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Abstract

Rehabilitation robotics has emerged as a promising solution for promoting
motor recovery and functional independence in patients with neurological
disorders. Utilizing robotic devices for neurorehabilitation has demonstrated
great potential in delivering intensive and repetitive training to promote
motor recovery. In contrast to traditional rehabilitation robotics, which
primarily considers biomechanical information, biocooperative controls in
rehabilitation robotics go further by incorporating psychological and/or
physiological measurements, effectively integrating the patient into the
feedback loop. These robotic devices offer various types of assistance and can
be controlled using diverse input modalities, such as electromyography
(EMG), electroencephalography (EEG), and kinematic signals. Among these
input modalities, EMG has gained widespread adoption due to its capacity to
provide real-time information on muscle activation patterns. It enables a
biocooperative control approach, establish a feedback loop between the user
and the robot.

The current state of biocooperative systems renders them impractical for
clinical settings primarily due to their inherent challenges related to reliability
and accessibility. The reliability issues primarily stem from the high cost
associated with the necessary physiological acquisition systems, thereby
posing a significant constraint on further essential research in this field.
Moreover, the lack of processing capabilities of these systems hinders the
development of real-time biocooperative control strategies and consequently,
efficient human-robot interaction. Additionally, the bulky nature of the
physiological acquisition systems adversely affects user acceptance.

In this context, this Doctoral Thesis is focused on the design of affordable,
real-time, embedded solutions for physiological data acquisition, coupled with
the development of biocooperative control strategies that contribute to
providing practical applications for individuals suffering from neuromotor



impairments. The studies included in this compendium of publications
primarily address motor rehabilitation of the upper-limb. This is an area of
significant importance, considering that upper-limb paresis is among the most
frequently observed outcome of stroke and profoundly impacts the quality of
life and independence of stroke survivors.

The contributions of this study are based on the design of affordable
solutions for the acquisition of physiological signals and the implementation
of biocooperative controls in these real-time embedded systems. An EMG
recording system and a wearable multimodal physiological acquisition system
have been designed to enhance accessibility and facilitate the use of upper-
limb biocooperative control in the clinical settings.

First, a non-pattern recognition-based EMG-driven control has been
developed for a hand rehabilitation robot. The system operates on a real-time
embedded platform and has demonstrated favorable performance, achieving
an overall accuracy of 97% for hand gesture detection and exhibiting adequate
time responsiveness (motion-selection time of 0.48s, motion-onset time of
0.55s, motion-completion time of 1.9 s, and 100% motion-completion rate).
Moreover, EMG-based visual feedback was introduced into the system.
Significant statistical differences in subject performance were observed based
on the type of provided feedback (p-value = 0.0124). Specifically, the
performance was significantly better when only EMG-based visual feedback
was present compared to kinesthetic feedback alone (p = 0.0412) or the
combination of both (p-value = 0.0497). These findings indicates that the
feedback enables subjects to enhance their control over the movement of the
robotic platform by monitoring their muscle activation in real-time.

Secondly, the performance of the embedded multimodal acquisition
platform has been validated through the implementation of two
biocooperative control strategies: an EMG&IMU-based control using virtual
reality-based therapy, and an adaptive assistive control (AAN) using a wrist
rehabilitation robot. The wearable system, integrating multiple sensors,
wireless communication, and a high-efficiency real-time microcontroller, is
characterized by its high versatility and configurability. It has been verified
that its low cost does not compromise the signal quality and has the potential
to facilitate and promote the development of real-time biocooperative
controls for a wide range of neuromotor rehabilitation applications.

Overall, the findings of this Doctoral Thesis could pave the way for the
development of more affordable and effective robotic devices for upper-limb
neurorehabilitation and provide insights into the design and implementation
of biocooperative controls for neurorehabilitation platforms.
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Chapter 1

1. Introduction

The present Doctoral Thesis is focused on the design and development of
biocooperative control strategies for neuromotor rehabilitation robotic
platforms. In contrast to traditional rehabilitation robots that only employ
biomechanical data, the biocooperative approach has been defined as human-
centered scenarios where physiological measurements are also extracted to
develop control strategies and enhance the human-robot interaction (HRI).
However, the cost of the necessary physiological signal acquisition systems
has limited the use of biocooperative systems as real-world solutions. Hence,
this research does not only focus on designing and developing biocooperative
control algorithms, but also providing affordable technology for physiological
data recording. This study has led to the publication of a total of three articles
in journals indexed in the Journal Citation Reports (JCR) from Clarivate’s Web
of Science™ (WOS). These articles were published from October 2021 to April
2023. As a result of the scientific productivity, this thesis takes the form of a
compendium of publications.

In the present Doctoral Thesis, the development of biocooperative control
strategies in the context of upper-limb rehabilitation therapies for patients
with neurological impairments is investigated. More precisely, Chapter 1
presents a comprehensive literature review of all scientific and technical
fundamentals embraced in this the Doctoral Thesis. The thematic consistency
of the publications is provided in section 1.1. The general context is described
in section 1.2, which introduces neuromotor rehabilitation robotics and its
clinical importance. Section 1.2.2 is focused on providing the basis of
biocooperative controls in the context of neuromotor rehabilitation. Section



Chapter 1. Introduction

1.2.3 is devoted to myoelectric EMG-driven control, including different
approaches for its implementation and other clinical applications based on
EMG signals. Section 1.3.2 defines the general objectives pursued in this study
and enumerates the specific objectives.

Chapter 2 describes the materials and methodology used for performing
this study. Main results are shown in chapter 3, which are further discussed in
the following chapter. Finally, the contributions of this Doctoral Thesis, as well
as the final conclusions and future research are presented in the chapter 5.
The last sections are intended to complement this document by including: the
papers of the compendium of publications (appendix A), information about
the author such the scientific achievements achieved during the Ph.D.
(appendix B), and a brief summary in Spanish (appendix C).

1.1. Compendium of publications: thematic
consistency

The incidence of cerebrovascular accidents (CVA) has been growing in the past
decades as life expectancy is increasing in developed countries. Although
stroke mortality has been reduced, the increase of survivors results in a rising
number of adults with neurological disabilities. Restoring or improving motor
skills is essential so that patients can regain independence and improve their
quality of life (QOL) (Tran et al.,, 2021). Although effective, traditional
rehabilitation requires considerable time commitment by the rehabilitation
specialist (Frick and Alberts, 2007). Robotic devices that allow patients to
undergo rehabilitation without continuous medical assistance would make
physical therapy more affordable, increasing the potential for better clinical
outcomes (Polygerinos et al., 2015b).

Given the prevalence of cerebrovascular accidents, motor recovery using
rehabilitation robotic systems has elicited considerable scientific interest. The
active participation of the patient in the rehabilitation enhances neural
plasticity and motor learning (Blank et al., 2014). In this way, biocooperative
rehabilitation robotic systems, based on multimodal information, promote
patients’ participation by considering their performance, motion intention
and even, emotional state (Riener and Munih, 2010). Despite their potential
for neurorehabilitation, the first challenge to rehabilitation robotic platforms
is accessibility. The presence of robotic devices in clinics and hospitals is
greatly restricted since only large medical centers have the financial resources
to invest in this technology (Almekkawy et al., 2020).

In the context of neuromotor rehabilitation using biocooperative robots, a
part of the budget is allocated to physiological signal acquisition systems. This
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research has tackled this obstacle directly by creating a cost-optimized version
of biosignal recording systems, hoping to access clinical settings with more
modest budgets. Its design was based on a trade-off between complexity,
cost, and performance. It is necessary to provide high resolution and reliable
measurements for implementing biocooperative controls in an affordable way
without compromising their greatest strengths.

Biocooperative systems use biomechanical and/or physiological
information to monitor the patient actions, intention of movement and/or
cognitive load. The emotional state of the user is not often integrated in the
control loop due to the challenges associated with determining it through
indirect measurement of their physiological changes (Katsigiannis and
Ramzan, 2018). Motion intention can be detected by analyzing EMG signals,
which is the most popular signal for implementing biocooperative controls
because of its unique nature: a physiological signal that provides reliable and
robust biomechanical information.

