN based Deep ResNet ROI Based & sMRI 91.30% 77.80% [22] 

CNN based CaffeNet Slice Based & sMRI 87.78% [Multiclass] 
[19] 

CNN based GoogleNet Slice Based & sMRI 83.23% [Multiclass] 

CNN based CaffeNet Slice Based & sMRI - 77.98% [143] 

DNN & SAE for local TL 
ROI-Patch Based & 

sMRI +18F-FDG PET 
93.58% 82.50% [144] 

3D CNN & local TL 
Voxel Based & 18F-

FDG PET + AV-45 PET 
96.00% 84.20% [145] 

CNN based AlexNet Slice Based & 18F-FDG  - 72.19% [146] 

CNN based VGG16 (E2EL) 

Slice Based & sMRI 

74.12% - 

[147] CNN based VGG16 (TL) 92.30% - 

CNN based InceptionV4(TL) 96.25% - 

DenseNets & RNN 
ROI-Patch Based & 

sMRI 
89.10% 72.50% [138] 

3D CNN & local TL Voxel Based & sMRI - 76.00% [139] 

 

Table 2-3 Accuracy attained by using the DL model in conjunction with the TL strategy, an input management strategy, 
and a neuroimaging biomarker. 
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2.4.7 RQ5. Datasets of Neuroimaging Biomarkers 

There are several online datasets of neuroimaging biomarkers that have been created with the goal 

of making neuroimaging data freely accessible to the scientific community to aid in future 

discoveries in the neurosciences. Online resources for open data sets include ADNI23, OASIS24, 

AIBL25, IXI26, and MIRIAD27. 

ADNI: It was publicized in 2004 as a USD 60 million, 5-year cooperation initiative, headquartered 

in North America, by the National Institute on Aging (NIA) and the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB).  

As of now, there are three different cohorts: 

• ADNI-1: (400 MCI, 200 sMCI, and 200 CN) MRI and FDG-PET biomarkers. 

• ADNI-GO (Grand Opportunities): The existing ADNI-1 cohort + 200 early MCI 

subjects. 

• ADNI-2 is a continuation of ADNI-1, the ADNI-GO cohort + (150 CN, 100 early MCI, 

150 mild AD and 150 late MCI), that began in 2016 and will continue until 2022. 

92% of articles utilize this dataset alone or in conjunction with other datasets, making it the most 

frequently used dataset. 

OASIS: The most recent edition of the OASIS series is OASIS-4. It includes the neuroimaging 

data obtained from 1098 patients, aged between 43 and 95 years, who participated in 2168 MRI 

sessions and 1608 PET sessions (609 CN and 489 persons with various degrees of cognitive 

disability). In 16% of the articles, it was utilized. 

AIBL: This adds scientific value to the ADNI cohort and is referred to as the Australian ADNI. It 

includes 50 MRI/PiB28 scans, 200 MRI/florbetapir29 scans, and 250 MR/flutemetamol scans. In 

8% of the articles, it was utilized. 

IXI: There are 600 scans of CN subjects. In 8% of the articles, it has been used. 

 
23 https://adni.loni.usc.edu/ 
24 https://www.oasis-brains.org/ 
25 https://aibl.csiro.au/ 
26 https://brain-development.org/ixi-dataset/ 
27 https://www.nitrc.org/projects/miriad/ 
 
28 radiotracer Pittsburgh Compound B (PiB) 
29 18-F amyloid radiotracers (florbetapir and flutemetamol) 

https://adni.loni.usc.edu/
https://www.oasis-brains.org/
https://aibl.csiro.au/
https://brain-development.org/ixi-dataset/
https://www.nitrc.org/projects/miriad/
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MIRIAD: 46 AD and 23 CN MRI scans are included in the MIRIAD database. None of the 

included articles have utilized it. 

Several research, however, favored use their own datasets. Basaia et al. [140] created a 

self-regulating dataset called "MILAN" of 3D T1W MRI scans that were collected from 229 

participants (124 AD, 50 MCI, and 55 CN). Appendix A.1 contains a summary of all additional 

information, including sample size and the combination of various datasets from all included 

articles. 

2.4.8 RQ6. Integrated Development Environments 

A variety of software packages are available to aid researchers in the preprocessing of 

neuroimaging data and the deployment of DL and TL approaches.  

For the preprocessing of neuroimaging biomarkers, the following packages were used: 

• FSL30: This is the complete toolkit for processing data from sMRI, fMRI, and DTI 

neuroimaging. It has been used in [137], [140]. 

• SPM1231: This program is designed to analyze neuroimaging data sequences, which may 

consist of a series of images from several angles. [22], [141], [143] made use of it. 

• Nipype32: It is an open-source Python project created by the Nipy33 community, which 

dedicated to the analysis of neuroimaging data using the Python programming language. It 

provides a consistent interface to existing brain imaging software packages, such as 

AFNI34, ANTS35, Camino36, FreeSurfer37 , FSL, MNE38 , Slicer39, and SPM, and makes it 

easier for them to communicate with one another within a single flow. It has been utilized 

in [142] . 

• MATLAB40: The image processing toolbox allows for the automation of standard image 

processing procedures. The researcher may segment image data, handle big datasets in 

 
30 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki 
31 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
32 https://nipype.readthedocs.io/en/latest/ 
33 https://nipy.org/ 
34 https://afni.nimh.nih.gov/ 
35 https://www.nitrc.org/projects/ants 
36 https://www.nitrc.org/projects/camino/ 
37 https://surfer.nmr.mgh.harvard.edu/ 
38 https://mne.tools/dev/auto_tutorials/inverse/90_phantom_4DBTi.html 
39 https://www.slicer.org/ 
40 https://www.mathworks.com/solutions/neuroscience.html 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://nipype.readthedocs.io/en/latest/
https://nipy.org/
https://afni.nimh.nih.gov/
https://www.nitrc.org/projects/ants
https://www.nitrc.org/projects/camino/
https://surfer.nmr.mgh.harvard.edu/
https://mne.tools/dev/auto_tutorials/inverse/90_phantom_4DBTi.html
https://www.slicer.org/
https://www.mathworks.com/solutions/neuroscience.html


 
 

44 
 

batches, register photos, generate histograms, and work with ROIs. [19], [147] made use 

of it. 

• NifTi Toolkit41 [139]: This is a tool for processing and interpreting neuroimaging data that 

can be acquired using the packages MRIcron42 . In has been utilized in [146]. 

• FreeSurfer: The Laboratory for Computational Neuroimaging USA created this open-

source collection for studying and manipulating MRI images. It has been utilized in[144]. 

• MRIcron: This program gives format headers for exporting neuroimaging biomarkers to 

other platforms and allows the users to look at medical pictures in different formats. 

Neuroimaging data may be efficiently viewed and exported, and ROIs can be found using 

it. It has been utilized in [139]. 

  The authors of [145] did not preprocess the FDG and AV45 PET scans. 

 DL and TL algorithms have been implemented using software frameworks such as 

CAFFE43 in [19], [137], [146], Keras44 in [138], [147], Theano45 in [140], Pytorch46 in [22], [142], 

MatConvNet47 in [145], and the Deep Learning Toolbox48 in [144] . The specifics of the software 

package were not covered in three articles[139], [141], [143]. 

 

2.4.9 RQ7. Managing over fitting in Deep Learning models 

The effectiveness of classifiers on an unseen test dataset is significantly affected by the size of the 

dataset [106]. There are just a few hundred samples available in the existing datasets of people 

with AD and MCI [50], [102]. Because DL algorithms have an enormous number of training 

parameters, they are easily overfit when trained on a smaller set of data[8], [41], [102].  

Overfitting has been minimized using the methods described below in the included articles. 

• Data Augmentation: This is a method for boosting the diversity of training datasets 

without resorting to further data collection [175], [176]. It takes the current data and creates 

 
41 https://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image 
42 https://www.nitrc.org/projects/mricron 
 
43 https://caffe.berkeleyvision.org/ 
44 https://keras.io/about/ 
45 https://theano-pymc.readthedocs.io/en/latest/ 
46 https://pytorch.org/ 
47 https://www.vlfeat.org/matconvnet/ 
48 https://www.mathworks.com/products/deep-learning.html 
 

https://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image
https://www.nitrc.org/projects/mricron
https://caffe.berkeleyvision.org/
https://keras.io/about/
https://theano-pymc.readthedocs.io/en/latest/
https://pytorch.org/
https://www.vlfeat.org/matconvnet/
https://www.mathworks.com/products/deep-learning.html
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new data samples. There are two distinct approaches to this. The first type is 

Transformation techniques, which include a wide variety of straightforward changes to 

the training data, such as translation, rotation, reflection, distortion, blurring, flipping, 

cropping, noise injection, gamma correction, scaling, and intensity variations via arbitrary 

adjustments to brightness, contrast, saturation, and hue [45], [175]–[177]. In [140], [141], 

transformation techniques were applied. Second, Neuroimaging data synthesis [178] is 

technique for creating a new dataset with similarities to the original dataset. To apply this 

to neuroimaging biomarkers, generative adversarial networks (GANs) [41], [179] might be 

used. However, further research is needed in this field, and the efficiency of the syntesis 

pictures in predicting AD has not yet been shown. 

In order to produce sample image patches from MRI, Wu et al.[19] used a new 

approach for data augmentation that was based on Shin's [180] image integration 

technique. Choi et al.[145] enhanced PET pictures by swiping them from left to right. To 

extract additional patches, Li et al.[138] shifts the hippocampus centroid by 2 voxels in the 

x and z dimensions.  

By giving DL models a better weight initialization, TL approaches may lessen 

overfitting. It also cuts down on the period required to train the DL models. 

• Regularization: Dropout, weight decay are a few methods that may be used [10], [89]. 

Dropout 49 is based on the principle of randomly and independently removing neurons, 

setting their output value to zero, and reducing the complexity and overfitting risk of the 

network. It increases the DL model's capacity for generalization. 

By regularizing the new weights and multiplying them by a factor lower than one, 

weight decay50 also makes the model more generalizable and less complicated. Several of 

the studies that were considered included dropout and weight [22], [139], [142], [144], 

[147] . 

• Batch normalization 51: It is used to normalize the input to a layer for each mini batch 

while training DL models. It expedites model training and improves model performance 

and generalizability. 

 
49 https://www.analyticsvidhya.com/blog/2022/08/dropout-regularization-in-deep-learning/ 
50 https://programmathically.com/weight-decay-in-neural-networks/ 
51 https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/ 

https://www.analyticsvidhya.com/blog/2022/08/dropout-regularization-in-deep-learning/
https://programmathically.com/weight-decay-in-neural-networks/
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/
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• Early stopping 52: This entails halting the training procedure earlier. It aids in figuring out 

how many training iterations are necessary before the model becomes significantly overfit. 

It has been used in [22], [144]. 

• Cross-Validation 53 : This approach involves repeatedly splitting the database into training 

and testing sets while maintaining the same proportions and rotating the instances. It is a 

statistical technique for evaluating classifier performance. The k-fold cross validation 

technique is the most popular. In our analysis, k's value falls between 5 and 10. About 85% 

of the included articles used it. 

  

2.4.10 RQ8. Research opportunities, constraints, and limitations 

DL models with TL approaches have shown better results; however, the following issues still need 

to be addressed. 

• Diagnosing the change from MCI to AD is more important because it lets patients and their 

loved one’s plan and helps the doctors figure out which patients need the right treatments. 

So far, the best accuracy for this task has been 84.20% [145] , which needs to be improved. 

• Multimodality approach performs better then single modality[144], [145]. In the future, 

new combinations of biomarkers may be used to predict the onset of AD. 

• The dearth of substantial neuroimaging datasets causes generalizability issues, despite the 

use of TL and augmentation. To make a generalizable classifier, large datasets can be 

created using neuroimaging data synthesis 

• It may be challenging to show precisely which features have been retrieved and to regulate 

how those features affect the inference and relative prominence of other characteristics 

[13]. As a result, it is challenging to eliminate any biases that the input datasets may have 

generated. Filter visualization and activation maps54 were used by [144] to figure out what 

factors had a big effect on the result.  

 
52 https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/ 
 
53 https://www.baeldung.com/cs/k-fold-cross-validation 
54 How to Visualize Filters and Feature Maps in Convolutional Neural Networks - MachineLearningMastery.com 
 

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
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2.5 Conclusion  

We began our review by discussing the concepts of AD and MCI, followed by a discussion of 

current recommendations for early detection of AD by using MRI, fMRI, and PET neuroimaging 

biomarkers. These biomarkers can be combined with some other parameters, such as genetic 

information, MMSE scores, and Mini-Cog Test findings, for improved categorization.     

Neuroimaging methods are advised to undergo the least amount of pre-processing 

(intensity normalization, registration, and brain extraction). For enhanced feature extraction, 

multimodality might be applied. Most of the research made use of CNNs with various TL 

methods. However, certain very well-known TL designs that have been very helpful in the 

analysis of medical data, like EfficienNet and DenseNet [24], [181], have not been 

implemented for AD. 

Several issues need to be rectified, including overfitting in relation to the use of small 

datasets and reproducibility in respect to the randomness occurring during training. Furthermore, 

it might be challenging to decide which features are more important for a reliable decision 

assistance system. 

DL models required a lengthy training period because of the vast amount of 3D input and 

random weight initialization. Researchers utilized local TL with 3D CNN networks in studies that 

reported high accuracy. The most efficient blends of DL and TL with the right biomarkers 

may be found to further enhance these findings. 

Because of these limitations, it is likely that AI-based systems that help doctors to make 

decisions about the current state of AD are not available. The primary objective of this dissertation 

is to assist in overcoming such limitations by proposing the following: (1) the identification and 

implementation of the most efficient DL model using E2EL (see Chapter 3); and (2) the 

improvement of the accuracy of the identified model through the utilization of the fusion of E2EL 

and TL (see Chapter 4). 

 

 

 

 

 

 



 
 

48 
 

 Chapter 3: Implementation of eight 3D CNN 

architectures based on E2EL by using T1W MRI scans 
 

Summary: As shown in Figure 1-1, the content of this chapter is about the  second 

contribution, "Identification and implementation of the optimum DL model," and it is 

intended to help achieve the second goal, "to provide the neuroradiologist with the computer-

interpretable information they need to analyze an MRI scan". We employ sMRI scans to create 3D 

CNN models using E2EL and a voxel-based input management strategy for two categorization 

tasks: AD vs. CN and  AD vs. sMCI.  

The MP-RAGE T1 MRI images of 245 AD patients and 229 with sMCI were obtained 

from the ADNI dataset. The IXI dataset was used to obtain the 245 T1 MRI scans of CN 

individuals. Denoising, N4 bias field correction, extraction of the brain, and registration were the 

four procedures that comprised the preprocessing of every scan. 

 A total of eight different 3D CNN-based architectures are developed, tested, and compared. 

These comprised DenseNet121, DenseNet169, DenseNet201, and DenseNet264, as well as 

EfficientNet-B0 through B3. Since these models have already been proven successful in other 

types of medical image analysis, the AD domain has not yet been investigated by them. 

 The comparison study was carried out with the assistance of a Ranking Mechanism, 

Comprehensive Indicators, and an Efficiency-Effectiveness Graph. The DenseNet264 

performed exceptionally well in both types of classification, achieving an accuracy of 82.5% and 

an area under the curve (AUC) of 87.63% during training and an accuracy of 81.03% during testing 

in relation to the AD vs. sMCI. It also achieved 100.00% accuracy and 100.00% AUC during 

training and 99.66% accuracy when comparing AD to CN. On the other hand, the EfficientNet-

B0  had the greatest overall metrics and the lowest number of model parameters for the 

training of the sMCI against the AD task in the Efficiency-Effects Graph. 

3.1 Introduction  

E2EL design is the fundamental tenet of DL. E2EL key advantage is that it simultaneously 

improves every stage of the processing pipeline, potentially leading to optimum results [25], [182]. 

 For neuroimaging analysis, Oh et al.[141] proposed an E2E hierarchical structure with 

levels ranging from 1 to 4. At level 1, feature selection and extraction are done manually. To be 
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used as input into DL networks, 3D data is reconfigured into 1D vector form .In level 2, 3D scans 

are either split up into WM, GM, CSF, or hippocampal areas or turned into 2D slices before being 

used as input for a DL model. Preprocessed 3D volume data are utilized as the level 3 input for 

DL models. A 3D MR image acquired from a scanner is fed directly into DL networks at level 4. 

Nevertheless, the author is unaware of any studies that have used this level and documented it in 

the literature. 

In April 2022, the author used Sysrev55 and the search queries "stable MCI deep learning" 

or "stable MCI vs. Alzheimer by using transfer learning" or "early detection of Alzheimer by using 

deep learning" or "stable MCI vs. AD classification for early detection of AD" to identify ongoing 

research status at levels 1, 2, 3, and 4 and discovered 121 articles, 81 of which were considered 

and 40 were not. The 81 articles were analyzed and split into levels afterwards. 

