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Abstract 

Rehabilitation robotics has emerged as a promising solution for promoting 
motor recovery and functional independence in patients with neurological 
disorders. Utilizing robotic devices for neurorehabilitation has demonstrated 
great potential in delivering intensive and repetitive training to promote 
motor recovery. In contrast to traditional rehabilitation robotics, which 
primarily considers biomechanical information, biocooperative controls in 
rehabilitation robotics go further by incorporating psychological and/or 
physiological measurements, effectively integrating the patient into the 
feedback loop.  These robotic devices offer various types of assistance and can 
be controlled using diverse input modalities, such as electromyography 
(EMG), electroencephalography (EEG), and kinematic signals. Among these 
input modalities, EMG has gained widespread adoption due to its capacity to 
provide real-time information on muscle activation patterns. It enables a 
biocooperative control approach, establish a feedback loop between the user 
and the robot.  

The current state of biocooperative systems renders them impractical for 
clinical settings primarily due to their inherent challenges related to reliability 
and accessibility. The reliability issues primarily stem from the high cost 
associated with the necessary physiological acquisition systems, thereby 
posing a significant constraint on further essential research in this field. 
Moreover, the lack of processing capabilities of these systems hinders the 
development of real-time biocooperative control strategies and consequently, 
efficient human-robot interaction. Additionally, the bulky nature of the 
physiological acquisition systems adversely affects user acceptance. 

In this context, this Doctoral Thesis is focused on the design of affordable, 
real-time, embedded solutions for physiological data acquisition, coupled with 
the development of biocooperative control strategies that contribute to 
providing practical applications for individuals suffering from neuromotor 
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impairments. The studies included in this compendium of publications 
primarily address motor rehabilitation of the upper-limb. This is an area of 
significant importance, considering that upper-limb paresis is among the most 
frequently observed outcome of stroke and profoundly impacts the quality of 
life and independence of stroke survivors. 

The contributions of this study are based on the design of affordable 
solutions for the acquisition of physiological signals and the implementation 
of biocooperative controls in these real-time embedded systems. An EMG 
recording system and a wearable multimodal physiological acquisition system 
have been designed to enhance accessibility and facilitate the use of upper-
limb biocooperative control in the clinical settings.  

First, a non-pattern recognition-based EMG-driven control has been 
developed for a hand rehabilitation robot. The system operates on a real-time 
embedded platform and has demonstrated favorable performance, achieving 
an overall accuracy of 97% for hand gesture detection and exhibiting adequate 
time responsiveness (motion-selection time of 0.48s, motion-onset time of 
0.55s, motion-completion time of 1.9 s, and 100% motion-completion rate). 
Moreover, EMG-based visual feedback was introduced into the system. 
Significant statistical differences in subject performance were observed based 
on the type of provided feedback (p-value = 0.0124). Specifically, the 
performance was significantly better when only EMG-based visual feedback 
was present compared to kinesthetic feedback alone (p = 0.0412) or the 
combination of both (p-value = 0.0497). These findings indicates that the 
feedback enables subjects to enhance their control over the movement of the 
robotic platform by monitoring their muscle activation in real-time. 

Secondly, the performance of the embedded multimodal acquisition 
platform has been validated through the implementation of two 
biocooperative control strategies: an EMG&IMU-based control using virtual 
reality-based therapy, and an adaptive assistive control (AAN) using a wrist 
rehabilitation robot. The wearable system, integrating multiple sensors, 
wireless communication, and a high-efficiency real-time microcontroller, is 
characterized by its high versatility and configurability. It has been verified 
that its low cost does not compromise the signal quality and has the potential 
to facilitate and promote the development of real-time biocooperative 
controls for a wide range of neuromotor rehabilitation applications. 

Overall, the findings of this Doctoral Thesis could pave the way for the 
development of more affordable and effective robotic devices for upper-limb 
neurorehabilitation and provide insights into the design and implementation 
of biocooperative controls for neurorehabilitation platforms. 
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Chapter 1 

1. Introduction 

The present Doctoral Thesis is focused on the design and development of 
biocooperative control strategies for neuromotor rehabilitation robotic 
platforms. In contrast to traditional rehabilitation robots that only employ 
biomechanical data, the biocooperative approach has been defined as human-
centered scenarios where physiological measurements are also extracted to 
develop control strategies and enhance the human-robot interaction (HRI). 
However, the cost of the necessary physiological signal acquisition systems 
has limited the use of biocooperative systems as real-world solutions. Hence, 
this research does not only focus on designing and developing biocooperative 
control algorithms, but also providing affordable technology for physiological 
data recording. This study has led to the publication of a total of three articles 
in journals indexed in the Journal Citation Reports (JCR) from Clarivate’s Web 
of ScienceTM (WOS). These articles were published from October 2021 to April 
2023. As a result of the scientific productivity, this thesis takes the form of a 
compendium of publications. 

In the present Doctoral Thesis, the development of biocooperative control 
strategies in the context of upper-limb rehabilitation therapies for patients 
with neurological impairments is investigated. More precisely, Chapter 1 
presents a comprehensive literature review of all scientific and technical 
fundamentals embraced in this the Doctoral Thesis. The thematic consistency 
of the publications is provided in section 1.1. The general context is described 
in section 1.2, which introduces neuromotor rehabilitation robotics and its 
clinical importance. Section 1.2.2 is focused on providing the basis of 
biocooperative controls in the context of neuromotor rehabilitation. Section 
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1.2.3 is devoted to myoelectric EMG-driven control, including different 
approaches for its implementation and other clinical applications based on 
EMG signals. Section 1.3.2 defines the general objectives pursued in this study 
and enumerates the specific objectives.  

Chapter 2 describes the materials and methodology used for performing 
this study. Main results are shown in chapter 3, which are further discussed in 
the following chapter. Finally, the contributions of this Doctoral Thesis, as well 
as the final conclusions and future research are presented in the chapter 5. 
The last sections are intended to complement this document by including: the 
papers of the compendium of publications (appendix A), information about 
the author such the scientific achievements achieved during the Ph.D. 
(appendix B), and a brief summary in Spanish (appendix C). 

1.1. Compendium of publications: thematic 

consistency 

The incidence of cerebrovascular accidents (CVA) has been growing in the past 
decades as life expectancy is increasing in developed countries. Although 
stroke mortality has been reduced, the increase of survivors results in a rising 
number of adults with neurological disabilities. Restoring or improving motor 
skills is essential so that patients can regain independence and improve their 
quality of life (QOL) (Tran et al., 2021). Although effective, traditional 
rehabilitation requires considerable time commitment by the rehabilitation 
specialist (Frick and Alberts, 2007). Robotic devices that allow patients to 
undergo rehabilitation without continuous medical assistance would make 
physical therapy more affordable, increasing the potential for better clinical 
outcomes (Polygerinos et al., 2015b). 

Given the prevalence of cerebrovascular accidents, motor recovery using 
rehabilitation robotic systems has elicited considerable scientific interest. The 
active participation of the patient in the rehabilitation enhances neural 
plasticity and motor learning (Blank et al., 2014). In this way, biocooperative 
rehabilitation robotic systems, based on multimodal information, promote 
patients’ participation by considering their performance, motion intention 
and even, emotional state (Riener and Munih, 2010). Despite their potential 
for neurorehabilitation, the first challenge to rehabilitation robotic platforms 
is accessibility. The presence of robotic devices in clinics and hospitals is 
greatly restricted since only large medical centers have the financial resources 
to invest in this technology (Almekkawy et al., 2020). 

In the context of neuromotor rehabilitation using biocooperative robots, a 
part of the budget is allocated to physiological signal acquisition systems. This 



1.1. Compendium of publications: thematic consistency 

3 

research has tackled this obstacle directly by creating a cost-optimized version 
of biosignal recording systems, hoping to access clinical settings with more 
modest budgets. Its design was based on a trade-off between complexity, 
cost, and performance. It is necessary to provide high resolution and reliable 
measurements for implementing biocooperative controls in an affordable way 
without compromising their greatest strengths.  

Biocooperative systems use biomechanical and/or physiological 
information to monitor the patient actions, intention of movement and/or 
cognitive load. The emotional state of the user is not often integrated in the 
control loop due to the challenges associated with determining it through 
indirect measurement of their physiological changes (Katsigiannis and 
Ramzan, 2018). Motion intention can be detected by analyzing EMG signals, 
which is the most popular signal for implementing biocooperative controls 
because of its unique nature: a physiological signal that provides reliable and 
robust biomechanical information.  

Due to the nature of EMG signals, myoelectric EMG-driven assistive robots 
are widely used in neuromotor rehabilitation (Li et al., 2020; Meattini et al., 
2018). In addition, this control strategy considers the user’s intention of 
movement, which encourages the patient to actively participate in the 
rehabilitation. The active participation has been proven to enhance neural 
plasticity and motor learning (Blank et al., 2014).  

On the other hand, in the first stage of rehabilitation, it is common for the 
muscular electrical activity of the patient to be too weak to effectively detect 
their motion intention. The EMG signals can be recorded from the unimpaired 
limb to assist the motion of the impaired limb using the rehabilitation robot. 
This approach is known as bilateral myoelectric control and can replace or 
complement the passive therapies, which are typically performed during the 
first stage of rehabilitation due to the patient’s inability to move the paretic 
limb.  

Clinical studies found that passive training only reduces spasticity, while 
unilateral EMG-driven therapies also improved muscle coordination (Hu, 
Tong, Song, Zheng, & Leung, 2009). Furthermore, bilateral therapies have 
been found to be beneficial in motor recovery since the hemispheric 
interaction enhances the rebalancing of the abnormal brain activity caused by 
the stroke (Wu et al., 2021). Even though sEMG biofeedback has been found 
to be beneficial in neuromotor rehabilitation (Giggins et al., 2013; Tate and 
Milner, 2010), this technique has not been used in combination with robot-
assisted rehabilitation.   

This thesis focuses on the development of biocooperative control strategies 
considering the principles of neurorehabilitation after stroke based on motor 
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learning and brain plasticity mechanisms. Controls are developed for upper-
limb neuromotor rehabilitation due to the high prevalence of stroke in upper-
limb paresis, especially affecting the hand (Fischer et al., 2007). Additionally, 
the limited access of rehabilitation robotic technology due to their high cost is 
also addressed by developing low-cost systems for physiological signal 
recording.  

The first and second papers were focused on EMG-driven assisted 
neuromotor rehabilitation using a hand robotic exoskeleton and a custom-
made low-cost EMG real-time embedded system, while the last one presented 
a highly versatile, low-cost, and wearable real-time embedded system for the 
implementation of multimodal biocooperative controls for upper-limb 
neuromotor rehabilitation. The first article (Cisnal et al., 2021) focused on the 
design of a low-cost 2-channel EMG real-time embedded solution and its 
integration in a hand rehabilitation exoskeleton. A bilateral training paradigm 
based on a threshold non-pattern recognition EMG-driven control was 
developed. The bilateral assisted therapy detected hand gestures of the 
healthy hand and replicated the gesture on the exoskeleton placed on the 
paretic hand. The evaluation of the performance of the rehabilitation system 
in terms of accuracy and response times yielded satisfactory results.  

After this study, we took a step further by including EMG-based visual 
feedback on the rehabilitation platform. In the second article (Cisnal et al., 
2023b), we assessed the influence of visual biofeedback on user performance. 
The findings of the study indicated that incorporating EMG-based visual 
feedback enhanced performance by facilitating users to gain control over the 
motion of the EMG-driven exoskeleton by visually monitoring their muscles 
activations. This enabled them to adjust the exerted force and acquire 
proficiency in self-regulating their EMG responses.  

After evaluating the performance and reliability of the embedded EMG 
acquisition system by integrating it into the hand robotic rehabilitation 
platform, our aim was to design an affordable solution that could not only 
record EMG signals but also other physiological signals of interest in the field 
of biocooperative upper-limb neuromotor rehabilitation. Therefore, a 
multimodal, low-cost and wearable embedded system was presented in the 
third paper (Cisnal et al., 2023a). It integrated inertial measurement unit 
(IMU), electrocardiogram (ECG), electromyographic (EMG), galvanic skin 
response (GSR) and skin thermometer (SKT). Two neuromotor rehabilitation 
scenarios were implemented to assess the system performance: (1) an upper-
limb rehabilitation VR-based exergame that used motion tracking through 
EMG and IMU information, and (2) an assist-as-needed (AAN) control for a 
wrist rehabilitation robot, which considered the user’s emotional state based 
on GSR, ECG and SKT data. The quality of the signals, processing capabilities 
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and battery life of the system met the requirements of the two rehabilitation 
scenarios.  

The present Doctoral Thesis is organized as a compendium of publications. 
Hence, it is essential to consult each paper for a comprehensive understanding 
of this manuscript. The three published articles can be found in Appendix A. 
Furthermore, the citation of each article along with its abstract are shown 
below: 
 

RobHand: A Hand Exoskeleton with Real-Time EMG-Driven Embedded 
Control. Quantifying Hand Gesture Recognition Delays for Bilateral 
Rehabilitation 

A. Cisnal, J. Pérez-Turiel, J.C. Fraile, D. Sierra and E. de la Fuente, "RobHand: A 
Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying 
Hand Gesture Recognition Delays for Bilateral Rehabilitation," in IEEE Access, 
vol. 9, pp. 137809-137823, 2021, doi: 10.1109/ACCESS.2021.3118281. 
 

Assisted bilateral rehabilitation has been proven to help patients improve 
their paretic limb ability and promote motor recovery, especially in upper-
limbs, after suffering a CVA. Robotic-assisted bilateral rehabilitation based on 
sEMG-driven control has been previously addressed in other studies to 
improve hand mobility; however, low-cost embedded solutions for the real-
time bio-cooperative control of robotic rehabilitation platforms are lacking. 
This paper presents the RobHand (Robot for Hand Rehabilitation) system, 
which is an exoskeleton that supports EMG-driven assisted bilateral by using 
a custom-made low-cost EMG real-time embedded solution. A threshold non-
pattern recognition EMG-driven control for RobHand has been developed, and 
it detects hand gestures of the healthy hand and replicates the gesture on the 
exoskeleton placed on the paretic hand. A preliminary study with ten healthy 
subjects is conducted to evaluate the performance in reliability, tracking 
accuracy and response time of the proposed EMG-driven control strategy 
using the EMG real-time embedded solution, and the findings could be 
extrapolated to stroke patients. A systematic review has been carried out to 
compare the results of the study, which present a 97% of overall accuracy for 
the detection of hand gestures and indicate the adequate time responsiveness 
of the system. 
 

Interaction with a Hand Rehabilitation Exoskeleton in EMG-Driven Bilateral 
Therapy. Influence of Visual Biofeedback on the Users’ Performance 

A. Cisnal, P. Gordaliza, J. Pérez-Turiel and J.C. Fraile, "Interaction with a Hand 
Rehabiltiation Exoskeleton in EMG-Driven Bilateral Therapy: Influence of 
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Visual Biofeedback on the Users’ Peformance," in Sensors, vol. 23, 2048, 2023, 
doi: 10.3390/s23042048. 
 

The effectiveness of EMG biofeedback with neurorehabilitation robotic 
platforms has not been previously addressed. The present work evaluates the 
influence of an EMG-based visual biofeedback on the user performance when 
performing EMG-driven bilateral exercises with a robotic hand exoskeleton. 
Eighteen healthy subjects were asked to perform 1-min randomly generated 
sequences of hand gestures (rest, open and close) in four different conditions 
resulting from the combination of using or not (1) EMG-based visual 
biofeedback and (2) kinesthetic feedback from the exoskeleton movement. 
The user performance in each test was measured by computing similarity 
between the target gestures and the recognized user gestures using the L2 
distance. Statistically significant differences in the subject performance were 
found in the type of provided feedback (p-value 0.0124). Pairwise comparisons 
showed that the L2 distance was statistically significantly lower when only 
EMG-based visual feedback was present (2.89 ± 0.71) than with the presence 
of the kinesthetic feedback alone (3.43 ± 0.75, p-value = 0.0412) or the 
combination of both (3.39 ± 0.70, p-value = 0.0497). Hence, EMG-based visual 
feedback enables subjects to increase their control over the movement of the 
robotic platform by assessing their muscle activation in real time. This type of 
feedback could benefit patients in learning more quickly how to activate robot 
functions, increasing their motivation towards rehabilitation. 
 

A Versatile Embedded Platform for the Implementation of Biocooperative 
Controls in Upper-limb Neuromotor Rehabilitation Scenarios 

A. Cisnal, D. Antolínez, J. P. Turiel, J. C. Fraile and E. De La Fuente, "A Versatile 
Embedded Platform for Implementation of Biocooperative Control in Upper-
Limb Neuromotor Rehabilitation Scenarios," in IEEE Access, vol. 11, pp. 35726-
35736, 2023, doi: 10.1109/ACCESS.2023.3265898. 

 

Biocooperative control uses both biomechanical and physiological 
information of the user to achieve a reliable human-robot interaction. In the 
context of neuromotor rehabilitation, such control can enhance rehabilitation 
experience and outcomes. However, the high cost and large volume of the 
commercial systems for physiological signal acquisition are major limitations 
for the development of such control. We present a highly versatile, low-cost 
and wearable embedded system that integrates the most commonly used 
sensors in this field: inertial measurement unit (IMU), electrocardiography 
(ECG), electromyography (EMG), galvanic skin response (GSR) and skin 
temperature (SKT) sensors. Additionally, the compact system combines 
wireless communication for data transmission and a high-efficiency 
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microcontroller for real-time signal processing and control. We tested the 
system in two common neuromotor rehabilitation scenarios. The first is an 
upper-limb rehabilitation VR-based exergame, in which the patient must 
collect as many coins as possible. Movement recognition of the hand and arm 
is performed based on EMG and IMU information, respectively. The second is 
adaptive assistive control that adjusts the level of assistance of a wrist 
rehabilitation robot according to the physiological state and motor 
performance of the patient using GSR, ECG and SKT data. The quality of the 
recorded signals and the processing capacity of the system meet the needs of 
the two upper-limb rehabilitation applications. The wearable system is highly 
versatile, open, configurable and low cost, and it could promote the 
development of real-time biocooperative control for a wide range of 
neuromotor rehabilitation applications.  

1.2. Context: biocooperative rehabilitation 

robotics 

1.2.1. Neuromotor rehabilitation robotics 

The World Health Organization (WHO) defined stroke as “the neurological 
deficit of cerebrovascular cause that persists beyond 24 hours or is interrupted 
by death within 24 hours” (World Health Organization, 1978). A stroke is 
caused by the death of brain cells due to a restricted blood flow, either by a 
blockage of the blood supply to a part of the brain by a clot (ischemic stroke) 
or by the rupture of a cerebral blood vessel (hemorrhagic stroke) (Figure 1.1).  

 

Figure 1.1. Types of strokes: ischemic and hemorrhagic (CNS Traumatic Brain Injury 
Rehab, 2023). 

                          

                                   

                   
                         

                



Chapter 1. Introduction 

8 

The brain is an extremely complex organ that controls many vital body 
functions and different abilities, such as motor and cognitive functions. 
Therefore, the consequences of a stroke episode depend on the type of stroke 
and the affected brain area, but can cause lasting brain damage, long-term 
neuromotor disability, or even death. 

In fact, stroke is the second leading cause of death, responsible for 
approximately 11% of the 55.4 million worldwide deaths recorded in 2019 
(World Health Organization, 2020). Additionally, it is one of the leading causes 
of neurological disabilities, and mainly affects individuals at the peak of their 
productive life (GBD 2016 Stroke Collaborators, 2019). The rate of disability in 
stroke survivals is around 64%, with 30% being mildly, 18% moderately, 11% 
severely and 5% totally disabled (Figure 1.2) (Lv et al., 2021). About 70% of 
stroke survivors with motor disabilities require long term medical care and live 
with a poor quality of life (QOL) (Parker and Snyder-Shall, 2013). 

 

Figure 1.2. Rate of disability in stroke survivals, broken down by degree of disability. 