Due to the nature of EMG signals, myoelectric EMG-driven assistive robots
are widely used in neuromotor rehabilitation (Li et al., 2020; Meattini et al.,
2018). In addition, this control strategy considers the user’s intention of
movement, which encourages the patient to actively participate in the
rehabilitation. The active participation has been proven to enhance neural
plasticity and motor learning (Blank et al., 2014).

On the other hand, in the first stage of rehabilitation, it is common for the
muscular electrical activity of the patient to be too weak to effectively detect
their motion intention. The EMG signals can be recorded from the unimpaired
limb to assist the motion of the impaired limb using the rehabilitation robot.
This approach is known as bilateral myoelectric control and can replace or
complement the passive therapies, which are typically performed during the
first stage of rehabilitation due to the patient’s inability to move the paretic
limb.

Clinical studies found that passive training only reduces spasticity, while
unilateral EMG-driven therapies also improved muscle coordination (Hu,
Tong, Song, Zheng, & Leung, 2009). Furthermore, bilateral therapies have
been found to be beneficial in motor recovery since the hemispheric
interaction enhances the rebalancing of the abnormal brain activity caused by
the stroke (Wu et al., 2021). Even though sEMG biofeedback has been found
to be beneficial in neuromotor rehabilitation (Giggins et al., 2013; Tate and
Milner, 2010), this technique has not been used in combination with robot-
assisted rehabilitation.

This thesis focuses on the development of biocooperative control strategies
considering the principles of neurorehabilitation after stroke based on motor
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learning and brain plasticity mechanisms. Controls are developed for upper-
limb neuromotor rehabilitation due to the high prevalence of stroke in upper-
limb paresis, especially affecting the hand (Fischer et al., 2007). Additionally,
the limited access of rehabilitation robotic technology due to their high cost is
also addressed by developing low-cost systems for physiological signal
recording.

The first and second papers were focused on EMG-driven assisted
neuromotor rehabilitation using a hand robotic exoskeleton and a custom-
made low-cost EMG real-time embedded system, while the last one presented
a highly versatile, low-cost, and wearable real-time embedded system for the
implementation of multimodal biocooperative controls for upper-limb
neuromotor rehabilitation. The first article (Cisnal et al., 2021) focused on the
design of a low-cost 2-channel EMG real-time embedded solution and its
integration in a hand rehabilitation exoskeleton. A bilateral training paradigm
based on a threshold non-pattern recognition EMG-driven control was
developed. The bilateral assisted therapy detected hand gestures of the
healthy hand and replicated the gesture on the exoskeleton placed on the
paretic hand. The evaluation of the performance of the rehabilitation system
in terms of accuracy and response times yielded satisfactory results.

After this study, we took a step further by including EMG-based visual
feedback on the rehabilitation platform. In the second article (Cisnal et al.,
2023b), we assessed the influence of visual biofeedback on user performance.
The findings of the study indicated that incorporating EMG-based visual
feedback enhanced performance by facilitating users to gain control over the
motion of the EMG-driven exoskeleton by visually monitoring their muscles
activations. This enabled them to adjust the exerted force and acquire
proficiency in self-regulating their EMG responses.

After evaluating the performance and reliability of the embedded EMG
acquisition system by integrating it into the hand robotic rehabilitation
platform, our aim was to design an affordable solution that could not only
record EMG signals but also other physiological signals of interest in the field
of biocooperative upper-limb neuromotor rehabilitation. Therefore, a
multimodal, low-cost and wearable embedded system was presented in the
third paper (Cisnal et al.,, 2023a). It integrated inertial measurement unit
(IMU), electrocardiogram (ECG), electromyographic (EMG), galvanic skin
response (GSR) and skin thermometer (SKT). Two neuromotor rehabilitation
scenarios were implemented to assess the system performance: (1) an upper-
limb rehabilitation VR-based exergame that used motion tracking through
EMG and IMU information, and (2) an assist-as-needed (AAN) control for a
wrist rehabilitation robot, which considered the user’s emotional state based
on GSR, ECG and SKT data. The quality of the signals, processing capabilities
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and battery life of the system met the requirements of the two rehabilitation
scenarios.

The present Doctoral Thesis is organized as a compendium of publications.
Hence, it is essential to consult each paper for a comprehensive understanding
of this manuscript. The three published articles can be found in Appendix A.
Furthermore, the citation of each article along with its abstract are shown
below:

RobHand: A Hand Exoskeleton with Real-Time EMG-Driven Embedded
Control. Quantifying Hand Gesture Recognition Delays for Bilateral
Rehabilitation

A. Cisnal, J. Pérez-Turiel, J.C. Fraile, D. Sierra and E. de la Fuente, "RobHand: A
Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying
Hand Gesture Recognition Delays for Bilateral Rehabilitation," in IEEE Access,
vol. 9, pp. 137809-137823, 2021, doi: 10.1109/ACCESS.2021.3118281.

Assisted bilateral rehabilitation has been proven to help patients improve
their paretic limb ability and promote motor recovery, especially in upper-
limbs, after suffering a CVA. Robotic-assisted bilateral rehabilitation based on
SEMG-driven control has been previously addressed in other studies to
improve hand mobility; however, low-cost embedded solutions for the real-
time bio-cooperative control of robotic rehabilitation platforms are lacking.
This paper presents the RobHand (Robot for Hand Rehabilitation) system,
which is an exoskeleton that supports EMG-driven assisted bilateral by using
a custom-made low-cost EMG real-time embedded solution. A threshold non-
pattern recognition EMG-driven control for RobHand has been developed, and
it detects hand gestures of the healthy hand and replicates the gesture on the
exoskeleton placed on the paretic hand. A preliminary study with ten healthy
subjects is conducted to evaluate the performance in reliability, tracking
accuracy and response time of the proposed EMG-driven control strategy
using the EMG real-time embedded solution, and the findings could be
extrapolated to stroke patients. A systematic review has been carried out to
compare the results of the study, which present a 97% of overall accuracy for
the detection of hand gestures and indicate the adequate time responsiveness
of the system.

Interaction with a Hand Rehabilitation Exoskeleton in EMG-Driven Bilateral
Therapy. Influence of Visual Biofeedback on the Users’ Performance

A. Cisnal, P. Gordaliza, J. Pérez-Turiel and J.C. Fraile, "Interaction with a Hand
Rehabiltiation Exoskeleton in EMG-Driven Bilateral Therapy: Influence of
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Visual Biofeedback on the Users’ Peformance," in Sensors, vol. 23, 2048, 2023,
doi: 10.3390/s23042048.

The effectiveness of EMG biofeedback with neurorehabilitation robotic
platforms has not been previously addressed. The present work evaluates the
influence of an EMG-based visual biofeedback on the user performance when
performing EMG-driven bilateral exercises with a robotic hand exoskeleton.
Eighteen healthy subjects were asked to perform 1-min randomly generated
sequences of hand gestures (rest, open and close) in four different conditions
resulting from the combination of using or not (1) EMG-based visual
biofeedback and (2) kinesthetic feedback from the exoskeleton movement.
The user performance in each test was measured by computing similarity
between the target gestures and the recognized user gestures using the L2
distance. Statistically significant differences in the subject performance were
found in the type of provided feedback (p-value 0.0124). Pairwise comparisons
showed that the L2 distance was statistically significantly lower when only
EMG-based visual feedback was present (2.89 + 0.71) than with the presence
of the kinesthetic feedback alone (3.43 £ 0.75, p-value = 0.0412) or the
combination of both (3.39 + 0.70, p-value = 0.0497). Hence, EMG-based visual
feedback enables subjects to increase their control over the movement of the
robotic platform by assessing their muscle activation in real time. This type of
feedback could benefit patients in learning more quickly how to activate robot
functions, increasing their motivation towards rehabilitation.

A Versatile Embedded Platform for the Implementation of Biocooperative
Controls in Upper-limb Neuromotor Rehabilitation Scenarios

A. Cisnal, D. Antolinez, J. P. Turiel, J. C. Fraile and E. De La Fuente, "A Versatile
Embedded Platform for Implementation of Biocooperative Control in Upper-
Limb Neuromotor Rehabilitation Scenarios," in IEEE Access, vol. 11, pp. 35726-
35736, 2023, doi: 10.1109/ACCESS.2023.3265898.