The preponderance of published studies used Level 1 [85], [87], [183]–[187] or Level 2 

[15]– [20], [22], [86], [106], [135], [136], [142], [144], [145], [169], [170], [189]–[212], [212], 

[213] .The outcomes are dependent on specific software, hyperparameter tweaking, and manual 

noise reduction. Performance assessments in these research articles only used a subset of the 

original datasets due to these interdependencies, avoiding obvious outliers and making a fair 

performance comparison difficult [50], [76].There were just a few research that used the Level 3 

hierarchy[133], [135], [140], [141], [213], [214]. 

Author decided to use level 3 E2EL, MRI scans, and a voxel-based input management 

approach to identify the most effective 3D CNN model for categorizing  phases of AD . This 

decision was based on the context described above as well as the recommendations and limitations 

discussed in Chapter 2.The methodology is discussed in Section 2, along with the datasets, the 

preprocessing of the MRI scans, 3D CNNs, experimental setup and algorithm. In Section 3, the 

results are shown. Section 3 also includes a comparative analysis of all models using a ranking 

system, comprehensive performance indicators, and efficiency effect graphs. We also compared 

our results with the results of the published state-of-the-art methodologies. 

 
 

 
55 https://sysrev.com/u/2642/p/118998 
 

https://sysrev.com/u/2642/p/118998
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3.2 Materials and methods 

Figure 3-1 depicts the block diagram of the proposed technique. There are four steps to get there. 

1. Use the ADNI and IXI datasets to get T1W MRI scans of people with AD, CN, and sMCI. 

2.  Preprocess the data using AntsPyNet and split it into two parts; the first set will be used 

for training and validation, while the second set will be used for testing. 

3.  Using E2EL and MONAI, build eight cutting-edge classifiers that are based on 3D CNNs. 

4.  A comparison study was carried out with the goal of locating the most efficient 3D CNN 

model. Metrics such as accuracy, area under the curve (AUC), precision, recall, and F1-

score were used, along with ranking mechanisms, comprehensive performance indicators, 

and efficiency impact graphs. 

3.2.1 Participants  

Datasets from ADNI and IXI were utilized. 719 MP-RAGE T1W MRI scans were acquired in 

Neuroimaging Informatics Technology Initiative (NIfTI) format as AD (245 scans), CN (245), and 

sMCI (229). AD and sMCI were downloaded from ADNI, whereas CN scans were downloaded 

from IXI. Only MCI scans that were defined in the ADNI description files to be stable for at least 

4 years and up to 15 years were downloaded.  

Neuroimaging file types, called NIfTI56, are often used in image analytics in neuroscience 

and neuroradiology research. It offers the advantage of storing a volume in a single file that  has 

a  header and raw data after that. It enables rapid loading and processing [50].        

We present the technique here to identify patients with sMCI. The following two CSV files 

must be examined to identify the years of stability of the MCI state: 

1. ADNIMERGE: Can be downloaded from Study data > Test data > Data for 

challenges57. By looking at the values in the columns DX.bl (baseline diagnosis) and 

DX (status), you can identify if MCI is stable, if it has turned into AD, or if it has 

become normal. 

2. Diagnosis Summary :Downloaded from Study Data >  Assessments > ALL 

Diagnosis58. To distinguish between the different stages of AD, DXCHANGE column 

 
56 NIfTI (file format) | Radiology Reference Article | Radiopaedia.org 
57 https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=43&subCategoryId=94 
58 https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=12&subCategoryId=37 
 

https://radiopaedia.org/articles/nifti-file-format?lang=us
https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=43&subCategoryId=94
https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=12&subCategoryId=37
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value can be analyzed. It describes the participant's change in cognitive state between 

the prior appointment and the present one. 

 

 

Figure 3-1:  Proposed Methodology N4: N4 bias field correction; DE: Denoising; BE: Brain Extraction; REG: Registration 

The author carefully studied around 6000 rows of the csv data. Only 229 patients with sMCI have 

clear records of each visit and had remained stable for at least 4 years up to 15 years. Other column 

values such as Age, Gender, the clinical dementia rating score (CDR) [216], MMSE score, and the 

Preprocessing Pipeline:  

N4      DE     BE      REG  

1. Preparation of Data 

2. Classification of AD vs. CN and AD vs. sMCI:  

     Stratified five-fold CV implementation. 

Preprocessed MRI            

Dataset for Testing 

 

Dense Net Family Architectures:                     

DenseNet [121,169,201,264] 

Preprocessed MRI  

Dataset for Training 

 & Validation 

EfficientNet Family Architectures:                     

EfficientNet [b0, b1, b2, b3] 

  

3. Prediction 

of testing 

data 

4. Comparative analysis by using Rank 

Mechanism, Comprehensive Performance 

Indicators and Efficiency Effects Graph. 

 
AD, CN 

sMCI 

Subjects 

            Trained 

               Models 

                   Testing Results 

           [AUC, ACC, Recall, Precision, F-1 Score] 

      INPUT 

   From ADNI  

       & IXI  

   [T1 W MRI]  

 

Optimum DL Model(s) 

[E2EL]   

            OUTPUT 

 



 
 

52 
 

4 allele of apolipoprotein E (APOE4) [217], [218] were all ignored since the focus of our research 

was E2EL/Level 3. MRI scans downloaded from ADNI often had 256x256x176 voxels with 1 mm 

x 1 mm x 1.2 mm sizes, but those from IXI commonly had 256x256x256 voxels with 1 mm x 1mm 

x 1 mm sizes. 

3.2.2 Preprocessing Pipeline  

Using the ANtsPyNet59 package, the Advanced Normalization Tools pipeline [215]–[217] was 

applied to each scan, as shown in Algorithm 1. ANtsPyNet is a collection of Python-based DL 

architectures and applications for basic medical image processing. The following methods are 

included in the preprocessing pipeline: 

1. A popular method for rectifying low-frequency intensity non-uniformity, sometimes 

referred to as a "bias" or "gain field," in MRI scans is the N4 bias field correction 

technique [168]. This approach utilizes a simple parametric model without tissue 

categorization. The ants.utils.n4 bias field correction( )60 function was used to perform it, 

which was then followed by denoising. 

2. Denoising 61  primary goal is to estimate the original image by reducing noise in an image. 

Image noise may cause by a wide range of internal and external variables, many of which 

are challenging to avoid in practical circumstances. In image classification task, where 

retrieving the original image information is essential for successful results, image 

denoising is thus important. 

We perform denoising in two steps: first, we add salt-and-pepper noise 62  to the 

MRI scans, and then we use the utility ants. denoise image( ) 63, to eliminate noise by using 

a spatially adaptive filter [218]. The procedure is then followed by the brain extraction. 

3. Brain extraction  performed to remove non-brain tissues such as those in the neck and 

skull by using ANtsPyNet brain extraction ( ) utility 64, which employs a pretrained 3D U-

net model brainy65. The ability of brainy to leverage contextual information between slices 

is its primary advantage. Brainy could estimate the brain mask for a volume of 

 
59 https://pypi.org/project/antspynet/ 
60 ants.utils.bias_correction — ANTsPy master documentation 
61 http://stanford.edu/class/ee367/Winter2016/Chaudhari_Report.pdf 
62 https://www.simonwenkel.com/notes/ai/practical/vision/progressive-sprinkles-and-salt-and-pepper-noise.html 
63 https://antspy.readthedocs.io/en/latest/_modules/ants/utils/denoise_image.html 
64 https://antsx.github.io/ANTsPyNet/docs/build/html/utilities.html#antspynet.utilities.brain_extraction 
65 brainy/brainy at master · neuronets/brainy · GitHub  

https://pypi.org/project/antspynet/
https://antspy.readthedocs.io/en/latest/_modules/ants/utils/bias_correction.html
http://stanford.edu/class/ee367/Winter2016/Chaudhari_Report.pdf
https://www.simonwenkel.com/notes/ai/practical/vision/progressive-sprinkles-and-salt-and-pepper-noise.html
https://antspy.readthedocs.io/en/latest/_modules/ants/utils/denoise_image.html
https://antsx.github.io/ANTsPyNet/docs/build/html/utilities.html#antspynet.utilities.brain_extraction
https://github.com/neuronets/brainy/tree/master/brainy
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256x256x256 in three seconds, regardless of orientation. In our implementation, predicting 

the brain mask of each image took around five seconds. The procedure is then followed by 

the registration. 

4. The purpose of registration is to remove spatial differences across participants and reduce 

the impact of transformations relative to a reference orientation.  

We performed affine fast registration [219] using the ANTsPy utility 

ants.registration ( ) 66 in the MNI 152 template67. MNI 152 is a template for a universal 

brain atlas that was generated by averaging 152 structural scans into one large image using 

nonlinear registration. Affine registration aligns the mean, linear shape, and orientation of 

data without requiring a problem-specific adjustment. 

 

Algorithm 1 : Preprocessing pipeline of  MRI scans. 

The output of each step for a CN subject is shown in Figure 3-2, along with the dimension, 

spacing, and origin. After preprocessing, the dimensions changed from 256x256x15 to 

182x218x182. 

 
66 https://antspy.readthedocs.io/en/latest/registration.html 
67 https://www.lead-dbs.org/about-the-mni-spaces/ 
 

https://antspy.readthedocs.io/en/latest/registration.html
https://www.lead-dbs.org/about-the-mni-spaces/
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The origin of the anatomical coordinate system is the location of the first voxel, whereas the 

spacing represents the distance between voxels along each axis.  

Figure 3-2  Output of each stage of the preprocessing pipeline for a cognitively normal subject 

{ 1->2->3->4 } 

Input scan : Dimension: (256, 256, 150)     Spacing : (0.9375, 0.9375, 1.2)   Origin : (88.6399, -

116.532, -112.1136) 

Output scan  :Dimension : (182, 218, 182)  Spacing : (1.0, 1.0, 1.0)  Origin : (-90.0, 126.0, -72.0)  

Input MRI scan 1.After N4 Bias Field Correction 2.After Denoising 

3.After Brain Extraction 4. After Registration 
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The MNI152 template standard also altered the spacing and origin values for all MRI scans 

to (1.0, 1.0, 1.0) and (-90.0, 126.0, -72.0) accordingly. The pre-processing for a single MRI scan 

took around two minutes. In Appendix B, a link to the Python script for Algorithm 1 is has been 

given. 

3.2.3 Implemented 3D CNN 

A variety of cutting-edge, 3D-CNN-based designs, particularly those from the DenseNet [181] and 

EfficientNet [220] families, have lately shown excellent performance in a variety of medical data 

categorization tasks [24], [44], [45], [86], [221]–[223], but we were unable to find many 

implementations of these models to detect AD. Based on this context, using Level 3/E2EL, the 

subsequent 3D CNN models for classifying AD vs. CN and AD vs. sMCI individuals were 

implemented. 

• A feed-forward neural network called DenseNet connects every layer to the one before it. 

DenseNet has L(L + 1)/2 direct connections, whereas traditional L-layer convolutional 

networks have L connections [76]. DenseNets provide several enticing benefits, including 

the ability to resolve the "vanishing gradient" problem, boost feature reuse, and 

significantly reduce the number of parameters. We have implemented four 3D DenseNet 

designs, each of which has four Dense Blocks with varying layer counts. Table 3-1 

displays the size, number of parameters, and number of layers in each block of the deployed 

designs. 

DenseNet 

(Version) 

Parameters  Layers  

block wise 

Size 

121 11.2 M [6,12,24,16] 9393 MB 

169 18.5 M [6,12,32,32] 9892 MB 

201 25.3 M [6,12,48,32] 10924 MB 

264 40.2 M [6,12,64,48] 12424 MB 

Table 3-1 Employed  structural design of DenseNet. 

• EfficientNet [220] is a lightweight model built on the AutoML68 framework. It was used 

to create a baseline EfficientNet-B0 network, and uniformly scale up the depth, width, and 

 
68 AutoML for large scale image classification and object detection – Google AI Blog (googleblog.com) 
 

https://ai.googleblog.com/2017/11/automl-for-large-scale-image.html
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resolutions using a simpler and more effective compound coefficient to improve 

EfficientNet models B1–B7.  

These models performed well and outperformed the prior CNN models on the 

ImageNet datasets [23] . EfficientNets are smaller, faster, and more generalizable, resulting 

in better accuracy. It's common to utilize them for TL, although they only assist with 2D 

data. 

We have implemented EfficientNetB0-B3 by using E2EL. The architecture 

specifics are shown in Table 3-2. B4-B7 could not be employed in the present research 

because to the model's direct 3D volume input, the increasing amount of parameters, and 

the constrained GPU and Memory resources. 

 

 

 

 

Table 3-2 Employed  structural design of EfficientNet. 

 3.2.4 Exploratory Setup :  

For the binary classification task, AD vs. CN and sMCI vs. AD, eight 3D CNN architectures were 

implemented by using stratified 5-fold cross-validation (CV) 69 as shown in Algorithm 2.  

The number of groups into which a certain data sample is to be divided is indicated by the 

procedure's only parameter, k. The process is hence often referred to as k-fold CV. When a 

particular value for k is selected, it may be substituted for k in the reference to the model, such as 

when k=5 is used to refer to 5-fold CV.  

CV is a well-liked technique since it is easy to comprehend and often yields a less biased 

or too optimistic assessment of the model ability than other techniques, including a straightforward 

train/test split. Data folding may be managed by rules like guaranteeing that each fold has the same 

number of observations with a certain category value, such as the class result value. This process 

is known as stratified CV70. 

 
69 https://machinelearningmastery.com/k-fold-cross-validation/ 
70 https://machinelearningmastery.com/cross-validation-for-imbalanced-classification/ 

EfficientNet Parameters Size 

B0 4.6 M 7801 MB 

B1 7.4 M 10223 MB 

B2 8.7 M 10631 MB 

B3 12.01 M 14294 MB 

https://machinelearningmastery.com/cross-validation-for-imbalanced-classification/
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3.2.4.1 Frameworks, Tools, and IDEs  

The whole implementation was completed using Google Colab Pro+71, which was made available 

to the public in August 2021. Some of its most notable features include the ability to run in the 

background, early access to more powerful GPUs, and increased memory availability. 

Asynchronous data loading and multiprocessing are facilitated by GPUs. 

 Despite not guaranteeing compatibility with a specific GPU, Colab Pro+ does offer 

priority on the available options. Even with Pro+, GPU quality might decline after periods of 

intensive use. Pro+ offers Tesla V100 or P100 NVIDIA DL GPU72 with CUDA support.  

The "High-RAM" option of Colab runtime met its objective by providing 52.8 GB RAM. 

Runtime support is supposed to be 24 hours as stated in Colab's specs73, yet we only got assistance 

for a maximum of 8 hours. For this reason, we could not run all the folds at the same time in this 

setup, as finishing a fold with 50 epochs requires approximately 2 hours.  

To implement  5-fold, stratified CV, we must create five data sets (DATASETS 1-5) for 

training and validation, with the same class ratio as the original dataset across all folds by using 

self-written code in Python. In Appendix B, a link to the code and datasets is given. According to 

the preprocessing pipeline discussed in Algorithm 1, all scans were processed. After 

preprocessing, datasets [1–5] were created and utilized in folds 1–5, respectively. To train and 

validate Fold [n], we utilized Dataset [n].  

 All models in this research were developed using Medical Open Network for Artificial 

Intelligence (MONAI) 74, a publicly accessible, community-supported, PyTorch-based toolkit for 

deep learning in medical imaging. It offers domain-optimized core capabilities for developing 

healthcare imaging training workflows inside a native PyTorch paradigm. The goal of Project 

MONAI, a collaborative effort between NVIDIA and King's College London, is to bring together 

academic and industrial researchers working on artificial intelligence in the field of medical 

imaging to develop and disseminate best practices. The author was unable to locate any research 

that used MONAI to identify AD. 

 

 
71 https://towardsdatascience.com/google-colab-pro-is-it-worth-49-99-c542770b8e56 
72 https://www.nvidia.com/en-us/data-center/v100/ 
73 https://blog.paperspace.com/alternative-to-google-colab-pro/ 
74 https://monai.io/ 
 

https://towardsdatascience.com/google-colab-pro-is-it-worth-49-99-c542770b8e56
https://www.nvidia.com/en-us/data-center/v100/
https://monai.io/
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3.2.4.2 Network Hyperparameters  

Hyperparameters are an integral part in training neural networks75. A hyperparameter regulates the 

learning process, therefore its values have an immediate effect on other model parameters, like as 

weights and biases, and subsequently on the model's performance. 

 Two critical hyperparameters, learning rate and number of epochs, were tuned. We trained 

and tested the model on three different combinations of learning rate and number of epochs for the 

AD vs. sMCI task and based on the comparison of their performances as shown in Fig. 3-3, the 

learning rate was set to 0.0001 and the number of epochs was set to 50. The link to the Python 

scripts for tuning has given in Appendix B. The batch size has been adjusted to 2 because of the 

limited available RAM. 