The most common and stable symptom experienced by individuals who 
have suffered a stroke episode is some degree of their paresis on upper 
extremities. Around 60% experience upper-limb dysfunction, which are 
especially prevalent in the hand  (Fischer et al., 2007).  In fact, motor function 
of finger extension is usually impaired, and spasticity is often present, leading 
to reduced range of motion (ROM) of the hand (Kamper et al., 2003). Muscle 
weakness is also exhibited to varying degrees in most of stroke survivors (Ada 
et al., 2003; Colebatch and Gandevia, 1989).  

Loss of hand function is a major source of impairment in neuromotor 
disorders, as it is essential for manipulating the environment and thus worsens 
the abilities of stroke survivors in performing activities of daily living (ADL). 
Rehabilitation based on physical therapy is the primary mechanism for 
improving motor function and achievement of independent participation in 
daily life (Winstein et al., 2016). Early and intensive physical rehabilitation is 
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of great importance to maximize functional motor recovery (Herpich and 
Rincon, 2020). 

Repetitive task practice (RTP) rehabilitation consists of breaking a ADLs 
down into individual movements and continuously and intensively practicing 
them. It has been proved that it promotes hand functional motor recovery, 
especially leading to improved range of motion and strength (Sterr and 
Freivogel, 2003). However, RTP rehabilitation costs are very high due to the 
heavy workload of the rehabilitation specialist (Frick and Alberts, 2007).  

Additionally, the aging population is linked to an increase in stroke survivors 
with neuromotor disabilities and a considerable reduction in the patient-
physician ratio. Interest in robotic rehabilitation systems has experienced 
considerable growth in the last decade not only because of their high costs, 
but also to increase rehabilitation capacity worldwide and offer adequate 
rehabilitation to all stroke patients. A system that allows patients to 
intensively rehabilitate without the continuous assistance of the therapist, 
would make physical therapy more affordable and accessible. 

Clinical studies have shown improvement in hand motor function when 
performing robot-assisted therapy (RT) (Carmeli et al., 2011; Kutner et al., 
2010; Ueki et al., 2008; Wolf et al., 2006). Although the rehabilitation benefits 
of RT in upper-limb motor recovery of people after stroke is not significantly 
better than those obtained with conventional rehabilitation, RT offers major 
advantages in terms of lower manpower cost (Chien et al., 2020; Wu et al., 
2021). Furthermore, it improves rehabilitation convenience facilitating 
independent therapy with the potential outcome of increasing intensity and 
patient motivation (Kwakkel et al., 2008; Rietman et al., 2014).  

Rehabilitation robotic devices can be mainly divided into two categories 
based on their structural design: exoskeletons and end-effectors (EE). 
Although clinical results are limited, it has been found that exoskeleton robotic 
devices provide better rehabilitation outcomes than EE systems in improving 
hand motor impairments (Moggio et al., 2022) .  

Upper-limb rehabilitation exoskeletons are more technologically mature 
when compared to hand exoskeletons due to the anatomical complexity of 
the hand. The hand has 21 DOFs, while the arm (from wrist to shoulder) has 
only 7 DoFs. Furthermore, when designing a hand exoskeleton many 
considerations must be made such as size, weight, dexterous manipulation 
capabilities, degrees of freedom, joints to directly actuated or which grasp 
patterns to renounce (Lum et al., 2012). 

Some commercially available robotic systems for hand rehabilitation are 
shown in Figure 1.3, including Saeboflex (Saebo, Inc., NC, USA), the Motus 
hand (Motus Nova, GA, USA), Hand of Hope (Rehab-Robotics, China), Amadeo 
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(TyroMotion, Austria), GLOREHA (Idrogenet, Italy) and Waveflex CMP 
(Remington Medical, Canada) or HandyRehab (Fourier Intelligence, 
Singapore). 

 
 

(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Figure 1.3. Commercially available robots for hand rehabilitation (a) Saeboflex (Saebo, 
Inc., NC, USA), (b) Motus Hand (Motus Nova, GA, USA), (c) Hand of Hope (Rehab-
Robotics, China), (d) Amadeo (TyroMotion, Austria) (e) Gloreha (Idrogenet, Italy), (f) 
HandyRehab (Fourier Intelligence, Singapore). 

In addition to the convenience of RT in terms of cost and intensive 
rehabilitation, it offers different training paradigms which are used depending 
on the stroke stage and patient motor function (Kahn et al., 2006). A training 
paradigm defines the interaction of the rehabilitation robot with the patient, 
considering their movement intention and applied forces (Yue et al., 2017). 
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These training paradigms are known as passive, assistive, active-assistive, 
active, and resistive (Table 1.1). 

Table 1.1: Training modalities for rehabilitation robotics, categorized based on the 
interaction between the rehabilitation robot and the patient. 

Training modalities 
Patient Robot 

Intention Force Force 

Passive 0 0 +++ 
Assistive + + + 
Active-assistive ++ +/0 0/+ 
Active ++ + 0 
Resistive ++ ++ - 

 

After suffering a stroke, the person may completely lose mobility of the 
paretic limb due to muscle spasticity. In the first stage of rehabilitation, passive 
and active-assistive exercises are optimal since the robot assists the 
movement of the paretic limb without requiring any motion ability of the 
patient. Passive therapies have been found to be temporarily effective for 
reducing hypertonia (Schmit et al., 2000) and for maintaining the ROM of the 
hand in the early stage of the treatment, but they do not significantly improve 
motor function (Volpe et al., 2000). Active-assistive exercise were found to be 
more effective on motor recovery than the passive control since an active 
engagement of the patient is required (Blank et al., 2014). 

In the second stage of the stroke, active and assistive exercises are normally 
used when the patient has motion capabilities. The robot provides assisting 
forces to support the patient in completing the desired movement. In the later 
period of stroke, resistive exercises are used to increase muscle force because 
the user must complete the motion against a resistive force exerted by the 
robot (Fasoli et al., 2003). 

Evidence has shown that the active participation of the patient induces 
neural plasticity in motor learning. Hence, robotic systems should monitor the 
patient’s intention and promote patient participation to optimize the therapy 
outcomes.  This can be achieved by providing adaptive exercises or assistance 
based on the patient motion intent. Assist-as-needed algorithms are based on 
providing the minimum necessary motion assistance, so the patient can 
complete a movement, thus requiring significant motion from the patient. In 
the case of severely impaired patients who are unable to move the limb, 
active-assistive exercises based on intention detection recognition encourages 
them to make an effort to move their paretic limb (Blank et al., 2014).  

User motion and motor intention are normally detected by measuring 
position or contact forces. Additionally, motor intention can also be detected 
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from brain cortical activity by analyzing EEG signals and from the muscles by 
measuring their electrical activity or EMG signals. The electrical activity can be 
detected from the paretic hand or the contralateral healthy hand (Yue et al., 
2017). In fact, using the electrical activity from the unimpaired side to identify 
user intention is recommended in the case of patients with severe hand 
paresis or insufficient muscle tone (Tran et al., 2021). This approach is known 
as bilateral-assisted therapy.  

The robotic device provides motion assistance by referring to detected or 
intended movement of an unimpaired counterpart. Some studies suggest that 
bilateral therapies are potentially more effective than unilateral exercise in 
upper-limb rehabilitation. Motor recovery of bilateral therapies is based on 
the hemispheric interaction. It increases the excitability of the motor complex 
and supplementary motor area, resulting in rebalancing the abnormal 
interhemispheric activities caused by stroke. Additionally, bilateral exercises 
improve inter-limb coordination (Wu et al., 2021). 

One of the primary challenges of neuromotor rehabilitation is maintaining 
motivation over long periods of time required for significant and lasting 
functional improvement. RT allows for the integration of virtual reality (VR) 
environments into the rehabilitation process. Within virtual reality-based 
rehabilitation (VRBR), three key concepts play a vital role in motor learning: 
repetition, feedback, and motivation. By offering repetitive practice, 
augmented feedback, and motivation to endure practice, VR serves as a 
powerful tool to enhance motor learning and induce cortical and subcortical 
changes associated with skilled tasks (Holden, 2005). 

VRBR offers patients the opportunity to benefit from the robotic 
rehabilitation experience via serious games. Stroke patients have been shown 
improved emotional responses to VRBR (Cisnal et al., 2022b). It provides 
motivation for post-stroke patients (Reinkensmeyer and Housman, 2007), 
potentially increasing rehabilitation intensity and consequently, promoting 
motor recovery (Corbetta et al., 2015). Ideally, stroke rehabilitation games 
should be based on ADLs, while ensuring active patient participation 
(Sveistrup, 2004). Additionally, incorporating multisensory feedback enhances 
connectivity between sensory and motor cortices, further promoting motor 
learning (Maier et al., 2019). 

The feedback of serious games such as the score, provides understandable 
indicators of the patient’s performance and stimulates the learning process. 
Reinforcement learning is one of the most powerful ways of learning new 
skills. This stimulation of the learning process is based on the release of 
dopamine in the key areas of the brain. It leads to an improved consolidation 
of the long-term motor memory and in strengthening the motivation (Bo 
Nielsen et al., 2015). Hence, providing a rate of recovery feedback encourage 
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the patient to perform better next session. In general, the use of VRBR has 
been found beneficial for stroke patients (Subramanian et al., 2013) 

1.2.2. Biocooperative control in rehabilitation robotics 

The concept of biocooperative control emerged in the field of medical 
robotics, specifically in rehabilitation robotics during the early years of the 
21st century. One of the first formal appearances of the term "biocooperative 
control" was in a special section of the IEEE Transaction on Neural Systems 
and Rehabilitation Engineering in 2010, where the basis of biocooperative 
systems was outlined and formally defined as those that introduced 
physiological or psychological information into the control loop (Riener and 
Munih, 2010).  

The first rehabilitation robots were based on an open-loop control with 
fixed position and/or velocity references to execute a predefined trajectory to 
assist in the patient movement. This technique did not involve either 
biomechanical or phyco-physiological information. Consequently, these 
systems were unable to respond to a patient's voluntary effort or spontaneous 
intentions and an efficient human-machine interaction was practically 
impossible. In the first decade of this century, rehabilitation robots appeared 
that employed biomechanical data, such as position, velocity, acceleration, 
and force to establish robust and adaptive controls. The main goal was to 
achieve safe, ergonomically acceptable, and user-cooperative systems by 
controlling the biomechanical interaction between the robot and the patient. 
This new approach no longer considers the patient as a disturbance applied 
directly to the robotic system and provides a bidirectional interaction between 
the robot and the patient enhancing the rehabilitation experience  (Koenig et 
al., 2011). 

The biocooperative approach in rehabilitation robotics goes one step 
further and integrates the patient into the feedback loop by not only 
considering biomechanical information, but also including psychological 
and/or physiological measurements. Hence, the appearance of 
biocooperative controls has led to the emergence of a new generation of 
rehabilitation robotic platforms, which records and control the patient’s 
physiological signals. They are usually based on multimodal interfaces; 
information coming from different sources allows for continuously monitoring 
the patient global status including their actions, intention of movement, 
emotional state, and even environmental factors. Figure 1.4 shows a generic 
diagram of biocooperative robotic systems, specifying the integration of the 
human into the loop in a biomechanical, physiological, and psychological 
sense. 
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Figure 1.4. Generic diagram of biocooperative robotic systems, specifying integration 
of the human into the loop in a biomechanical, physiological, and psychological sense 
(Riener and Munih, 2010). 

Emotions are associated with physiological changes produced in response 
to the autonomic nervous system (ANS). Facial expressions, breathing pattern, 
heart rate or muscle tension changes are influenced by emotions. 
Physiological measurements such as cardiovascular parameters, temperature, 
electrodermal activity, blood oxygenation, photoplethysmography and 
electromyography have been used to indirectly measure ANS-related 
responses to external stimuli and hence, determine the emotional state of the 
person. Although other biomarkers such as cortisol levels or neural changes 
revealed by neuroimaging can also reveal useful information regarding the 
emotional state (Jerath and Beveridge, 2020), they are potentially invasive and 
inconvenient for rehabilitation robotics.  

In this field, a diverse number of non-invasive biological signals such as 
EMG, EEG, EOG, RESP, GSR, SKT and BP are commonly employed to extract 
valuable physiological information from the user. Signal processing techniques 
are applied to extract specific features from these signals that are known to 
exhibit correlations with the user’s physiological state. For instance, 
parameters such as heart rate (HR) and heart rate variability (HRV) derived 
from ECG signals, and the skin conductance level (SCL) and the frequency of 
the skin conductance response (SCR) derived from GSR signals, serve as 
indicators of arousal, physical effort, and mental workload. Consequently, 
these biosignals allow to determine the cognitive load and physiological 
response of the user to the rehabilitation session. Additionally, physiological 
signals can also be used to detect the user intention through non-invasive 
brain-computers interfaces (BCIs) based on EEG and non-cortical interfaces 
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based on EOG or EMG, specifically in the case of patients with severe 
impairments who are able to generate muscle activation or brain activity 
instead of force for movement (Simonetti et al., 2016). 

Table 1.2 shows a summary of biocooperative controls in the context of 
neurorehabilitation proposed in the literature. In healthy individuals, motor 
intention is conducted from the brain to the muscle to directly move the limb. 
However, this natural pathway is damaged in stroke patients and motion 
intention is detected based on brain or muscle activity or even, eye movement 
in order for the robot to actuate the motion of the impaired limb. Hence, 
motion intention recognition (MR in Table 1.2) based on EEG, EMG or EOG is 
a common approach in biocooperative robots. 

Assist-as-needed (AAN) control is widely used in rehabilitation robotics 
since personalized difficulty has been proved to lead to superior learning 
outcomes when compared to a fixed difficulty. The difficulty should be 
adapted to the patient’s capabilities without surpassing them as this could 
have detrimental effects on performance. The adaptive nature of tasks’ 
complexity increases activity in premotor and sensorimotor areas and has 
beneficial effects on motor recovery (Maier et al., 2019). In this context, an 
AAN control architecture based solely on myoelectric information from the 
muscles (EMG-ANN in Table 1.2) has been proposed.  Biomechanical 
information of the user typically extracted from position or force sensors is 
replaced by information based on EMG signals, such as the user’s applied 
torque, to adapt the assistance level of the rehabilitation robot.  

More complex AAN architectures in terms of the number of physiological 
signal modalities have also been proposed in the literature (BIO-AAN in Table 
1.2). The level of assistance or task difficulty is adapted according to the user 
performance, muscle fatigue or emotional state. While user performance is 
normally determined by biomechanical variables, muscle fatigue is 
determined by analyzing EMG signals. The emotional response of the user, 
including the level of arousal, valence, or stress, is also included in the control 
loop.  

Other works have mainly focused on the emotional estimation (ES in Table 
1.2) using multimodal information. The development of emotion recognition 
algorithms, also known as affective computing, is still a major challenge. 
Efficient and robust affective computing would significantly increase the 
quality of human-machine interaction, not only in the context of neuromotor 
rehabilitation, but also in other fields ranging from preventive medicine to the 
multimedia industry (Katsigiannis and Ramzan, 2018). Physiological 
parameters such as HR, SKT, electrodermal activity (EDA), and respiration rate 
(RR) are known to be associated with autonomic responses related to 
emotions and are therefore often employed as inputs for emotion classifiers. 
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Table 1.2: Literature review on biocooperative systems, indicating the control type and 
the employed physiological signals. 

Ref Type 
E 
O 
G 

E 
E 
G 

E 
C 
G 

E 
M 
G 

IMU/ 
ACC 

G 
S 
R 

S 
K 
T 

RESP 
B 
V 
P 

Other 

(Zhang et al., 
2019) 

MR x x  x       

(Krasoulis et 
al., 2019) 

MR    x x      

(Landgraf et 
al., 2018) 

MR    x      x1 

(Fougner et 
al., 2011) 

MR    x x      

(Teramae et 
al., 2018) 

EMG- 
AAN 

   x       

(Gui et al., 
2020) 

EMG- 
AAN 

   x       

(Cisnal et al., 
2019) 

EMG- 
AAN 

   x       

(Scotto Di 
Luzio et al., 
2018) 

BIO- 
AAN 

   x x      

(Novak et al., 
2011) 

BIO- 
AAN 

  x   x x x   

(Mihelj et al., 
2009) 

BIO- 
AAN 

     x x x   

(Guerrero et 
al., 2013) 

BIO- 
AAN 

          

(Badesa et 
al., 2014) 

AAN      x x x   

(Gümüslü et 
al., 2020) 

ES  x    x x  x  

(Khezri et al., 
2015) 

ES x  x x  x   x  

(Hariharan 
and Adam, 
2015) 

ES  x    x     

(Koelstra et 
al., 2012) 

ES x x  x  x x x   

(Kim and 
André, 2008) 

ES   x x  x  x   

(Mandryk 
and Atkins, 
2007) 

ES   x x  x     

(Liu et al., 
2008) 

ES   x x  x x  x x2 

(Picard et al., 
2001) 

ES    x  x  x x  

(Zhai et al., 
2005) 

ES x     x   x  
1DES (Dielectric Elastomer Sensor) 2Bioimpedance, heart sound and PPG (photoplethysmogram). 



1.2. Context: biocooperative rehabilitation robotics 

17 

Biocooperative controls allow the implementation of more advanced and 
personalized AAN control paradigms than the traditional ones that only rely 
on user performance based on biomechanical information. These controls also 
employ other physiological signals to consider other variables, such as 
cognitive load, physiological state or even muscle fatigue. This is of great 
importance since negative emotions such as anxiety, frustration or stress can 
have a large impact on motor learning. Despite the proven benefits of 
personalized adaptive controls in facilitating motor recovery, the 
advancement of biocooperative controls has been hindered by a sluggish pace 
of progress. This may be due to the complexity of developing robust and 
efficient algorithms that analyze the physiological response of the human 
body to a stimulus triggered by the ANS and determine emotions, combined 
with the high cost and bulky physiological signal recording systems.  

Most of the reviewed studies relied on expensive, bulky and lacking 
computational capabilities commercial products such as the MP150 system 
(BIOPAC, CA, USA), the Neuroscan NuAmps Express system (Compumedics 
Ltd., Australia), the ActiveTwo system (Biosemi, Netherlands), and the Pro-
Comp/FlexComp Infiniti system (Thought Technology Ltd., Canada). Only a few 
studies utilized specific wearable technology from Biometrics Ltd (UK), g.tec 
medical engineering GmbH (Austria), or Delsys Incorporated (MA, USA). 

1.2.3. Myoelectric EMG-Driven control 

Electromyography (EMG), sometimes referred to as myoelectric activity, is a 
technique that focused on the development, recording and analysis of the 
information present in the electric potential generated by the motor units. 
Motor units are the smallest functional units that describe the neural control 
of the muscular contraction process when the muscle is activated (Konrad, 
2005). 

EMG is classified into intramuscular and surface EMG (sEMG). While 
intramuscular EMG uses tiny needles or fine-wires that are inserted into the 
muscle through the skin, sEMG uses surface electrodes. sEMG signals 
represent the electrically superimposed motor unit action potentials (MUAP) 
of all active motor units detectable under the electrode site (Figure 1.5). The 
main advantages of sEMG are that it is non-invasive, easy to record, and allows 
for estimation of the overall muscle activity. The disadvantage of sEMG 
compared to intramuscular EMG is that it is are only suitable for recording 
superficial muscles and may experience possible contamination with nearby 
muscles, especially when recording small muscles. In contrast, intramuscular 
EMG is selective and enables recording of deep muscle activity (McManus et 
al., 2020).  
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Although sEMG signals are often considered more complex to analyze than 
intramuscular EMG, they tend to be used in rehabilitation medicine 
applications due to their non-invasive nature. Additionally, their analysis 
provides a global measurement of the level of muscle activity, which may be 
more appropriate in movement analysis.  

 

Figure 1.5. EMG signal recording using a surface electrode, including a motor unit and 
muscle fibers (McManus et al., 2020). 