Biocooperative control uses both biomechanical and physiological
information of the user to achieve a reliable human-robot interaction. In the
context of neuromotor rehabilitation, such control can enhance rehabilitation
experience and outcomes. However, the high cost and large volume of the
commercial systems for physiological signal acquisition are major limitations
for the development of such control. We present a highly versatile, low-cost
and wearable embedded system that integrates the most commonly used
sensors in this field: inertial measurement unit (IMU), electrocardiography
(ECG), electromyography (EMG), galvanic skin response (GSR) and skin
temperature (SKT) sensors. Additionally, the compact system combines
wireless communication for data transmission and a high-efficiency
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microcontroller for real-time signal processing and control. We tested the
system in two common neuromotor rehabilitation scenarios. The first is an
upper-limb rehabilitation VR-based exergame, in which the patient must
collect as many coins as possible. Movement recognition of the hand and arm
is performed based on EMG and IMU information, respectively. The second is
adaptive assistive control that adjusts the level of assistance of a wrist
rehabilitation robot according to the physiological state and motor
performance of the patient using GSR, ECG and SKT data. The quality of the
recorded signals and the processing capacity of the system meet the needs of
the two upper-limb rehabilitation applications. The wearable system is highly
versatile, open, configurable and low cost, and it could promote the
development of real-time biocooperative control for a wide range of
neuromotor rehabilitation applications.

1.2. Context: biocooperative rehabilitation
robotics

1.2.1. Neuromotor rehabilitation robotics

The World Health Organization (WHO) defined stroke as “the neurological
deficit of cerebrovascular cause that persists beyond 24 hours or is interrupted
by death within 24 hours” (World Health Organization, 1978). A stroke is
caused by the death of brain cells due to a restricted blood flow, either by a
blockage of the blood supply to a part of the brain by a clot (ischemic stroke)
or by the rupture of a cerebral blood vessel (hemorrhagic stroke) (Figure 1.1).

Ischemic Hemorrhagic

Blockage of blood vessels; Rupture of blood vessels;
lack of blood flow to affected area leakage of blood

Figure 1.1. Types of strokes: ischemic and hemorrhagic (CNS Traumatic Brain Injury
Rehab, 2023).
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The brain is an extremely complex organ that controls many vital body
functions and different abilities, such as motor and cognitive functions.
Therefore, the consequences of a stroke episode depend on the type of stroke
and the affected brain area, but can cause lasting brain damage, long-term
neuromotor disability, or even death.

In fact, stroke is the second leading cause of death, responsible for
approximately 11% of the 55.4 million worldwide deaths recorded in 2019
(World Health Organization, 2020). Additionally, it is one of the leading causes
of neurological disabilities, and mainly affects individuals at the peak of their
productive life (GBD 2016 Stroke Collaborators, 2019). The rate of disability in
stroke survivals is around 64%, with 30% being mildly, 18% moderately, 11%
severely and 5% totally disabled (Figure 1.2) (Lv et al., 2021). About 70% of
stroke survivors with motor disabilities require long term medical care and live
with a poor quality of life (QOL) (Parker and Snyder-Shall, 2013).

4 .
5 =
\

disability
Figure 1.2. Rate of disability in stroke survivals, broken down by degree of disability.

11%

The most common and stable symptom experienced by individuals who
have suffered a stroke episode is some degree of their paresis on upper
extremities. Around 60% experience upper-limb dysfunction, which are
especially prevalent in the hand (Fischer et al., 2007). In fact, motor function
of finger extension is usually impaired, and spasticity is often present, leading
to reduced range of motion (ROM) of the hand (Kamper et al., 2003). Muscle
weakness is also exhibited to varying degrees in most of stroke survivors (Ada
et al., 2003; Colebatch and Gandevia, 1989).

Loss of hand function is a major source of impairment in neuromotor
disorders, as it is essential for manipulating the environment and thus worsens
the abilities of stroke survivors in performing activities of daily living (ADL).
Rehabilitation based on physical therapy is the primary mechanism for
improving motor function and achievement of independent participation in
daily life (Winstein et al., 2016). Early and intensive physical rehabilitation is
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of great importance to maximize functional motor recovery (Herpich and
Rincon, 2020).

Repetitive task practice (RTP) rehabilitation consists of breaking a ADLs
down into individual movements and continuously and intensively practicing
them. It has been proved that it promotes hand functional motor recovery,
especially leading to improved range of motion and strength (Sterr and
Freivogel, 2003). However, RTP rehabilitation costs are very high due to the
heavy workload of the rehabilitation specialist (Frick and Alberts, 2007).

Additionally, the aging population is linked to an increase in stroke survivors
with neuromotor disabilities and a considerable reduction in the patient-
physician ratio. Interest in robotic rehabilitation systems has experienced
considerable growth in the last decade not only because of their high costs,
but also to increase rehabilitation capacity worldwide and offer adequate
rehabilitation to all stroke patients. A system that allows patients to
intensively rehabilitate without the continuous assistance of the therapist,
would make physical therapy more affordable and accessible.

Clinical studies have shown improvement in hand motor function when
performing robot-assisted therapy (RT) (Carmeli et al., 2011; Kutner et al.,
2010; Ueki et al., 2008; Wolf et al., 2006). Although the rehabilitation benefits
of RT in upper-limb motor recovery of people after stroke is not significantly
better than those obtained with conventional rehabilitation, RT offers major
advantages in terms of lower manpower cost (Chien et al., 2020; Wu et al.,
2021). Furthermore, it improves rehabilitation convenience facilitating
independent therapy with the potential outcome of increasing intensity and
patient motivation (Kwakkel et al., 2008; Rietman et al., 2014).

Rehabilitation robotic devices can be mainly divided into two categories
based on their structural design: exoskeletons and end-effectors (EE).
Although clinical results are limited, it has been found that exoskeleton robotic
devices provide better rehabilitation outcomes than EE systems in improving
hand motor impairments (Moggio et al., 2022) .

Upper-limb rehabilitation exoskeletons are more technologically mature
when compared to hand exoskeletons due to the anatomical complexity of
the hand. The hand has 21 DOFs, while the arm (from wrist to shoulder) has
only 7 DoFs. Furthermore, when designing a hand exoskeleton many
considerations must be made such as size, weight, dexterous manipulation
capabilities, degrees of freedom, joints to directly actuated or which grasp
patterns to renounce (Lum et al., 2012).

Some commercially available robotic systems for hand rehabilitation are
shown in Figure 1.3, including Saeboflex (Saebo, Inc., NC, USA), the Motus
hand (Motus Nova, GA, USA), Hand of Hope (Rehab-Robotics, China), Amadeo
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(TyroMotion, Austria), GLOREHA (ldrogenet, Italy) and Waveflex CMP
(Remington Medical, Canada) or HandyRehab (Fourier Intelligence,
Singapore).

pigital Therapist 3

(a) (b)

Figure 1.3. Commercially available robots for hand rehabilitation (a) Saeboflex (Saebo,
Inc., NC, USA), (b) Motus Hand (Motus Nova, GA, USA), (c) Hand of Hope (Rehab-
Robotics, China), (d) Amadeo (TyroMotion, Austria) (e) Gloreha (ldrogenet, Italy), (f)
HandyRehab (Fourier Intelligence, Singapore).

In addition to the convenience of RT in terms of cost and intensive
rehabilitation, it offers different training paradigms which are used depending
on the stroke stage and patient motor function (Kahn et al., 2006). A training
paradigm defines the interaction of the rehabilitation robot with the patient,
considering their movement intention and applied forces (Yue et al., 2017).

10
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These training paradigms are known as passive, assistive, active-assistive,
active, and resistive (Table 1.1).

Table 1.1: Training modalities for rehabilitation robotics, categorized based on the
interaction between the rehabilitation robot and the patient.