 The Adam optimizer [224] has been utilized. Adam was the first "adaptive optimizer" to 

gain massive acceptance [225]. Rather of using a separate learning rate scheduler, adaptive 

optimizers integrate learning rate optimization directly into the optimizer itself. Even further, 

Adam controls the learning rates on a weight-based scale. That is, it provides a learning rate for 

each independent variable in the model. The value that Adam assigns to this learning rate is a 

feature of the optimizer's implementation that cannot be modified directly76. Learning rate 

schedulers like ReduceLROnPlateau and EarlyStopping are unnecessary because of the way Adam 

is implemented. 

In addition, the ROCAUC Metric and the cross-entropy loss function were used. A neural 

network's output value during the backpropagation process is often a minimum, which is far lower 

than the real target value. It is often difficult for the neural network to use the supplied data to 

update its weights and enhance itself when the gradient is quite modest 77.  

The cross-entropy function's logarithm aids the network in detecting and correcting such 

little faults. CNN may utilize this change as guidance in the intended direction far more efficiently 

with the cross-entropy function than with the mean-squared error function. The equation of the 

cross-entropy loss function is LCE = -∑ 𝑡𝑖  log(𝑝𝑖)
𝑛
1  for n classes. 

 
75 https://www.analyticsvidhya.com/blog/2022/05/impact-of-hyperparameters-on-a-deep-learning-model/ 
76 Gentle Introduction to the Adam Optimization Algorithm for Deep Learning - MachineLearningMastery.com 
77 https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-softmax-crossentropy 
 

https://www.analyticsvidhya.com/blog/2022/05/impact-of-hyperparameters-on-a-deep-learning-model/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-softmax-crossentropy
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Figure 3-3 Tuning of  learning rate and number of epochs 

The ROCAUC Metric measures a model's ability to distinguish between classes. The higher 

the AUC, the better the model predicts 0 classes as 0 and 1 class as 1. 

3.2.4.3 Evaluation Matrices  

The following measures were used to assess the results since they give vital information for a 

comprehensive assessment of models. 

• Confusion Matrix: A confusion matrix, as shown in Table 3-3, which is an X-by-X grid 

where X is the number of class labels, can be used to figure out how well a classification 

model works78. Four outputs are expected from the confusion matrix: True positive (TP), 

True negative (TN), False positive (FP), and False negative (FN). If a patient with AD 

predicts within the AD group, he or she is classified as a TP, and if not, as a FN. Similarly, 

TN represents the number of correctly predicted normal patients, and FP represents the 

number of incorrectly predicted normal patients. 

 Positive Predictions Negative Prediction 

Real Positive TP FN 

Real Negative FP TN 

 

Table 3-3 Confusion Matrix 

 
78 https://www.sciencedirect.com/topics/engineering/confusion-matrix 
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https://www.sciencedirect.com/topics/engineering/confusion-matrix
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• The following five metrics 79 were used to assess the results: 

• Accuracy (ACC) = (TP + TN) / (TP + TN + FN + FP). 

• Precision = TP / (TP + FP), it represents how effectively the model learns about 

the positive sample features and is specific to the predicted result. The better the 

precision, the more precise the positive sample prediction. 

• Recall = TP/ (TP + FN), the greater the recall rate, the more accurately the target 

sample can be anticipated, and the less likely a faulty sample will be overlooked. 

• The F1-score = 
2⋅TP

2⋅TP+FP+FN
 , is the harmonic mean of precision and recall, and 

it assesses a test's accuracy. In general, precision and recall are in conflict; 

consequently, the F1-score is presented as a composite metric to balance the 

impacts of precision and recall and more accurately assess classifiers. 

• ROC-AUC, receiver operating characteristic-area under the curve (ROCAUC). It's 

a graph for determining how effectively a model can discriminate between two 

classes. The larger the area under the ROC curve, the better the classification 

method. When you look at the ROC curve, you can see the tradeoff between 

sensitivity and specificity for all conceivable thresholds, not just the one that the 

modeling approach picked. 

3.2.4.4 Algorithm  

Algorithm 2 presents the implemented procedure for the classification tasks. As described in 

Section 3.2.4.1, MRI scans from DATASET [C] were used for training and validation in fold C.    

After the preprocessing of all data, the MRI scans were distributed as follows:  

• For AD vs. CN task :  

• AD: 160 for training, 40 for validation, 45 for testing. 

• CN: 160 for training, 40 for validation, 45 for testing. 

• For AD vs. sMCI task :  

• AD: 160 for training, 40 for validation, 29 for testing. 

• sMCI: 160 for training, 40 for validation, 29 for testing. 

 
79 https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/ 
 

https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/
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Algorithm 2 :  Used for implementing eight CNN models for AD vs. CN and AD vs. sMCI tasks 
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As indicated in steps 2 and 3, we utilized MRI scans from DATASET[1]  for training and 

validation. We initialized the training and validation loaders from the DATSET [C] MRI scans to 

be analyzed in fold C in steps 48 and 49.  In steps 43 to 46, we used the model with the best weights 

from each fold to assess unseen MRI scans. The model was reset to apply E2EL after each fold. 

In step 12, we have mentioned that this algorithm will be used for implementing all eight models. 

We executed 40 Python scripts for eight models, each with five folds. In Appendix B, a link to all 

the scripts and their findings is provided. 

3.3 Results 
Table 3-4 and Figure 3-4 show the results of five metrics (precision, recall, F1-score, accuracy, 

and AUC) used to compare the eight models  for both training and testing. During testing, the 

DenseNet-based models beat the EfficientNet-based models for both classifications by a margin 

of  7 to 14 % for the AD vs. CN classification and by a margin of 5 to 10 % for the AD vs. sMCI 

classification. In both classification methods, DenseNet 264 outperformed the rest of the DenseNet 

family. EfficientNet-B0 beat the other models based on EfficientNet. During the AD vs. sMCI 

testing, DenseNet201 and EfficientNet-B0 did better than DenseNet264 in a few evaluation 

matrices by a small margin of 1% to 3%.  

Figures 3-5 to 3-8 depicts the confusion matrix and ROCAUC for the best fold of 

DenseNet264 for both classification tasks. The confusion matrix and ROCAUC for other models 

for each fold can be seen by using the link given in Appendix B.  

Validation after training was done on a total of 80 MRI scans, with 40 scans used for each 

class for the AD vs. sMCI task. Figures 3–5 show that the TP for sMCI patients was 35 and the 

FN was 5, while the TN for AD patients was 37 and the FP was 3. Each class achieved an AUC of 

90%. 

58 MRI scans were utilized for testing, including 29 scans from subjects with AD and 29 

from subjects with sMCI, which had not been used during the training or validation procedures. 

Figure 3–6 shows that those with AD had a TN of 27 and an FP of 2, while those with sMCI had 

a TP of 24 and a FN of 5. The AUC was 87.9% for both classes. 

 Due to the paucity of information in the ADNI database indicating the state of each 

participant after x years of stability and the fact that their anatomical features are almost identical 

to those of AD scans, only a small percentage of sMCI and AD individuals were incorrectly 

classified.  
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 Figure 3-4 DN: DenseNet; EN: EfficientNet; Graphical Results of five assessment matrices of eight DL modes for the AD vs. CN 
and AD vs. sMCI tasks 
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AD vs. CN                                     Matrices DN121 DN169 DN201 DN264 EN-B0 EN-B1 EN-B2 EN-B3 

 

 

TRAIN 

 

ACC 99.25 99.50 99.50 100 99.75 98.75 99.00 99.50 

Precision 99.28 99.52 99.52 100 99.75 98.78 99.01 99.51 

Recall 99.25 99.50 99.50 100 99.75 98.75 99.00 99.50 

AUC 100 100 100 100 99.94 98.34 99.52 99.74 

F-1 Sc. 99.25 99.50 99.50 100 99.75 98.75 99.00 99.50 

 

 

TEST 

 

Accuracy 97.33 92.89 98.22 99.55 90.91 86.91 91.55 85.56 

Precision 97.41 94.35 98.30 99.56 92.90 89.98 93.30 88.84 

Recall 97.33 92.91 98.22 99.55 90.91 86.93 91.55 85.58 

AUC 97.33 92.89 98.22 99.55 90.91 86.91 91.55 85.56 

F-1 Score 97.33 92.674 98.22 99.55 90.58 86.40 91.38 85.11 

 

AD vs. sMCI                                     Matrices DN121 DN169 DN201 DN264 EN-B0 EN-B1 EN-B2 EN-B3 

 

 

TRAIN 

 

Accuracy 78.50 81.25 78.75 82.50 80.50 78.25 77.75 72.00 

Precision 78.99 82.83 79.45 84.10 81.44 79.39 79.33 73.99 

Recall 78.48 81.25 78.75 82.50 80.50 78.25 77.75 72.00 

AUC 85.42 86.23 83.20 87.63 81.38 82.59 83.14 73.49 

F-1 Score 78.42 80.94 78.63 82.15 80.33 78.06 77.38 70.71 

 

 

TEST 

 

Accuracy 81.72 79.65 82.06 81.03 81.38 80.69 73.79 74.83 

Precision 82.72 82.83 83.70 83.29 82.91 84.49 79.65 79.22 

Recall 81.72 79.65 82.06 81.03 81.38 80.69 73.80 74.83 

AUC 81.73 79.65 82.06 81.03 81.38 80.69 73.79 74.83 

F-1 Score 81.59 79.07 81.84 80.60 80.96 80.00 71.97 72.60 

 

 Table 3-4 Tabular Results of five assessment matrices of eight DL modes for the AD vs. CN and AD vs. sMCI tasks (average of a 
5- fold stratified CV) [101] 

Validation after training was done on a total of 80 MRI scans, with 40 scans used for each 

class for the AD vs. CN task .Figures 3–7 show that the TP for sMCI patients was 40 and the FN 

was 0, the TN for AD patients was also 40 and the FP was 0. Each class achieved an AUC of 

100%. 

90 MRI scans were utilized for testing, including 45 scans from subjects with AD and 45 

from subjects with CN, which had not been used during the training or validation procedures. 

Figure 3–8 shows that those with AD had a TN of 45 and an FP of 0, while those with CN also 

had a TP of 45 and a FN of 0. The AUC was 100% for both classes. DenseNet264 achieved an 

average ACC of 99.55% for the AD vs. CN task, however obtained a maximum accuracy of 

82.50% for AD vs. sMCI classification, which must be improved. 
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Figure 3-5 ROC-AUC curve and confusion matrix for the best fold of training for the AD vs. sMCI task 

 

 

 

  

Figure 3-6 ROC-AUC curve and confusion matrix for the best fold of testing for the AD vs. sMCI task 

 



 
 

66 
 

 

 

 

 

Figure 3-7  ROC-AUC curve and confusion matrix for the best fold of training for the AD vs. CN task 

 

 

 

 

 

Figure 3-8 ROC-AUC curve and confusion matrix for the best fold of testing for the AD vs. CN task 
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3.4 Comparative Analysis 

The results of the relative comparison of the implemented models were described in detail using 

the following two techniques: 

3.4.1 Ranking Mechanism 

The ranking method described by Zorlu et al. [226] was used. Individually, for the training and 

testing, the total rank of every model was determined. Because there were eight models and the 

highest rating was awarded to the model with the best performance, the maximum rating for each 

performance index was set at eight. After that, each model's overall performance rating was 

calculated by summing the ranks of its training and test datasets.  

DenseNet264 achieved the top rating among the eight DL models for both binary 

classification tasks as shown in Table 3-5 and 3-6. 

DL 

Model 

Evaluation 

Phase 

ACC  

Rank 

Precision 

Rank 

Recall 

Rank 

AUC   

Rank 

F-1 Score 

Rank 

Total 

Rank 

Grand 

Total 

Rank 

DN121 
TRAIN 5 4 5 8 5 27 

57 
TEST 6 6 6 6 6 30 

DN169 
TRAIN 6 6 6 8 6 32 

57 
TEST 5 5 5 5 5 25 

DN201 
TRAIN 6 6 6 8 6 32 

67 
TEST 7 7 7 7 7 35 

DN264 
TRAIN 8 8 8 8 8 40 

80 
TEST 8 8 8 8 8 40 

EN-B0 
TRAIN 7 7 7 7 7 35 

50 
TEST 3 3 3 3 3 15 

EN-B1 
TRAIN 3 2 3 4 3 15 

25 
TEST 2 2 2 2 2 10 

EN-B2 
TRAIN 4 3 4 5 4 20 

40 
TEST 4 4 4 4 4 20 

EN-B3 
TRAIN 6 5 6 6 6 29 

34 
TEST 1 1 1 1 1 5 

 

Table 3-5 Ranking of models for the AD vs. CN task [101] 
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Classifier 
Evaluation 

Phase 

ACC  

Rank 

Precision 

Rank 

Recall 

Rank 

AUC   

Rank 

F-1 

Score 

Rank 

Total 

Rank 

Grand 

Total 

Rank 

DN121 
TRAIN 4 2 4 6 4 20 

51 
TEST 7 3 7 7 7 31 

DN169 
TRAIN 7 7 7 7 7 35 

50 
TEST 3 4 2 3 3 15 

DN201 
TRAIN 5 5 5 5 5 25 

64 
TEST 8 7 8 8 8 39 

DN264 
TRAIN 8 8 8 8 8 40 

66 
TEST 5 6 5 5 5 26 

EN-B0 
TRAIN 6 6 6 2 6 26 

55 
TEST 6 5 6 6 6 29 

EN-B1 
TRAIN 3 4 3 3 3 16 

40 
TEST 4 8 4 4 4 24 

EN-B2 
TRAIN 2 3 2 4 2 13 

19 
TEST 1 2 1 1 1 6 

EN-B3 
TRAIN 2 1 1 1 1 6 

15 
TEST 2 1 2 2 2 9 

 

Table 3-6 Ranking of models for the AD vs. sMCI task [101] 

For AD vs. CN, DenseNet264 had the highest score in both training and testing. 

DenseNet264 outperformed other models in AD vs. sMCI training, however DenseNet201, 121 

and EfficientNet-B0 outscored DenseNet264 in testing. Overall, DenseNet264 had a superior 

position. DenseNet201, DenseNet121, and EfficientNet-B0 might be used to experiment with 

additional training data to develop a generalizable DL model for AD vs. sMCI task . EfficientNet-

B2 and B3 were the worst performers in both categories. 

3.4.2 Comprehensive Indicators and Efficiency-Effects Graph 

 

We applied Yang et al.’s method [46] to examine the models' strengths in a more exhaustive 

manner in order to quantify the performance of the eight models with more precision. Since the 

F1-score is a combined measure of precision and recall, it is not included in this procedure. The 

dispersion and standard deviations (std) of the four indicators (precision, recall, accuracy, and 
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AUC) were determined. Each model's four indicators were added (sum),then determined their 

standard deviation (std). Finally, a constant (k = 0.04) was added to the standard deviation to 

prevent a division by zero error while calculating the comprehensive indicators. To get the values 

of comprehensive indicator, we divided the last two integers (sum/ (std + 0.04)). This method is 

shown in Tables 3-7 and 3-8. 