In fact, sEMG has been regarded as the most suitable physiological signal 
for implementing biocooperative controls due to their good accuracy and 
robustness in predicting the intention of human motion (Li et al., 2020). 
Analyzing sEMG signals from the target muscles is widely used as an 
alternative strategy for integrating force sensors into the rehabilitation robot 
for motion control. Force sensors have intrinsic problems such as their 
placement that can obstruct the sense of feeling, or it cannot be distinguished 
between user-applied and external forces. Robotic control systems based on 
EMG signals are the most popular approach in rehabilitation robotics 
(Meattini et al., 2018). 

EMG-based motion intention recognition can be broadly categorized as 
classification and regression problems. While classification-based myoelectric 
control detects the type of movement, regression-based control can output 
continuous variables such as joint angle and joint torque. Therefore, the first 
strategy enables discrete motion control and is limited to a specific number of 
motions, whereas the latter allows for continuous motion control, resembling 
the continuous movement of the human body (Bi et al., 2019). Despite this 
fact, classification-based myoelectric controls are still the most widely 
implemented due to their reliable results. In both approaches, the kinematics 
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parameters estimated from the analysis of the EMG signals are fed into the 
robot control, causing it to behave according to the human intention (see 
Figure 1.6). 

 

Figure 1.6. Conceptual block diagram for myoelectric control system. 

Regarding to discrete motion control, it can be classified into non-pattern 
recognition and pattern recognition methods. Non-pattern recognition 
methods, also known as threshold methods, generates the input commands 
for the robot’s assistance controller by comparing the amplitude or statistical 
features of EMG signals with some thresholds. Pattern recognition methods 
detect the type of movement using classification machine learning models, 
such as: support vector machines (SVM), artificial neural networks (ANN), 
linear discriminant analysis (LDA), among others. The classification results are 
used as an input of the robot controller. Non-pattern recognition based 
myoelectric control methods have the lowest computational cost (Fu et al., 
2022). 

In contrast, the continuous motion control outputs variables such as joint 
angle or joint torque from the analysis of EMG signals. The use of a 
biomechanical model and machine learning (ML) models are the main 
methods for mapping the EMG signals to the continuous control input. The 
most widely used biomechanical model is Hill’s Muscle Model, which 
represents the human skeletal muscle with a 3-element system: a contractile 
element and two non-linear spring elements, one in series and another in 
parallel (Figure 1.7) (Battista et al., 2017). On the other hand, time-domain or 
statistical features extracted from the EMG signals are often used as an input 
of regression models, such as linear regression or ANN, to estimate joint angle 
or applied torque (Fu et al., 2022). However, ML-based systems have not been 
implemented in real applications mainly because of reliability issues (Meattini 
et al., 2018). 

https://en.wikipedia.org/wiki/Non-linear
https://en.wikipedia.org/wiki/Spring_(device)
https://en.wikipedia.org/wiki/Series_and_parallel_circuits
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Figure 1.7. Schematic diagram of the 3-element Hill model of the human skeletal 
muscle: a contractile element, series element, and parallel element modelling acting 
and myosin cross-bridges, tendons, and connective tissues, respectively (Battista et al., 
2017). 

The potential applications of myoelectric control extend beyond motor 
recovery in rehabilitation; they also include assistance in ADL and human 
augmentation to enhance physical capacities of healthy population (Fu et al., 
2022). In the case of rehabilitation robotics, the choice of the type of EMG 
control must not only consider the DoFs of the assistive device, but also user-
acceptance in terms of number of electrodes and the system response. For 
instance, a high number of electrodes allows the implementation of an 
accurate continuous EMG control at the cost of poorer usability and a higher 
computational cost, which may be reflected in the system response. In their 
review (Fu et al., 2022), Fu et al. found out that 42% of the articles focused on 
controlling only one DoF, while 15%, 3%, 13 % and 15 % of the studied articles 
integrated two, three, four and more than four DoFs, respectively.  

Clinical studies have been undertaken to evaluate the effectiveness of EMG-
driven therapies in stroke patients. They found that while passive training 
mainly reduced spasticity, EMG-driven therapies also improved muscle 
coordination (Hu et al., 2009). However, some stroke patients exhibit sEMG 
signals that are excessively weak to effectively detect their motion intention. 
In such cases, a popular strategy is the implementation of bilateral myoelectric 
control, which consist of estimating the motion intention using EMG signals 
recorded from an unimpaired limb to rehabilitate the impaired limb with the 
assistance of a robotic device.  

Moreover, sEMG can serve as an indirect measure to identify changes in 
muscle force during isometric muscle contractions, making it a potential tool 
for assessing muscle fatigue objectively. It can be also used as real-time 
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feedback to make patients more aware of their muscle activity and support 
re-learning of movement patterns. The amplitude of the sEMG signals can be 
fed back to the user to provide an objective measure of the level of muscle 
activation (McManus et al., 2020). Biofeedback has been generally delivered 
using visual displays or acoustic signals. 

The biofeedback technique was introduced more than forty years ago in 
rehabilitation settings (Tate and Milner, 2010). sEMG biofeedback has been 
found to be beneficial in the treatment of many musculoskeletal conditions, 
including stroke rehabilitation, pelvic floor muscle dysfunction, and even in 
alleviating pain caused by muscular tension (Giggins et al., 2013). EMG 
biofeedback allows users to learn to self-regulate their muscle activity and 
facilitate the process of strengthening weak or paretic muscles and reducing 
tone in spastic muscles. However, clinical studies that had assessed the 
effectiveness of EMG biofeedback in musculoskeletal and neuromotor 
rehabilitation did not include the use of this technique in combination with 
RT. 

1.2.4. Current limitations 

The concept of utilizing robotic devices for neurorehabilitation was initially 
introduced by Hogan at MIT (Hogan et al., 1992). Despite the gradual 
introduction of traditional rehabilitation robots into clinical settings, the 
current level of development of biocooperative rehabilitation robots is 
insufficient to transition them from laboratory settings to practical real-world 
applications. While biocooperative controls promoting active participation 
that has been proven to enhance neural plasticity and motor (Blank et al., 
2014), their high cost does not provide sufficient incentives for extensive 
investigation, hindering their current application and commercialization. 
Therefore, in order to advance the research and facilitate the utilization of 
biocooperative systems in clinical environments, it is necessary to address, at 
minimum, the following primary limitations: 

I. Hardware  

Recent research emphasizes the importance of compact, affordable sensing 
devices with advanced computational capabilities for detecting human 
physical activity and emotions through multimodal fusion strategies (Qiu et 
al., 2022). Despite the decreasing cost of computing and the emergence of 
real-time control support through embedded solutions (Harwin et al., 
2006), biocooperative systems still rely on expensive, computationally 
limited, and occasionally bulky commercially available acquisition systems 
(Cisnal et al., 2023a), which impacts on accessibility and user acceptance. 
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II. Reliability 

Biocooperative controls currently lack the required reliability and 
robustness to be effectively implemented in real-world scenarios. This 
includes the specific control method based on EMG signals, which, 
despite being widely utilized in the field of neuromotor rehabilitation 
robotics due to their accurate and robust prediction of motion intentions 
(Li et al., 2020), have not been successfully applied in clinical practice due 
to reliability concerns (Meattini et al., 2018).  

1.3. Hypothesis and objectives 

The pursuit of developing cost-effective and reliable biocooperative systems 
for neuromotor rehabilitation, with the aim of improving the quality of life for 
individuals with motor disabilities, has emerged as a significant concern in 
recent years. Consequently, the proposal developed in this Doctoral Thesis 
have been directed towards the creation of low-cost embedded systems for 
physiological data acquisition and the implementation reliable control 
paradigms. The primary objective of these systems is to enhance the 
accessibility and integration of biocooperative technologies into real clinical 
practices. To provide a comprehensive framework for this thesis, the 
hypotheses that have served as the basis for each study, as well as the 
overarching hypothesis that justifies the present Doctoral Thesis, are explicitly 
declared in section 1.3.1. Additionally, section 1.3.2. outlines the principal 
objective and the specific sub-objectives that must be fulfilled in order to 
accomplish this overarching goal. 

1.3.1. Hypothesis 

Despite the increasing interest in biocooperative systems for neuromotor 
rehabilitation in scientific literature, their current limitations have confined 
their application primarily to laboratory settings. As a result, studies often 
overlook their potential utilization in real-world scenarios and focus solely on 
academic purposes. Thus, a naïve hypothesis can be formulated: limitations of 
current biocooperative control systems that restrict their application outside 
laboratory settings can be mitigate.  However, while this statement serves as 
a starting point, it is not comprehensive enough to address a specific research 
question. Therefore, further exploration and examination of lower-level 
hypotheses are necessary to advance toward this goal. 
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As stated in subsection 1.2.4, current biocooperative systems encounter 
two primary limitations: (I) hardware, and (2) reliability. Regarding to the 
hardware limitations (I) improving user acceptance requires a compact set of 
appropriately positioned sensors, thereby necessitating size reduction, even if 
it imposes limitations on battery capacity (Qiu et al., 2022). Additionally, the 
development of integrated multimodal approaches is crucial for user-centric 
systems in rehabilitation applications, fostering engagement within the user 
community (Rodgers et al., 2019). Real-time embedded systems play a vital 
role in reducing system response time, as lengthy delays can have detrimental 
effects, such as decreased task completion accuracy, reduced perceptual 
sensitivity, and increased task error rates, all of which can negatively impact 
user acceptance and satisfaction (Yang and Dorneich, 2015). 

By developing small multimodal platforms with high computational 
capacities, user acceptance can be improved in terms of comfort and faster 
system response. Furthermore, the creation of affordable and versatile 
platforms that support real-time multimodal controls would encourage 
further research in the field of biocooperative controls. With improved 
accessibility to this technology and continued research, it would be possible 
for researchers to effectively translate biocooperative control strategies that 
rely on physiological signals into practical and affordable real-world solutions. 

The limitation of reliability (II) largely arises as a result of hardware 
limitations. By enhancing accessibility, research can be increased, leading to 
the development of robust and effective controls that can be implemented in 
the clinical setting. Moreover, when considering the specific case of 
myoelectric EMG-driven controls, which are the most common in the field of 
robotic rehabilitation, their implemented in real-world applications is not 
viable due to reliability issues (Meattini et al., 2018). Although various sEMG-
based pattern recognition methods have shown promising results, their 
practical application is limited due to the need for a large number of DoFs in 
the robot and the associated high computational costs, making them 
unsuitable for real-time embedded systems.  

The development of EMG-driven control systems should focus on providing 
controls that can be integrated into existing robotic platforms with a limited 
number of DoFs. This approach reduces the number of electrodes, improving 
both user and clinician acceptance by reducing the time required for electrode 
attachment. Moreover, a lower number of DoFs and restricted movements 
contribute to increased system reliability, robustness, and decreased 
computational costs, resulting in appropriate response times. Collectively, 
these factors enhance user acceptance. These statements form the core of the 
present Doctoral Thesis, and they can be combined into the following: 



Chapter 1. Introduction 

24 

Biocooperative system may be oriented toward a real use outside laboratory 
by developing cost-effective, real-time, embedded physiological data 
acquisition systems, which promote further research in developing reliable and 
robust controls. 

1.3.2. Objectives 

The overall goal of this Doctoral Thesis was to design, develop and evaluate 
biocooperative control strategies in the context of upper-limb neuromotor 
rehabilitation, and to provide affordable technology for their implementation 
in an attempt towards widespread use in clinical settings. This general 
objective involved the design and development of embedded systems for 
physiological signal acquisitions and its integration in neuromotor 
rehabilitation systems by implementing and evaluating assistive control 
strategies. In order to achieve this general objective, the following specific 
objectives arise: 

I. Conduct a comprehensive literature review and examine the current 
state-of-the-art in upper-limb neuromotor rehabilitation platforms, with 
particular emphasis on control strategies that integrate the human 
element into the control loop through the analysis of physiological 
signals. 

II. Design and development affordable embedded systems for physiological 
signal recording and data processing for real-time execution of the 
control paradigm of the rehabilitation systems. 

III. Design and development of biocooperative control strategies for the 
developed real-time embedded solutions and their integration into pre-
existing rehabilitation platforms. 

IV. Perform a comprehensive evaluation of the performance of the proposed 
biocooperative rehabilitation systems, including the assessment of 
control accuracy, time response, and user performance. 

V. Evaluation of the performance of the wearable multimodal embedded 
acquisition system, focusing on its versatility, power consumption and 
reliability of the recorded signals for the implementation of 
biocooperative controls. 

VI. To disseminate the results of this study in JCR indexed journals, as well 
as, in national and international conferences. 
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Chapter 2 

2. Materials and methods 

This chapter describes the materials and methods that have been applied 
throughout the compendium of publications. Section 2.1 details the robotic 
platforms used within the scope of this study. Section 2.2 is dedicated to a 
comprehensive review of the relevant literature pertaining to biocooperative 
controls. Afterwards, section 2.3 focuses on the experimental designs and 
setups. Finally, section 2.4 offers a description of the applied metrics for 
performance assessment.  

2.1. Robotic rehabilitation platforms 

Two robotics platforms were used in this Doctoral Thesis: the RobHand and 
the M3Rob. The RobHand was used in the first (Cisnal et al., 2021) and second 
articles (Cisnal et al., 2023b), in combination with the designed EMG 
acquisition system. On the other hand, the M3Rob was employed in the last 
article (Cisnal et al., 2023a) to assess the performance of the wearable 
multimodal acquisition system. The electromechanical structures of these 
robotics platforms offer unique features and capabilities that enable the 
investigation of different biocooperative controls. In this section, an overview 
of each platform's specifications is provided to help readers understand the 
technology behind them.  
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2.1.1. RobHand, a Robot for Hand Rehabilitation 

The RobHand (Robot for Hand Rehabilitation) project aimed to develop a 
robot for hand rehabilitation for patients with neuromotor disabilities 
resulting from a cerebrovascular accident. The project was developed in 
partnership between the TICCYL Digital S.L. enterprise and the ITAP Robotics 
Research Group at the School of Industrial Engineering of the University of 
Valladolid. The work was supported by CDTI (Center of Development of 
Industrial Technology), a Public Business Entity of the Spanish Ministry of 
Science and Innovation, under project IDI-20170263 with the European 
Regional Development Fund (ERDF).  

RobHand is an exoskeleton-type robot for neuromotor rehabilitation, which 
assists flexion and extension of the hand fingers (Figure 2.1). It was specifically 
designed to be lightweight, easy-to-use, cost effective and versatile. Its 
mechanical design is based on a direct-driven under-actuated serial-bar 
linkage paradigm. In particular, the mechanical structure is based on a 
platform located on the back of the hand and five subassemblies, each one 
associated to one finger. All of them are mounted on the platform except the 
one for the thumb, which is connect with the platform using a linkage device. 
The subassemblies are composed of an underactuated linkage-rotate 
mechanic and a flexible double-ring to transmit the linear force from the 
actuator to the ring attached to the proximal and medial phalanges (Moreno-
San Juan et al., 2021). 

Thus, the device is characterized by independent finger motion and has two 
DoFs for each finger: one active DoF associated with the metacarpophalangeal 
(MCP) joint and passive DoF associate with the proximal interphalangeal (PIP) 
joint. The robot provides a ROM of 8º of extension and 62º of flexion in the 
MCP joint. The exoskeleton incorporates five L12-30-100-6-I linear actuators 
(Actuonix Motion Devices Inc., Saanichton, BC, Canada). The actuators have a 
30 mm stroke, provided up to 23N force and are low-cost, reducing the overall 
cost of the system and making it more affordable. 

Additionally, the flexible-double rings ensure an easy donning and doffing 
of the exoskeleton even in case of patients suffering from severe hand 
spasticity. First, the rings are placed on the fingers and then, they are joint to 
their corresponding the linkage-rotate mechanisms. The exoskeleton is 
adjusted to the hand by using two Velcro straps. Additionally, the thumb 
submodule is manually adjustable, providing an easy adaptation to different 
hand sizes. The system is built in aluminum except from the linkage-rotate 
mechanisms and the flexibles double-rings, which are 3D printed, resulting in 
a total weight of 610 g. The system also incorporates a forearm support to 
compensate the forces created by the exoskeleton weight. 
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Figure 2.1. The RobHand robotic platform and forearm support for hand rehabilitation 
(Cisnal et al., 2021). 

2.1.2. M3Rob, a robot for wrist rehabilitation 

The M3Rob (in Spanish, Mente-Mano-Muñeca, Mind-Hand-Wrist-Robot) 
project aimed to develop a platform for neuromotor and cognitive hand and 
wrist rehabilitation for people who have suffered a cerebrovascular accident. 
The project is developed by TICCYL Digital S.L. company, the ITAP Robotics 
Research Group and the Biomedical Engineering Group, both from the 
University of Valladolid, and the Benito Menni Hospital Center in Valladolid. 
The project is supported by the Ministry of Science and Innovation of Spain, 
under grant RTC2019-007350-1.  

The rehabilitation robot assists the pronation/supination (PS), 
flexion/extension (FE), and radial/ulnar (RU) deviation motions of the wrist. It 
is based on a three serial revolute active joints (3-DoF RRR) mechanism (Figure 
2.2). Each rotational joint is powered by one independent brushed DC motor 
(Maxon Motors, Switzerland) equipped with a 3-channel encoder. Cables are 
used to transmit the force generated by the motors to the mechanical 
structure, and thus, assist the wrist motion. The mechanism also incorporates 
a one passive DoF that allows manual adjustment of the forearm support. A 6-
axis torque-force sensor K6D27 50N/1Nm (Me&Systeme, Germany) is 
embedded in a cylindrical handle. The range of motion of PS, FE and RU joints 
are 180º, 135º and 110º, respectively (Cisnal et al., 2022a). 
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Figure 2.2. The M3Rob robotic platform for wrist rehabilitation, which provides 
assistance of the pronation/supination, flexion/extension, and radial/ulnar deviation 
motions. 

2.2. Biocooperative controls  

The first section 2.2.1 describes some physiological signals, which are 
necessary for the development of biocooperative controls. Subsequently, in 
section 2.2.2, is focused on reviewing relevant literature on non-pattern 
recognition-based myoelectric controls. EMG-driven control can be classified 
into two main types: discrete and continuous control, with the former further 
categorized into non-pattern (or threshold) methods and pattern recognition 
methods. Considering our emphasis on developing an embedded control 
system with intrinsic limited computation capacity and intended for real 
applications, we have opted to concentrate only on non-pattern recognition 
controls. Finally, in section 2.2.3, a brief summary of the state of the art on 
multimodal controls will be presented. 

2.2.1. Physiological signals 

Based on wide range of physiological signals used in related studies (Table 1.2) 
and considering both usability and wearability, we decided to only focus on 
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four sensor technologies from which valuable physiological data can be 
extracted:  

Electromyogram (EMG) provides important information on muscle 
activation patterns and muscle properties. EMG has the potential to offer an 
objective and quantitative approach to evaluate not just movement pattern, 
but also muscle function and local fatigue muscle (McManus et al., 2020). 
Hence, it can be used for progress assessment and evaluation of the 
rehabilitation outcomes.  

Electrocardiogram (ECG) provides information about the activity of the 
rate. Several parameters can be extracted, such as HR or HRV. The HR can 
indicate the body’s need for oxygen and provide insights into the physical 
effort. Additionally, HR and arousal are strongly correlated (Malmstrom et al., 
1965). HRV as well as HR has been also used as an indicator of arousal, physical 
effort and mental workload (Meshkati, 1988). 

Galvanic Skin Response (GSR) signal can be divided into tonic and 
phasic component. The tonic component, also known as SCL, exhibits slow 
changes over time and is related to skin hydration, dryness, and autonomic 
regulation, indicating general changes in arousal. On the other hand, the 
phasic component, referred to as SCR, represents the rapidly changing part of 
the signal that responds to emotionally stimulating events. SCL a is a good 
indicator for physical workload, while the frequency of SCR increases with 
arousal and mental workload (Novak et al., 2010). 

Peripheral Skin Temperature (SKT) is an effective way to estimate 
emotional state (Ekman et al., 1983). When the sympathetic nervous system 
is activated due to stress, it causes vasoconstriction, which reduces peripheral 
circulation and lowers skin temperature. SKT changes can also indicate 
significant physical activity as the shunting of blood in the body helps regulate 
temperature and meet the oxygen demands of organs. 