.. . Patient Robot

Training modalities .
Intention Force Force

Passive 0 0 +++
Assistive + + +
Active-assistive ++ +/0 0/+
Active ++ + 0
Resistive ++ ++ -

After suffering a stroke, the person may completely lose mobility of the
paretic limb due to muscle spasticity. In the first stage of rehabilitation, passive
and active-assistive exercises are optimal since the robot assists the
movement of the paretic limb without requiring any motion ability of the
patient. Passive therapies have been found to be temporarily effective for
reducing hypertonia (Schmit et al., 2000) and for maintaining the ROM of the
hand in the early stage of the treatment, but they do not significantly improve
motor function (Volpe et al., 2000). Active-assistive exercise were found to be
more effective on motor recovery than the passive control since an active
engagement of the patient is required (Blank et al., 2014).

In the second stage of the stroke, active and assistive exercises are normally
used when the patient has motion capabilities. The robot provides assisting
forces to support the patient in completing the desired movement. In the later
period of stroke, resistive exercises are used to increase muscle force because
the user must complete the motion against a resistive force exerted by the
robot (Fasoli et al., 2003).

Evidence has shown that the active participation of the patient induces
neural plasticity in motor learning. Hence, robotic systems should monitor the
patient’s intention and promote patient participation to optimize the therapy
outcomes. This can be achieved by providing adaptive exercises or assistance
based on the patient motion intent. Assist-as-needed algorithms are based on
providing the minimum necessary motion assistance, so the patient can
complete a movement, thus requiring significant motion from the patient. In
the case of severely impaired patients who are unable to move the limb,
active-assistive exercises based on intention detection recognition encourages
them to make an effort to move their paretic limb (Blank et al., 2014).

User motion and motor intention are normally detected by measuring
position or contact forces. Additionally, motor intention can also be detected

11
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from brain cortical activity by analyzing EEG signals and from the muscles by
measuring their electrical activity or EMG signals. The electrical activity can be
detected from the paretic hand or the contralateral healthy hand (Yue et al.,
2017). In fact, using the electrical activity from the unimpaired side to identify
user intention is recommended in the case of patients with severe hand
paresis or insufficient muscle tone (Tran et al., 2021). This approach is known
as bilateral-assisted therapy.

The robotic device provides motion assistance by referring to detected or
intended movement of an unimpaired counterpart. Some studies suggest that
bilateral therapies are potentially more effective than unilateral exercise in
upper-limb rehabilitation. Motor recovery of bilateral therapies is based on
the hemispheric interaction. It increases the excitability of the motor complex
and supplementary motor area, resulting in rebalancing the abnormal
interhemispheric activities caused by stroke. Additionally, bilateral exercises
improve inter-limb coordination (Wu et al., 2021).

One of the primary challenges of neuromotor rehabilitation is maintaining
motivation over long periods of time required for significant and lasting
functional improvement. RT allows for the integration of virtual reality (VR)
environments into the rehabilitation process. Within virtual reality-based
rehabilitation (VRBR), three key concepts play a vital role in motor learning:
repetition, feedback, and motivation. By offering repetitive practice,
augmented feedback, and motivation to endure practice, VR serves as a
powerful tool to enhance motor learning and induce cortical and subcortical
changes associated with skilled tasks (Holden, 2005).

VRBR offers patients the opportunity to benefit from the robotic
rehabilitation experience via serious games. Stroke patients have been shown
improved emotional responses to VRBR (Cisnal et al., 2022b). It provides
motivation for post-stroke patients (Reinkensmeyer and Housman, 2007),
potentially increasing rehabilitation intensity and consequently, promoting
motor recovery (Corbetta et al., 2015). Ideally, stroke rehabilitation games
should be based on ADLs, while ensuring active patient participation
(Sveistrup, 2004). Additionally, incorporating multisensory feedback enhances
connectivity between sensory and motor cortices, further promoting motor
learning (Maier et al., 2019).

The feedback of serious games such as the score, provides understandable
indicators of the patient’s performance and stimulates the learning process.
Reinforcement learning is one of the most powerful ways of learning new
skills. This stimulation of the learning process is based on the release of
dopamine in the key areas of the brain. It leads to an improved consolidation
of the long-term motor memory and in strengthening the motivation (Bo
Nielsen et al., 2015). Hence, providing a rate of recovery feedback encourage
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the patient to perform better next session. In general, the use of VRBR has
been found beneficial for stroke patients (Subramanian et al., 2013)

1.2.2. Biocooperative control in rehabilitation robotics

The concept of biocooperative control emerged in the field of medical
robotics, specifically in rehabilitation robotics during the early years of the
21st century. One of the first formal appearances of the term "biocooperative
control" was in a special section of the IEEE Transaction on Neural Systems
and Rehabilitation Engineering in 2010, where the basis of biocooperative
systems was outlined and formally defined as those that introduced
physiological or psychological information into the control loop (Riener and
Munih, 2010).

The first rehabilitation robots were based on an open-loop control with
fixed position and/or velocity references to execute a predefined trajectory to
assist in the patient movement. This technique did not involve either
biomechanical or phyco-physiological information. Consequently, these
systems were unable to respond to a patient's voluntary effort or spontaneous
intentions and an efficient human-machine interaction was practically
impossible. In the first decade of this century, rehabilitation robots appeared
that employed biomechanical data, such as position, velocity, acceleration,
and force to establish robust and adaptive controls. The main goal was to
achieve safe, ergonomically acceptable, and user-cooperative systems by
controlling the biomechanical interaction between the robot and the patient.
This new approach no longer considers the patient as a disturbance applied
directly to the robotic system and provides a bidirectional interaction between
the robot and the patient enhancing the rehabilitation experience (Koenig et
al., 2011).

The biocooperative approach in rehabilitation robotics goes one step
further and integrates the patient into the feedback loop by not only
considering biomechanical information, but also including psychological
and/or physiological measurements. Hence, the appearance of
biocooperative controls has led to the emergence of a new generation of
rehabilitation robotic platforms, which records and control the patient’s
physiological signals. They are usually based on multimodal interfaces;
information coming from different sources allows for continuously monitoring
the patient global status including their actions, intention of movement,
emotional state, and even environmental factors. Figure 1.4 shows a generic
diagram of biocooperative robotic systems, specifying the integration of the
human into the loop in a biomechanical, physiological, and psychological
sense.

13
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. Immersive virtual Human
Biocooperative controller environment displays

Motor functions
Fast feedback loop > Haptic > Motor control and
(robot control) display — motor actions

Slow feedback loop Audiovisual Cognitive functions —
(vlrtu(ajl e::v;ronment display Sense of presence and
adaptation) emotional state
A
User state estimator Sensors
Psychological opghydziolE%%ical it
, "
state <—— o skin temperature o
o skin conductance
o blood pressure
Physiological
state
Biomechanical signals —
€ position
) i o velocity
Biomechanical o acceleration
state o force

Figure 1.4. Generic diagram of biocooperative robotic systems, specifying integration
of the human into the loop in a biomechanical, physiological, and psychological sense
(Riener and Munih, 2010).

Emotions are associated with physiological changes produced in response
to the autonomic nervous system (ANS). Facial expressions, breathing pattern,
heart rate or muscle tension changes are influenced by emotions.
Physiological measurements such as cardiovascular parameters, temperature,
electrodermal activity, blood oxygenation, photoplethysmography and
electromyography have been used to indirectly measure ANS-related
responses to external stimuli and hence, determine the emotional state of the
person. Although other biomarkers such as cortisol levels or neural changes
revealed by neuroimaging can also reveal useful information regarding the
emotional state (Jerath and Beveridge, 2020), they are potentially invasive and
inconvenient for rehabilitation robotics.

In this field, a diverse number of non-invasive biological signals such as
EMG, EEG, EOG, RESP, GSR, SKT and BP are commonly employed to extract
valuable physiological information from the user. Signal processing techniques
are applied to extract specific features from these signals that are known to
exhibit correlations with the user’s physiological state. For instance,
parameters such as heart rate (HR) and heart rate variability (HRV) derived
from ECG signals, and the skin conductance level (SCL) and the frequency of
the skin conductance response (SCR) derived from GSR signals, serve as
indicators of arousal, physical effort, and mental workload. Consequently,
these biosignals allow to determine the cognitive load and physiological
response of the user to the rehabilitation session. Additionally, physiological
signals can also be used to detect the user intention through non-invasive
brain-computers interfaces (BCls) based on EEG and non-cortical interfaces
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based on EOG or EMG, specifically in the case of patients with severe
impairments who are able to generate muscle activation or brain activity
instead of force for movement (Simonetti et al., 2016).