.DL 

Model 

Evaluation 

Phase 
ACC Precision Recall AUC sum std std + .04 

Comprehensive 

Indicator 

DN121 
TRAIN 0.99 0.99 0.99 1.00 3.98 0.00 0.04 91.02 

TEST 0.97 0.97 0.97 0.97 3.89 0.00 0.04 96.39 

DN169 
TRAIN 1.00 1.00 1.00 1.00 3.99 0.00 0.04 93.84 

TEST 0.93 0.94 0.93 0.93 3.73 0.01 0.05 78.92 

DN201 
TRAIN 1.00 1.00 1.00 1.00 3.99 0.00 0.04 93.84 

TEST 0.98 0.98 0.98 0.98 3.93 0.00 0.04 97.27 

DN264 
TRAIN 1.00 1.00 1.00 1.00 4.00 0.00 0.04 100.00 

TEST 1.00 1.00 1.00 1.00 3.98 0.00 0.04 99.43 

EN-B0 
TRAIN 1.00 1.00 1.00 1.00 3.99 0.00 0.04 97.48 

TEST 0.91 0.93 0.91 0.91 3.66 0.01 0.05 73.20 

EN-B1 
TRAIN 0.99 0.99 0.99 0.98 3.95 0.00 0.04 93.72 

TEST 0.87 0.90 0.87 0.87 3.51 0.02 0.06 63.40 

EN-B2 
TRAIN 0.99 0.99 0.99 1.00 3.97 0.00 0.04 93.12 

TEST 0.92 0.93 0.92 0.92 3.68 0.01 0.05 75.48 

EN-B3 
TRAIN 1.00 1.00 1.00 1.00 3.98 0.00 0.04 96.70 

TEST 0.86 0.89 0.86 0.86 3.46 0.02 0.06 61.30 
 

Table 3-7 Comprehensive Indicators of Model Performance Measures for AD vs. CN [101] 

In addition to the comprehensive indicators, the number of model parameters was used to 

evaluate the models' strengths. Figures 3-9 to 3-12 depict the efficiency-effects plot, where the 

vertical coordinate is the model's comprehensive indicator, and the horizontal coordinate is the 

number of model parameters. If the point that represents the model is close to the top-left corner, 

the model will be better and more effective. The opposite result is produced by the models in the 

bottom-right corner.  
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DL 

Model 

Evaluation 

Phase 
ACC Precision Recall AUC sum std std + .04 

Comprehensive 

Indicator 

DN121 
TRAIN 0.79 0.79 0.78 0.85 3.21 0.03 0.07 43.49 

TEST 0.82 0.83 0.82 0.82 3.28 0.00 0.04 72.89 

DN169 
TRAIN 0.81 0.83 0.81 0.86 3.32 0.02 0.06 52.23 

TEST 0.80 0.83 0.80 0.80 3.22 0.02 0.06 57.56 

DN201 
TRAIN 0.79 0.79 0.79 0.83 3.20 0.02 0.06 52.19 

TEST 0.82 0.84 0.82 0.82 3.30 0.01 0.05 68.44 

DN264 
TRAIN 0.83 0.84 0.83 0.88 3.37 0.02 0.06 52.46 

TEST 0.81 0.83 0.81 0.81 3.26 0.01 0.05 63.62 

EN-B0 
TRAIN 0.81 0.81 0.81 0.81 3.24 0.01 0.05 71.55 

TEST 0.81 0.83 0.81 0.81 3.27 0.01 0.05 68.64 

EN-B1 
TRAIN 0.78 0.79 0.78 0.83 3.18 0.02 0.06 52.63 

TEST 0.81 0.84 0.81 0.81 3.27 0.02 0.06 55.35 

EN-B2 
TRAIN 0.78 0.79 0.78 0.83 3.18 0.03 0.07 48.60 

TEST 0.74 0.80 0.74 0.74 3.01 0.03 0.07 43.45 

EN-B3 
TRAIN 0.72 0.74 0.72 0.73 2.91 0.01 0.05 58.00 

TEST 0.75 0.79 0.75 0.75 3.04 0.02 0.06 49.03 

Table 3-8 Comprehensive Indicators of Model Performance Measures for AD vs. sMCI [101] 

 

The DenseNet-121 model showed the best testing performance for both kinds of 

categorization, while the EfficientNet-B0 model had the best overall metrics and lowered model 

parameters. When comparing evaluation matrices for AD vs. CN classification, DenseNet264 

performed better than the competition. However, since it had the most parameters, it was more 

difficult to train. The DenseNet169 and EfficientNetB1, B2, and B3 models faired modestly in 

terms of overall metrics. DenseNet201 performed exceptionally well in testing, coming close to 

DenseNet121 and outperforming DenseNet264 for both kinds of categorization. 

It may be concluded that increased model performance is not necessarily associated with 

a larger number of model parameters. 
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Figure 3-9 Efficiency Effects Graph for AD vs. CN (Training) 

 

Figure 3-10 Efficiency Effects Graph for AD vs. CN (Testing) 
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Figure 3-11  Efficiency Effects Graph for AD vs. sMCI (Training) 

 

                                                       Figure 3-12  Efficiency Effects Graph for AD vs. sMCI (Testing) 
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3.5 Comparison with the Current state-of-the art methods 

We compared our categorization findings to those in the literature, as shown in Tables 3-9 and 3-

10. The methods evaluated varied from learning Level 1 to learning Level 3. We also compared 

our results for AD vs. sMCI to those for non-converter (stable) MCI vs. converter MCI, since 

converted MCI represents AD and non-converter MCI represents stable MCI. 

 We were able to discriminate AD from CN with the maximum degree of accuracy using 

E2EL, and consequently, this classifier may be employed in clinical settings after some qualitative 

study. The distinction between AD and sMCI, on the other hand, is more difficult than that between 

AD and CN because the morphological changes that must be detected are more subtle [50], [98]. 

The accuracy of several of the study results in Table 3–10 ranged from 70 to 80%. Our model 

performed well in this category, ranking first among Level 3 learning classifiers. The accuracy of 

AD vs. sMCI classification must be enhanced further to help in clinical contexts. This may be 

accomplished by employing additional training data, using a pre-trained 3D model, or using local 

TL. 

3.6 Conclusion  

We did experiments in this chapter to achieve #Goal 2, as illustrated in Figure 1-1. Even with the 

endemic issues of neuroimaging, where training data are few and sample dimensionality is high, 

DL models with E2EL can be used to obtain good accuracy. The experimental findings on the 

ADNI and IXI data showed that our model outperformed current state-of-the-art models in terms 

of performance and efficiency. 

 The findings of this chapter may be used in determining the best model to use and 

understanding the situations in which the models would produce better outcomes. In general, 

neural networks from the DenseNet family, such as DenseNet 121, DenseNet 201, DenseNet 264, 

and EfficientNet-B0, provide superior results for categorizing the various phases of AD. 

EfficienNet-B0 because performed best overall for the AD vs. sMCI task, as can be seen 

in the Efficiency Effect Graph in Figure 3-11and Figure 3-12; it has fewer parameters; and its 

architecture has been developed to enable TL and make classifiers more generalizable.  

Based on the findings of this chapter, we apply EfficientNet-B0 and a unique fusion 

of E2EL and TL in Chapter 4 to attempt to increase the accuracy of the AD vs. sMCI 

challenge. 
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Ref. Learning Level/ 

Classifier 

Subjects AD vs. CN 

Accuracy Precision SEN AUC F-1  SPE 

Toshkhujaev et 

al.[185] 

L1/RBF-SVM AD-71, CN-171 91.57 - 81.82 - - 100 

Suk et al.[85] L1/Regression+   

CNN 

AD-186,CN-286 91.02 ± 4.29 - 92.72 92.72 - 89.94 

Zhang et al.[15] L2/CNN AD-280,CN-275 97.35 - 97.10 99.70 - 97.95 

Li et al.[138] L2/ CNN+RNN AD-194,CN-216 89.10 - 84.6 91.0 - 93.1 

Mehmood et al. 

[190] 

L2/VGG-19(2D 

TL) 

AD-85,CN-75 98.73 - 98.19 - - 99.09 

Tuan et al.[191] L2/CNN+SVM CN-98,AD-99 89.00 - - - - - 

Song et al.[192] L2/3D CNN CN-126,AD-95 94.11 - - - - - 

 

 

 

Nanni et al.[198] 

L2/AlexNetP  

 

 

AD-137,CN-162 

- - - 90.8 - - 

L2/GoogleNetP - - - 89.6 - - 

L2/ResNet50P - - - 89.8 - - 

L2/ResNet101P - - - 89.9 - - 

L2/InceptionV3P - - - 88.8 - - 

L2/3DCNN - - - 84.1 - - 

A et al.[20] L2/2D CNN CN-635,AD-220 96.8 - 94.0 - - 96.0 

Li et al.[169] L2/CNN CN-216,AD-194 85.9 - 81.5 88.4 - 89.9 

Cui and Liu.[170] L2/3DCNN CN-223,AD-192 92.29 - 90.63 96.95 - 93.72 

Liu et al.[204] L2/2DCNN CN-100,AD-93 93.26 - 92.55 95.68 - 93.94 

Xu et al.[205] L2/SRC CN-117,AD-113 94.8 - 95.6  - 94.0 

Pan et al.[206] L2/CNN AD-237,CN-242 93.75 - 91.49 96.87 - 95.92 

Shi et al.[209] L2/MM-SDPN AD-51, CN-52 97.13± 4.44 - 95.93±7.84 - - 95.93±7.8

4 

Lu e al.[144] L2/MDNN &  TL CN-304,AD-226 93.58 - 91.54 - - 95.06 

Hon and Khan[147] L2/InceptionV4 AD-200,CN-100 96.25 - - - - - 

Liu et al.[133] L3/3D CNN AD-97, CN-119 88.9 - 86.6 92.5 - 90.8 

Oh et al. [141] L3/CAE+3DCNN CN-230,AD-198 86.60 ± 3.66 - 88.55 - - 84.54 

Proposed L3/DenseNet264 CN-245,AD-245 99.55 99.56 99.55 99.55 99.55 99.55 

 
Table 3-9 Performance of Published State-of-the-Art Methods for AD vs. CN Task [101] 

P: Pertained, MM-SDPN: multimodal stacked deep polynomial networks,                                                                 

MDNN: Multistate Deep Neural Network, SRC: sparse representation-based classification,                     

MiSePyNet: Multi-view Separable Pyramid Network. 
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Ref. Learning Level/ 

Classifier 

Subjects AD vs. stable MCI  

Accuracy Precision Recall AUC F-1 SPE 

Suk et al.[85] L1/ Regression+ 

CNN 

pMCI-167,sMCI-226 74.82 

± 6.80 

- 70.93 75.39 - 78.82 

Zhang et 

al.[15] 

L2/CNN pMCI-162,sMCI-251 78.79 - 75.16 86.79 - 82.42 

Li et al.[138] L2/ CNN+RNN pMCI-164,sMCI-233 72.5 - 61.0 74.6 - 82.5 

 

 

 

Nanni et 

al.[198] 

L2/AlexNetP  

 

 

sMCI-234,pMCI-240 

- - - 69.1 ± 1.3 - - 

L2/GoogleNetP - - - 70.0 ± 1.3 - - 

L2/ResNet50P - - - 70.4 ± 1.0 - - 

L2/ResNet101P - - - 71.2 ± 1.2 - - 

L2/InceptionV3P - - - 69.8 ± 3.5 - - 

L2/3DCNN - - - 61.1 ± 1.0 - - 

Li et al.[169] L2/CNN pMCI-164,sMCI-233 71.0 - 59.8 71.9 - 79.0 

Cui and 

Liu.[170] 

L2/3DCNN sMCI-231,pMCI- 75.00 - 73.33 77.70 - 76.19 

Xu et al.[205] L2/SRC MCI-110 77.8 - 74.10  - 81.50 

Pan et 

al.[206] 

L2/MiSePyNet   sMCI-360,pMCI-166 83.81 - 75.76 88.89 - 87.50 

Shi et 

al.[209] 

L2/MM-SDPN pMCI-43,sMCI-56 78.88±4.38 - 68.04±9.9

9 

- - 86.81±

9.12 

Lu e al.[144] L2/MDNN & TL sMCI-409,pMCI-112 81.55 - 73.33 - - 83.83 

Shen et 

al.[210] 

L2/RNN pMCI-307,sMCI-558 80.00 - 81.00 - - 80.00 

Yang and 

Liu[146] 

L2/SVM sMCI-270,pMCI-70 78.56 - 91.02 - - 77.63 

Gao et 

al.[139] 

L3/3DCNN pMCI-168,sMCI-129 76.0 - 77.0 81.0 - 76.0 

Oh et al. 

[141] 

L3/CAE+3DCNN sMCI-101,pMCI-166 73.95 ± 4.82 - 77.46 - - 70.71 

Proposed L3/DenseNet264 sMCI-229,AD-229 82.50 84.10 82.50 87.63 82.15 82.50 

 

Table 3-10 Performance of Published State-of-the-Art Methods for AD vs. sMCI Task  [101]                
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 Chapter 4:  Implementation of EfficientNet-B0 

based on the  Fusion of TL and E2EL 
 

Summary : As shown in Figure 1-1,  this chapter is about the second contribution, "Identification 

and implementation of the optimum DL model," intended to help achieve the second goal, "to 

provide the neuroradiologist with the computer-interpretable information they need to analyze an 

MRI scan."  

 DenseNet264 gave ample accuracy for the AD vs. CN task. However, the accuracy 

obtained for the AD vs. sMCI task was only 82.50%. To increase the accuracy for this task, 

we chose the EfficienNet-B0 model based on the recommendations of chapter 3. 

 We implemented the EfficietNet-B0 using a novel approach—"fusion of E2EL and 

TL"—for the AD vs. sMCI task and obtained 95.29% accuracy and 95.35% AUC for training 

and 93.10% accuracy and 93.00% AUC for testing. 

Additionally, we have also implemented EfficientNet-B0 with E2EL for multiclass AD vs. CN 

vs. sMCI classification task and obtained 85.66% accuracy and 86% AUC for model training 

and 87.38% accuracy and 88.00% AUC for model testing. . In Chapter 5, we will utilize this 

multiclass classifier to build an ensemble learning-based tool called "Deep-AD". 

4.1 Introduction  

According to the literature, detecting AD at an early stage is crucial for patients to get its full 

benefits[41], [50]. Currently, 86.30% [140] is the highest accuracy level for this job whether using 

E2EL, local TL, CNN-based 2D transfer learning, or ROI segmentation techniques. Therefore, we 

suggest combining E2EL and TL during the model's training phase to improve accuracy as well as 

generalization capacity. By transferring the learning from each fold of the 5-fold stratified cross-

validation to the fold after it, and so forth, we trained the EfficientNet-B0 CNN for the binary 

classification task of  AD vs. sMCI classification . E2EL was used to train the model in the first 

fold. We also trained and evaluated an E2EL-based EfficientNet-b0 model for the multiclass AD 

vs. CN vs. sMCI classification problem. 3D T1W MRI scans were preprocessed and input into the 

models. 
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4.2 Materials and methods 

We propose DL models for the classification of MRI scans of 1) AD and sMCI subjects, and 2) 

AD, sMCI, and CN subjects. For task one we used a novel E2EL and TL fusion approach, as 

shown in Figure 4-1. During model training via 5-fold stratified cross-validation, we trained the 

model from scratch in the first fold (E2EL), validated it, and used the final weights of the best 

epoch from fold 1 as the initial weights for fold 2 (TL). After training and validating the model in 

fold 2, we used the final weights of the best epoch from fold 2 as the initial weight for fold 3, and 

we repeated the same steps for the subsequent folds. For task 2, we used E2EL for all the folds. 

The model of the best epoch from each fold was used to assess external MRI scans to check for 

overfitting. 

Figure 4-1 . Block diagram of proposed work 
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4.2.2 Preprocessing Pipeline  

Same as discussed in 3.2.2 Preprocessing Pipeline 

4.2.3 Implemented CNN  

In recent years, CNNs have seen a surge in popularity because of their impressive usefulness in 

high-dimensional data analysis. EfficientNet models are based on simple and incredibly effective 

compound scaling methods. In many cases, EfficientNet models achieve better accuracy  and 

efficiency than state-of-the-art CNNs like AlexNet, ImageNet, GoogleNet, or MobileNetV2 [24]. 

EfficientNets are more compact, run faster, and generalize more effectively, leading to improved 

accuracy. They have often been used with TL. However, they have only been pre-trained on 2D 

images, so their learning cannot be transferred to 3D MRI scans. Nonetheless, they can be trained 

for 3D scans via E2EL. 

 Models from b0 to b7 [220] are represented in EfficientNet, with  individual parameter 

sets spanning from 4.6 to 66 million. We chose the EfficientNet-B0 model for the proposed 

classification tasks because it offered the best overall evaluation metrics and the lowest model 

parameters, as reported in chapter 3.  

Figure 4-2 depicts the implemented EfficientNet-b0 structural layout. It has a total of 295 

layers, distributed as shown in Table 4-1. Six consecutive blocks with various structures are 

included, in addition to 16 MBConvBlocks. 

4.2.4 Exploratory Setup 

For  AD vs. sMCI and AD vs. CN vs. sMCI tasks, EfficientNet-B0 is  implemented by using 

stratified 5-fold CV as shown in Algorithm 3 and 4.  

4.2.4.1 Frameworks, Tools, and IDEs  

Same as discussed in 3.2.4.1 Frameworks, Tools, and IDEs  

4.2.4.2 Network Hyperparameters 

Same as discussed in 3.2.4.2 Network Hyperparameters 

4.2.4.3 Evaluation Matrices  

Same as discussed in 3.2.4.3 Evaluation Matrices 
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Figure 4-2 (a) Structural layout of EfficienNet-B0 
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Figure 4-2 (b)  Structural layout of EfficienNet-B0, drawn using the Tensor Board 80 in PyTorch 

 
80 https://pytorch.org/docs/stable/tensorboard.html 

https://pytorch.org/docs/stable/tensorboard.html
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 Input size  [2,1,182,218,182] 

Layer (Type) Output Shape 

ConstantPad3d [2, 1, 183, 219, 183] 

Conv3d [2, 32, 91, 109, 91] 

BatchNorm3d [2, 32, 91, 109, 91] 

MemoryEfficientSwish-4 [2, 32, 91, 109, 91] 

Sequential [0] block Contains one MBConvBlock [ ConstantPad3d,Conv3d, 

BatchNorm3d, MemoryEfficientSwish-4 ,AdaptiveAvgPool3d,again have 

three Conv3d and one BatchNorm3d,Identity] 

[2, 16, 91, 109, 91] 

Sequential [1] block contains two MBConvBlocks.  [2,24,45,54,45] 

Sequential [2] block contains two MBConvBlocks. [2,40,22,27,22] 

Sequential [3] block contains three MBConvBlocks. [2,80,11,13,11] 

Sequential [4] block contains three MBConvBlocks. [2,112,11,13,11] 

Sequential [5] block contains four MBConvBlocks. [2,192,5,6,5] 

Sequential [6] block contains one MBConvBlocks. [2,320,5,6,5] 

Conv3d   [2,1280,5,6,5] 

BatchNorm3d [2,1280,5,6,5] 

MemoryEfficientSwish-4 [2,1280,5,6,5] 

AdaptiveAvgPool3d [2,1280,1,1,1] 

Operation flatten [2,1280] 

Dropout(p=0.2, inplace=False) [2,1280] 

Fully Connected :  Linear(in features=1280, out features=2, bias=True) [2,2] 

MemoryEfficientSwish() Output 

Total params: 4,690,942 

Trainable params: 4,690,942 

Non-trainable params: 0 

Input size (MB): 27.55 

Forward/backward pass size (MB): 7754.59 

Params size (MB): 17.89 

Estimated Total Size (MB): 7800.03 

 

Table 4-1 Summary of the 295 layers of the model with output shape 
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4.2.4.4 Algorithm  

After the preprocessing of all data, the MRI scans were distributed as follows:  

• For AD vs. sMCI task :  

• AD: 160 for training, 40 for validation, 29 for testing. 