2.2.2. Non-pattern EMG-based controls 

Non-pattern EMG-based controls require the comparison of EMG activity 
between muscles. To achieve this, signal normalization is necessary to mitigue 
the effects of interferences on the signals, including power line noise, skin 
perspiration, sensor contact impedance, and crosstalk interference from 
active muscles (Halaki and Ginn, 2012). These factors contribute to high signal 
variability, and small differences in electrode placement between sessions can 
compromise the repeatability of EMG signals (Chowdhury et al., 2013). EMG 
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processing involves rectifying the raw EMG signal and mapping it into a 
normalized signal ranging from 0 to 1. 

EMG rectification involves converting all negative signal values to positive 
amplitudes. The average rectified value (AVR), root mean squares (RMS) and 
signal envelope are commonly used methods for full-wave signal rectification, 
typically followed by a low-pass filtering (Conforto, 2009). However, while 
RMS measures the signal power, AVR and envelope do not possess a specific 
physical meaning (Luca, 2002).  

Normalization typically involves using the maximal voluntary contraction 
(MVC) as a reference value. This approach allows for the comparison of muscle 
activation patterns within an individual over time. However, it is not suitable 
for comparing between different individuals, muscles, or tasks. In clinical 
applications, where patients may not be capable of exerting maximum efforts 
or repeating certain movements, EMG is often normalized to submaximal 
contractions or reference voluntary contractions (RVC) as they provide a more 
reliable indicator of changes in muscular activity (Lehman and McGill, 1999). 

Various non-pattern recognition EMG-based controls for hand robot have 
been previously proposed in the literature. These controls share a similar 
nature but are referred to differently, such as binary control (Lucas et al., 
2016), ON-OFF control (Serpelloni et al., 2016), time-over-threshold control 
(Polygerinos et al., 2015a), or triggered mode (Chen et al., 2009; Ho et al., 
2011). 

A binary control was developed to regulate the pressure level of a 
pneumatic hand exoskeleton (Lucas et al., 2016). The biceps EMG signal was 
recorded, rectified, smoothed using a Butterworth low-pass filter, and 
normalized using the MVC. The resulting EMG signal was then used to 
determine the controller binary output: if the EMG signal exceeded a specified 
threshold value, the output was set to "on", and if it was below the threshold, 
the output was set to "off". To avoid output oscillation, a hysteresis 
mechanism was implemented in the valve triggering system. Initially, the 
threshold values were set at 55% MVC to activate the "on" state and 45% MVC 
to initiate the "off" state. However, before each experiment, these threshold 
values were adjusted to ensure they corresponded to the subject's 
comfortable level. 

A triggered ON-OFF EMG-driven control for the GLOREHA glove was 
designed to identify three different states, namely hand opening, hand rest 
and hand closing, with a predefined speed command (Serpelloni et al., 2016). 
Electrodes were placed on the extensor digitorum (ED) and the extensor carpi 
radialis to detect muscle activation during hand opening, while the palmaris 
longus and the flexor carpi ulnaris muscles were used to detect hand closing. 
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The EMG signals were sampled at a rate of 25 KHz, and a temporal 
segmentation of 1-second windows with a 99.5% overlap between adjacent 
windows was employed, resulting in a temporal resolution of 5 ms. Within 
each window, the signal was rectified using RMS method. The difference 
between the rectified signals of the extensor and flexor EMG signals was then 
calculated. This difference, along with two threshold values, was employed to 
determine the three states (Figure 2.3). 

 

Figure 2.3. EMG differences and thresholds used in the triggered ON-OFF EMG-driven 
control (Serpelloni et al., 2016). 

Another EMG-triggered control utilized two EMG signals obtained from the 
ED and the abductor pollicis brevis (APB) muscles to detect the intention of 
hand opening and closing (Chen et al., 2009). The EMG signals were subjected 
to full-wave rectification and then smoothed by applying a moving average 
filter with a window size of 100 ms, followed by normalization using the MVC. 
The hand rehabilitation robot was programmed to initiate movement when 
the EMG signal exceeded a threshold of 30% of the MVC. 

An open-loop time-over-threshold EMG-driven control was designed for a 
hydraulically actuated soft rehabilitation glove (Polygerinos et al., 2015a). It 
detected user intention by measuring electromyographic signals from 
electrodes attached to the forearm, specifically the flexor digitorum 
superficialis (FDS) and the ED. The control system continuously monitors and 
compares the FDS and EDC muscle signals to detect predefined conditions: 
flex, extend, and hold. The flex condition pressurizes the soft actuators, 
causing the glove to flex along with the fingers, while the extend condition 
depressurizes the actuators, returning the fingers to the extended position. 
The hold condition maintains the present fluidic pressure within the actuators. 
To avoid misinterpretation of involuntary muscle contractions, the conditions 
require the processed signals to cross predefined thresholds for a specified 
duration (Figure 2.4). These conditions are manually adjusted. 



Chapter 2. Materials and methods 

32 

 

Figure 2.4. EMG signal processing for the FDS muscle in the time-over-threshold EMG-
driven control (Polygerinos et al., 2015a). 

An EMG-triggered mode strategy was developed to control the Hand of 
Hope exoskeleton by recording the EMG signals from the APB and ED muscles 
(Ho et al., 2011) The EMG signals were normalized with respect to the MVC, 
which was determined at the beginning of each training session. A threshold 
of 20% of the MVC was employed to initiate hand opening and closing 
motions. During hand closing triggering mode, the robotic system awaited 
EMG signals from the APB muscle surpassing 20% MVC before initiating hand 
closure. Similarly, during hand opening mode, the system awaited EMG signals 
from the ED muscle exceeding 20% MVC before starting the hand opening 
action (Figure 2.5). 

 

Figure 2.5. Raw EMG signals from the APB and ED muscles and the EMG-triggered 
status (Ho et al., 2011). 
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2.2.3. Multimodal controls  

Multimodal controls and methods for recognizing emotions through 
physiological signals have been previously proposed in the literature. One 
study adapted the level of assistance provided by an upper-limb rehabilitation 
robot based on the patient's performance and fatigue. Patient performance 
was determined using biomechanical information from an IMU sensor, while 
muscular fatigue was estimated using EMG signals (Scotto Di Luzio et al., 
2018). Another study adjusted the difficulty of an upper extremity 
rehabilitation task using biomechanics (force and movement), task 
performance, and physiological signals, such as ECG, GSR, RESP, and SKT 
(Novak et al., 2011).  

A two-stage fuzzy logic model was used to generate the next action 
primitives of an upper extremity rehabilitation device (Figure 2.6). The first 
stage calculated motor performance, arousal, and valence based on position, 
force, RESP, GSR, and SKT. The second stage selected the action primitives 
based on physical effort associated with motor performance, arousal, and 
valence (Mihelj et al., 2009). 

 

Figure 2.6. Simplified diagram of the two-stage fuzzy logic model for generating action 
primitives in an upper extremity rehabilitation robot (Mihelj et al., 2009). 

Affective and emotional states have also been used to control devices, such 
as modulating the assistance provided by a haptically controlled robot based 
on user emotions. Emotions were estimated by a fuzzy logic model that 
considered the 3-dimensional emotion model (arousal, dominance, and 
valence) using HR mean, SCL mean, and SCR frequency as inputs (Guerrero et 
al., 2013). Similarly, arousal and valence have been determined using 
normalized GSR, HR, and EMG signals as inputs to a fuzzy logic control scheme 
characterized by 22 rules as shown in Figure 2.7 (Mandryk and Atkins, 2007).  
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Figure 2.7. Determination of arousal and valence from GSR, EMG and HR information 
(Mandryk and Atkins, 2007). 

Emotion recognition, considering either pleasant, neutral, or unpleasant 
states, has been addressed using EEG, BVP, SKT, and SCL recordings and 
developing gradient boosting machines (GBMs) and convolutional neural 
networks (CNNs) (Gümüslü et al., 2020). Models were developed to recognize 
six and even eight basic emotions employing various classification methods 
such as SVM and k-nearest neighbors (KNN) (Khezri et al., 2015; Picard et al., 
2001). Detection of basic emotions considering two, three, or four states was 
also investigated using HR and SCL measurements and employing a 
Classification and Regression Trees (CART) algorithm (Hariharan and Adam, 
2015). Several studies have used physiological signals to map emotions in a 
two-dimensional model of arousal and valence (Kim and André, 2008; Koelstra 
et al., 2012).  

Affection recognition has been developed considering three target affective 
states, such as anxiety, engagement, and liking, using SVM-based recognition 
models with different features derived from physiological signals (Liu et al., 
2008). Differentiating of stress and normal states has been carried out using 
SVM and features derived from BVP, GSR, and PD signals. Finally, a 
classification method was developed to detect three levels of stress using 
pulse rate, RESP rate, SKT, and GSR features (Badesa et al., 2014). 

2.3. Experimental design 

This section details the experimental design employed to investigate the 
accuracy and responsiveness of EMG-driven control (section 2.3.1) and the 
impact of the EMG-based visual feedback on user performance (section 2.3.2).  
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2.3.1. Accuracy and responsiveness of the EMG-driven 

control  

The first study was conducted to evaluate the accuracy and responsiveness of 
the EMG-driven bilateral assistance with the RobHand exoskeleton (Cisnal et 
al., 2021). Ten healthy subjects (7 males, 3 females) over 18 years old with no 
neurological or motor impairment, volunteered for the study and provided 
written informed consent.  

The subjects wore a 5DT Data Glove (5DT Technologies) to measure the 
actual position of the dominant hand (corresponding to the non-paretic hand 
of the patient), while the sEMG of the muscles responsible for that hand 
movement were recorded, and also the recognized hand gesture. The subjects 
wore the hand exoskeleton on the non-dominant hand (corresponding to the 
paretic hand of the patient), which replicated the gestures recognized from 
the sEMG signals analysis (Figure 2.8).  

 
Figure 2.8. The left-handed subject wearing the 5DT Data Glove on the dominant hand 
and the exoskeleton on the non-dominant hand. The sEMG electrodes are attached to 
the target muscles of the forearm of the dominant hand (Cisnal et al., 2021). 

The subjects were asked to perform an initial calibration followed by ten 
one-minute tests, with a 5-minute rest between tests to avoid the appearance 
of muscle fatigue. Each test consisted of performing and maintaining hand 
gestures (rest, open and close) with the dominant hand. The gesture to be 
performed was indicated on the computer screen and was randomly 
generated every 5s. 
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2.3.2. Influence of the feedback on the user’s 

performance 

The second study was conducted to evaluate the influence of the visual EMG-
based visual feedback on the subject’s performance when performing EMG-
driven bilateral therapies with the RobHand exoskeleton (Cisnal et al., 2023). 
Eighteen subjects (23±3.4 years old) with no neurological or motor 
impairment volunteered and provided written informed consent.  

The subjects wore the hand exoskeleton on the non-dominant hand (in the 
case of a patient, it would correspond to the paretic hand), while the sEMG 
signals were recorded from the target muscles of the dominant hand (in the 
case of a patient, it would correspond to the healthy hand) (Figure 2.9). 

 

Figure 2.9. The right-handed subject wearing the hand exoskeleton on the non-
dominant hand while the sEMG electrodes are attached to the target muscles of the 
forearm of the dominant hand (Cisnal et al., 2023). 

Subjects performed an initial calibration and four one-minute experimental 
tests (named A, B, C and D) with a three-minute break between tests to avoid 
muscular fatigue. To avoid the appearance of learning order effect, the four 
tests were randomly performed. Each test consisted of performing and 
maintaining a hand gesture (rest, open or close) with the dominant hand. The 
target gestures were randomly generated every three seconds. Each test was 
characterized by a different combination of two feedback sources (Table 2.1): 
kinesthetic and EMG-based visual feedback. While the kinesthetic feedback 
was provided by the movement of the hand exoskeleton based on the EMG-
driven bilateral control, the EMG-based visual feedback was provided by the 
computer screen. 
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Table 2.1: Test configuration for evaluating user performance based on the presence 
of feedback sources, including kinesthetic and EMG-based visual feedback. 

 Kinesthetic Feedback EMG-Based Visual Feedback 

Test A (✓) (✓) 

Test B (✓) (x) 

Test C (x) (✓) 

Test D (x) (x) 

 

The overall system configuration employed in the experimental protocol is 
depicted in Figure 2.10. The participant is instructed to execute a specific hand 
gesture (i.e., open, close, or rest) using their dominant hand, guided by visual 
and auditory information provided by the computer. Concurrently, the 
recorded EMG signals are transmitted to the microcontroller for gesture 
recognition and generation of control signals to actuate the exoskeleton 
accordingly. The recognized gestures are then transmitted to the PC to update 
the EMG-based visual feedback. Additionally, both the recognized and target 
gestures are stored in a SQL database as temporal series for subsequent 
offline analysis. The provision of EMG-based visual feedback and kinesthetic 
feedback from the exoskeleton movement is dependent on the specific test 
being conducted (i.e., test A, B, C, or D). 

 

Figure 2.10. Experimental setup diagram, showing the data flow between subsystems: 
visual information from the computer (yellow lines), EMG and control signals (red 
lines), data transmission (blue lines), and exoskeleton movement (green lines). The 
presence of the source of feedback (dotted lines) varies depending on the specific test 
(Cisnal et al., 2023b). 
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2.4. Performance assessment 

During the different studies that compose the present Doctoral Thesis, 
performance assessments were carried out to evaluate the real-time control 
performance of the rehabilitation system based on motion intention 
recognition. In the specific case of an assistive rehabilitation robot based on 
gesture recognition, a reliable and natural human-robot interaction requires a 
combination of a good responsiveness and accurate gesture detection. Large 
delay times can exert adverse consequences and can negatively influence the 
user satisfaction towards robot-assisted therapy (Yang and Dorneich, 2015). 
Likewise, wrongly movement assistance negatively affects satisfaction and can 
even lead to physical damage. Hence, determining the relevant time delays 
and gesture classification metrics of the robotic system for an efficient HRI is 
essential (Cisnal et al., 2021). Additionally, similarity measurements for time 
series and parametric statistical tests are used to evaluate user performance 
under different feedback setup conditions when using the EMG-driven hand 
exoskeleton (Cisnal et al., 2023b). 

2.4.1. Classification accuracy 

Evaluation metrics play a critical role in evaluating the effectiveness of 
classification problems. There are two types of classification problems 
according to the number of classes: binary classification and multi-class 
classification (Tharwat, 2018). The quality of the classifier can be expressed 
using a confusion matrix, which is a table that records the number of 
occurrences between two raters: the rows of the table represent the 
predicted classes, while the columns show the actual/true classes.  

For binary classification, the confusion matrix is shown in Figure 2.11. True 
Positive (TP) and True Negative (TN) are the number of positive and negative 
classes that are correctly classified. Meanwhile, the numbers of misclassified 
negative and positive instances are denoted by False Positive (FP) and False 
Negative (FN), respectively (Hossin and Sulaiman, 2015). 

From the confusion matrix, many metrics for evaluating the classification 
effectiveness can be calculated (Grandini et al., 2020). Accuracy (Acc) is the 
most popular classification, although some complement metrics such as 
precision or recall, are also used to express all the relevant information about 
the algorithm performance. Accuracy measures how much the algorithm is 
correctly predicting in the entire set of data by evaluating the percentage of 
correct predictions over the total number of samples. Accuracy is calculated 
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using equation (1), which considers the sum of TP and TN elements at the 
numerator and the sum of all entries at the dominator. 

 

Figure 2.11. Confusion matrix for a binary classification problem. There are two true 
classes: positive (P) and negative (N). The output of the predicted class is either true (T) 
or false (F). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

The precision, or positive predictive value (PPV), quantifies the correctly 
predicted positive classes among the total predicted positive classes. Precision 
is calculated using equation (2).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Recall measures the fraction of positive classes that are correctly classified. 
It is also known as true positive rate (TPR), and it is calculated using equation 
(3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 
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The EMG-based gesture recognition control is considered a classification 
problem since it requires determining one gesture out of three possible 
gestures (open, close and rest). Hence, the confusion matrix and 
abovementioned metrics are used to evaluate the performance of the gesture 
recognition algorithm (Cisnal et al., 2021). 

2.4.2. Time delay analysis 

The study of responsiveness of the EMG-based rehabilitation system is carried 
out using the following time-related metrics (Cisnal et al., 2021). Some of them 
were proposed by Li. et al. in the work in which they quantified the time delay 
of an EMG-based pattern recognition control of a virtual arm (Li et al., 2010), 
the rest are proposed in the context of this work. 

Motion-selection time (MST) is the time needed by the controller to 
accurately determine a certain gesture. Hence, MST is calculated as the time 
interval from the onset of the motion to the instant the controller accurately 
predicts that motion. 

Motion-onset time (MOT) is calculated as the time interval from the 
onset of the gesture change movement to the instant the assistive robot starts 
that movement. 

Motion-completion time (MCT) is calculated as the time interval from 
the onset of the gesture change movement to the instant the assistive robot 
correctly reaches the next gesture. 

Motion-completion rate is the percentage of successfully motions, 
considering that a motion is successful when it is performed within a time 
limit. The time limit is established based on clinical experience and is 5s to 
ensure that the movement is not too slows so as not to demotivate or annoy 
the user.  

A time diagram representing the time parameters (MST, MOT and MCT) is 
shown in Figure 2.12 to enhance comprehension. These time-delay metrics 
are characterized by events that define their onset and end time: motion onset 
time of the subject (MOHuman), the motion onset time of the assistive robot 
(MOROBOT), the motion end time of the assistive robot (MEROBOT), and the time 
in which the controller accurately detects the gesture (AGDCTRL).  
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Figure 2.12. Timing diagram showing the time-related metrics: MST, MOT, MCT (Cisnal 
et al., 2021). 

2.4.3. Time series similarity measurement 

A similarity measure is mathematically defined as a real-valued function that 
quantified the similarity between two entities, in this context between two 
time series. Similarity measures can be divided into lock-step measures that 
calculate the one-to-one point Lp-norm or distance between two series or 
using elastic measurements that do not considered a fixed step, such as the 
Dynamic Time Warping (DTW) or the Longest Common Subsequence (LCSS) 
(Ding et al., 2008).  

Lock-step measures are commonly used since they are relatively 
straightforward, intuitive and their low linear computational cost. However, 
since distance is computed from i-th point of one time series to the i-th point 
of another series, this method is highly sensitive to noise and time 
misalignments (Ding et al., 2008). Therefore, two time series must be time-
synchronized before calculating the distance measurements, since local time 
shifting can’t be handled.  

Synchronization of two time series x and y can be performed by calculating 
the lag at which their cross-correlation (rxh) is the highest. rxh is computed 
based on equation (4), where h is the lag and * denote the complex conjugate.  

rxy(h) = {
∑ x(n + h) ∙ y∗(n)

N−h−1

n=0

, 0 ≤ h ≤ N − 1

ryx
∗ (h), −(N − 1) ≤ h ≤ 0

 (4) 
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The most typical examples of distance metrics are the Manhattan distance 
(L1 norm) and the Euclidean distance (L2 norm). L1 norm is calculated as the 
sum of the absolute difference of the values of the time series as shown in 
equation (5), while L2 norm is calculate as the square root of the sum of the 
square time series values as expressed in equation (6). 

𝐿1(x, y) = ∑ |𝑥𝑖 − 𝑦𝑖|

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=0

 (5) 

𝐿2(x, y) = √ ∑ (xi − yi)
2

nsamples

i=0

 (6) 

were xi and yi are elements of x and y, respectively. The comparison of 
distance measurements between time series with different durations requires 
a previous normalization. These metrics can be normalized by multiplying by 
the sampling period (Ts). 

2.4.4. Statistical analysis 

Statistical analysis is a powerful tool in scientific research, allowing for fair 
comparisons of data across multiple groups and provides valuable insights into 
the relationship between variables. One commonly used method for this type 
of analysis is Multifactorial additive Analysis of Variance (ANOVA), which 
enables researchers to assess multiple dependent variables simultaneously. 
This approach is particularly useful when dealing with more than two 
independent groups, as it allows researchers to determine whether there is a 
statistically significant difference between the means of those groups.  