Table 1.2 shows a summary of biocooperative controls in the context of
neurorehabilitation proposed in the literature. In healthy individuals, motor
intention is conducted from the brain to the muscle to directly move the limb.
However, this natural pathway is damaged in stroke patients and motion
intention is detected based on brain or muscle activity or even, eye movement
in order for the robot to actuate the motion of the impaired limb. Hence,
motion intention recognition (MR in Table 1.2) based on EEG, EMG or EOG is
a common approach in biocooperative robots.

Assist-as-needed (AAN) control is widely used in rehabilitation robotics
since personalized difficulty has been proved to lead to superior learning
outcomes when compared to a fixed difficulty. The difficulty should be
adapted to the patient’s capabilities without surpassing them as this could
have detrimental effects on performance. The adaptive nature of tasks’
complexity increases activity in premotor and sensorimotor areas and has
beneficial effects on motor recovery (Maier et al., 2019). In this context, an
AAN control architecture based solely on myoelectric information from the
muscles (EMG-ANN in Table 1.2) has been proposed. Biomechanical
information of the user typically extracted from position or force sensors is
replaced by information based on EMG signals, such as the user’s applied
torque, to adapt the assistance level of the rehabilitation robot.

More complex AAN architectures in terms of the number of physiological
signal modalities have also been proposed in the literature (BIO-AAN in Table
1.2). The level of assistance or task difficulty is adapted according to the user
performance, muscle fatigue or emotional state. While user performance is
normally determined by biomechanical variables, muscle fatigue is
determined by analyzing EMG signals. The emotional response of the user,
including the level of arousal, valence, or stress, is also included in the control
loop.

Other works have mainly focused on the emotional estimation (ES in Table
1.2) using multimodal information. The development of emotion recognition
algorithms, also known as affective computing, is still a major challenge.
Efficient and robust affective computing would significantly increase the
quality of human-machine interaction, not only in the context of neuromotor
rehabilitation, but also in other fields ranging from preventive medicine to the
multimedia industry (Katsigiannis and Ramzan, 2018). Physiological
parameters such as HR, SKT, electrodermal activity (EDA), and respiration rate
(RR) are known to be associated with autonomic responses related to
emotions and are therefore often employed as inputs for emotion classifiers.
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Table 1.2: Literature review on biocooperative systems, indicating the control type and
the employed physiological signals.

E E E E MU/ G S B
Ref Type (o} E C M ACC S K RESP V  Other

G G G G R T P

(Zhang et al.,

2019) MR X X X

(Krasoulis et

al., 2019) MR X X

(Landgraf et 1

al., 2018) MR X X

(Fougner et

al., 2011) MR X X

(Teramae et EMG- X

al., 2018) AAN

(Gui et al., EMG- X

2020) AAN

(Cisnal et al., EMG- X

2019) AAN

I(_Suczci);tgt[;ll BIO- X X

v AAN

2018)

(Novak et al., BIO- X x x x

2011) AAN

(Mihelj et al., BIO- x x x

2009) AAN

(Guerrero et BIO-

al., 2013) AAN

(Badesa et

al., 2014) AAN x x X

(GUmuslu et

al., 2020) ES X X X X

(Khezri et al.,

2015) ES X X X X X

(Hariharan

and Adam, ES X X

2015)

(Koelstra et

al, 2012) ES X X X X X X

(Kim and

André, 2008) ES X X X X

(Mandryk

and Atkins, ES X X X

2007)

(Liu et al., 2

2008) ES X X X X X X

(Picard et al.,

2001) ES X X X X

(zhaietal.,

2005) ES X X X

DES (Dielectric Elastomer Sensor) 2Bioimpedance, heart sound and PPG (photoplethysmogram).
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1.2. Context: biocooperative rehabilitation robotics

Biocooperative controls allow the implementation of more advanced and
personalized AAN control paradigms than the traditional ones that only rely
on user performance based on biomechanical information. These controls also
employ other physiological signals to consider other variables, such as
cognitive load, physiological state or even muscle fatigue. This is of great
importance since negative emotions such as anxiety, frustration or stress can
have a large impact on motor learning. Despite the proven benefits of
personalized adaptive controls in facilitating motor recovery, the
advancement of biocooperative controls has been hindered by a sluggish pace
of progress. This may be due to the complexity of developing robust and
efficient algorithms that analyze the physiological response of the human
body to a stimulus triggered by the ANS and determine emotions, combined
with the high cost and bulky physiological signal recording systems.

Most of the reviewed studies relied on expensive, bulky and lacking
computational capabilities commercial products such as the MP150 system
(BIOPAC, CA, USA), the Neuroscan NuAmps Express system (Compumedics
Ltd., Australia), the ActiveTwo system (Biosemi, Netherlands), and the Pro-
Comp/FlexComp Infiniti system (Thought Technology Ltd., Canada). Only a few
studies utilized specific wearable technology from Biometrics Ltd (UK), g.tec
medical engineering GmbH (Austria), or Delsys Incorporated (MA, USA).

1.2.3. Myoelectric EMG-Driven control

Electromyography (EMG), sometimes referred to as myoelectric activity, is a
technique that focused on the development, recording and analysis of the
information present in the electric potential generated by the motor units.
Motor units are the smallest functional units that describe the neural control
of the muscular contraction process when the muscle is activated (Konrad,
2005).

EMG is classified into intramuscular and surface EMG (SEMG). While
intramuscular EMG uses tiny needles or fine-wires that are inserted into the
muscle through the skin, sEMG uses surface electrodes. sEMG signals
represent the electrically superimposed motor unit action potentials (MUAP)
of all active motor units detectable under the electrode site (Figure 1.5). The
main advantages of sSEMG are that it is non-invasive, easy to record, and allows
for estimation of the overall muscle activity. The disadvantage of sEMG
compared to intramuscular EMG is that it is are only suitable for recording
superficial muscles and may experience possible contamination with nearby
muscles, especially when recording small muscles. In contrast, intramuscular
EMG is selective and enables recording of deep muscle activity (McManus et
al., 2020).
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Although sEMG signals are often considered more complex to analyze than
intramuscular EMG, they tend to be used in rehabilitation medicine
applications due to their non-invasive nature. Additionally, their analysis
provides a global measurement of the level of muscle activity, which may be
more appropriate in movement analysis.
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Figure 1.5. EMG signal recording using a surface electrode, including a motor unit and
muscle fibers (McManus et al., 2020).

In fact, SEMG has been regarded as the most suitable physiological signal
for implementing biocooperative controls due to their good accuracy and
robustness in predicting the intention of human motion (Li et al., 2020).
Analyzing sEMG signals from the target muscles is widely used as an
alternative strategy for integrating force sensors into the rehabilitation robot
for motion control. Force sensors have intrinsic problems such as their
placement that can obstruct the sense of feeling, or it cannot be distinguished
between user-applied and external forces. Robotic control systems based on
EMG signals are the most popular approach in rehabilitation robotics
(Meattini et al., 2018).

EMG-based motion intention recognition can be broadly categorized as
classification and regression problems. While classification-based myoelectric
control detects the type of movement, regression-based control can output
continuous variables such as joint angle and joint torque. Therefore, the first
strategy enables discrete motion control and is limited to a specific number of
motions, whereas the latter allows for continuous motion control, resembling
the continuous movement of the human body (Bi et al., 2019). Despite this
fact, classification-based myoelectric controls are still the most widely
implemented due to their reliable results. In both approaches, the kinematics
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1.2. Context: biocooperative rehabilitation robotics

parameters estimated from the analysis of the EMG signals are fed into the
robot control, causing it to behave according to the human intention (see
Figure 1.6).
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Figure 1.6. Conceptual block diagram for myoelectric control system.

Regarding to discrete motion control, it can be classified into non-pattern
recognition and pattern recognition methods. Non-pattern recognition
methods, also known as threshold methods, generates the input commands
for the robot’s assistance controller by comparing the amplitude or statistical
features of EMG signals with some thresholds. Pattern recognition methods
detect the type of movement using classification machine learning models,
such as: support vector machines (SVM), artificial neural networks (ANN),
linear discriminant analysis (LDA), among others. The classification results are
used as an input of the robot controller. Non-pattern recognition based
myoelectric control methods have the lowest computational cost (Fu et al.,
2022).