• sMCI: 160 for training, 40 for validation, 29 for testing. 

• For AD vs. CN vs. sMCI task :  

• AD: 160 for training, 40 for validation, 29 for testing. 

• CN: 160 for training, 40 for validation, 45 for testing. 

• sMCI: 160 for training, 40 for validation, 29 for testing. 

The implemented method for the classification of AD vs. sMCI is presented in Algorithm 3. As 

indicated in steps 2 and 3, we utilized MRI scans from DATASET [1] for training and validation. 

In steps 48 and 49, we initialized the training and validation loaders from DATSET [C] MRI scans 

to be analyzed in fold C. In steps 43 to 46, we evaluated unseen MRI scans using the model with 

the best weights from each fold. 

In the first fold model learned from scratch (E2EL), we did not reset the model in step 50; 

conversely, we raised the counter to reflect the fold's rise since we intended to apply this fold's 

learning to the next fold (TL), and so on for successive folds. 

The same approach, with a few modifications, was applied to the AD, sMCI, and CN 

multiclassification task as shown in Algorithm 4: i.e., there were three types of input MRI scans; 

the batch size and worker values were set to eight; the number of output classes was changed to 

three; and the number of epochs was increased to 100. The same process was used for testing, 

validation, and training inside each fold. After each fold, the model was reset to apply E2EL.  
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Algorithm 3  Used for implementing EfficienNet-B0  for AD vs. sMCI tasks[ fusion of E2EL & TL]. 
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Algorithm 4  Used for implementing EfficientNet-B0s for AD vs. CN vs. sMCI [ E2EL]. 
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4.3 Results  

Figure 4-3 and 4-4 depicts the loss experienced during training as well as the changes in validation 

accuracy of fold 1 for the AD vs. sMCI task. Training loss was progressively reduced while 

validation accuracy peaked at 88.75% in the first fold, indicating that the model was learning 

adequately. This effect increased in succeeding folds because of the application of TL from prior 

folds, as can be seen in Figure 4-5.  

Maximum testing accuracy and AUC reached 93.10% and 93.0% in fold 5, while average 

training accuracy over all folds reached 95.29%. The confusion matrix and ROCAUC for the 

optimal training and testing fold of the binary classification task are shown in Figure 4-6 and 4-

7, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

Figure 4-3 loss during the training in first fold for AD vs. sMCI task 
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Figure 4-4 Validation accuracy in first fold for AD vs. sMCI task 

Validation was performed on a total of 80 MRI scans, with 40 scans utilized for each class. 

As shown in Figure 4-6, TP for AD subjects was 40 and FN was 0, while TN for sMCI subjects 

was 36 and FP was 4. Due to the lack of information in the ADNI database regarding the status of 

each subject after x years of stability and as they present almost the same anatomical structures as 

AD scans, only a small number of sMCI subjects were misclassified. Both classes obtained an 

AUC of 95.0%. 

Testing was performed on a total of 58 MRI scans (29 of AD and 29 of sMCI subjects) 

which had not been used during the training or validation procedures. As shown in Figure 4-7, TP 

for AD subjects was 29 and FN was 0, while TN for sMCI subjects was 25 and FP was 4. Both 

classes obtained an AUC of 93.0%.  
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Figure 4-5 Comprehensive results for the AD vs. sMCI task 

 

 

 

 

 

Figure 4-6 ROCAUC Curve/ Confusion Matrix of the optimal training fold for the AD vs. sMCI task. 
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Figure 4-7 ROCAUC Curve/ Confusion Matrix of optimal testing fold for the AD vs. sMCI task. 

      

Figure 4-8 and 4-9 depicts the training loss as well as variations in validation accuracy for the AD 

vs. sMCI vs. CN task.  Training loss was progressively reduced, and validation accuracy peaked 

at 85.83% in the first fold, implying that the model was learning appropriately.  

As shown in Figure 4-10, accuracy is altered in the subsequent folds due to learning from 

scratch in every fold. In fold 2, the highest testing accuracy reached 87.38%, while average training 

accuracy across all folds reached 85.66%.  

The confusion matrix and ROCAUC for the optimal training and testing fold of the 

multiclassification task are shown in Figures 4-11 and 4-12, respectively. Validation was 

performed on a total of 120 MRI scans, with 40 scans utilized for each class, nearly 100% accuracy 

was achieved for CN subjects; however, because of their similar anatomical structures, the 

categorization findings for the AD and sMCI participants indicated a small number of incorrect 

classifications. The corresponding AUCs for the CN, AD, and sMCI classes were 100.0%, 88.0%, 

and 84%, respectively.  

Testing was performed on a total of 103 MRI scans (29 of AD, 29 of sMCI, and 45 of CN 

subjects) which had not been used during training or validation. As shown in Figure 4-12, quite a 

few sMCI and CN participants were incorrectly classified, while AD subjects were 100% correctly 

classified. The corresponding AUCs for the CN, AD, and sMCI classes were 93.0%,  95.0%, and 

84%, respectively.    
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Figure 4-8  loss during the training in first fold for AD vs.CN vs. sMCI task 

 

                    

 

 

 

 

 

 

 

                                      

 

 

Figure 4-9 Validation accuracy in first fold for AD vs. CN vs. sMCI task 
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Figure 4-10  Comprehensive results for the AD vs. CN vs.  sMCI task 

              

 

 

 

 

                      Figure 4-11 ROCAUC Curve/ Confusion Matrix of optimal training fold for the AD vs.CN vs. sMCI task. 
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 Figure 4-12 ROCAUC Curve/Confusion Matrix of optimal testing fold for the AD vs.CN vs. sMCI task. 

4.4 Comparison with the Current state-of-the art methods 

We compared our categorization findings to those reported in the literature, as shown in Tables 4-

2 and 4-3. Most published literature regarding binary classification tasks utilized accuracy, 

sensitivity (SEN), specificity (SPE), balanced accuracy (BA), and AUC to demonstrate. We 

evaluated accuracy and AUC during our experiments. By using a confusion matrix of the best fold 

of the testing, we also computed SEN, SPE, and BA through the following formulas: TP/ (TP + 

FN), TN/ (TN + FP), and (SEN + SPE)/2, respectively. 

The issue of whether patients with MCI can accurately self-diagnose their risk of 

developing AD remains essential to the development of viable treatments for the disease. 

Categorizing AD and sMCI is more challenging due to the subtler morphological changes that 

must be noticed, as demonstrated by the fact that the accuracy of several of the study results barely 

reached 70–80%.  

The best Level 1 learning model, reported by Suk et al. [85], had a maximum accuracy of 

74.82%. It is crucial to highlight that Level 1 approaches alter spatial localization in the feature 

extraction process of brain imaging data, as they rely on manual feature extraction. Without taking 

spatial relationships into account, it is hard to guess how the model decides to classify something 

in a reliable way. The Level 2 model proposed by Pan et al. [206] showed a maximum accuracy 



 
 

92 
 

of 83.81%. They suggested a multi-view separable pyramid network (MiSePyNet), a 2D CNN 

model that utilizes 18F-FDG PET images. MiSePyNet was built on the concept of quantized 

convolution and used independent slice and spatial-wise CNNs for each view. However, this Level 

2 research only used a small part of the original datasets, thus disposing of any obvious outliers 

and making it hard to fairly compare its performance. In another study [140] carried out by Basaia 

et al., 86.30% accuracy was obtained using a 3D CNN. MRI scans were segmented to create GM, 

WM, and CSF tissue probability maps in the MNI space. It was also built on a ROI-focused 

strategy rather than E2EL. Other studies [146] [144] [209]  that used 2D TL with a pretrained 

network or local TL by transferring the knowledge of the AD vs. CN task to predict early diagnosis 

of AD obtained accuracies up to 82%. 

DL Model ACC AUC SPE SEN BA Ref. 

3D CNN [EfficientNet-B0] 93.10 93.00 86.20 1.00 93.10 * 

3D CNN [DenseNet264] 82.50 82.50 82.50 82.50 82.50 [101] 

Sparse Regression + 2D CNN 74.82 75.39 78.82 70.93 74.87 [85] 

3D CNN 72.5 74.60 82.5 61.0 71.75 [15] 

CAE + 3DCNN 73.95 79.11 70.71 77.46 74.08 [141] 

3D CNN/ROI Based 86.3 - 88.7 84.0 86.35 [140] 

3D CNN 76.0 81.0 76.0 71.0 73.5 [139] 

2D CNN 83.81 88.89 87.50 75.76 81.63 [206] 

MDNN/2D CNN 81.55 - 73.33 83.83 78.58 [144] 

AlexNet + SVM 2D CNN 78.56 - 77.63 91.02 84.32 [146] 

MM-SDPN 78.88 - 86.81 68.04 77.42 [209] 

Table 4-2   : Matching up the findings of the AD vs. SMCI task with the results of the state-of-the-art DL models 

* Proposed 

DL Model ACC AUC Precision Recall F-1 Score Ref. 

3D CNN 

[EfficientNet-B0] 

87.38 91.0 86.38 87.51 86.43 * 

CaffeNet/2D CNN 87.00     [19] 

GogleNet/2D CNN 83.20     [19] 

3D CNN 64.81 55.5 44.66  41.88 [121] 

Table 4-3  : Matching up the findings of the AD vs. CN vs. SMCI task with the results of the state-of-the-art DL models 
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Only two research articles regarding multiclass categorization tasks could be found. One 

by Wu et al. [19] utilized 2D MRI slices and the pre-trained 2D CNN networks CaffeNet and 

GoogleNet, obtained an average accuracy of 87.00% and 83.20%, respectively. However, their 

implementation was based on Level 2 learning, and only obtained a 72.04% (for CaffeNet) and a 

67.03% (for GoogleNet) accuracy rate for the classification of sMCI cases. Using Level 3 

E2EL,MRI images as input and a basic 3D CNN model, Tufali et al. [121] conducted experiments 

for multiclass classification, but only obtained an average accuracy of 64.33% and an MCI class 

accuracy of 51.25%. 

We achieved an accuracy of 93.10% in the evaluation of unseen data for the binary 

classification task and 87.38% for the multiclass classification task. This is significantly better than 

the early AD prediction accuracy reported by state-of-the-art methods in the last five years. 

Although our models are suitable to use in clinical settings to aid neuroradiologists, further training 

with more high-quality MRI scans from a diverse range of sources is required to ensure 

reproducibility. The scripts for model implementation for both types of tasks, with results, 

confusion matrices, and AUC graphs for every fold, can be accessed by using the link given in 

Appendix B. 

4.5 Conclusion  

Author did the fusion of E2EL with TL to improve the accuracy of the AD vs. sMCI task and used 

E2EL for the AD vs. CN vs. sMCI task. It requires the fine tuning of hyperparameters, and an 

appropriate 3D CNN architecture specifically designed for TL with excellent potential for 

generalization; additionally, MRI scans must be thoroughly pre-processed to maintain the 

spatial link and enhance image quality. The results obtained in our experiments utilizing the 

ADNI and IXI datasets demonstrated that our models are more effective and efficient than the 

current state-of-the-art models for both binary and multiclass tasks.  

Chapter 3 and Chapter 4 fulfill CONT#2 of this dissertation, which is the identification and 

implementation of the optimum DL model. The  models (DenseNet264 for the AD vs. CN task 

with E2EL; EfficientNet-B0 for the AD vs. sMCI task with E2EL and TL Fusion; 

EfficienNet-B0 for the AD vs. CN vs. sMCI task with E2EL)  were identified and will be used 

to develop the ensemble learning-based DEEP-AD tool for achieving Goal #3 in Chapter 5.  
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 Chapter 5: DEEP-AD [ Web tool  for early detection 

of Alzheimer's ] 

Summary: As shown in Figure 1-1 and Figure 1-2, this chapter is about the third contribution, 

"DEEP-AD," a web-based tool to aid neuroradiologists in their clinical judgment regarding 

the early detection of AD," intended to help achieve the third goal" A tool that neuroradiologists 

may use at their convenience to evaluate the model’s robustness ." 

            This chapters entails the creation of a system prototype, DEEP-AD (CONT#3). The 

system prototype helped to (1) fulfill the requirements identified as essential to supporting 

neuroradiologists; (2) show the viability of the ensemble of models (i.e., EficientNet-B0, 

DenseNet264) and (3) assess their usefulness in real-world scenarios (reported in chapter 6) . 

In addition, the design of the interfaces was modified throughout the development process in 

accordance with the technologies employed.    

 

5.1 Introduction  

Deep-AD is a deep learning-based application for the early detection of AD. Built using open-

source technologies streamlit81, VScode82, deployed on HuggingFace83 Spaces. 

The application has a reliable backend that is provided by state-of-the-art DL models 

EfficientNet-B0 and DenseNet264, which have already been identified, trained, and validated as 

described in chapters 3 and 4. The application can help doctors analyze AD with a low cost of 

computing.  

We propose an ensemble learning approach to accurately determine the diagnostic status 

of AD, sMCI, and CN individuals based on T1W MRI scans. We utilize multiple DL models with 

a robust verification pipeline to enhance the results and increase the accuracy of the diagnosis. The 

ensemble learning method we propose shows the potential of fusing multiple models to improve 

the overall performance and can be applied to various other medical image classification tasks. 

Deep-AD is designed to be user-friendly and accessible, making it a useful tool for 

neuroradiologists and researchers alike.  

 
81 https://streamlit.io/ 
82 https://code.visualstudio.com/ 
83 https://huggingface.co/ 
 

https://streamlit.io/
https://code.visualstudio.com/
https://huggingface.co/
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In Figure 5-1, a use-case diagram of the tool has been given. The neuroradiologist must 

upload the MRI scans either in NIfTI format or DICOM format. After that, MRI will be 

preprocessed (bias field correction, denoising, brain extraction, and registration), and the 

preprocessed MRI will be entered as an input in the predict function, which will include an 

ensemble of DL models to classify it into different classes. 

 

 

 

Figure 5-1 Use Case Diagram of DEEP-AD 

5.2 Methodology  
 

The Ensemble learning84 method is applied through a verification pipeline. Ensemble learning 

combines many distinct models to improve generalization. Currently, DL architectures provide 

superior performance than shallow or conventional models. Deep ensemble learning models 

combine the benefits of both deep learning and ensemble learning, resulting in a model with 

superior generalization performance [227]. 

 
84 https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/ 
 

https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/
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In ensemble, the following three models are utilized: 

• Base Model:  EfficientNet-B0, the output of the implementation presented in Chapter 4 

(trained with E2EL, validated, and tested) for the multi classification task of AD vs. CN 

vs. sMCI. 

• Model 1: EfficientNet-B0, the output of the implementation presented in Chapter 4 (trained 

with E2EL and TL, validated, and tested) for the binary classification task of AD vs. sMCI 

• Model 2: DenseNet-264, the output of the implementation and comparative analysis 

presented in Chapter 3 (trained with E2EL, validated, and tested) for the binary 

classification task of AD vs. CN. 

The base model is used to first process the incoming MRI scan. The input scans may be 

classified accurately and effectively by using this model in the first prediction step. If the base 

model predicts that the class is AD, then Model 1 will be used to look at the input scan to see if 

the diagnosis is sMCI or AD. If the base model predicts that the class is CN, model 2 will be 

used to find out if the diagnosis is CN or AD.  

If the base model predicts the class as sMCI in the third scenario, the input scan will be 

checked via two separate pipelines since sMCI may be near CN (early MCI) or may be close to 

AD (late MCI or converted MCI). Model 2 is first used to analyze the input scan. If the outcome 

is CN, the output will be marked as in between CN and sMCI (early MCI or CN depending on 

the clinical findings); otherwise, the input scan will be analyzed by Model 2, if outcome is AD, 

the output will be marked as in between sMCI and AD (late MCI or converted MCI - depending 

on the clinical findings). The accuracy of the intermediate AD status is ensured by this multi-

level verification technique and helps to minimize the chance of misdiagnosis. If both models 

produce the same results, that will be considered the final result. 