The ANOVA is based on testing the null hypothesis that the mean values of 
all groups are equal. If the null hypothesis is rejected, it means that at least 
one pair of groups differs significantly on at least one variable, indicating that 
the independent variable explains a significant amount of variance in the 
dependent variable. However, ANOVA does not provide information about 
which group means are significantly different from each other. To uncover 
specific differences between three or more group means, post hoc tests are 
used. Post hoc tests, such as Duncan’s Multiple Range test, measure specific 
differences between pairs of means. 

Duncan's Multiple Range test is a post hoc test that compares all possible 
pairs of group means to identify which pairs differ significantly. This test is 
based on a ranking system that compares the distance between group means 
with the standard error of the mean. The test identifies significant differences 
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between groups by dividing the mean square error by the number of degrees 
of freedom to calculate the standard error of the mean. This standard error is 
then compared to the difference between the means of each pair of groups. 
If the difference between the means is greater than the standard error, the 
two means are significantly different. 

The statistical analysis of ANOVA and Duncan’s Multiple Range test relies 
on several important assumptions: normality, homogeneity of variances, and 
independence. Normality refers to the requirement that the data follows a 
normal distribution, ensuring that the sample means are normally distributed. 
Homogeneity of variances implies that the variability among the groups being 
compared is approximately equal. Independence requires that each 
observation is independent to the others, meaning that the values of one 
observation do not influence or depend on the values of other observations.  

It is important to note that obtaining reliable and valid results depends on 
adhering to these assumptions. When the assumption of normality is violated, 
it can lead to Type I or Type II errors. Type I error occurs when a significant 
difference is detected between groups when no true difference exists. Type II 
error occurs when a true difference between groups exists, but it is not 
detected as statistically significant. Violations of homogeneity of variances 
assumption can lead to biased estimates of group differences and impact the 
validity of the statistical tests. Therefore, assessing the assumptions of 
normality and homogeneity is crucial to ensure the reliability and validity of 
the results and minimize the potential for Type I and Type II errors. 

Overall, statistical analysis, including ANOVA and post hoc analysis, is a 
crucial tool for making fair comparisons between groups and determining 
specific differences between means. They allow to identify significant 
relationships between variables and gain a deeper understanding of the 
mechanisms underlying their research questions. 

In the present Doctoral thesis, we evaluated the influence of EMG-based 
visual biofeedback on users’ performance (Cisnal et al., 2023). Prior 
conducting the analysis, normality and homogeneity of variances were 
verified. ANOVA was used for evaluating the effects of independent variables 
such as the type of test, test order, and individual on user performance. Next, 
we performed a Duncan’s Multiple Range test to evaluate the differences in 
user performance with the presence or absence of two different types of 
feedback (EMG-based visual feedback and kinesthetic feedback from the 
motion exoskeleton) by calculating the difference between pairs of means. 
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Chapter 3 

3.  Results 

In this chapter, the most relevant results of the Doctoral Thesis are 
summarized. Section 3.1 introduces the designed embedded solutions for 
physiological signal acquisition, while section 3.2 elaborates on the 
development of biocooperative control strategies. The results of the 
performance assessment are provided in section 3.3.  

3.1. Embedded systems for physiological signal 

acquisition 

This section presents the two embedded system for physiological signal 
acquisition that have been developed. The first one was specially designed for 
the implementation of rehabilitation therapies based on sEMG signals (Cisnal 
et al., 2021). The second solution features a wearable design with enhanced 
versatility, enabling the acquisition of a broader range of physiological signals 
to facilitate the development of multimodal biocooperative controls (Cisnal et 
al., 2023a).  

The primary objective behind the design and develop embedded electronic 
systems for physiological signal acquisition is to overcome certain limitations 
identified in prior studies. Specifically, these include the high cost of such 
systems, which is a major obstacle to universal access, as well as the use of 
computers as the data processing platforms, which presumably increases the 
latency time of the entire rehabilitation platform. As a solution of these 
challenges, custom-made systems have been developed with the goal of 
minimizing overall costs. Additionally, these systems incorporate a real-time 
microcontroller (MCU) for advanced on-board processing. 
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Both systems are based on the TMS320F28069M MCU (Texas Instruments, 
Texas, USA), whose Harvard architecture is optimized to perform real-time 
tasks. The MCU is characterized by a two-core architecture resulting in a large 
system bandwidth. C28x core and CLA (Control Law Accelerator) execute code 
independently and interface using a specialized data bus (CLA Bus). The high 
efficiency 32-bit C28x core runs up to 90 KHz and. It also equipped with 256 
Kb Flash embedded memory, 100KB of RAM and 2 KB of one-time 
programmable (OTP) ROM. Additionally, the MCU integrates multiple 
peripherals such as a 12-bit analog-to-digital converted (ADC) with a sampling 
rate up to 3.46 MSPS (mega samples per second), serial port communication 
peripherals (SPI, i2C, UART…), ePWM (enhance Pulse Width Modulation) 
modules and timers. Normal current consumption is 245 mA, allowing low-
power operating modes. 

3.1.1. EMG acquisition system 

EMG-driven control strategies are widely used in rehabilitation robotics. 
Muscular electrical activity resulting from MUAP superposition (raw sEMG 
signals) can be acquired by surface electrodes and proper conditioning 
circuits. Therefore, a custom-made application-specific integrated circuit 
(ASIC) was designed to capture and preprocess the sEMG signals, which are 
subsequently converted by an ADC for its transmission to the 
TMS320F28069M MCU, especially dedicated to real-time processing 
operations.  

The 2-channel EMG data acquisition ASIC developed is characterized by a 
24-bit resolution differential channels and 112 DB of dynamic range (DR). The 
channels consist of an instrumentation amplifier of gain 50 followed by an RC 
low-pass filter with a cutoff frequency of 150 Hz. The channels are designed 
to compensate differential input offset to prevent the instrumentation 
amplifier from saturation. Additionally, the ASIC has the MCP3912 (Microchip 
Technology Inc., AZ, USA) Analog Front End (AFE), which is characterized by 
synchronous Delta-Sigma ADCs, which interfaces with the TMS320F28069M 
MCU using SPI communication and other digital control signals. 

The 4-layer Printed Circuit Board (PCB) has split ground planes to separate 
analog, digital, and power circuitries to ensure signal integrity (Figure 3.1, a). 
Discrete Surface Mounted Device (SMD) components are placed on the top 
and bottom layers, resulting a board size is 50.8×33 mm, with an active area 
of 10 cm2 (Figure 3.1, b). The PCB was purposely designed to enable direct fit 
of the LAUNCHXL-F28069M MCU, thereby eliminating the need of wiring 
(Figure 3.1, c). The chip consumes 3 mW from 3.3 V DC power supply. 
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(a) (b) 

 

(c) 

Figure 3.1. EMG acquisition system layout (a) PCB layout (b) final solution (c) board 
plugged-in the MCU. 

The main characteristics of the proposed EMG signal acquisition system are 
outlined in Table 3.1. The system is powered by a 5 V supply derived from the 
MCU, despite the admissible power supply ranging from 3 to 12V. Additionally, 
the Delta-Sigma ADCs are fully configurable, and he configuration details 
specifically established in this thesis are presented in Table 3.1. 

3.1.2. Multimodal acquisition system 

The proposed embedded wearable system integrates multiple sensors 
modalities, high-efficiency real-time MCUs, and wireless communication, 
providing a highly flexible and capable platform for the development of 
biocooperative controllers.  The system is battery-powered and integrates five 
sensors (IMU, ECG, EMG, GSR, and SKT), which directly interface with the 
TMS320F28069M MCU for real-time data processing and control (Figure 3.2). 
The recorded and processed data can be transmitted by a CC2650 (Texas 
Instruments, TX, USA) Bluetooth low energy (BLE) MCU. Additionally, a JTAG 
port allows temporary access to the MCUs.  
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Table 3.1: Technical specifications of the EMG acquisition system, encompassing 
general characteristics and configuration parameters of the Delta-Sigma ADCs. 

General Characteristics Values 

Supply voltage 3.3-12 V / 5V(a) 
Supply voltage  5V 
Total Current Consumption 0.9 mA  
Active area 10 cm2 
Board dimensions 50.8×33 mm 
EDS input protection 17 KV 
Acquisition channels 2 ch. 

ΔΣ- ADC Performance Values 

Frequency sample  200 Hz(a) 
Acquisition bandwidth 195 Hz (a) 
Digital Signal Resolution 24 bits (a) 
Operating frequency  3.3 MHz(a) 
Differential input impedance 232 KΩ(a) 
DD CMRR 100 dB 
Signal-to-Noise Ratio (SNR) 94 dB 

(a) Established configuration. 

 

 

Figure 3.2. High level block diagram of the proposed multimodal embedded system 
(Cisnal et al., 2023a). 

An ICM-20948 9-axis MEMS device (InvenSense, CA, USA) allows to track 
the motion of the user wearing the device. It consists of a gyroscope, an 
accelerometer and a compass with programmable sensitivities and filters. It 
also embeds a digital motion processor (DMP) aimed to reduce the 
computational load associated to the motion algorithm from the MCU, thus 
improving system performance. The ICM-20948, which is powered at 1.8 V, 
communicates with the TMS320F28069M using Fast Mode i2C. 

The fully integrated single-lead ECG front-end AD8232 (Analog Devices Inc., 
MA, USA), powered at 3.3 V, amplifies, and filters the ECG signals. It also 
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incorporates an AC lead-off detection mode. The recorded ECG signals are 
analog-to-digital converted in the MCU with 12-bit resolution and two 
additional digital signals interface with the MCU to indicate whether the snap-
lead pre-gelled electrodes are properly attached and connected using a jack 
connector.  

A 2-channel electromyographic signal acquisition module is also integrated 
into the printed circuit board. The electronic circuit of the module is the same 
as described in section 3.1.1. The GSR measurements are based on a low 
constant voltage technique. A low electrical potential is applied between two 
electrodes attached to two hand fingers and the resulting current flow is 
amplified by the LM324 quadruple operational amplifier (Texas Instruments, 
TX, USA) and then, filtered. The analog output is transmitted to the MCU to be 
ADC.  

The MLX90614 infrared (IR) thermometer (Melexis, Belgium) allows to 
measure the body temperature without physical contact and thus, facilitating 
its continuous monitoring. The MLX90614 is characterized by an IR-sensitive 
thermopile detector chip and conditioning circuit, which includes a low-noise 
amplifier, a 17-bit ADC and a digital signal processing unit. It transmits the 
temperature measurements with up to 0.02 ºC resolution to the MCU via i2C 
and it is powered at 3.3 V. 

The CC2650 MCU is a system-on-chip (SOC) that provides an ultralow power 
BLE using a 2.4 GHz RF transceiver. The MCU is built on an ARM® Cortex®-M3 
processor for the application layer and BLE protocol stack management and 
on ARM Cortex®-M0 processor for the autonomous low-level radio control 
and processing related to the physical and link layers. The CC2650 MCU 
interfaces with the TMS320F28069M using one of the following serial 
communications: i2C, SPI or UART. No external antenna is required since the 
PCB integrates one on the top cooper layer, flowing TI’s design specifications.  

The device is powered by a battery or via a USB-C port if the battery is being 
recharged. The system integrates a MCP73831 dedicated integrated circuit 
(Microchip Technology Inc., AZ, USA), which is based on a constant 
voltage/constant current (CVVC) charging method. The charge management 
controller continuously monitors the battery voltage and starts its recharge if 
the voltage drops below a threshold. A 3.7V 3500 mAh rechargeable lithium-
ion polymer battery (68x55x7 mm) provides an estimated life of 5 hours, 
considering that a maximum power consumption of 1250 mW. 

The 2-layer PCB was designed to optimize signal integrity and its layout is 
based on the different submodules (Figure 3.3, a). The power planes are split, 
and 12 mil wide traces are used, except for 24 mil wide power signals. For 
reducing assembling costs, all components are placed on the top layer, except 
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for the thermometer. The resulting board size is 63x83 mm, including three 
holes for screw fixing to the box (Figure 3.3, b). 

  

(a) (b) 

Figure 3.3. Multimodal acquisition system (a) PCB layout (b) Final solution (Cisnal et al., 
2023a). 

3.2. Biocooperative rehabilitation systems 

This section aims to present three biocooperative control strategies for upper-
limb rehabilitation using the acquisition systems described in the previous 
section 3.1. An EMG-driven bilateral control for hand robotic rehabilitation is 
detailed in section 3.2.1. In section 3.2.2, a VR-based exergame using hand 
gesture detection and arm tracking is presented.  Lastly, an AAN control for 
robotic wrist rehabilitation therapy is described in section 3.2.3. 

3.2.1. EMG-driven control for hand robotic 

rehabilitation 

A threshold EMG-driven control has been proposed for conducting bilateral 
training with the RobHand rehabilitation robot (section 2.1.1). The 
exoskeleton is worn on the impaired hand to provide assistance in motion, 
while surface electrodes are attached to the forearm muscles and olecranon 
of the healthy limb for recording the EMG signals (Figure 3.4). 
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Figure 3.4. User performing EMG-driven bilateral therapy using the RobHand 
rehabilitation platform. The exoskeleton is worn on the impaired hand, while 
disposable electrodes are attached to the forearm muscles of the healthy hand to 
capture EMG signals (Cisnal et al., 2023b). 

 The embedded system described in section 3.1.1 was used to record the 
sEMG signals of the ED and the FDS muscles, responsible for the extension and 
flexion of the hand fingers. The acquired signals were processed by the MCU 
to recognize the gesture performed by the healthy hand (rest, open or close), 
generating the proper pulse width modulation (PWM) signals so the 
rehabilitation exoskeleton placed on the paretic hand moves to replicate the 
detected gesture (Figure 3.5).  

 

Figure 3.5. Simplified block diagram of the implementation of the EMG-driven control 
on the RobHand platform for assisted bilateral therapy (Cisnal et al., 2021). 

The EMG signals, which are recorded at 200 Hz, are filtered for baseline 
noise and electromagnetic interferences removal and then, rectified and 
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normalized to compare the electrical activity between muscles (Figure 3.6). A 
notch center frequency (50 Hz cuff-off frequency; 20 Q-factor) and a high-pass 
FIR filter (0.01 Hz stopband frequency; 10 Hz passband frequency: 80 dB 
minimum stopband attenuation; 0.1 dB maximum passband ripple) are 
applied to the raw EMG signals. The rectification is based on a 10-point RMS 
and a low-pass FIR filter (1 KHz passband edge frequency; 2 Hz stopband edge 
frequency; 4 dB maximum passband ripple; 10 dB minimum stopband 
attenuation), resulting in a down-sampling of 20 Hz. The normalization is 
performed with respect to the MVC. 

 

Figure 3.6. sEMG signal recording and processing, including filtering, rectification, and 
normalization (Cisnal et al., 2021). 

The MVC values and EMG-based thresholds are computed in a calibration, 
which is user and rehabilitation session-specific. In the calibration procedure, 
subjects are asked to relax, open, and close their hand for 8 s each (Figure 3.7).  
The MVC values (MVCED and MVCFDS) are calculated as the maximum value of 
their corresponding rectified EMG signal (rEMG), as indicated in equation (7). 

 
(7) 

The extensor and flexor threshold, defined as Ɛ and µ, correspond to the 
maximum limit values corresponding to muscular deactivation of the FDS and 
ED muscles, respectively. They are calculated following equations (8) and (9). 

min( )
0.1ED

ED

rEMG

MVC
 = +  (8) 

min( )
0.1FDS

FDS

rEMG

MVC
 = +  (9) 

The gesture recognition module (Figure 3.7) only depends on the 
instantaneous normalized EMG signals (nEMG) and the two EMG-based 
thresholds (µ and Ɛ). Considering that A, B and C are defined according to 
equations (10)-(12). 

/ /max( )FDS ED FDS EDMVC rEMG=
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Figure 3.7. Control loop implemented for the calibration process and threshold-based 
EMG-driven control (Cisnal et al., 2021). 

 

EDA nEMG →   (10) 

FDSB nEMG →   (11) 

ED FDSC nEMG nEMG→   (12) 

The gesture (rest, open or close) is updated every 50 ms based on equations 
(13)-(15) Note that for any combination of inputs, only one output (REST, 
OPEN or CLOSE) is true.  

REST A B=   (13) 

( )OPEN A B C=  +  (14) 

( )CLOSE B A C=  +  (15) 

The rest gesture is recognized when the normalized signals are lower than 
their corresponding EMG-based threshold. The open gesture is detected when 
the normalized sEMG signal from the ED muscle is larger than both the 
extensor threshold (Ɛ) and the normalized signal from the FDS muscle if it 
exceeds the flexor threshold (µ). Analogously, the closed gesture is detected 
when the normalized sEMG signal from the FDS muscle is larger than the flexor 
threshold (µ) and the normalized signal from ED muscle in case it exceeds the 
extensor threshold (Ɛ). Figure 3.8 shows the signal processing of the presented 
EMG-driven control: raw and normalized signals based on user’s residual 
muscle activity, thresholds, and recognized gestures. 
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Figure 3.8. Threshold EMG-driven control: raw EMG signals of ED and FDS muscles, 
normalized signals, EMG-based threshold, and recognized gestures (Cisnal et al., 
2023b). 

Incorporation of EMG-based visual feedback to the presented EMG-driven 
bilateral therapy is feasible. The proposed biofeedback approach involves two 
variable-length bars, labelled as ‘Opening force’ and ‘Closing force’. These bars 
are named so as to correspond to the extensor and flexor muscle activity and 
have been designed to enhance the user-friendliness of the therapy (Figure 
3.9).  

 

Figure 3.9. EMG-based visual feedback consisting of two variable length bars (Cisnal et 
al., 2023b). 

The length of the bar indicates the instantaneous value of the normalized 
sEMG signals (nEMGED and nEMGFDS) and their color indicates the recognized 
gesture (Table 3.2) according to equations (13)-(15). The visual feedback is 
updated at 20 Hz, corresponding to the frequency of the normalized EMG 
signals and gesture recognition rate. 

Table 3.2: Color of the bars of the EMG-based visual feedback depending on the 
recognized gesture. 

Recognized  
gesture 

Opening force 
bar 

Closing force 
bar 

Rest Red Red 
Closed Red Green 

Opened Green Red 
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3.2.2. EMG&IMU-based control for upper-limb 

rehabilitation 

A VR-based exergame for upper-limb rehabilitation was developed using the 
multimodal embedded system (section 3.1.2). The system is worn on the 
user’s arm to track the arm and hand movements, and thus enabling 
interaction with the virtual environment. Two pairs of surface electrodes are 
attached to the ED and FDS forearm muscles, along with one reference 
electrode to the olecranon, for recording EMG signals.  

The objective of the exergame is to collect as many coins as possible within 
a fixed time by moving the arm towards the coins with a relaxed or open hand, 
and then closing the hand to take the coin  (Figure 3.10). The difficulty of the 
game is adjusted online based of the elapsed time from each coin collection. 
Modifications are made to the degree of hand closure as well as size and 
relative position of the new coin respect to the last one to maintain patient 
motivation. 

 

Figure 3.10. Upper-limb rehabilitation using a VR-based exergame. The embedded 
platform is place on the arm user and two pairs of surface electrodes are attached to 
the ED and FDS muscles and the reference electrode is attached to the olecranon 
(Cisnal et al., 2023a). 

The sEMG signals captured from the ED and FDS muscles as well as the 
linear acceleration and angular velocity data from the ICM-20948 are 
transmitted to the TMS320F228069M MCU. Real-time algorithms for arm 
orientation estimation and hand gesture detection (open, rest and close) are 
executed on the MCU. The gesture and orientation are then transmitted via 
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BLE at a rate of 20 Hz to a PC, which updates the limb movements in the VR 
environment, allowing the hand to interact with the virtual coins (as shown in 
Figure 3.11). The VR scenario was developed using the Unity game engine. 