In contrast, the continuous motion control outputs variables such as joint
angle or joint torque from the analysis of EMG signals. The use of a
biomechanical model and machine learning (ML) models are the main
methods for mapping the EMG signals to the continuous control input. The
most widely used biomechanical model is Hill's Muscle Model, which
represents the human skeletal muscle with a 3-element system: a contractile
element and two non-linear spring elements, one in series and another in
parallel (Figure 1.7) (Battista et al., 2017). On the other hand, time-domain or
statistical features extracted from the EMG signals are often used as an input
of regression models, such as linear regression or ANN, to estimate joint angle
or applied torque (Fu et al., 2022). However, ML-based systems have not been
implemented in real applications mainly because of reliability issues (Meattini
et al., 2018).
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Figure 1.7. Schematic diagram of the 3-element Hill model of the human skeletal
muscle: a contractile element, series element, and parallel element modelling acting
and myosin cross-bridges, tendons, and connective tissues, respectively (Battista et al.,
2017).

The potential applications of myoelectric control extend beyond motor
recovery in rehabilitation; they also include assistance in ADL and human
augmentation to enhance physical capacities of healthy population (Fu et al.,
2022). In the case of rehabilitation robotics, the choice of the type of EMG
control must not only consider the DoFs of the assistive device, but also user-
acceptance in terms of number of electrodes and the system response. For
instance, a high number of electrodes allows the implementation of an
accurate continuous EMG control at the cost of poorer usability and a higher
computational cost, which may be reflected in the system response. In their
review (Fu et al., 2022), Fu et al. found out that 42% of the articles focused on
controlling only one DoF, while 15%, 3%, 13 % and 15 % of the studied articles
integrated two, three, four and more than four DoFs, respectively.

Clinical studies have been undertaken to evaluate the effectiveness of EMG-
driven therapies in stroke patients. They found that while passive training
mainly reduced spasticity, EMG-driven therapies also improved muscle
coordination (Hu et al., 2009). However, some stroke patients exhibit SEMG
signals that are excessively weak to effectively detect their motion intention.
In such cases, a popular strategy is the implementation of bilateral myoelectric
control, which consist of estimating the motion intention using EMG signals
recorded from an unimpaired limb to rehabilitate the impaired limb with the
assistance of a robotic device.

Moreover, sSEMG can serve as an indirect measure to identify changes in
muscle force during isometric muscle contractions, making it a potential tool
for assessing muscle fatigue objectively. It can be also used as real-time
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feedback to make patients more aware of their muscle activity and support
re-learning of movement patterns. The amplitude of the sEMG signals can be
fed back to the user to provide an objective measure of the level of muscle
activation (McManus et al., 2020). Biofeedback has been generally delivered
using visual displays or acoustic signals.

The biofeedback technique was introduced more than forty years ago in
rehabilitation settings (Tate and Milner, 2010). sEMG biofeedback has been
found to be beneficial in the treatment of many musculoskeletal conditions,
including stroke rehabilitation, pelvic floor muscle dysfunction, and even in
alleviating pain caused by muscular tension (Giggins et al., 2013). EMG
biofeedback allows users to learn to self-regulate their muscle activity and
facilitate the process of strengthening weak or paretic muscles and reducing
tone in spastic muscles. However, clinical studies that had assessed the
effectiveness of EMG biofeedback in musculoskeletal and neuromotor
rehabilitation did not include the use of this technique in combination with
RT.

1.2.4. Current limitations

The concept of utilizing robotic devices for neurorehabilitation was initially
introduced by Hogan at MIT (Hogan et al.,, 1992). Despite the gradual
introduction of traditional rehabilitation robots into clinical settings, the
current level of development of biocooperative rehabilitation robots is
insufficient to transition them from laboratory settings to practical real-world
applications. While biocooperative controls promoting active participation
that has been proven to enhance neural plasticity and motor (Blank et al.,
2014), their high cost does not provide sufficient incentives for extensive
investigation, hindering their current application and commercialization.
Therefore, in order to advance the research and facilitate the utilization of
biocooperative systems in clinical environments, it is necessary to address, at
minimum, the following primary limitations:

. Hardware

Recent research emphasizes the importance of compact, affordable sensing
devices with advanced computational capabilities for detecting human
physical activity and emotions through multimodal fusion strategies (Qiu et
al., 2022). Despite the decreasing cost of computing and the emergence of
real-time control support through embedded solutions (Harwin et al.,
2006), biocooperative systems still rely on expensive, computationally
limited, and occasionally bulky commercially available acquisition systems
(Cisnal et al., 2023a), which impacts on accessibility and user acceptance.
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Il. Reliability

Biocooperative controls currently lack the required reliability and
robustness to be effectively implemented in real-world scenarios. This
includes the specific control method based on EMG signals, which,
despite being widely utilized in the field of neuromotor rehabilitation
robotics due to their accurate and robust prediction of motion intentions
(Li etal., 2020), have not been successfully applied in clinical practice due
to reliability concerns (Meattini et al., 2018).

1.3.  Hypothesis and objectives

The pursuit of developing cost-effective and reliable biocooperative systems
for neuromotor rehabilitation, with the aim of improving the quality of life for
individuals with motor disabilities, has emerged as a significant concern in
recent years. Consequently, the proposal developed in this Doctoral Thesis
have been directed towards the creation of low-cost embedded systems for
physiological data acquisition and the implementation reliable control
paradigms. The primary objective of these systems is to enhance the
accessibility and integration of biocooperative technologies into real clinical
practices. To provide a comprehensive framework for this thesis, the
hypotheses that have served as the basis for each study, as well as the
overarching hypothesis that justifies the present Doctoral Thesis, are explicitly
declared in section 1.3.1. Additionally, section 1.3.2. outlines the principal
objective and the specific sub-objectives that must be fulfilled in order to
accomplish this overarching goal.

1.3.1. Hypothesis

Despite the increasing interest in biocooperative systems for neuromotor
rehabilitation in scientific literature, their current limitations have confined
their application primarily to laboratory settings. As a result, studies often
overlook their potential utilization in real-world scenarios and focus solely on
academic purposes. Thus, a naive hypothesis can be formulated: limitations of
current biocooperative control systems that restrict their application outside
laboratory settings can be mitigate. However, while this statement serves as
a starting point, it is not comprehensive enough to address a specific research
question. Therefore, further exploration and examination of lower-level
hypotheses are necessary to advance toward this goal.
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As stated in subsection 1.2.4, current biocooperative systems encounter
two primary limitations: (l) hardware, and (2) reliability. Regarding to the
hardware limitations (l) improving user acceptance requires a compact set of
appropriately positioned sensors, thereby necessitating size reduction, even if
it imposes limitations on battery capacity (Qiu et al., 2022). Additionally, the
development of integrated multimodal approaches is crucial for user-centric
systems in rehabilitation applications, fostering engagement within the user
community (Rodgers et al., 2019). Real-time embedded systems play a vital
role in reducing system response time, as lengthy delays can have detrimental
effects, such as decreased task completion accuracy, reduced perceptual
sensitivity, and increased task error rates, all of which can negatively impact
user acceptance and satisfaction (Yang and Dorneich, 2015).

By developing small multimodal platforms with high computational
capacities, user acceptance can be improved in terms of comfort and faster
system response. Furthermore, the creation of affordable and versatile
platforms that support real-time multimodal controls would encourage
further research in the field of biocooperative controls. With improved
accessibility to this technology and continued research, it would be possible
for researchers to effectively translate biocooperative control strategies that
rely on physiological signals into practical and affordable real-world solutions.

The limitation of reliability (Il) largely arises as a result of hardware
limitations. By enhancing accessibility, research can be increased, leading to
the development of robust and effective controls that can be implemented in
the clinical setting. Moreover, when considering the specific case of
myoelectric EMG-driven controls, which are the most common in the field of
robotic rehabilitation, their implemented in real-world applications is not
viable due to reliability issues (Meattini et al., 2018). Although various sEMG-
based pattern recognition methods have shown promising results, their
practical application is limited due to the need for a large number of DoFs in
the robot and the associated high computational costs, making them
unsuitable for real-time embedded systems.