Flowchart depicted in Figure 5-2 shows the evolution of user input from the first step to 

the last stage, to clearly describe the application's process flow. The ensemble learning 

algorithm, (Algorithm 5) which is the implementation of this flowchart is also shown. 
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                                                                       Figure 5-2 Flow chart & Algorithm of DEEP-AD  
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5.3 Frameworks, Tools, and IDEs 
 

In the development of the Deep-AD application, we utilized open-source tools  VS Code and 

Streamlit for coding and building the user interface. These tools provided us with the flexibility 

and ease of use, necessary to create a user-friendly application.  

Additionally, we deployed the application on HuggingFace Spaces, a platform that enables 

easy deployment of machine learning models. This deployment process allowed us to make the 

application accessible to a wide range of users, including neuroradiologists and researchers. 

Furthermore, the use of HuggingFace Spaces reduced computing costs and increased efficiency. 

Overall, the combination of these open-source tools and platforms helped us create a reliable and 

efficient application. The pros of using these open sources are listed below. 

• Streamlit was a crucial tool that assisted us in creating the user interface. This open-source 

library allowed us to build a visually pleasing and intuitive interface that makes it easy for 

the users to input and process MRI scans. 

 Streamlit's user-friendly interface made the process of creating the application's 

layout and navigation simple and efficient. The interface was designed to enable the users 

provide the inputs of the scans, process them with the ensemble learning algorithm, and 

get the results in a clear and easy-to-understand format.  

The use of Streamlit greatly assisted in creating an application that is not only 

accurate and efficient but also user-friendly, which is crucial for a medical application like 

Deep AD.  

• In the design and implementation of the Deep AD application, we utilized HuggingFace 

Spaces as the deployment platform. This platform provided us with the capability to deploy 

the application with ease, making it accessible to a wide range of individuals, including 

neuroradiologists and researchers.  

  Additionally, the platform enabled us to decrease the computational costs required 

to run the application, which is a crucial consideration in a medical application.     

The platform also provided us with an intuitive interface for the monitoring and 

management of the models, which greatly aided in the deployment process and ensured 

the smooth functioning of the application. 
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• VS Code played a significant role as the primary tool for coding and debugging. Its user-

friendly interface, built-in debugging features, and various useful extensions made the 

coding process efficient and streamlined.  

VSCode's integration with Git allowed us to effectively manage and track the 

changes made to the code throughout the development process. Additionally, the built-in 

debugging features of VSCode helped us identify and fix any bugs that arose during the 

development process, ensuring the smooth functioning of the application. The use of 

VSCode also allowed us to write and test the code for the application in an organized and 

efficient manner. 

5.4 Prototype 

The design and implementation of the prototype for Deep AD were executed utilizing 

open-source technologies. The goal of the prototype was to create a user-friendly and easily 

accessible tool. The prototype was developed in several phases, beginning with the selection of 

the appropriate DL models and their deployment on the HuggingFace Spaces platform. Prototype 

can be accessed by using the website https://huggingface.co/spaces/Deevyankar/Deep-AD.  

The screen shot of the home page is shown in Figure 5-3. The platform on which the 

application was deployed was designed to provide easy access and keep computational costs low. 

We must pay 0.03 $ /hour to use an 8-v CPU and 32 GB of RAM, which are sufficient to run this 

app. The prototype exemplifies the potential of deep AD to serve as a crucial tool for the early 

detection of AD. 

5.4.1 Guidelines for Interpreting Results 

To aid users in comprehending the result, we have created the following guidelines: 

• The first rule is that a choice may be regarded as final if both models provide the same 

result (i.e., "no conflict"). 

• Second Rule: If the results from the two models are different, the Table 5.1 below provides 

a variety of options and factors to think about.  

Neuroradiologists may utilize these rules in conjunction with clinical evidence to reach a 

conclusion.  

https://huggingface.co/spaces/Deevyankar/Deep-AD
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Figure 5-3 Home Page Screen Shot 
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   Base Model   

Prediction 

Second  

Prediction 

Suggestion-1 

(S-1) 

Suggestion -2 

(S-2) 

AD/sMCI sMCI/AD Converter MCI 

or Late MCI 

The second model's forecast is definitive since it 

performed better in both testing and training. 

CN AD AD AD 

CN/sMCI sMCI/CN Early MCI or 

stable MCI  

The second model's forecast is definitive since it 

performed better in both testing and training. 
 

Table 5-1 Guidelines for interpreting the results of DEEP-AD 

5.5 Conclusion 

We created DEEP-AD in this chapter as a contribution toward attaining Goal #3. By using 

the actual data set of Spanish individuals, the qualitative analysis of DEEP-AD is reported  

in Chapter 6. 

DEEP-AD has the potential to revolutionize the field by providing an objective and 

efficient means of diagnosis. It is designed to be user-friendly and accessible, making it a useful 

tool for clinicians and researchers alike. The proposed approach has a good chance of making it 

easier to find and diagnose AD early and can help come up with better plans for how to treat it. 

It utilizes an ensemble learning approach that incorporates multiple state-of-the-art DL 

models and a robust verification pipeline to increase the accuracy of the diagnosis. The 

application is user-friendly, easy to access, and efficient because it uses open-source 

technologies and is built on a platform that makes it easy to get to and reduces the cost of 

computing. 
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 Chapter 6: DEEP-AD validation  utilizing MRI 

scans of Spanish subjects by neuroradiologist 

Summary: As shown in Figure 1-1 and Figure 1-2, this chapter is about the third contribution, 

"DEEP-AD," a web-based tool to aid neuroradiologists in their clinical judgment regarding 

the early detection of AD," intended to help achieve the third goal" A tool that neuroradiologists 

may use at their convenience to evaluate the model’s robustness ." 

 In this chapter, we (1) assess the DEEP-AD's performance and usability, (2) confirm 

the system's level of support for the established criteria, and (3) monitor the effect on people. 

Given this context, a data set of 41 MRI scans was used, which was provided  by neuroradiologists 

of  HT Medica . Dr. Alvero Berbis, Head of the Neurology Department at HT Medica in 

Spain, validated the DEEP-AD to verify the predictions of Spanish subjects (41 MRI scans) 

and obtained an accuracy of 82.90%. His feedback gave  us useful information that lets us judge 

the success of the linked dissertation goals in a positive way.             

6.1 Introduction 

The advent of DL-based approaches has brought about a paradigm shift in the realm of early 

detection of AD. The utilization of such sophisticated techniques has the potential to revolutionize 

the field by providing a quantitative and efficient means of diagnosis. However, it is imperative to 

critically evaluate the performance of these applications to ascertain their clinical utility. In this 

dissertation, we aimed to systematically evaluate the performance of DEEP-AD, by utilizing 

neuroradiologists as evaluators. 

The evaluation design employed in this dissertation for assessing the performance of 

DEEP-AD is of paramount significance in determining the clinical utility of the application. The 

design adopted in this study is a retrospective design [228].A dataset comprising of Spanish 

subjects was utilized to evaluate the performance of Deep AD. 

The results of the evaluation revealed that DEEP-AD had 82.90% accuracy. The diagnostic 

outcomes produced by the application were in concordance with the clinical diagnoses obtained 

from the neuroradiologists in the 34 cases out of 41.  

The report provided by Dr. Alvero Berbis for this verification procedure is included in 

Appendix C, along with his suggestions. This serves as evidence that the application has the 

potential to provide reliable diagnostic outcomes.  
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6.2 Methodology  

The methodology applied is shown in Figure 6-1. It consist of the following steps. 

Figure 6-1  DEEP AD's Evaluation Design, Centered on a Neuroradiologist Perspectives, and a Spanish Data Set 

 

6.2.1 Dataset of Spanish subjects 

Obtained from HT Medica, Spain. The dataset comprises of a heterogeneous population of 

individuals with varying degrees of cognitive impairment. The sample population is procured from 

multiple centers, providing a representative and diverse sample reflective of the Spanish 

population. It contains clinical reports and T1W MRI scans of 41 individuals with AD, CN, and 

MCI. The following details are included in reports. 

1. Scan date 

2. Location of the hospital in Spain 

3. Clinical information 

4. Findings 

5. Conclusion 

6. Name of the neuroradiologist with signature and collegiate number. 

Figure 6-2 shows sample of one report. The research's findings and conclusions were utilized 

to confirm DEEP-AD predictions.  

1. Spanish Data Set    

[41 MRI scans 

with clinical 

reports] 

a. Prediction of all 41 MRI 

scans by using DEEP-AD 

b. Validation, matching of 

predictions with clinical 

findings, and conclusions 

   2. Evaluation Design 

HT Medica, Spain 

3. Feed Back  
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Users can access all the reports and MRI scans. Other researchers at UVA may use these 

datasets in their master's or doctoral dissertations. [can be shared upon 

reasonable request ]  

 

  

 
Figure 6-2 Sample of clinical report provided by HT Medica, Spain 
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6.2.2 Evaluation Design  

The evaluation design employed for assessing the performance of DEEP-AD is of paramount 

significance in determining the clinical utility of the application. The design adopted in this study 

is a retrospective design, it contains following 2 steps. 

a. The application is used to classify the MRI scans of Spanish subjects. 

b. The results were compared to the clinical diagnoses by neuroradiologists.  

The neuroradiologists were provided with the diagnostic outcomes produced by DEEP-AD for 

Spanish datasets, guidelines for interpreting the results  and were asked to independently verify 

the results. This allows for the assessment of inter-rater reliability of the application and provides 

insight into the agreement between the diagnostic outcomes produced by the application and the 

clinical diagnoses obtained from the neuroradiologists. 

Furthermore, the use of neuroradiologists as evaluators in this study is of particular 

significance, as they are experts in the field of neuroimaging and have extensive experience in the 

diagnosis of AD. This allows for a more robust evaluation of the application's performance. 

The tool was created with the intention of being user-friendly, so that even 

neuroradiologists who are not technologically savvy can easily use and comprehend it. The 

program generates diagnostic results in a graphical form that is simple to interpret and 

neuroradiologists can easily correlate to the clinical findings. This makes it an ideal tool for both 

neuroradiologists and researchers. 

6.2.3 Feedback  

The following are the most significant points. 

• Most of the reports were found (34 out of 41) to agree with the clinical diagnoses. 

• The interface was found to be user-friendly and easy to use.  

• The application provides clear diagnostic outcomes, and the results are easy to interpret. 

• The application is cost-effective and easy to adopt. 

• DEEP-AD needs further training using data from several hospitals to improve its accuracy 

and generalizability. 

• Seek out the factors that seem to have had the most significant role in the decision-making 

process.                               
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6.2.3 Results  

This part focused on the input scans and the application's output predictions, which are shown in 

Table 6-1. Using the defined standards for evaluating the outcome of AD, the output predictions 

produced by Deep-AD for each input scan were compared to the clinical diagnosis by a 

neuroradiologist. 

Following are the three outputs for each MRI scan's execution through DEEP-AD. 

1. Display of input MRI Scan  

2. MRI scan after preprocessing  

3. Graphical Output of both the models. 

The execution result of various MRI scans from Spanish datasets that were classified using DEEP-

AD are shown below. We tried to address all potential scenarios. 

Case 1: [No Match ] Contradiction with clinical results : Both models give same output. 

One of the input scans [ id 1] clinical reports reported a patient with frontotemporal 

dementia or Alzheimer's, mixed cerebral involution, and periventricular leukoaraiosis incipient. 

The patient was recognized as CN through both models of Deep-AD. Figures 6-3, 6-4, and 6-5 

display all three of the execution's outcomes. 

Case 2 : [Match] Exact match with clinical results : Both Models give same output. 

Another input scan [id 43] clinical reports reported a patient with Incipient frontal cortical 

subcortical atrophy. Periventricular leukoaraiosis and focal ischemic gliosis-type lesions in the 

supratentorial and infratentorial white matter of the brain (Rule out Alzheimer's). The patient was 

recognized as CN through both models of Deep-AD. Figures 6-6, 6-7, and 6-8 display all three 

of the execution's outcomes. 

Case 3: [Match] Both models give different Output : Decision according to S-1 of  Table 5-1 

A third input scan [id 24] clinical reports reported a patient with changes due to Acute ischemic 

focus in the left thalamic region .Leukoaraiosis. Signs of involution. Cognitive impairment type 

Alzheimer.  

Since one model's output prediction was sMCI and another was CN, the final forecast based 

on S-1 was early MCI; nevertheless, a neuroradiologist might pick it as sMCI based on the clinical 
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history and symptoms. Thus, our tool and the clinical findings may help together with the decision-

making process. Figures 6-9, 6-10, and 6-11 display all three of the execution's outcomes. 

Case 4: [Match] Both models give different Output : Decision according to S-1 of Table 5-1 

A fourth input scan [id 47] clinical reports reported a patient with possible mild 

Alzheimer's disease and depressive symptoms. Since one model's output prediction was AD and 

another was sMCI, the final forecast based on S-1 was converter MCI/late MCI, neuroradiologist 

further can choose anyone based on the clinical symptoms. Figures 6-12, 6-13, and 6-14 display 

all three of the execution's outcomes. 

The results of this evaluation provide valuable insights into the performance of Deep-AD 

and its potential to improve diagnostic processes and benefit patients. 

Deep-AD Performance 

SNo. Id 
Report 

date 
Conclusion  Clinical Information 

Deep-AD 

Prediction 
Match?  Remark 

1 1 
2/17/2022 

 

Signs of mixed cerebral 

involution, Incipient 

periventricular leukoaraiosis 

Cognitive impairment of 

the fronto-temporal 

profile/Alzheimer’s 
CN No  

2 3 1/4/2022 

The cortical and central 

involutional changes with 

volumetric decrease of both 

hippocampi in this period of 

observation have progressed 

with respect to the previous 

study. 

Cognitive impairment in 

a moderate stage of 

probable 

neurodegenerative origin. 

AD/sMCI Yes S-1 

3 4 13/11/2021 

Moderate corticosubcortical 

atrophy. We observed mild 

ventriculomegaly, especially at 

the expense of the lateral 

ventricles, probably due to 

associated subcortical atrophy. 

Mild-moderate cognitive 

impairment with amnesic 

predominance of 

probable 

neurodegenerative origin. 

AD Yes  

4 7 7/9/2021 
Signs of mixed cerebral 

involution associated with foci of 

gliosis and leukoaraiosis. 

68 years. Probable mild-

moderate Alzheimer's 

disease 
CN No  

5 8 8/24/2020 

Lacunar foci of gliosis-ischemia 

in bilateral and subcortical 

periatrial white matter of the 

parietal lobes. 

Moderate generalized cortico-

subcortical atrophy, without 

locoregional predominance. 

Alzheimer's principle. sMCI/CN Yes    S-1 

6 13 9/12/2019 

Chronic right occipital ischemic 

infarction. Multiple focal lesions 

on T2* gradient echo sequence. 

Mesial temporal atrophy. 

Acute language deficit 

after which he presents 

subacute severe 

cognitive-behavioral 

impairment. 

CN Yes  
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Deep-AD Performance 

SNo. Id 
Report 

date 
Conclusion  Clinical Information 

Deep-AD 

Prediction 
Match?  Remark 

7 14 
23/10/2019 

 

We identified a moderate 

generalized cortical subcortical 

atrophy, predominantly 

posterior parietal with increased 

furrows at the level of the 

convexity. 

 

. 

Possible Alzheimer. 
AD/sMCI Yes S-1 

8 15 6/22/2019 

Signs of frontoparietal 

corticosubcortical atrophy. 

Atrophy of both hippocampi 

with frank left predominance. 

Periventricular leukoaraiosis and 

multiple ischemic-type lesions in 

white matter of both 

hemispheres 

Cognitive impairment in 

a patient with suspected 

Alzheimer's. 
AD/sMCI Yes S-1  

9 18 6/9/2018 

Bilateral frontotemporal 

corticosubcortical atrophy as 

described. Moderate-severe 

chronic microangiopathy lesions. 

Cognitive decline. sMCI/CN Yes S-1 

10 24 5/15/2021 

Acute ischemic focus in the left 

thalamic region .Leukoaraiosis. 

Foci of gliosis of probable 

ischemic origin. Signs of 

involution. Hydrocephalus. 

 Cognitive impairment 

type Alzheimer. 

Hydrocephalus 
sMCI/CN Yes S-1 

11 26 12/28/2019 
Brain involution. Leukoaraiosis 

.Multiple foci of gliosis/sequel 

ischemic lesions of small vessels. 

Parkinsonism  and 

Alzheimer's 
AD/sMCI Yes S-1 

12 28 7/7/2018 

Signs of moderate mixed cerebral 

involution with periventricular 

leukoaraiosis and multiple 

ischemic gliosis-type lesions in 

supra and infratentorial white 

matter of the brain. 

Alzheimer-type cognitive 

impairment in a patient 

with a history of breast 

cancer. 

CN/AD Yes S-2 

13 47 3/27/2022 

Few white matter lesions of 

chronic small vessel ischemic 

type. Abnormal atrophy for age 

with moderate-severe volume 

loss in both hippocampi, more 

advanced in the left. Assess 

primary degenerative process 

type AD. 