 

Figure 3.11. Schematic diagram of the VR-based exergame for upper-limb rehabilitation 
(Cisnal et al., 2023a). 

The hand gesture recognition algorithm is the one presented in section 
3.2.1. Regarding arm orientation estimation, the 16-bits 3 axis gyroscope and 
accelerometer of the ICM-20948 are set to full-scale range of ±250 dps 
(degrees per second) and ±2 g (19.6 m/s2), resulting in 131 LSB/dps and 16384 
LSB/g ADC resolution, respectively. The sample rate is configured to 100 Hz 
and 400 KHz Fast Mode i2C is selected to transmit both linear acceleration and 
angular velocity to the MCU. On the MCU, the orientation estimation is carried 
out by implementing the model developed by M. Stanley (“Open Source 
Sensor Fusion,” 2015). The accelerometer and gyroscope readings are entered 
to this model, which is based on an indirect Kalmar filter. The linear 
acceleration, angular velocity and estimated arm orientation readings are 
shown in Figure 3.12. 

 

Figure 3.12. Recorded linear acceleration (top plot), recorded angular velocity (middle 
plot) and estimated orientation (bottom plot). Solid lines indicate raw data and dashed 
lines indicate filtered data (Cisnal et al., 2023a). 
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3.2.3. Assist-as-needed control for wrist robotic 

rehabilitation 

An AAN control strategy that adapts the level of assistance of a wrist 
rehabilitation robot (section 2.1.2) based on the emotional state and the 
motor performance of the patient has been proposed. Biomechanical 
measurements from the encoder and force sensor embedded on the 
rehabilitation robot are used to determine the motor performance. ECG, GSR 
and SKT values recorded with the embedded system (section 3.1.2) are used 
to estimate the emotional state of the user considering the two-dimensional 
model (arousal and valence). 

The user must wear the embedded system to register their SKT with the IR 
thermometer. Two disposable pre-gelled electrodes are attached to the torso, 
and one on the umbilical region of the user for ECG recording. GSR 
measurement is accomplished by placing two electrodes on the index and 
middle fingertips (Figure 3.13).  

 

Figure 3.13. User undergoing rehabilitation using the wrist robotic platform based on 
an AAN control strategy, while wearing the embedded platform on the arm to register 
SKT. To record ECG signals, disposable electrodes are attached to the user’s torso, and 
electrodes are placed on the fingertips of the hand to capture GSR (Cisnal et al., 2023a). 

The AAN paradigm is applied to a closed-loop admittance control with a 
reference trajectory. The mechanical admittance (Y) of a system is defined as 
the ratio of its displacement (x) and its force (F), as expressed in equation (16). 
This definition is usually related to a mass-spring-damper system, 
characterized by a mass (m), a stiffness (k) and a viscous damping (b) (MIhelj 
and Podobnik, 2013). 
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𝑌(𝑠) =
𝑋

𝐹
=

1

𝑚𝑠2 + 𝑏𝑠 +  k
 (16) 

The objective of an admittance control is to shape the mechanical 
admittance of a device such that it possesses desired characteristics. Hence, 
M, B, and K parameters are updated (increase, decrease, or no change) every 
second according to assistance level of the robot. The level of assistance is 
determined by a two-stage fuzzy logic model (Figure 3.14), which is similar in 
nature to that presented by Mihelj et al. (Mihelj et al., 2009). 

 

Figure 3.14. AAN control strategy based on a two-stage fuzzy logic model which 
consider the motor performance and emotional state of the user (Cisnal et al., 2023a). 

Before the training session, the user must relax for 30 seconds to determine 
their physiological resting values.  The first stage of the fuzzy logic evaluates 
the motor performance based on the biomechanical information (force and 
motion) provided by the force sensor and encoders of the rehabilitation robot. 
The first stage also determines whether to increase, decrease or maintain the 
arousal and valence in function of the variations in HR, SCL, SCR frequency and 
SKT, all of them normalized with respect to their resting values.  The algorithm 
that determines the changes in valence and arousal is based on the ones 
presented by Mandryk et al. (Mandryk and Atkins, 2007) and Guerrero et al. 
(Guerrero et al., 2013). 

The Pan–Tompkins’s algorithm (Pan and Tompkins, 1985) was used to 
detect the R events, and hence the heart rate from the ECG signals recorded 
at 500 Hz (Figure 3.15). The algorithm applies a series of filters to the ECG 
signal and squares the filtered signal to amplify the QRS contribution and then, 
uses adaptive thresholds to detect the peaks of the processed ECG signals. 
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Figure 3.15. R events of an ECG signal from a person at rest (Cisnal et al., 2023a). 

The skin conductance (SC), recorded by the GSR module at a 225 Hz, is low 
pass filtered (10 Hz cut-off frequency) to eliminate the high-frequency noise, 
which may cause false-positive detection of phasic events. The tonic 
component (SCL) and phasic component (SCR) are extracted from the filtered 
SC (Figure 3.16) using a deconvolution technique (Muñoz et al., 2018). 

 

Figure 3.16. Raw and filtered skin conductance and its tonic (SCL) and phasic (SCR) 
components (Cisnal et al., 2023a). 

In the second stage, the decision involves determining whether to increase, 
maintain or decrease the assistance level based on the variations in arousal, 
valence, and motor performance identified in the previous stage. The 
physiological signals (GSR, ECG and SKT) are processed in the MCU and the 
extracted features (HR, SCL, SCR, and SKT) are sent to the PC via BLE. These 
features are then combined with the biomechanical data (force, position, and 
velocity) are entered into the fuzzy model. This model estimates the assistance 
level and updates the mechanical admittance of the robot. The force, position 
and velocity data are sent from the robot to the PC, while the admittance 
parameters, namely K, B and M, are transmitted from the PC to the robot 
(Figure 3.17).  
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Figure 3.17. Schematic diagram of the AAN control strategy for wrist rehabilitation. 

3.3. Performance assessment 

The evaluation of the HRI of the EMG-driven hand exoskeleton was performed 
by assessing system responsiveness and gesture recognition accuracy (section 
2.4.2). The experimental setup, as detailed in section 2.3.1, was used. The 
results of the time delay analysis are presented in Figure 3.18. The mean and 
standard deviation of the MST and the MOT were 0.48±0.59 s and 0.55±0.60 
s, respectively. The MCT was 1.90±1.65 s, varying from 0.98 s (from close to 
rest gesture) to 3.42 s (from open to close gesture). The MCT is dependent on 
the actuators speed and was deemed to be sufficiently long to ensure user 
safety during the rehabilitation. The motion-completion rate was 100 %, as 
MCT did not exceed the predefined time limit of 5 s in any case.  

The confusion matrix that presents the performance of the EMG-based 
gesture recognition control is depicted in Figure 3.19. The confusion matrix 
was obtained by comparing the actual hand gestures recorded by the 5DT 
Data Glove and the corresponding gestures recognized by the EMG-based 
control. Before calculating the confusion matrix, data was cleaned to eliminate 
the gesture transition period (time needed to move the hand from one gesture 
to another) to avoid false negatives. The gesture transition period was 
considered 0.9s (maximum MST value) starting when a transient period is 
detected by the glove. The overall accuracy of the gesture recognition is 97% 
and misclassifications during the gestures are minimal (fewer than 0.06 s). This 
means that in 98.4% of cases, error is not noticeable in the exoskeleton, as the 
actuators do not start moving in the opposite direction to the intended 
movement. 
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Figure 3.18. Time delay analysis of the EMG-driven bilateral control with the hand 
exoskeleton (Cisnal et al., 2021). 

 

 

Figure 3.19. Confusion matrix of the EMG-based gesture recognition (Cisnal et al., 
2021). 

The influence of the EMG-based visual feedback on the user performance 
when performing EMG-driven bilateral assisted therapies was also evaluated. 
The experimental setup was detailed in section 2.3.2. The sequences of 
recognized gestures are delayed with respect to the sequence of target 
gestures (Figure 3.20, a). Both signals were time-synchronized (Figure 3.20, b) 
by calculating the delay based on the cross-correlation (section 2.4.2). The 
average time delay (Td) used for the synchronization, which depends on the 
user response time (TR) and the motion-selection time (MST), was 0.88±0.14 s. 
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(a) (b) 

Figure 3.20. Target and recognized sequence of gestures of one subject (a) Raw data; 
(b) Time-synchronized data (Cisnal et al., 2023b). 

The user performance was evaluated by using lock-step distance measure 
(section 2.4.2). The time series related to hand gestures are coded considering 
the following order: “Open < Rest < Closed” (“Open” = −1, “Rest” = 0 and 
“Close” = 1). As an error between open and closed gesture is more serious 
than an error between either of them or rest gesture, the L2 norm is used since 
the quadratic cost penalize this type of error more than the L1-norm. Hence, 
the L2 distance between the target gesture and the synchronized gesture time 
series are computed as a similarity measurement.  

Table 3.3 shows the results of the multifactorial additive ANOVA, which was 
performed to evaluate the influence of three independent variables (type of 
test, test order and individual) on the L2 distances.  

Table 3.3: Results of the Multifactorial additive ANOVA assessing the impact of the 
three independent variables (type of test, test order and individual) on the L2 distances. 

  Df Sum Sq. Mean Sq. F Value Pr (>F) 

Test * 3 3.366 1.1221 4.028 0.0124 

Order  3 1.037 0.3456 1.241 0.3054 

Individual *** 17 20.933 1.2313 4.420 2. 3 e−05 

Residuals  48 13.373 0.2786   

*** Denotes significance at the (<0.001) level and * at the (<0.5) level. 

No statistically significant differences were found in the order in which the 
tests were perform (F (3) = 1.241, p = 0.3054). Additionally, statistically 
significant differences were found in the average of L2 by type of test 
performed (F (3) = 4.028, p=0.0124). A Duncan post-hoc test (Table 3.4) 
revealed significant pairwise difference between performance in test A and C 
(p = 0.0497) and between performance in test B and C (p = 0.0412).  
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Table 3.4: Results of the Duncan's Multiple Range Test showing pairwise comparisons 
and significant differences among the variables. 

 Test A Test B Test C 

Test B 0.8775 - - 
Test C 0.0497 * 0.0412 * - 
Test D 0.3557 0.3121 0.2451 

* Denotes significance at the (<0.5) level. 

The distribution of the L2 distances according to the type of performed test 
is shown in Figure 3.21.  L2 distances were 3.39 ± 0.70, 3.43 ± 0.75, 2.89 ± 0.71, 
3.17 ± 0.73 for test A, B, C and D, respectively. Finally, homoscedasticity was 
verified. 

 

Figure 3.21. L2 distances for the four performed tests (Cisnal et al., 2023b). 

An important feature of the wearable and multimodal embedded system 
presented in section 3.1.2, apart from its notable computational capabilities 
and high versatility, is its power consumption. It has a battery life of 5 hours 
and maximum power usage of around 1250 mW. To perform a power 
consumption analysis, the system is divided into three components: the 
sensor modules, TMS320F28069M MCU, and CC2650 MCU.  

Regarding to the sensor modules, when active and set to the defined 
specifications, the EMG, IMU, ECG, GSR, and TEMP modules consume 40.6 
mW, 5.6 mW, 0.6 mW, 3.3 mW, and 5.6 mW, respectively. In sleep mode, 
these modules consume 9.6 mW, 0.02 mW, 0.001 mW, 2.6 mW, and 0.01 mW, 
respectively. 

Additionally, the power consumption of the TMS320F28069M MCU was 
analyzed for the two presented rehabilitation scenarios: EMG&IMU-based 
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control for upper-limb VR-based exergame (section 3.2.2) and the AAN control 
for a wrist rehabilitation robot  (section 3.2.3). Figure 3.22 details the average 
power consumption of each peripheral for each application. During data 
acquisition from the sensors, the DMA is triggered to transfer the data to the 
internal memory, while the CLA module independently processes the signal. 
The DMA's energy consumption is proportional to the number of active 
channels and the amount of data and transfer rate, while the CLA energy 
consumption depends on the algorithm's complexity. 

 

(a) (b)  

Figure 3.22. Breakdown of the power consumption for the two scenarios: (a) 
EMG&IMU-based control and (b) AAN control (Cisnal et al., 2023a). 

The system's power consumption is heavily influenced by the application 
and MCU configuration, with the energy consumption of the MCU being highly 
variable based on the computational load. When the computation is over, the 
MCU can be programmed to enter an IDLE mode, which reduces power 
consumption from 272.3 mW to 82.5 mW. Motion recognition control has a 
power consumption of 203 mW, while adaptive control has a power 
consumption of 249 mW. 

The CC2650 module's power consumption is primarily due to BLE 
communication, with the average power consumption being proportional to 
the amount of data transmitted. When streaming raw data from all five sensor 
modules at 1 kHz, the maximum power consumption for BLE communication 
can reach 32.7 mW. In the proposed scenarios, the CC2650 MCU only receives 
information through the i2C interface and sends it to a central node using BLE, 
with no additional modules or data processing being carried out, which would 
increase the module's power consumption. 
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Chapter 4 

4. Discussion 

In this Doctoral Thesis, the main aspects that limit the use of biocooperative 
systems have been addressed: hardware and reliability. First, a real-time 
embedded system is developed for acquisition of EMG signals. This system is 
integrated into a hand robotic exoskeleton, enabling EMG-driven bilateral 
assistive therapies. The evaluation focuses on assessing the impact of the real-
time embedded system on the performance of the developed EMG-driven 
rehabilitation platform. The accuracy and responsiveness of the system were 
determined, which are essential parameters for assessing the quality of the 
human-robot interaction. The proposed EMG-driven rehabilitation system is 
further investigated by incorporating EMG-based visual feedback. The 
influence of this visual biofeedback on the user's performance during the 
execution of bilateral therapies is evaluated. The findings suggest that this 
type of feedback could benefit patients in increasing their control over the 
movement of the robotic platform. Lastly, a wearable real-time embedded 
system for multimodal signal acquisition was developed and tested by 
implementing two biocooperative control strategies. This versatile and low-
cost system provides reliable signals for the implementation of real-time 
biocooperative controls for a wide range of neuromotor rehabilitation 
applications. 

In this chapter, the aforementioned findings are discussed in accordance 
with the hypothesis and results presented in previous chapters. Each finding 
is given its own dedicated section, resulting in three distinct sections. Within 
these sections, a comprehensive analysis of the research findings and their 
implications in the field of rehabilitation robotics is provided. 
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4.1. EMG-driven hand rehabilitation robot 

A systematic review according to PRISMA (Reporting Items for Systematic 
Reviews and Meta-Analyses) was conducted to compare the performance in 
terms of accuracy and latency of the proposed EMG-driven robotic 
rehabilitation platform with other similar works. Articles in various databases 
(IEEE Explorer, Web of Science and PubMed) using specific keywords and 
inclusion/exclusion criteria were searched to answer the question “What is 
the latency time of EMG-driven hand rehabilitation robots?”. Nine articles met 
the criteria, and only two of them reported latency times (Table 4.1). 

Table 4.1: Published data regarding the accuracy and temporal information of EMG-
driven robots for hand rehabilitation. 

Ref Control type Accuracy Delay2 

(Secciani et al., 2020) 
Point-in-Polygon (PIP)      
(3 predefined gestures) 

Accuracy: 0.944 - 

(Leonardis et al., 
2015) 

EMG-driven (neural 
network to determine 
force) 

Force error: 
20.7 % 

- 

(Ben et al., 2017) Threshold algorithm - - 

(Lu et al., 2017) 
Linear Bayes classifier      
(6 predefined gestures) 

Accuracy1: 
98.1±4.9 % 

Yes 

(Zhang et al., 2019) 
Classification algorithm   
(6 predefines gestures) 

Accuracy: 
86.38 % 

Yes 

(Park et al., 2020) 
EMG-based intent 
inference method 

- - 

(Burns et al., 2019) Neural network - - 

(Park et al., 2018) 
Forest classifier                 
(3 predefined gestures) 

Accuracy: 
77.9 - 85.2 % 

- 

(Chen et al., 2021) 
Neural Network                
(4 predefined gestures) 

Accuracy: 
98.7±0.53 % 

- 

1Accuracy for neurologically intact subjects. 2Whether delay analysis of the system is carried out. 

The overall accuracy of the gesture recognition module was 0.97, and 
misclassifications during the gesture were small, which means that the error 
is not perceived in the exoskeleton in most cases. The accuracy results are 
comparable to other control systems proposed in the literature, varying from 
77.9% to 98.7% (Table 4.1). 

Regarding to the responsiveness analysis, (Lu et al., 2017) conducted a 
temporal analysis of a hand exoskeleton controlled by EMG signals. However, 
the five time parameters provided are not readily comparable with our 
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findings. Additionally, they were inconclusive regarding the delay experienced 
by the user, as they were primarily influenced by the mechanical structure of 
the exoskeleton and the waiting time for commands. In (Zhang et al., 2019), 
the "control speed" was measured as the number of actions correctly 
performed in one minute and provided an average “time per action” of 1. s, 
which is comparable to the MCT (the MCT of the proposed control in the 
RobHand is 1.90 ±1.65 s). However, the "time per action" value alone does not 
provide enough information about the lag, as the computational time could 
be very large while the actuators could be very fast, resulting in a low "time 
per action." 

Due to the limited results, the systematic review was expanded to look for 
embedded systems for EMG gesture recognition integrated in hand 
rehabilitation robots. It yielded some studies that specify the computational 
time of the classification algorithm, ranging from 0.58-2.8 ms (Benatti et al., 
2014, 2015; J. Liu et al., 2014), but comparisons are not possible due to the 
lack of information on EMG acquisition and data preprocessing. More 
information on control latency was available in studies on hand prostheses 
based on EMG, with reported times ranging from 100-600 ms (Chu et al., 2006; 
Ryser et al., 2017; Tam et al., 2020), but no reliable comparison can be made 
due to inaccurate definitions and uncertain time periods. 

In summary, the presented system is characterized by its low-cost 
embedded EMG acquisition system, which has enabled the implementation of 
a real-time EMG-driven control for performing rehabilitation bilateral 
therapies with a hand robotic exoskeleton. The distinctive feature of the 
designed 2-channel EMG acquisition device is its cost, estimated at 
approximately 30€ for low-scale production. The key advantage of 
implementing EMG-based control within the real-time embedded system lies 
in the reduction of latency, while maintaining high accuracy in gesture 
recognition. 

4.2. Influence of visual biofeedback on the users’ 

performance 

Significant statistical differences in subject performance were observed during 
execution of EMG-driven bilateral therapies based on the type of provided 
feedback. Specifically, users’ performance significantly improved when only 
the EMG-based visual feedback (test C) was present compared to the presence 
of only kinesthetic feedback (test B) and both feedbacks (tests A). Therefore, 
it can be concluded that the visual biofeedback enhanced the user motor 
control. It provided users a simple way to monitor and regulate their EMG 
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activation levels with respect to the previously predefined activation 
thresholds, and thus enabling to have a better self-control the movement of 
the hand exoskeleton. 

The biofeedback is provided earlier in time than the kinesthetic feedback 
and therefore, the user has a longer reaction time to self-regulate their EMG 
activation levels. In fact, the user can directly adjust the force being exerted 
at the moment by influencing the position controller input through real-time 
visual EMG feedback. On the other hand, kinesthetic feedback requires the 
user to first feel the movement performed by the exoskeleton's actuators 
before modulating the exerted force, resulting in a delayed force modulation 
(Figure 4.1). Consideration should be given to the electromechanical 
characteristics of the actuators, including their low dynamic response and 
limited speed due to the rehabilitation application. Note that relevant time 
delays for the human-robot interaction have been preciously determined, 
MST, MOT and MCT. 

 

Figure 4.1. The control loop used for the threshold EMG-driven control of the RobHand 
specifying the origin of each feedback (Cisnal et al., 2023b). 

On the other hand, the fact that EMG-biofeedback results in a significantly 
higher performance than in the presence of both feedbacks may be due to the 
fact that the kinesthetic feedback is more straightforward than the visual 
biofeedback and hence, users do not need to consciously pay attention to it. 