The development of EMG-driven control systems should focus on providing
controls that can be integrated into existing robotic platforms with a limited
number of DoFs. This approach reduces the number of electrodes, improving
both user and clinician acceptance by reducing the time required for electrode
attachment. Moreover, a lower number of DoFs and restricted movements
contribute to increased system reliability, robustness, and decreased
computational costs, resulting in appropriate response times. Collectively,
these factors enhance user acceptance. These statements form the core of the
present Doctoral Thesis, and they can be combined into the following:
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Biocooperative system may be oriented toward a real use outside laboratory
by developing cost-effective, real-time, embedded physiological data
acquisition systems, which promote further research in developing reliable and
robust controls.

1.3.2. Objectives

The overall goal of this Doctoral Thesis was to design, develop and evaluate
biocooperative control strategies in the context of upper-limb neuromotor
rehabilitation, and to provide affordable technology for their implementation
in an attempt towards widespread use in clinical settings. This general
objective involved the design and development of embedded systems for
physiological signal acquisitions and its integration in neuromotor
rehabilitation systems by implementing and evaluating assistive control
strategies. In order to achieve this general objective, the following specific
objectives arise:

I. Conduct a comprehensive literature review and examine the current
state-of-the-art in upper-limb neuromotor rehabilitation platforms, with
particular emphasis on control strategies that integrate the human
element into the control loop through the analysis of physiological
signals.

II. Design and development affordable embedded systems for physiological
signal recording and data processing for real-time execution of the
control paradigm of the rehabilitation systems.

Ill. Design and development of biocooperative control strategies for the
developed real-time embedded solutions and their integration into pre-
existing rehabilitation platforms.

IV. Perform a comprehensive evaluation of the performance of the proposed
biocooperative rehabilitation systems, including the assessment of
control accuracy, time response, and user performance.

V. Evaluation of the performance of the wearable multimodal embedded
acquisition system, focusing on its versatility, power consumption and
reliability of the recorded signals for the implementation of
biocooperative controls.

VI. To disseminate the results of this study in JCR indexed journals, as well
as, in national and international conferences.
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Chapter 2

2. Materials and methods

This chapter describes the materials and methods that have been applied
throughout the compendium of publications. Section 2.1 details the robotic
platforms used within the scope of this study. Section 2.2 is dedicated to a
comprehensive review of the relevant literature pertaining to biocooperative
controls. Afterwards, section 2.3 focuses on the experimental designs and
setups. Finally, section 2.4 offers a description of the applied metrics for
performance assessment.

2.1. Robotic rehabilitation platforms

Two robotics platforms were used in this Doctoral Thesis: the RobHand and
the M3Rob. The RobHand was used in the first (Cisnal et al., 2021) and second
articles (Cisnal et al., 2023b), in combination with the designed EMG
acquisition system. On the other hand, the M3Rob was employed in the last
article (Cisnal et al., 2023a) to assess the performance of the wearable
multimodal acquisition system. The electromechanical structures of these
robotics platforms offer unique features and capabilities that enable the
investigation of different biocooperative controls. In this section, an overview
of each platform's specifications is provided to help readers understand the
technology behind them.
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2.1.1. RobHand, a Robot for Hand Rehabilitation

The RobHand (Robot for Hand Rehabilitation) project aimed to develop a
robot for hand rehabilitation for patients with neuromotor disabilities
resulting from a cerebrovascular accident. The project was developed in
partnership between the TICCYL Digital S.L. enterprise and the ITAP Robotics
Research Group at the School of Industrial Engineering of the University of
Valladolid. The work was supported by CDTI (Center of Development of
Industrial Technology), a Public Business Entity of the Spanish Ministry of
Science and Innovation, under project IDI-20170263 with the European
Regional Development Fund (ERDF).

RobHand is an exoskeleton-type robot for neuromotor rehabilitation, which
assists flexion and extension of the hand fingers (Figure 2.1). It was specifically
designed to be lightweight, easy-to-use, cost effective and versatile. Its
mechanical design is based on a direct-driven under-actuated serial-bar
linkage paradigm. In particular, the mechanical structure is based on a
platform located on the back of the hand and five subassemblies, each one
associated to one finger. All of them are mounted on the platform except the
one for the thumb, which is connect with the platform using a linkage device.
The subassemblies are composed of an underactuated linkage-rotate
mechanic and a flexible double-ring to transmit the linear force from the
actuator to the ring attached to the proximal and medial phalanges (Moreno-
San Juan et al., 2021).

Thus, the device is characterized by independent finger motion and has two
DoFs for each finger: one active DoF associated with the metacarpophalangeal
(MCP) joint and passive DoF associate with the proximal interphalangeal (PIP)
joint. The robot provides a ROM of 82 of extension and 622 of flexion in the
MCP joint. The exoskeleton incorporates five L12-30-100-6-I linear actuators
(Actuonix Motion Devices Inc., Saanichton, BC, Canada). The actuators have a
30 mm stroke, provided up to 23N force and are low-cost, reducing the overall
cost of the system and making it more affordable.

Additionally, the flexible-double rings ensure an easy donning and doffing
of the exoskeleton even in case of patients suffering from severe hand
spasticity. First, the rings are placed on the fingers and then, they are joint to
their corresponding the linkage-rotate mechanisms. The exoskeleton is
adjusted to the hand by using two Velcro straps. Additionally, the thumb
submodule is manually adjustable, providing an easy adaptation to different
hand sizes. The system is built in aluminum except from the linkage-rotate
mechanisms and the flexibles double-rings, which are 3D printed, resulting in
a total weight of 610 g. The system also incorporates a forearm support to
compensate the forces created by the exoskeleton weight.
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Figure 2.1. The RobHand robotic platform and forearm support for hand rehabilitation
(Cisnal et al., 2021).

2.1.2. M3Rob, a robot for wrist rehabilitation

The M3Rob (in Spanish, Mente-Mano-Mufieca, Mind-Hand-Wrist-Robot)
project aimed to develop a platform for neuromotor and cognitive hand and
wrist rehabilitation for people who have suffered a cerebrovascular accident.
The project is developed by TICCYL Digital S.L. company, the ITAP Robotics
Research Group and the Biomedical Engineering Group, both from the
University of Valladolid, and the Benito Menni Hospital Center in Valladolid.
The project is supported by the Ministry of Science and Innovation of Spain,
under grant RTC2019-007350-1.

The rehabilitation robot assists the pronation/supination (PS),
flexion/extension (FE), and radial/ulnar (RU) deviation motions of the wrist. It
is based on a three serial revolute active joints (3-DoF RRR) mechanism (Figure
2.2). Each rotational joint is powered by one independent brushed DC motor
(Maxon Motors, Switzerland) equipped with a 3-channel encoder. Cables are
used to transmit the force generated by the motors to the mechanical
structure, and thus, assist the wrist motion. The mechanism also incorporates
a one passive DoF that allows manual adjustment of the forearm support. A 6-
axis torque-force sensor K6D27 50N/1Nm (Me&Systeme, Germany) is
embedded in a cylindrical handle. The range of motion of PS, FE and RU joints
are 1809, 1352 and 1109, respectively (Cisnal et al., 2022a).
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Figure 2.2. The M3Rob robotic platform for wrist rehabilitation, which provides
assistance of the pronation/supination, flexion/extension, and radial/ulnar deviation
motions.

2.2. Biocooperative controls

The first section 2.2.1 describes some physiological signals, which are
necessary for the development of biocooperative controls. Subsequently, in
section 2.2.2, is focused on reviewing relevant literature on non-pattern
recognition-based myoelectric controls. EMG-driven control can be classified
into two main types: discrete and continuous control, with the former further
categorized into non-pattern (or threshold) methods and pattern recognition
methods. Considering our emphasis on developing an embedded control
system with intrinsic limited computation capacity and intended for real
applications, we have opted to concentrate only on non-pattern recognition
controls. Finally, in section 2.2.3, a brief summary of the state of the art on
multimodal controls will be presented.