He does not know what 

day we are in nor is he 

able to name the objects 

on the photo test, she 

doesn't want to go out. 

AD/sMCI Yes S-1 

14 48 2/14/2022 

GENERALIZED CORTICO-

SUBCORTICAL VOLUME LOSS 

WITH IMPORTANT MESIAL 

TEMPORARY INVOLVEMENT, 

ALZHEIMER'S DISEASE 

CANNOT BE RULED OUT. 

mild cognitive 

impairment 
CN No  
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Deep-AD Performance 

SNo. Id 
Report 

date 
Conclusion  Clinical Information 

Deep-AD 

Prediction 
Match?  Remark 

15 50 1/24/2022 
Changes due to chronic 

cerebrovascular disease 

CVRF: hypertension, 

moderate obesity, type II 

diabetes, dyslipidemia, 
AD/sMCI No 

 

S-1 

16 54 7/11/2021 

Atrophy of the described 

characteristics, assess the 

possibility of a primary 

degenerative process of the 

Alzheimer type. 

Patient with cognitive 

impairment  

suggestive of Alzheimer's 

disease. 

AD/sMCI Yes S-1 

17 55 11/2/2021 

Mild changes due to chronic 

cerebrovascular disease. Atrophy 

of the described characteristics, 

assess primary degenerative 

process type AD. 

Progressive cognitive 

impairment. 
CN No  

18 61 9/20/2021 

Changes due to chronic 

cerebrovascular disease (Fazekas 

1-2). Atrophy of the described 

characteristics, suspicious for an 

Alzheimer-type degenerative 

process. 

A 79-year-old patient 

with dementia that  

could be due to Levy 

bodies or, less likely, 

Alzheimer's type. 

 CN Yes  

19 62 9/14/2021 

Moderate signs of diffuse 

cerebral atrophy with cortical 

predominance. Mild areas of 

gliosis and/or demyelination of 

chronic ischemic origin. 

Alzheimer's. AD/sMCI Yes S-1 

20 64 3/9/2021 

Possible ischemic lesions of small 

pontine vessels. Signs of cortical 

atrophy with slight parietal and 

temporal predilection 

Male patient with  

cognitive impairment of 

amnesic type 
AD/sMCI Yes S-1 

21 65 2/4/2021 

Signs of cerebellar atrophy and 

mild nonspecific brainstem 

signal alteration, to assess small 

vessel or degenerative ischemia. 

They consulted for two 

episodes of short term  

generalized tonic-colonic 

seizures, one a month 

 and a half ago and the 

other two and a 

 half months ago,  

AD/sMCI Yes S-1 

22 67 2/12/2020 

Small vessel ischemic disease 

evolved at the supratentorial 

level. Mild cortico-subcortical 

involution, somewhat more 

prominent in the bilateral 

temporal region. 

A 66-year-old patient 

with cognitive 

impairment suspected of 

Alzheimer’s but has 

multiple CVRF. A. 

familiar’s dementia. 

Request cranial MRI 

 AD/sMCI Yes S-1 

23 69 10/16/2020 

Atrophy with special 

involvement of the two 

hippocampi, suggestive of a 

primary Alzheimer-type 

degenerative process. Discrete 

changes due to chronic occlusive 

vascular encephalopathy. 

An 83-year-old patient 

under study for  

mental 

deterioration/dementia. 

Assess degree of atrophy. 

CN Yes  
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Deep-AD Performance 

SNo. Id 
Report 

date 
Conclusion  Clinical Information 

Deep-AD 

Prediction 
Match?  Remark 

24 72 7/3/2020 

Age-related involutional changes 

with hippocampal atrophy, 

findings that could be related to 

Alzheimer's disease, it is 

suggested to correlate with tests 

of cognitive and clinical function. 

Ischemic chronic supratentorial 

leukoencephalopathy 

Cognitive impairment,  

movement disturbance. 
AD,/sMCI Yes S-2 

25 20 2/1/2019 

Stability of findings with 

minimal growth of the 

intraventricular lesion in the left 

atrium. 

Intraventricular 

meningioma 
AD/sMCI Yes S-1 

26 29 3/10/2022 
Possible mild Alzheimer's 

disease. depressive symptoms 

Possible mild Alzheimer's 

disease.  

depressive symptoms 
AD Yes  

27 30 2/5/2022 
Mild signs of mixed cerebral 

involution. 

possible senile 

Alzheimer's dementia 
sMCI/CN Yes S-1 

28 31 11/25/2021 

Significant mesial and cerebral 

atrophy . 

 Arteriolar vascular 

leukoencephalopathy (Fazekas 

type 1). No other alterations. 

Mnesic failures under 

study.  

Multiple lacunar infarcts 
CN, AD Yes S-2 

29 32 9/28/2021 
Small foci of gliosis-ischemia at 

the supratentorial level. 

Bilateral temporal atrophy. 

Alzheimer disease. 

   
AD/sMCI Yes S-1 

30 33 10/20/2020 

Atrophy with moderate bilateral 

hippocampal volume loss. The 

possibility of a primary 

Alzheimer-type degenerative 

process should be assessed. 

Doubtful lesion in the left middle 

fossa for which control with 

contrast is recommended if 

considered appropriate. 

66-year-old patient under 

study for moderate 

cognitive impairment, 

possible Alzheimer-type 

degenerative origin. 

AD/sMCI Yes S-1 

31 34 5/31/2020 

Cerebral atrophy with 

involvement of the Sylvian 

valleys and bilateral mesial 

temporal areas. Arteriolar 

vascular leukoencephalopathy 

(Fazekas type 1). No other 

alterations. 

Alzheimer's disease CN NO  

32 35 02/27/2020 

Moderate diffuse cerebral 

atrophy predominantly 

perisylvian and parietal (GCA 2) 

and mesial temporal, more 

evident left (MTA 2/3), 

compatible with end. 

Alzheimer's. Acute alteration is 

not visualized. 

Alzheimer's type 

dementia.  

Vascular component? 

Acute worsening a month 

ago. 

AD/sMCI Yes S-1 
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Deep-AD Performance 

SNo. Id 
Report 

date 
Conclusion  Clinical Information 

Deep-AD 

Prediction 
Match?  Remark 

33 36 9/21/2019 

Signs of moderate mixed cerebral 

involution with predominance of 

cortico-subcortical 

frontotemporal atrophy and right 

hippocampal atrophy.  

Probable Alzheimer's 

disease. 
CN NO  

34 37 05/05/2019 
Signs of moderate mixed cerebral 

involution. 

Alzheimer-type cognitive 

impairment. 
AD/sMCI Yes S-1 

35 39 6/10/2018 

Periventricular leukoaraiosis and 

multiple ischemic gliosis-type 

lesions in the white matter of 

both hemispheres. 

Suspected Alzheimer's 

disease.  

Assess pattern of atrophy. 
AD/sMCI Yes S-1 

36 40 5/23/2018 
Isolated Ischemic gliosis-type 

lesions in the white matter of 

both hemispheres. 

Alzheimer's disease with 

c 

cerebrovascular accident 

and left hemiparesis. 

Chronic headache. 

AD/sMCI Yes S-1 

37 41 2/9/2022 

Calcium deposits with bilateral 

and symmetrical distribution at 

the level of the basal ganglia and 

cerebellar dentate nuclei with 

non-specific characteristics. 

A 68-year-old male with 

suspected 

 progressive cognitive 

impairment with an 

amnesic profile. 

Suspected underlying 

neurodegenerative 

process such as 

Alzheimer's disease. 

Assess degree of cerebral 

atrophy. 

sMCI/CN Yes S-1 

38 42 26/08/2021 

MRI of the skull Signs of mixed 

cerebral involution associated 

with foci of ischemic gliosis and 

leukoaraiosis. Left cerebellar 

ischemic sequela. 

Cognitive impairment.  

Possible Alzheimer's. 
sMCI/CN Yes S-1 

39 43 1/4/2021 

Incipient frontal cortical 

subcortical atrophy. 

Periventricular leukoaraiosis and 

focal ischemic gliosis-type lesions 

in the supratentorial and 

infratentorial white matter of the 

brain.  

Rule out Alzheimer's. CN Yes  

40 44 30/07/2018 

Acute-subacute ischemic lesions 

in the subcortical and insular 

right temporal and right parietal 

cortical regions (with probable 

subacute hemorrhagic 

transformation). 

Left hemicorporeal 

deficit. 
sMCI/CN Yes S-1 
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Deep-AD Performance 

SNo. Id 
Report 

date 
Conclusion  Clinical Information 

Deep-AD 

Prediction 
Match?  Remark 

41 46 9/5/2018 

Severe, generalized cortico-

subcortical atrophy of the 

temporal lobes, suggestive of 

Alzheimer-type degeneration. 

Unrelated seizures with 

two nonspecific lesions in 

the left semioval center to 

rule out ischemic or 

metastatic disease. 

sMCI/CN Yes S-1 

                                

  Table 6-1  Clinical details and DEEP-AD prognosis for Spanish individuals' MRI scans 
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                                                Figure 6-3 Case 1 MRI Scan Input 
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Figure 6-4 Case 1 MRI Scan After Preprocessing 
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Figure 6-5  Case 1: Output of both the models 
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                                    Figure 6-6  Case 2 MRI Scan Input 
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  Figure 6-7  Case 2  MRI Scan After Preprocessing 
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Figure 6-8 Case 2: Output of both the models 
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                                     Figure 6-9 Case 3 MRI Scan Input 
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                       Figure 6-10 Case 3 MRI Scan After Preprocessing 
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Figure 6-11   Case 3: Output of both the models 



 
 

122 
 

 

 

                                 Figure 6-12 Case 4  MRI Scan Input 
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    Figure 6-13 Case41 MRI Scan After Preprocessing 
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Figure 6-14  Case 4: Output of both the models 
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6.4 Conclusion 

In the previous chapter DEEP-AD was proposed as a tool to help neuroradiologist in taking 

decision about the early detection of AD. In this chapter We evaluated DEEP-AD by using 

Spanish dataset as a contribution toward attaining Goal #3. It provided valuable insights into 

the performance of the application in a real-world setting.  

The results of the evaluation revealed that DEEP-AD had a high degree of accuracy. The 

diagnostic outcomes produced by the application were in concordance with the clinical 

diagnoses obtained from the neuroradiologists. 

 This serves as solid evidence that the application has the potential to provide dependable 

diagnostic outcomes. Moreover, the neuroradiologists provided feedback on the application and 

found it to be user-friendly, intuitive, and easy to use. The application provides clear diagnostic 

outcomes, and the results are easy to interpret.  

However, neuroradiologists suggest DEEP-AD requires more training to increase its accuracy 

and generalizability by utilizing real clinical data and identification of the factors of the MRI scans 

that seem to have played the most important part in the choice-making process. 
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 Chapter 7: Conclusions and Future Work 

Summary: This chapter offers the dissertation's overarching findings and conclusions, describing 

the primary research topic (how to aid neuroradiologist in the early diagnosis of AD via the 

use of neuroimaging biomarkers) and outlining the suggested aims and contributions. Study 

findings offered sufficient proof that these objectives were met. Based on the findings of these 

empirical investigations, we propose new avenues for research. Supporting the relevance, 

originality, and importance of this dissertation's goals and contributions are two publications in 

JCR-SCI peer-reviewed journals. Additionally, one paper has been submitted to Springer 

Nature's Journal of Medical Systems and is under the peer-review process.   All these articles 

back up the findings presented in this dissertation as well. 

7.1 Conclusions  

Results from earlier research suggest that applying machine learning algorithms to the field of 

medical image analysis might have positive consequences (for example, helping doctors determine 

the severity of a certain condition by using biomarkers). However, using these tactics often 

necessitates the involvement of technical personnel and requires several iterations of optimization, 

both of which may be time-consuming and challenging. 

AD is the most common type of dementia, and there is no known treatment for it currently. 

It is believed that at least 50 million people worldwide now suffer from AD and other dementias. 

The progression of AD occurs gradually over many years before clinical symptoms show. 

Studying innovative early detection techniques for various forms of dementia, such as AD or MCI, 

is essential to ensuring proper care and halting the disease's progression.  

Given this context, the goal of this dissertation is to create the theoretical and technical 

tools by using DL needed to diagnose AD in its early stages more quickly and accurately, so that 

patients can get treatment right away.  

Consequently, at the beginning of this dissertation, we explored the current body of 

research regarding applied DL in the early detection of AD. To this end, we conducted a systematic 

literature review, as reported in Chapter 2. This review of the literature was published in [98].   

With this context, to contribute with a series of empirical studies to understand the impact 

of DL-based tactics in real-world clinical settings and to acquire helpful insights for the creation 

of conceptual and technical tools, we formulated the first intermediate goal (GOAL #1) of this 
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dissertation: "To understand the DL models that have performed well at identifying patterns 

associated with AD by using the neuroimaging biomarkers." To this end, we carried out thirteen 

empirical studies aiming to understand and compare the effect of DL strategies on neuroimaging 

biomarkers (Cont. #1, Chapter 2). 

Results show that most of the research made use of CNNs with various TL methods. 

However, certain very well-known TL designs that have been very helpful in the analysis of 

medical data, like EfficientNet and DenseNet, have not been implemented for AD. Several issues 

need to be rectified, including overfitting in relation to the use of small datasets and reproducibility 

in respect to the randomness occurring during training. These studies have been published in [19], 

[22], [137]–[147].   

Because of these limitations, it is likely that AI-based systems that help doctors make 

decisions about the current state of AD are not available. To assist in overcoming such limitations, 

we proposed the second intermediate goal (GOAL #2), which is to provide the neuroradiologist 

with the computer-interpretable information they need to analyze an MRI scan. This goal has been 

achieved by the following contributions (CONT#2): (1) the identification and implementation of 

the most efficient DL model using E2EL (Chapter 3); and (2) the improvement of the accuracy of 

the identified model through the utilization of the fusion of E2EL and TL (Chapter 4). 

Eight DL models based on 3D CNN from the DenseNet and EfficientNet families with 

E2EL have been implemented (Chapter 3). Following implementation, we conducted a 

comparative  study utilizing an efficiency effects graph and a rank mechanism to choose the 

optimal model. The results of this analysis revealed that the EfficientNetB0 and DenseNet264 

models performed the best among all models for binary classification tasks to categorize (AD, 

sMCI) and (AD, CN) subjects (Chapter 3). The work done in Chapter 3 has been published in 

[101]. 

To enhance the accuracy of the AD vs. sMCI task, we proposed and implemented a novel 

method termed "Fusion of E2EL and TL" to improve the accuracy of EfficienNet-B0 (Chapter 4). 

In addition, for implementing the ensemble learning-based tool, I built a DL model for the 

multiclass classification task to categorize (AD, sMCI, and CN) subjects (Chapter 4). 

A research paper for Chapter 4 has been submitted and is currently being reviewed by the 

Springer Nature Journal of Medical Systems. 
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To verify model's responsiveness in real clinical settings,  the deployed system must also 

be conveniently accessible via some online medium  to assist neuroradiologists. With this context 

we proposed the final intermediate goal (GOAL#3) A tool that neuroradiologists may use at their 

convenience to evaluate the model’s robustness. 

Therefore, "DEEP-AD," a web-based tool to aid neuroradiologists in their clinical 

judgment regarding the early detection of AD, is another significant contribution (CONT#3) of 

this dissertation. DEEP-AD is founded on an ensemble of 3D CNNs (EfficientNet-B0 and 

DenseNet-264 architectures) with E2EL and 3DTL. Furthermore, it has been validated on 41 

individuals using Spanish MRI datasets, with 82.92% success rate. This data collection was given 

by HT Medica, Spain. 

To sum up, this dissertation tackled the issue of aiding neuroradiologists in making 

decisions related to early diagnosis of AD. Thirteen empirical studies were examined to gain a 

better understanding of the effectiveness of these methods and to obtain insights for the creation 

of DL models that could accurately detect early-stage AD. Additionally, a fully operational 

prototype of the proposed DEEP-AD system was developed, confirming the assertion of 

neuroradiologists that these methods can be designed, implemented, and managed within a 

reasonable budget. 

7.2 Future Lines of Work 

This doctoral dissertation's proposed contributions and goals have made it possible to find new 

ways to study the role of DL in the early detection of Alzheimer's disease. These ideas for future 

research have been put into two groups: (a) future research that could build on the results of the 

dissertation, and (b) ways that the dissertation's contributions could be used in new areas of applied 

DL research. 

7.2.1 Research Extension  

This subsection presents future research lines of work associated with the goals pursued in this 

dissertation: 

• Suggested by neuroradiologist (Chapter 6): ‘ DEEP-AD needs further training 

using data from several hospitals to improve its accuracy and generalizability and 

find out the factors that seem to have had the most significant role in the decision-
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making process’. The models used in DEEP-AD can be trained further by utilizing 

actual clinical data, as we have only utilized the data from ADNI and IXI during 

training. Additionally, various techniques, such as activation maps and filter 

visualization, may be added to identify the features of MRI scans used for making 

the decision. 