 In summary, in the presence of visual feedback, the user adjusts his/her 
force based on the data provided by the gesture recognition module (nEMG 
signals and detected gesture) and anticipates the response of the exoskeleton. 
On the other hand, with kinesthetic feedback, the user adjusts his/her force 
after the exoskeleton has performed the action. If the user notices that the 
movement performed by the exoskeleton does not align with their intention, 
the user can correct it by modulating their muscle activity, but this process 
takes longer than if they had corrected it based on real-time EMG visual 
feedback. 
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4.3. Wearable embedded multimodal acquisition 

system 

The research introduced a cost-effective wearable embedded multimodal 
platform designed for the implementation of biocooperative control in the 
field of neuromotor rehabilitation. A significant observation from the 
examination of related studies in biocooperative control is that most of them 
incorporated only a restricted set of sensors and relied on expensive and often 
bulky commercial systems, lacking the necessary processing capabilities. 

One approach to reduce the bulkiness of acquisition systems is the 
integration of sensors directly into the system. For instance, a previous study 
proposed integrating multiple sensors, including ECG, GSR, SKT, PPG, and force 
sensors, into the handle of an end-effector rehabilitation (Jakopin et al., 2017). 
Similarly, in other fields, researchers have embedded ECG, GSR, 
accelerometers, and force sensors onto wheelchairs (Postolache et al., 2014) 
or integrated direct contact sensors onto steering wheels to measure ECG, 
GSR, SpO2 levels, and SKT signals (Heuer et al., 2010). However, it should be 
noted that while this integration approach reduces bulkiness, it may also limit 
flexibility. 

Recent research emphasizes the need for wearable sensing devices that are 
small, low-cost, and possess high computational power to detect human 
physical activity and emotions through multimodal fusion strategies. In order 
to promote portability and comfort, the number of sensors used must be 
chosen carefully, ensuring that the system is fast, energy-efficient, and 
convenient. Additionally, a smaller set of sensors placed in optimal locations 
can increase user acceptance (Qiu et al., 2022). 

Several studies have attempted to create affordable wearable platforms. 
For instance, some works have focused on the development of integrated 
EMG sensors (Benatti et al., 2015; Brunelli et al., 2016; Örücü and Selek, 2019), 
while others have specifically developed ECG sensors (Athavipach et al., 2019; 
Nguyen et al., 2017), or solely utilized IMU sensors (Marta et al., 2020). In 
contrast, other works have integrated more than one sensor into the platform, 
such as ECG and GSR (Villar et al., 2021), IMU and ECG (D’Mello et al., 201 ) 
and GSR, SKT and IMU (Huan et al., 2022). However, these studies have not 
sufficiently addressed the need for versatility in terms of the number of 
sensors required to implement biocooperative control systems. 

The presented wearable, multimodal and low-cost solution overcome these 
limitations. It integrates five sensors (IMU, EMG, SKT, GSR, and ECG) and its 
highly configurable, thus offering a more comprehensive approach for 
biocooperative control strategies in the context of neurorehabilitation. The 
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platform’s high-efficiency real-time MCU provides ample processing 
capabilities and its high flexibility, concerning sensor diversity and wireless 
communication, allows the development of a numerous rehabilitation 
applications. 

Two potential applications using different signals and rehabilitation 
approaches were proposed. Arm motion tracking using IMU data, hand 
gesture recognition through EMG signals, HR detection from ECG signals, SCL 
and SCR extraction from GSR data and SKT monitoring were carried out. It was 
verified that the system's low cost does not compromise the quality of the 
signals, that is reliable enough for the proposed scenarios and good 
performance is expected in other related applications. Additionally, the 
system power consumption for the two scenarios were analyzed and showed 
that they are within the energy constraints of the system. It can record and 
process real-time multimodal information for at least 5 hours.  

The wearable system was design by balancing complexity, price, and 
performance, taking into account parameters such as volume, flexibility, 
energy consumption, onboard processing, and signal quality. Due to its low 
cost, compact size, and comfort, the platform shows great potential for 
rehabilitation applications. While it may not be appropriate for applications 
that demand high signal quality or a long-term battery life, such requirements 
are not typically expected in rehabilitation applications. Therefore, the 
presented platform is a promising advancement in the development of 
wearable technologies for neuromotor rehabilitation.  
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Chapter 5 

5. Conclusions 

In recent years, the developing of affordable biocooperative rehabilitation 
systems for improving the QOL of people suffering neuromotor disabilities has 
become a major challenge. Despite the growing interest of scientific literature 
in neuromotor rehabilitation robotics, limitations in current systems have 
made them accessible only to large academic medical centers and researcher 
laboratories. The excessive cost of physiological recording systems limits the 
accessibility of biocooperative controls for neuromotor rehabilitation even 
further. 

Current research focuses on design innovative controls aiming to achieve a 
more natural HRI that enhances patient motivation towards rehabilitation. 
However, these studies overlook the potential utilization of biocooperative 
systems in clinic practice and focus on merely academic purposes. For 
instance, numerous EMG-based robotic control strategies have been 
suggested in literature, detecting numerous hand gestures with high accuracy. 
However, these approaches require robots with multiple degrees of freedom 
and entail substantial computational expenses, rendering them infeasible and 
unreliable for practical applications. Moreover, these techniques rely on 
numerous EMG signals, which call for several electrodes to be fixed onto the 
patient, thereby adding to the already time-intensive clinical regimen of 
physical therapy personnel. By reducing the number of electrodes, costs, 
power consumption, and user comfort can all be improved. 

The present Doctoral Thesis is focused on providing affordable technology 
and developing control strategies, intended to provide a real use of 
biocooperative systems by motor-disabled people. In this chapter, the main 
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contributions and conclusions of the articles included in this compendium of 
publications are indicated in section 5.1 and section 5.2, respectively. In the 
last section 5.3., future endeavors related to this research are enumerated. 

5.1. Contributions 

In this section, the contributions of three articles that address the use of 
technology in neuromotor rehabilitation are highlighted. The first article 
presents a hand exoskeleton that supports EMG-driven assisted rehabilitation 
by using a custom-made low-cost EMG real-time embedded solution. The 
second article evaluates the influence of EMG-based visual biofeedback on the 
user performance when performing EMG-driven bilateral exercises with the 
robotic hand exoskeleton. Finally, the third article presents a low-cost and 
wearable embedded system that integrates the most used sensors in 
neuromotor rehabilitation and hence, enables the development of real-time 
biocooperative controls for a wide of range applications in this field. These 
articles showcase the potential of technology in promoting motor recovery 
and improving rehabilitation outcomes in patients with neuromotor 
impairments. The main contributions and potential impact in the field of 
neuromotor rehabilitation provided by the results of this compendium of 
publications are the following: 

I. Design and development of a low-cost EMG acquisition system for real-
time EMG-driven therapies. Integration of the system in the Robhand 
rehabilitation platform, including additional electronic circuitry (Cisnal 
et al., 2021). 

II. Development of a non-pattern recognition-based EMG-driven control 
for bilateral robotic hand rehabilitation. Integration of the control in the 
real-time embedded platform (Cisnal et al., 2021).  

III. Performance evaluation of the EMG-driven exoskeleton in terms of 
accuracy and latency and comparison with previous works. It was 
detected that the HRI evaluation of EMG-based robotic rehabilitation 
systems in the current literature is inadequate. While studies have 
concentrated on providing accuracy metrics to evaluate the 
performance of gesture recognition, they have failed to provide latency 
metrics, which is essential for achieving optimal HRI (Cisnal et al., 2021). 

IV. Design and implementation of an EMG-based visual feedback. Despite 
the usefulness of EMG feedback in neuromotor rehabilitation 
applications has been demonstrated, to the best of our knowledge, this 
was the first time that EMG feedback in combination with rehabilitation 
robots have been investigated (Cisnal et al., 2023b). 
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V. Evaluation of the performance of the users when providing EMG-based 
visual feedback during EMG-driven bilateral therapies. We found that 
EMG feedback led to significant improvements in performance (Cisnal 
et al., 2023b).  

VI. Design and development of a low-cost, wearable, embedded and 
multimodal acquisition system for the implementation of 
biocooperative systems in neuromotor rehabilitation. Feasibility of the 
system and power consumption was tested (Cisnal et al., 2023a). 

VII. Design and development of two biocooperative control strategies for 
neuromotor rehabilitation by means of the proposed embedded 
multimodal acquisition system.  An EMG&IMU-based control using VR-
based therapies and AAN control using a wrist rehabilitation robot 
(Cisnal et al., 2023a).  

5.2. Main conclusions 

The development and evaluation of the proposed low-cost biocooperative 
rehabilitation systems have shown promising results (Cisnal et al., 2021) 
(Cisnal et al., 2023a). These systems have proven the feasibility of 
implementing biocooperative controls without the need for expensive 
commercial systems that are typically bulky and lack processing capabilities. 
The advantages associated with these embedded solutions for physiological 
signal acquisition, in addition to their low cost and versatility, include enabling 
the development of real-time biocooperative controls with reduced latency 
while maintaining high accuracy. These characteristics make embedded 
acquisition solutions an attractive option for the development of 
biocooperative control systems that are accessible and affordable for 
rehabilitation in clinical settings. Furthermore, the use of these systems can 
also pave the way for the development of new applications in the fields of 
human-robot interaction and assistive robotics. 

It has been shown that the incorporation of EMG-based visual feedback can 
significantly improve the performance of individuals undergoing EMG-driven 
assisted therapies. By providing real-time biofeedback, the subjects were able 
to monitor and modulate their EMG responses, resulting in better control of 
the exerted force. Thus, it can be inferred that EMG-based visual feedback has 
the potential to facilitate the rehabilitation learning process, as it helps users 
develop a better understanding of how to self-regulate their muscle 
activations. This could ultimately enhance patient motivation and contribute 
to better motor recovery outcomes (Cisnal et al., 2023b). 
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As a last point, there is a need for greater emphasis on responsiveness and 
latency times in EMG-driven rehabilitation systems (Cisnal et al., 2021). 
Previous studies have primarily focused on accuracy of gesture classification, 
neglecting important information regarding system latency. While some 
studies have addressed system latency, the measured values are often 
imprecisely defined. It is crucial to establish clear and standardized definitions 
of latency times for rehabilitation robotics to ensure homogeneity in this field 
of research. By doing so, we can ensure that the development of EMG-based 
rehabilitation systems is optimized for the benefit of patients. 

5.3. Future research lines 

Research on neurorehabilitation using biocooperative systems has shown 
promising results in recent years, highlighting the potential of these 
technologies to improve the quality of life of patients undergoing 
neurorehabilitation. Several future research questions can be derived from 
this investigation. 

Firstly, it is important to focus on people with neurological disabilities. 
While this research has shown positive results in healthy individuals, it is 
important to explore the potential benefits for motor recovery in individuals 
with neurological impairments. By doing so, it may be possible to identify 
specific adaptations or modifications that can further enhance its 
effectiveness for this population. Additionally, it would be convenient to 
develop a unified protocol for the evaluation of the human-robot interface by 
measuring latency times, which would allow comparisons between different 
rehabilitation robots. 

The use of EMG-based visual feedback is another area where future 
research can be directed. As the technology has been proven effective in 
healthy individuals through this study, it is crucial to investigate its potential 
advantages for those with neurological disorders. Additionally, the use of 
more complex visualizations of EMG-based feedback, such as in combination 
with other virtual reality objects, should be further explored to determine if it 
has a positive impact on user performance. 

Finally, future research should focus on implementing more advanced 
biocooperative controls using the proposed multimodal embedded platform, 
which could provide further insights into the capabilities of the system. 
Additionally, the reduction of electronic size and energy consumption will 
improve its wearability, resulting in better user acceptance. Therefore, 
researchers should work towards developing energy-efficient and compact 
systems that could be easily integrated into wearable devices, making them 
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more comfortable for the user to wear. This would not only improve user 
acceptance but also enable remote monitoring of patients' progress, leading 
to more personalized treatment plans.  

Overall, the potential benefits of bioocoperative systems in 
neurorehabilitation are clear, and future research should focus on refining 
these systems to better serve the needs of individuals with neurological 
impairments. Continued research in this area has the potential to make a 
significant impact on the quality of life for those undergoing 
neurorehabilitation. 
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Appendix C 

C. Resumen en castellano 

C.1. Introducción 

El empleo de robots en el ámbito de la neurorrehabilitación surgió como una 
herramienta innovadora para facilitar el entrenamiento intensivo y repetitivo 
y promover la recuperación motora y la independencia funcional en pacientes 
con trastornos neurológicos. A diferencia de la robótica de rehabilitación 
tradicional, que se basa principalmente en información biomecánica, los 
controles biocooperativos en la robótica de rehabilitación van más allá al 
incorporar información psicológica y/o fisiológica, integrando al paciente en 
el control de manera más eficiente (Riener and Munih, 2010). Estos 
dispositivos robóticos proporcionan diferentes tipos de asistencia y pueden 
ser controlados por diferentes modalidades de entrada, como la 
electromiografía (EMG), la electroencefalografía (EEG) y la información 
cinemática. Entre estas modalidades de entrada, la EMG es la más utilizada 
debido a su capacidad para proporcionar información en tiempo real sobre los 
patrones de activación muscular, lo que posibilita un control biocooperativo 
entre el usuario y el robot (Li et al., 2020). 

Este enfoque bioocoperativo proporciona una interacción bilateral entre el 
humano y el robot, promoviendo la participación activa del usuario (Koenig et 
al., 2011). Esto es de gran importancia en el contexto de la 
neurorrehabilitación, ya que se ha comprado que la participación activa del 
paciente mejora la plasticidad neuronal y facilita el aprendizaje motor (Blank 
et al., 2014). 
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Sin embargo, el estado actual de los sistemas biocooperativos dificulta su 
introducción en entornos clínicos, principalmente debido a su falta de 
robustez y su limitada accesibilidad (Meattini et al., 2018). Los problemas de 
confiabilidad se deben fundamentalmente al alto coste asociado con los 
sistemas de adquisición de señales fisiológica necesarios, lo que representa 
una restricción significativa para la llevar a cabo la investigación necesaria en 
este campo. Además, la falta de capacidades de procesamiento de estos 
sistemas dificulta el desarrollo de estrategias de control biocooperativo en 
tiempo real y, en consecuencia, una interacción eficiente entre humanos y 
robots. Por último, el tamaño voluminoso de los sistemas de adquisición 
fisiológica afecta negativamente a la aceptación por parte de los usuarios 
(Rodgers et al., 2019). 

En este contexto, esta Tesis Doctoral se enfoca en el diseño de sistemas 
embebidos de tiempo real y bajo coste para la adquisición de señales 
fisiológicas y el desarrollo de estrategias de control biocooperativo que 
contribuyan a brindar aplicaciones prácticas en el campo de la 
neurorrehabilitación motora del miembro superior. Esta es un área de gran 
importancia, considerando que la paresia del miembro superior es uno de los 
resultados más frecuentemente observados después de un accidente 
cerebrovascular, y tiene un profundo impacto en la calidad de vida y la 
independencia de los sobrevivientes de accidentes cerebrovasculares (Fischer 
et al., 2007).  

En esta Tesis Doctoral se presenta un compendio de tres publicaciones 
indexadas en el Journal Citations Reports (JCR) entre los años 2021 y 2023. El 
primer artículo (Cisnal et al., 2021) se centra en el diseño de un sistema de 
tiempo real, embebido, y de bajo coste para la adquisición de señales de EMG. 
Se desarrolla un paradigma de entrenamiento bilateral basado en un control 
de EMG sin reconocimiento de patrones. El control reconoce los gestos 
realizados por la mano sana (apertura, cierre y reposo) mediante el análisis de 
las señales de EMG, y los replica en un exoesqueleto robótico colocado en la 
mano parética. En el segundo artículo (Cisnal et al., 2023b) se procede a la 
incorporación de un mecanismo de retroalimentación visual basado en EMG 
al sistema de rehabilitación propuesto anteriormente, con el fin de evaluar y 
analizar la influencia de dicha retroalimentación visual en el rendimiento de 
los usuarios.  

Tras la evaluación del desempeño del sistema de control embebido basado 
en EMG integrado en el robot de rehabilitación de mano, se lleva a cabo un 
avance adicional y se desarrolla una solución asequible que permita no solo el 
registro de señales de EMG, sino también la captación de otras señales 
fisiológicas relevantes contexto del control biocooperativo aplicado a la 
neurorrehabilitación robótica de las extremidades superiores. En el tercer 
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artículo, se presenta un sistema embebido multimodal, de bajo costo y portátil 
(Cisnal et al., 2023a). El rendimiento del sistema se valida mediante la 
implementación de dos escenarios biocooperativo de neurorrehabilitación. 

C.2. Objetivos 

El objetivo general de esta Tesis Doctoral es diseñar, desarrollar y evaluar 
estrategias de control biocooperativo en el contexto de la rehabilitación 
neuromotora del miembro superior, y proporcionar tecnología asequible para 
su implementación con el objetivo de lograr un uso generalizado en entornos 
clínicos. Este objetivo general implicó el diseño y desarrollo de sistemas 
embebidos para la adquisición de señales fisiológicas y su integración en 
sistemas de rehabilitación neuromotora mediante la implementación y 
evaluación de estrategias de control asistido. Con el fin de lograr este objetivo 
general, surgen los siguientes objetivos específicos: 

I. Realizar una revisión exhaustiva de la literatura y examinar el estado 
actual de las plataformas de rehabilitación neuromotora del miembro 
superior, con énfasis particular en las estrategias de control que integran 
el elemento humano en el bucle de control a través del análisis de señales 
fisiológicas. 

II. Diseñar y desarrollar sistemas embebidos asequibles para el registro y 
procesamiento de señales fisiológicas y la ejecución en tiempo real del 
paradigma de control de los sistemas de rehabilitación. 

III. Diseñar y desarrollar estrategias de control biocooperativo para las 
soluciones embebidas en tiempo real desarrolladas y su integración en 
plataformas de rehabilitación preexistentes. 

IV. Realizar una evaluación exhaustiva del rendimiento de los sistemas de 
rehabilitación biocooperativos propuestos, incluyendo el análisis de la 
precisión, el tiempo de respuesta y el rendimiento del usuario. 

V. Evaluar el rendimiento del sistema embebido y portátil de adquisición 
multimodal, centrándose en su versatilidad, consumo de energía y 
confiabilidad de las señales registradas para la implementación de 
controles biocooperativos. 

VI. Diseminar los resultados principales y las conclusiones de este estudio en 
revistas indexadas en JCR, así como en conferencias nacionales e 
internacionales. 
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C.3. Materiales y métodos 

La metodología de los distintos estudios comparte la misma estructura 
general, compuesta por las siguientes etapas: revisión del estado del arte y 
justificación del trabajo, descripción de la plataforma robótica de 
rehabilitación utilizada, definición del procedimiento experimental para la 
evaluación del sistema propuesto, y presentación de métricas y análisis 
estadísticos empleados.  

Dos plataformas robóticas de rehabilitación son utilizadas en esta tesis 
doctoral con el fin de validar los sistemas embebidos de control 
biocooperativo desarrollados: RobHand y M3Rob. RobHand (Robot for Hand 
Rehabilitation) es un robot de rehabilitación de mano de tipo exoesqueleto 
que asiste a la flexión y extensión de los dedos de la mano (Moreno-San Juan 
et al., 2021). M3Rob (Mente-Mano-Mueca Robot) es un robot de 
rehabilitación de muñeca de tipo exoesqueleto que asiste a los movimientos 
de pronación/supinación, flexión/extensión y desviación radial/ulnar (Cisnal 
et al., 2022a).  