• The EfficientNet-B0 used for the multiclassification task (Chapter 4) may be 

further enhanced by employing the fusion of E2EL and TL, which may enhance 

DEEP AD's overall prediction accuracy. 

• Researchers may train their 3D models utilizing this novel method, called "Fusion 

of E2EL and TL" (Chapter 4), especially when they have minimal datasets and wish 

to analyze 3D data without splitting it into 2D slices or concentrating on ROI. 

• The Spanish data set of 41 MRI scans of MCI, CN, and AD participants (Chapter 

6) obtained from HT Medica, Spain, may be used by researchers in their study. 

Because it is unique and incorporates MRI scans from several hospitals in Spain, 

and it is not accessible online. Researchers who want to develop a generalizable 

model that is focused on the Spanish Regime may utilize this dataset.  

• 3D Transfer Learning: Researchers may analyze their 3D data ( not necessarily  

medical data) by using the models (EfficientNe-B0 and DenseNet264) that were 

trained and validated in chapter 3 as 3D pretrained models . 

• The analysis of the thirteen empirical studies outlined in chapter 2 could be used 

to gain a better understanding of applied DL in the health domain or to analyze 

other types of 3D data. 

7.2.2 Potential Applications 
 

Some of the work done for this dissertation has prompted the suggestion of possible DL uses 

in medical image analysis. These are emergent research lines, as opposed to the ones that came 

before them; hence, they are not immediately connected to the dissertation's goals. 

• Multimodality approach performs better then single modality. In the future, new 

combinations of biomarkers may be used to predict the onset of AD. 
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• The dearth of substantial neuroimaging datasets causes generalizability issues, despite the 

use of TL and augmentation. To make a generalizable classifier, large datasets can be 

created using neuroimaging data synthesis. 

• It may be challenging to show precisely which features have been retrieved and to regulate 

how those features affect the inference and relative prominence of other characteristics. As 

a result, it is challenging to eliminate any biases that the input datasets may have generated.  

• Even with the endemic issues of neuroimaging, where training data are few and sample 

dimensionality is high, DL models with E2EL and TL can be used to obtain good accuracy, 

However, it requires the fine tuning of hyperparameters and an appropriate 3D CNN 

architecture specifically designed for TL with excellent potential for generalization; 

additionally, MRI scans must be thoroughly pre-processed to maintain the spatial link and 

enhance image quality. 

• To initialize the weights of 3D models, 3D pretrained models may be created, realizing 

that we couldn't identify a CNN architecture that supports 3D TL. 

• We also observed that MONAI offers a leading framework to implement DL models for 

medical image analysis, as it is simple to understand and supports a wide range of 

functions. Additionally, Google Colab Pro+ offered the best online cloud-based resources, 

with access to large RAM and excellent GPUs, thus enabling us to achieve this task despite 

certain drawbacks such as GPU unavailability under heavy load. 

7.3 Publications  

The number of publications that reference the research discussed throughout this dissertation 

demonstrates the importance and effectiveness of this research. 

This section lists the different published documents describing part of the work and the 

results obtained from this research process. The list only includes peer-reviewed publications in 

which the dissertation author is first author. 

Publications in JCR-indexed international journals: 

J1  [JCR-SCI Q2] : Agarwal, D.; Marques, G.; de la Torre-Díez, I.; Franco Martin, M.A.; 

García Zapiraín, B.; Martín Rodríguez, F. Transfer Learning for Alzheimer’s Disease 

through Neuroimaging Biomarkers: A Systematic Review. Sensors 2021, 21, 7259. 

https://doi.org/10.3390/s21217259 

https://doi.org/10.3390/s21217259
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J2  [JCR-SCI Q1] : Agarwal, D.; Berbis, M.A.; Martín-Noguerol, T.; Luna, A.; Garcia, 

S.C.P.; de la Torre-Díez, I. End-to-End Deep Learning Architectures Using 3D 

Neuroimaging Biomarkers for Early Alzheimer’s Diagnosis. Mathematics 2022, 10, 

2575. https://doi.org/10.3390/math10152575 

Submitted in JCR-indexed international journal: Under peer review 
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Appendix A :Technical insights into the included articles in 

SLR 

The technical aspects of thirteen empirical studies identified and analyzed during SLR (reported 

in Chapter 2) are provided in this appendix. 

A.1  DL models, TL techniques and validation procedure   

 
The following  table  shows the all the specifics of the DL models used in the thirteen 

empirical studies. 

Ref Dataset Sample size DL Arch. TL Method Modality Input  Validation 

[137] ADNI 
CN-25, SMC-25, EMCI-25, 

LMCI-25, MCI-13, AD-25 
2D CNN ResNet-18 fMRI 2D Slices 

Random 

Sampling 

[140] 

ADNI 
AD-294, ncMCI-510, 

cMCI-253, CN-352 
3D CNN Local TL T1W MRI 

Pre-Processed       

3D Scans 

10-fold 

CV MILAN 

(Local) 

AD-124, ncMCI-23, 

cMCI-27, CN-55 

[141] ADNI 
AD-198, CN-230, 

pMCI-166, sMCI-101 
3D CNN 

CAE & 

Local TL 
T1W MRI 

Pre-Processed       

3D Scans 

5-fold 

CV 

[142] 

ADNI 

CN-330, MCI-787, 

 sMCI-298, 

pMCI-295, AD-336 3D & 2D 

CNN 

CAE &      

ResNet-18 
T1W MRI 

Pre-Processed       

3D Scans & 

2D Slices 

5-fold 

CV OASIS CN-76, AD-78 

AIBL 
CN-429, MCI-93, sMCI-13, 

pMCI-20, AD-76 

[22] ADNI 
CN -237, sMCI -245,  

pMCI -189, AD -157 
3D CNN Local TL T1W MRI 

Segmented scans 

[GM Tissues]  

5-fold 

CV 

[19] ADNI 
CN-150, sMCI-150, 

cMCI-157  
2D CNN 

GoogleNet 

& 

CaffeNet 

T1W MRI 2D Slices 
5-fold 

CV 

[143] ADNI cMCI-61, ncMCI-276 2D CNN CaffeNet T1W MRI 

Segmented Scans 

[WM,GM,CSF] 

Converted into 

2D PNG Images  

10-fold 

CV 

[144] ADNI 

 

CN-304, sMCI-409, 

pMCI-112, AD-226 

DNN 
SAE & 

Local TL 

FDG-PET + 

T1WMRI 

Segmented scans 

[WM/GM Patches] 

10-fold 

CV 
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Ref Dataset Sample size DL Arch. TL Method Modality Input  Validation 

[145] ADNI 
CN-182, AD-139, 

cMCI-79, ncMCI-92 
 3D CNN Local TL 

18F-FDG    

& AV-45  

PET Scans 

PET Scans 
10-fold 

CV 

[146] ADNI cMCI-70, ncMCI-280 2D CNN AlexNet 
18F-FDG 

PET 
2D Slices No 

[147] OASIS 100-AD, CN-100 2D CNN  

VGG 16 & 

Inception 

v3 

T1W MRI 2D Slices 
5-fold 

CV 

[138] ADNI 
AD-194, pMCI-164, 

sMCI-233, CN-216 

DenseNets 

& RNN 
Local TL T1W MRI 

Segmented Scans 

[Hippocampi 

patches] 

5-fold 

CV 

[139] 

ADNI CN-256.cMCI-168, cMCI-129 

3D CNN 

 

Local TL 

 

T1W MRI 
Pre-Processed       

3D Scans 

5-fold 

CV IXI 581-NC 
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A.2 Preprocessing pipeline  

 The table below shows how different pre-processing strategies for neuroimaging 

biomarkers are used by category, as well as the software tool used for pre-processing.  

 

  

 

Ref. Pre-processing-Pipeline Category Software 

[137] 

Brain extraction, Motion correction, Slice timing correction 

Intensity normalization, Spatial smoothing- Gaussian Kernel 

(FWHM), High-pass filtering, Spatial normalization. 

Slice-based FSL 

[140] 
Registration in the MNI space, Segmentation to yield GM, WM, 

and CSF tissue probability maps. 
Voxel-based SPM 12 

[141] Bias-field correction, Registration in the MNI space. Voxel-based SPM 12  

[142] 
Bias field correction (BY N4ITK), Registration (Affine BY SyN) in 

MNI space, Cropping, Intensity rescaling. 
Voxel-based Nipype 

[22] 
Segmentation in GM tissues, Spatial normalization, Spatial 

smoothing [3D Gaussian kernel to 6 mm FWHM]. 
ROI-Based SPM12 

[19] 
Gradwarp, Intensity inhomogeneity correction, N3 histogram 

peak sharpening. 
Slice-based 

MATLAB 

 

[143] 

Segmentation into GM. WM and CSF tissues, GM maps were 

modulated using the Jacobean determinants, Smoothing using an 

8-mm FWHM Gaussian kernel, scaling with trilinear 

interpolation, Images were exported in a PNG format, PCA and 

sequential feature selection. 

Voxel-based SPM12 

[144] 

MRI segmented into GM and WM tissues, GM and WM were 

further subdivided into patches of varying sizes, Co-registration 

of FDG-PET image, and segmented MRI scans.  

Patch-Based 
FreeSurfer 5.3  

package 

[145] 
Already pre-processed PET images were downloaded, co-

registration of FDG and AV-45 PET images, 
Voxel-based --- 

[146] 
Interpolation, Segmentation of each scan from the Z-axis into 65 

2D Slices. 
Slice-based NifTi_2014 toolkit  

[147] 
Choose the most explanatory 32 2D slices from the axial plane by 

sorting entropies. 
Slice-based MATLAB 

[138] 
Affine registration, Segmentation of the hippocampus, extraction 

of a fixed size   3D patch from the center of each hippocampus.   
     Patch-Based FSL 

[139]  Rigid registration. Voxel-based MRIcron 
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Appendix B :Links for accessing the preprocessed datasets 

and scripts 

• Access the scripts that have been built for preprocessing MRI scans and creating the 5 

datasets for performing stratified 5-fold CV. 

https://colab.research.google.com/drive/14NwikUAnM10mko3jqlrCzoZD9VxYeOtb?usp

=sharing 

• Access preprocessed datasets of T1W MRI scans acquired from ADNI and IXI, utilized 

in chapters 3 and 4. 

o For accessing Dataset for Fold -1 

https://drive.google.com/drive/folders/1UmcuYryjTvzYlzDtuVnssaGK60ppH9T?

usp=sharing 

o For accessing Dataset for Fold -2 

https://drive.google.com/drive/folders/1cikT3_BENynyTlfCxPIflMiPIBsQsZ6?us

p=sharing 

o For accessing Dataset for Fold -3 

https://drive.google.com/drive/folders/14PxZk2m_6kFSeKDM9BLprJvPgYiaBs4

Q?usp=sharing 

o For accessing Dataset for Fold -4 

https://drive.google.com/drive/folders/19Yh3hb5Iv4adlBmmgqFgHdfEnUX8N60

0?usp=sharing 

o For accessing Dataset for Fold -5 

https://drive.google.com/drive/folders/1FfAoY41DGs4TBIlauDFNund2jJhDPX8

L?usp=sharing 

• Access the scripts of Training/Validation & Testing of eight models (DenseNet-121, 169, 

201, 264) and (EfficientNet-B0, B1, B2, B3) as reported in Chapter 3 for binary 

classification tasks AD vs. CN and AD vs. sMCI by using E2EL. 

o For AD vs. CN task  

https://drive.google.com/drive/folders/1tLBDmYoi97ORnKinE-i0nIl-S8X-

LzQf?usp=sharing 

 

https://colab.research.google.com/drive/14NwikUAnM10mko3jqlrCzoZD9VxYeOtb?usp=sharing
https://colab.research.google.com/drive/14NwikUAnM10mko3jqlrCzoZD9VxYeOtb?usp=sharing
https://drive.google.com/drive/folders/1UmcuYryjTvzYlzDtuVnssaGK60ppH9T?usp=sharing
https://drive.google.com/drive/folders/1UmcuYryjTvzYlzDtuVnssaGK60ppH9T?usp=sharing
https://drive.google.com/drive/folders/1cikT3_BENynyTlfCxPIflMiPIBsQsZ6?usp=sharing
https://drive.google.com/drive/folders/1cikT3_BENynyTlfCxPIflMiPIBsQsZ6?usp=sharing
https://drive.google.com/drive/folders/14PxZk2m_6kFSeKDM9BLprJvPgYiaBs4Q?usp=sharing
https://drive.google.com/drive/folders/14PxZk2m_6kFSeKDM9BLprJvPgYiaBs4Q?usp=sharing
https://drive.google.com/drive/folders/19Yh3hb5Iv4adlBmmgqFgHdfEnUX8N600?usp=sharing
https://drive.google.com/drive/folders/19Yh3hb5Iv4adlBmmgqFgHdfEnUX8N600?usp=sharing
https://drive.google.com/drive/folders/1FfAoY41DGs4TBIlauDFNund2jJhDPX8L?usp=sharing
https://drive.google.com/drive/folders/1FfAoY41DGs4TBIlauDFNund2jJhDPX8L?usp=sharing
https://drive.google.com/drive/folders/1tLBDmYoi97ORnKinE-i0nIl-S8X-LzQf?usp=sharing
https://drive.google.com/drive/folders/1tLBDmYoi97ORnKinE-i0nIl-S8X-LzQf?usp=sharing
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o For AD vs. sMCI task 

https://drive.google.com/drive/folders/1KmjtHllXl_FqFD_ddX3ByHYwMgYRA

uUB?usp=share_link 

• Access the scripts of Training/Validation & Testing of EfficientNet-B0 as reported in 

Chapter 4 for binary classification task of AD vs. sMCI by using the fusion of ‘E2EL and 

TL’. 

o https://colab.research.google.com/drive/13Uqvn6fnMsmjAVF5qMbdGi-

gdE1GymAR?usp=sharing 

• Access the scripts of Training/Validation & Testing of EfficientNet-B0 as reported in 

Chapter 4 for multiclass classification task of AD vs. CN vs. sMCI by using the E2EL. 

o https://drive.google.com/drive/folders/1d-FCa3gWOS48YXEHw-

LcKLP6Hw1K9T1K?usp=share_link 

 
 

 

 

 

 

 

 

 

 

 

 
 

https://drive.google.com/drive/folders/1KmjtHllXl_FqFD_ddX3ByHYwMgYRAuUB?usp=share_link
https://drive.google.com/drive/folders/1KmjtHllXl_FqFD_ddX3ByHYwMgYRAuUB?usp=share_link
https://colab.research.google.com/drive/13Uqvn6fnMsmjAVF5qMbdGi-gdE1GymAR?usp=sharing
https://colab.research.google.com/drive/13Uqvn6fnMsmjAVF5qMbdGi-gdE1GymAR?usp=sharing
https://drive.google.com/drive/folders/1d-FCa3gWOS48YXEHw-LcKLP6Hw1K9T1K?usp=share_link
https://drive.google.com/drive/folders/1d-FCa3gWOS48YXEHw-LcKLP6Hw1K9T1K?usp=share_link
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Appendix C : DEEP-AD Validation  

 

C.1 Access the MRI scans of  Spanish datasets  

Researchers can access the Spanish datasets of MRI scans validated by DEEP-AD for this 

research. [can be shared upon reasonable request ]  

C.2 Collaboration and Validation/Feedback Report Given by neuroradiologist 

The validation report and feedback given by   Dr. M. Alvaro Berbís Head of R&D and Innovation 

HT Médica Madrid, Spain. 

• Collaboration certificate with HT Médica Madrid, Spain 

o https://drive.google.com/file/d/1NLe3NfMJ-mmk1ZjpKHL-

_tnrUKmnTBC6/view?usp=sharing 

• Validation Report & Feedback link 

o https://drive.google.com/file/d/1QYlsBnP5dNArcyZpYbKl0Jcr9_3PX4m-

/view?usp=sharing 

C.3 Screen shots of  the prediction of all MRI scans of Spanish datasets through 

DEEP-AD 
 

https://drive.google.com/drive/folders/1eG2foKJUTjOztb9p1kYiZgS3O1m6D8qG?usp=

sharing 

 

 

 

 

 

https://drive.google.com/file/d/1NLe3NfMJ-mmk1ZjpKHL-_tnrUKmnTBC6/view?usp=sharing
https://drive.google.com/file/d/1NLe3NfMJ-mmk1ZjpKHL-_tnrUKmnTBC6/view?usp=sharing
https://drive.google.com/file/d/1QYlsBnP5dNArcyZpYbKl0Jcr9_3PX4m-/view?usp=sharing
https://drive.google.com/file/d/1QYlsBnP5dNArcyZpYbKl0Jcr9_3PX4m-/view?usp=sharing
https://drive.google.com/drive/folders/1eG2foKJUTjOztb9p1kYiZgS3O1m6D8qG?usp=sharing
https://drive.google.com/drive/folders/1eG2foKJUTjOztb9p1kYiZgS3O1m6D8qG?usp=sharing
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