Para la evaluación de los sistemas desarrollados se realizan dos estudios 
experimentales. Los estudios contaron con diez y dieciocho sujetos sanos 
mayores de 18 años, sin discapacidad neurológica o motora, que se ofrecieron 
voluntariamente para el estudio y proporcionaron su consentimiento 
informado por escrito. En ambos estudios los sujetos realizaban terapias 
bilaterales basadas en EMG con el exoesqueleto de mano RobHand. Los 
sujetos llevaban el exoesqueleto en su mano no dominante (correspondiendo 
a la mano parética del paciente) y se registraban las señales de EMG del brazo 
dominante (correspondiendo al miembro no afectado del paciente). En ambos 
estudios los sujetos realizaban una calibración previa y se les pedía que 
hicieran una serie de gestos con la mano (apertura, reposo y cierre) mientras 
se registraban las señales EMG. Un ordenador proporcionaba información 
visual y auditiva sobre la secuencia de gestos a realizar (gestos objetivos). Los 
datos relacionados con las señales EMG registradas y la secuencia de gestos 
objetivo fueron guardas en una base de datos para su posterior análisis. 
Además, en un estudio los sujetos llevaban el guante 5DT Data Glove (5DT 
Technologies) para registrar la posición de la mano sana. En el otro estudio, 
los sujetos realizaron las secuencias de gestos en cuatro condiciones diferente, 
resultaron de la combinación de utilizar o no una retroalimentación visual de 
EMG y una retroalimentación visual cinestésica generada por el movimiento 
del exoesqueleto. 

La evaluación del desempeño de un sistema de rehabilitación basado en el 
reconocimiento de gestos requiere una atención particular en la interacción 
humano-robot. Para lograr una interacción confiable y natural, se necesita una 
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combinación de capacidad de respuesta adecuada y una detección precisa de 
los gestos. Largos tiempos de retardo pueden tener consecuencias adversas e 
influir negativamente en la satisfacción del usuario hacia la terapia asistida por 
robot (Yang y Dorneich, 2015). Del mismo modo, la asistencia incorrecta en el 
movimiento afecta negativamente la satisfacción e incluso puede provocar 
daños físicos. Por lo tanto, es esencial determinar los retrasos temporales 
relevantes y la eficacia de la clasificación de gestos del sistema desarrollado. 

Un control de reconocimiento de gestos basado en EMG puede ser 
abordado como un problema de clasificación. En este sentido, la matriz de 
confusión y las métricas derivadas de la misma son ampliamente utilizadas 
para evaluar la calidad de un clasificador (Grandini et al., 2020). Por otro lado, 
el análisis del tiempo de respuesta se realizará utilizando las siguientes 
métricas temporales: tiempo de selección de movimiento (motion-selection 
time, MST), tiempo de comienzo del movimiento (motion-onset time, MOT), 
tiempo de finalización de movimiento (motion-completion time, MCT) y tasa 
de movimientos completados (motion-completion rate). Algunas de estas 
métricas fueron utilizadas por (Li et al., 2010) y otras han sido propuestas en 
el contexto de este trabajo. 

La evaluación del rendimiento del usuario bajo diferentes condiciones de 
configuración de retroalimentación de la plataforma es evaluada mediante 
medidas de similitud para series temporales y pruebas estadísticas 
paramétricas. Una medida de similitud se define matemáticamente como una 
función de valor real que cuantifica la similitud entre dos entidades, en este 
contexto entre dos series temporales. Una de las medidas de similitud más 
utilizada son las de paso fijo ya que son relativamente sencillas, intuitivas y 
tienen un bajo coste computacional. Las métricas de paso fijo más típicas son 
la distancia Manhattan (norma L1) y la distancia Euclidiana (norma L2). Sin 
embargo, las métricas de paso fijo son altamente sensibles al ruido y a los 
desalineamientos temporales ya que la distancia se calcula desde el punto i de 
una serie temporal hasta el punto i de otra serie (Ding et al., 2008). Por lo 
tanto, antes de calcular las medidas de distancia, es necesario sincronizar de 
las dos series temporales. Una forma de sincronización de dos series 
temporales es calculando el desfase en el cual su correlación cruzada es la más 
alto. Por último, para el cálculo de las distancias entre series temporales es 
necesario codificar los gestos de la mano. Estos son codificados en el siguiente 
orden: "abierto" < "reposo" < "cerrado", de tal manera que un error entre 
"abierto" y "cerrado" se considera más grave que un error entre "abierto" y 
"reposo". 

Los análisis estadísticos permiten realizar comparaciones de datos entre 
múltiples grupos proporcionan información valiosa sobre la relación entre 
variables. El test de análisis de la varianza (ANOVA) multifactorial permite 
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evaluar múltiples variables dependientes simultáneamente. El test de Rango 
Múltiple de Duncan es una prueba post hoc que compara todas las posibles 
combinaciones de medias de grupos para identificar cuáles pares difieren 
significativamente. 

C.4. Resultados y discusión 

Los resultados principales de esta tesis son: (1) el diseño de los sistemas 
embebidos para el registro de señales fisiológicas, (2) el desarrollo de 
estrategias de control biocooperativo desarrolladas y su implementación en 
estos sistemas, y (3) la evaluación del rendimiento.  A continuación, se 
presenta los resultados principales de cada investigación y su correspondiente 
implicación en el campo de la robótica de neurorrehabilitación. 

o Control embebido basado en EMG en tiempo real (Cisnal et al., 2021) 

El sistema embebido para la adquisición de señales EMG se caracteriza por 
tener dos canales diferenciales de 24 bits de resolución y un rango dinámico 
de 112 dB. Los caneles consisten en un amplificador de instrumentación con 
una ganancia de 50, seguido de un filtro paso bajo RC con una frecuencia de 
corte de 150 Hz. Los caneles están diseñados para compensar el 
desplazamiento diferencia de entrada y evitar la saturación del amplificador 
de instrumentación. Además, el sistema cuenta con la interfaz analógica 
MCP3912 (Microchip Technology Inc., AZ, USA), que se caracteriza por tener 
convertidores Delta-Sigma ADC síncronos, los cuales se comunican con el 
microcontrolador TMS320F28069M (Texas Instruments, TX, USA) utilizando 
comunicación SPI y otras señales de control digital.  

La placa de circuito impreso (PCB) de 4 capas tiene planos de tierra divididos 
para separar los circuitos analógicos, digitales y de alimentación y asegurar la 
integridad de la señal. Los componentes discretos de montaje en superficie se 
colocan en las capas superior e inferior, resultando en un tamaño de placa de 
50.8 x 33 mm y un área activa de 10 cm2 y un consumo de 3 mW de una 
alimentación de 3.3 V DC. 

Se diseña un control embebido por umbrales basado en señales EMG para 
la realización de terapias bilaterales asistidas con el exoesqueleto de mano 
RobHand. La estrategia de control desarrollada detecta los gestos de la mano 
sana (apertura, cierre o reposo) mediante el análisis de las señales EMG y los 
replica en el exoesqueleto colocado en la mano paretica. 

Las señales de EMG de los músculos extensor digitorum (ED) y flexor 
digitorum superficiales (FDS), responsables de la apertura y cierre de la mano, 
se registran a una frecuencia de 200 Hz y, son filtradas para eliminar el ruido 
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de base y las interferencias electromagnéticas. Posteriormente, son 
rectificadas mediante el cálculo RMS de 10 puntos y un filtro de pasa bajas, 
resultando en una señal con una frecuencia de 20 Hz. La normalización se 
realiza con respecto al MVC (contracción voluntaria máxima). 

Los valores de MVC y los umbrales de EMG se calculan en una calibración 
previa, específica para cada usuario y sesión. En esta calibración se les pide a 
los usuarios que relajen, abran y cierran la mano durante 8 s. Los valores de 
MVC se calculan como el valor máximo de la señal rectificada de EMG 
correspondiente. Los umbrales de EMG corresponden a los valores límite 
máximos de desactivación muscular (es decir, al inicio de la activación 
muscular) más una constante de 0.1.  

El algoritmo de reconocimiento de gestos se basa en una serie de 
expresiones algebraicas y solo depende de los valores normalizados de las 
señales EMG y de los umbrales determinados en la calibración. El módulo de 
reconocimiento de gestos actualiza los gestos cada 50 ms, que corresponde 
con el periodo de las señales de EMG normalizadas. 

La precisión general del algoritmo de reconocimiento de gestos basado en 
EMG es del 97% y el tiempo de las clasificaciones erróneas durante los gestos 
es mínimo. Esto significa que en el 98,4% de los casos, el error no es 
perceptible en el exoesqueleto, ya que los actuadores no comienzan a 
moverse en dirección opuesta al movimiento previsto. Respecto al tiempo de 
respuesta del sistema, la media y la desviación estándar del MST y el MOT 
fueron de 0.48±0.59 s y 0.55±0.60 s, respectivamente. El MCT fue de 1.90 ± 
1.65 s, variando desde 0.98 s (de gesto de reposo) hasta 3.42 s (de gesto de 
abrir a cerrar). El MCT depende de la velocidad de los actuadores y se 
consideró suficientemente largo para garantizar la seguridad del usuario 
durante la rehabilitación. La tasa de finalización del movimiento fue del 100%, 
ya que el MCT no superó el límite de tiempo predefinido de 5 s en ningún caso.  

El control basado por EMG propuesto fue implementado en el sistema 
embebido desarrollado con el objetivo de permitir la rehabilitación mediante 
terapias bilaterales con un exoesqueleto de mano. La precisión del algoritmo 
de reconocimiento de gestos es adecuada y está en el rango de otros sistemas 
de control propuestos en la literatura, que varían del 77.9 al 98.7 %. En cuanto 
a la respuesta del sistema, los resultados no son comparables con los ofrecidos 
por la literatura ya que este aspecto no es estudiado en profundidad. Se puede 
concluir que el sistema embebido de tiempo real desarrollado, a pesar de su 
bajo coste (menos de 30€ para producción a baja escala), permite la 
implementación del control basado en EMG en tiempo real. Esto se traduce 
en una reducción del tiempo de latencia del sistema, mientras se mantiene 
una precisión elevada en el reconocimiento de gestos. 
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o Influencia de la retroalimentación visual basada en EMG en el 
rendimiento del usuario (Cisnal et al., 2023b) 

La técnica de la retroalimentación basada en señales fisiológicas se 
introdujo hace más de cuarenta años en entornos de rehabilitación (Tate y 
Milner, 2010). Se ha demostrado que la retroalimentación basada en señales 
de EMG es beneficiosa en el tratamiento de diversas afecciones 
musculoesqueléticas, incluyendo la neurorrehabilitación (Giggins et al., 2013). 
Sin embargo, no hay estudios clínicos que hayan evaluado la efectividad de 
esta técnica en combinación con la rehabilitación física asistida por robots. 

Por esta razón, se lleva a cabo un estudio sobre la influencia de la 
retroalimentación visual basada en EMG en el rendimiento del usuario 
durante la realización de terapias bilaterales con el sistema de rehabilitación 
propuesto. La retroalimentación visual involucra dos barras de longitud 
variable, etiquetadas como "Fuerza de apertura" y "Fuerza de cierre". Estas 
barras se nombran de esta manera para corresponder a la actividad de los 
músculos extensores y flexores, y mejorar la facilidad de uso. La longitud de la 
barra indica el valor instantáneo de las señales de EMG normalizadas, y su 
color indica el gesto reconocido. La retroalimentación visual se actualiza a 20 
Hz, lo que corresponde a la frecuencia de las señales de sEMG normalizadas y 
la tasa de reconocimiento de gestos. 

La influencia de la integración de la retroalimentación visual se evaluó 
mediante la distancia Euclidiana o norma L2. Antes del cálculo de la norma L2, 
las secuencias temporales de los gestos objetivos y reconocidos son 
codificadas y sincronizadas calculando el retraso mediante la correlación 
cruzada. El tiempo medio de retrasado calculado fue de 0.88±0.14 s 

Se observaron diferencias estadísticamente significativas en el rendimiento 
de los sujetos según el tipo de retroalimentación proporcionada (valor de p-
valor = 0.0124). Específicamente, el rendimiento fue significativamente mejor 
cuando solo se presentaba la retroalimentación visual basada en EMG en 
comparación con la retroalimentación cinestésica por si sola (p-valor = 0.0412) 
o la combinación de ambas (p-valor = 0.0497). Estos resultados sugieren que 
la retroalimentación visual de EMG permite aumentar el control de los sujetos 
sobre el movimiento de la plataforma robótica mediante la evaluación de su 
activación muscular en tiempo real. 

La retroalimentación basada en EMG se proporciona antes en el tiempo que 
la retroalimentación cinestésica, por lo que el usuario tiene un mayor tiempo 
de reacción para autorregular sus niveles de activación muscular. De hecho, la 
retroalimentación basada en EMG es una representación visual de la señal de 
entrada del controlador de posición del robot, por lo que el usuario anticipa la 
respuesta del exoesqueleto y regula su fuerza si fuera necesario. En cambio, 
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la retroalimentación cinestésica requiere que el usuario sienta el movimiento 
realizado por el robot antes de poder regular su fuerza. Por otro lado, el hecho 
de que la retroalimentación basada en EMG resulte en un rendimiento 
significativamente mayor que en presencia de ambos tipos de 
retroalimentaciones puede deberse a que la cinestésica es más directa que la 
visual y, por lo tanto, los usuarios no muestran atención a la retroalimentación 
visual cuando la otra está presente. 

En resumen, la retroalimentación visual basada en EMG permite a los 
usuarios monitorizar su activación muscular en tiempo real, y, por tanto, 
modular la fuerza ejercida. Este tipo de retroalimentación puede ser muy útil 
en la etapa de aprendizaje, permitiendo al usuario aprender más rápidamente 
cómo modular la activación de sus músculos para que el robot de 
rehabilitación se mueva según su intención. Esto puede resultar en una mejora 
de la motivación del paciente durante el proceso de rehabilitación al utilizar 
plataformas robóticas asistidas. 

o Sistema embebido multimodal  (Cisnal et al., 2023a) 

Se diseña un sistema embebido y portátil integrado por múltiples sensores, 
microcontroladores en tiempo real de alta eficiencia y comunicación 
inalámbrica, proporciona una solución altamente flexible y configurable lo que 
ofrece amplias posibilidades para el desarrollo de controles bioocoperativos 
en el contexto de la neurorrehabilitación. El sistema funciona con batería e 
integra cinco sensores: unidad de medición inercial (inertial measurement 
unit, IMU), electrocardiograma (ECG), electromiografía (EMG), sensor 
galvánico de respuesta de la piel (galvanic skin response, GSR) y termómetro 
cutáneo (skin thermometer, SKT). Estos sensores se comunican con el 
microcontrolador TMS320F28069M (Texas Instrumentes, TX, USA) para el 
procesamiento y el control de datos en tiempo real. Los datos registrados y 
procesados pueden ser transmitidos por el microcontrolador CC2650 (Texas 
Instruments, TX, USA), con tecnología Bluetooth de baja energía (BLE). 
Además, el sistema dispone de un puerto JTAG para el acceso temporal de los 
microcontroladores. 

La placa de circuito impreso fue diseñada para optimizar la integridad de la 
señal y su diseño se basa en nueve submódulos. Los planos de alimentación 
están separados y se utilizan pistas de 12 mil de ancho, excepto para las 
señales de alimentación de 24 mil. Para reducir los costos de ensamblaje, 
todos los componentes se colocan en la capa superior, excepto el termómetro. 
El tamaño resultante de la placa es de 63x83 mm, incluyendo tres agujeros 
para fijación con tornillos en la caja. La caja está diseñada para la colocación 
en el brazo.  
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Se proponen dos posibles aplicaciones de rehabilitación para la validación 
del sistema: control de reconocimiento de movimiento y control adaptativo. 
Las aplicaciones utilizan señales diferentes y los enfoques de rehabilitación 
son distintos. Mientras que la primera no requiere un dispositivo de robótico 
de asistencia y utiliza información del IMU y EMG, la segunda utiliza el robot 
de rehabilitación de mano M3Rob y utiliza información relativa al ECG, GSR y 
SKT. Se ha verificado que, aunque el sistema es de bajo costo, la calidad de las 
señales adquiridas es confiable para implementar los dos algoritmos de 
control biocooperativo propuestas. Además, se han probado las capacidades 
de procesamiento de alta eficiencia de la plataforma. Esta plataforma admite 
la ejecución en tiempo real de algoritmos más complejos que los presentados 
para los dos escenarios de rehabilitación. 

Una característica importante del sistema embebido portátil y multimodal, 
aparte de sus destacadas capacidades computacionales y alta versatilidad, es 
su consumo de energía. Tiene una vida útil de la batería de 5 horas para un 
consumo máximo de energía de alrededor de 1250 mW. Se ha analizado 
detenidamente el consumo de energía del sistema para los dos escenarios de 
rehabilitación propuestos, resultando en un consumo de 203 mW para el 
control de reconocimiento de movimiento y de 249 mW para el control 
adaptativo. El consumo de las dos aplicaciones de rehabilitación cumple 
plenamente con las restricciones de energía del sistema portátil. 

El sistema portátil fue diseñado buscando el equilibrio entre complejidad, 
el precio y el rendimiento, teniendo en cuenta parámetros como el volumen, 
la flexibilidad, el consumo de energía, el procesamiento a bordo y la calidad 
de la señal. Debido a su bajo costo, tamaño compacto y versatilidad, la 
plataforma muestra un gran potencial para aplicaciones de rehabilitación. Si 
bien puede no ser adecuada para aplicaciones que requieren una alta calidad 
de señal o una vida útil de la batería a largo plazo, dichos requisitos no son 
típicamente esperados en aplicaciones de rehabilitación. Por lo tanto, la 
plataforma presentada es un avance prometedor en el desarrollo de 
tecnologías portátiles y bajo coste para la rehabilitación neuromotora. 

C.5. Conclusiones 

La evaluación de los sistemas de rehabilitación biocooperativos de bajo coste 
propuestos han mostrado resultados prometedores (Cisnal et al., 2021) (Cisnal 
et al., 2023a). Estos sistemas han demostrado la viabilidad de implementar 
controles biocooperativos sin necesidad de sistemas comerciales costosos que 
suelen ser voluminosos y carecen de capacidades de procesamiento. Las 
ventajas asociadas con estas soluciones embebidas para la adquisición de 
señales fisiológicas, además de su bajo costo y versatilidad, incluyen la 
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posibilidad de desarrollar controles biocooperativos en tiempo real con una 
latencia reducida y un alto grado de precisión. Estas características hacen que 
las soluciones de adquisición integradas sean una opción atractiva para el 
desarrollo de sistemas de control biocooperativo accesibles y asequibles en 
entornos clínicos de rehabilitación. Además, el uso de estos sistemas también 
puede abrir el camino para el desarrollo de nuevas aplicaciones en los campos 
de la interacción humano-robot y la robótica asistencial. 

Se ha demostrado que la incorporación de la retroalimentación visual 
basada en EMG puede mejorar significativamente el rendimiento de las 
personas que se someten a terapias asistidas impulsadas por EMG. Al 
proporcionar retroalimentación visual en tiempo real, los sujetos pudieron 
monitorear y modular sus respuestas EMG, lo que resultó en un mejor control 
de la fuerza ejercida. Por lo tanto, se puede inferir que la retroalimentación 
visual basada en EMG tiene el potencial de facilitar el proceso de aprendizaje 
de la rehabilitación, ya que ayuda a los usuarios a desarrollar una mejor 
comprensión de cómo autorregular sus activaciones musculares. Esto podría 
mejorar la motivación de los pacientes y contribuir a mejores resultados de 
recuperación motora (Cisnal et al., 2023b). 

Como último punto, es necesario hacer mayor énfasis en la capacidad de 
respuesta y los tiempos de latencia en los sistemas de rehabilitación 
impulsados por EMG (Cisnal et al., 2021). Estudios anteriores se han centrado 
principalmente en la precisión de la clasificación de los gestos, descuidando 
información importante sobre el tiempo de latencia del sistema. Si bien 
algunos estudios han abordado la latencia del sistema, los valores medidos a 
menudo están imprecisamente definidos. Es crucial establecer definiciones 
claras y estandarizadas de los tiempos de latencia en la robótica de 
rehabilitación para garantizar la homogeneidad en este campo de 
investigación. Al hacerlo, podemos asegurarnos de que el desarrollo de los 
sistemas de rehabilitación basados en EMG esté optimizado en beneficio de 
los pacientes. 
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