2.2.1. Physiological signals

Based on wide range of physiological signals used in related studies (Table 1.2)
and considering both usability and wearability, we decided to only focus on
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four sensor technologies from which valuable physiological data can be
extracted:

Electromyogram (EMG) provides important information on muscle
activation patterns and muscle properties. EMG has the potential to offer an
objective and quantitative approach to evaluate not just movement pattern,
but also muscle function and local fatigue muscle (McManus et al., 2020).
Hence, it can be used for progress assessment and evaluation of the
rehabilitation outcomes.

Electrocardiogram (ECG) provides information about the activity of the
rate. Several parameters can be extracted, such as HR or HRV. The HR can
indicate the body’s need for oxygen and provide insights into the physical
effort. Additionally, HR and arousal are strongly correlated (Malmstrom et al.,
1965). HRV as well as HR has been also used as an indicator of arousal, physical
effort and mental workload (Meshkati, 1988).

Galvanic Skin Response (GSR) signal can be divided into tonic and
phasic component. The tonic component, also known as SCL, exhibits slow
changes over time and is related to skin hydration, dryness, and autonomic
regulation, indicating general changes in arousal. On the other hand, the
phasic component, referred to as SCR, represents the rapidly changing part of
the signal that responds to emotionally stimulating events. SCL a is a good
indicator for physical workload, while the frequency of SCR increases with
arousal and mental workload (Novak et al., 2010).

Peripheral Skin Temperature (SKT) is an effective way to estimate
emotional state (Ekman et al., 1983). When the sympathetic nervous system
is activated due to stress, it causes vasoconstriction, which reduces peripheral
circulation and lowers skin temperature. SKT changes can also indicate
significant physical activity as the shunting of blood in the body helps regulate
temperature and meet the oxygen demands of organs.

2.2.2. Non-pattern EMG-based controls

Non-pattern EMG-based controls require the comparison of EMG activity
between muscles. To achieve this, signal normalization is necessary to mitigue
the effects of interferences on the signals, including power line noise, skin
perspiration, sensor contact impedance, and crosstalk interference from
active muscles (Halaki and Ginn, 2012). These factors contribute to high signal
variability, and small differences in electrode placement between sessions can
compromise the repeatability of EMG signals (Chowdhury et al., 2013). EMG
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processing involves rectifying the raw EMG signal and mapping it into a
normalized signal ranging from 0 to 1.

EMG rectification involves converting all negative signal values to positive
amplitudes. The average rectified value (AVR), root mean squares (RMS) and
signal envelope are commonly used methods for full-wave signal rectification,
typically followed by a low-pass filtering (Conforto, 2009). However, while
RMS measures the signal power, AVR and envelope do not possess a specific
physical meaning (Luca, 2002).

Normalization typically involves using the maximal voluntary contraction
(MVC) as a reference value. This approach allows for the comparison of muscle
activation patterns within an individual over time. However, it is not suitable
for comparing between different individuals, muscles, or tasks. In clinical
applications, where patients may not be capable of exerting maximum efforts
or repeating certain movements, EMG is often normalized to submaximal
contractions or reference voluntary contractions (RVC) as they provide a more
reliable indicator of changes in muscular activity (Lehman and McGill, 1999).

Various non-pattern recognition EMG-based controls for hand robot have
been previously proposed in the literature. These controls share a similar
nature but are referred to differently, such as binary control (Lucas et al.,
2016), ON-OFF control (Serpelloni et al., 2016), time-over-threshold control
(Polygerinos et al., 2015a), or triggered mode (Chen et al., 2009; Ho et al.,
2011).

A binary control was developed to regulate the pressure level of a
pneumatic hand exoskeleton (Lucas et al., 2016). The biceps EMG signal was
recorded, rectified, smoothed using a Butterworth low-pass filter, and
normalized using the MVC. The resulting EMG signal was then used to
determine the controller binary output: if the EMG signal exceeded a specified
threshold value, the output was set to "on", and if it was below the threshold,
the output was set to "off". To avoid output oscillation, a hysteresis
mechanism was implemented in the valve triggering system. Initially, the
threshold values were set at 55% MVC to activate the "on" state and 45% MVC
to initiate the "off" state. However, before each experiment, these threshold
values were adjusted to ensure they corresponded to the subject's
comfortable level.

A triggered ON-OFF EMG-driven control for the GLOREHA glove was
designed to identify three different states, namely hand opening, hand rest
and hand closing, with a predefined speed command (Serpelloni et al., 2016).
Electrodes were placed on the extensor digitorum (ED) and the extensor carpi
radialis to detect muscle activation during hand opening, while the palmaris
longus and the flexor carpi ulnaris muscles were used to detect hand closing.
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The EMG signals were sampled at a rate of 25 KHz, and a temporal
segmentation of 1-second windows with a 99.5% overlap between adjacent
windows was employed, resulting in a temporal resolution of 5 ms. Within
each window, the signal was rectified using RMS method. The difference
between the rectified signals of the extensor and flexor EMG signals was then
calculated. This difference, along with two threshold values, was employed to
determine the three states (Figure 2.3).
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Figure 2.3. EMG differences and thresholds used in the triggered ON-OFF EMG-driven
control (Serpelloni et al., 2016).

Another EMG-triggered control utilized two EMG signals obtained from the
ED and the abductor pollicis brevis (APB) muscles to detect the intention of
hand opening and closing (Chen et al., 2009). The EMG signals were subjected
to full-wave rectification and then smoothed by applying a moving average
filter with a window size of 100 ms, followed by normalization using the MVC.
The hand rehabilitation robot was programmed to initiate movement when
the EMG signal exceeded a threshold of 30% of the MVC.

An open-loop time-over-threshold EMG-driven control was designed for a
hydraulically actuated soft rehabilitation glove (Polygerinos et al., 2015a). It
detected user intention by measuring electromyographic signals from
electrodes attached to the forearm, specifically the flexor digitorum
superficialis (FDS) and the ED. The control system continuously monitors and
compares the FDS and EDC muscle signals to detect predefined conditions:
flex, extend, and hold. The flex condition pressurizes the soft actuators,
causing the glove to flex along with the fingers, while the extend condition
depressurizes the actuators, returning the fingers to the extended position.
The hold condition maintains the present fluidic pressure within the actuators.
To avoid misinterpretation of involuntary muscle contractions, the conditions
require the processed signals to cross predefined thresholds for a specified
duration (Figure 2.4). These conditions are manually adjusted.
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Figure 2.4. EMG signal processing for the FDS muscle in the time-over-threshold EMG-
driven control (Polygerinos et al., 2015a).

An EMG-triggered mode strategy was developed to control the Hand of
Hope exoskeleton by recording the EMG signals from the APB and ED muscles
(Ho et al., 2011) The EMG signals were normalized with respect to the MVC,
which was determined at the beginning of each training session. A threshold
of 20% of the MVC was employed to initiate hand opening and closing
motions. During hand closing triggering mode, the robotic system awaited
EMG signals from the APB muscle surpassing 20% MVC before initiating hand
closure. Similarly, during hand opening mode, the system awaited EMG signals
from the ED muscle exceeding 20% MVC before starting the hand opening
action (Figure 2.5).
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Figure 2.5. Raw EMG signals from the APB and ED muscles and the EMG-triggered
status (Ho et al., 2011).
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2.2.3. Multimodal controls

Multimodal controls and methods for recognizing emotions through
physiological signals have been previously proposed in the literature. One
study adapted the level of assistance provided by an upper-limb rehabilitation
robot based on the patient's performance and fatigue. Patient performance
was determined using biomechanical information from an IMU sensor, while
muscular fatigue was estimated using EMG signals (Scotto Di Luzio et al.,
2018). Another study adjusted the difficulty of an upper extremity
rehabilitation task using biomechanics (force and movement), task
performance, and physiological signals, such as ECG, GSR, RESP, and SKT
(Novak et al., 2011).

A two-stage fuzzy logic model was used to generate the next action
primitives of an upper extremity rehabilitation device (Figure 2.6). The first
stage calculated motor performance, arousal, and valence based on position,
force, RESP, GSR, and SKT. The second stage selected the action primitives
based on physical effort associated with motor performance, arousal, and
valence (Mihelj et al., 2009).

movement
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response frequency|
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standard deviation

of respiratoryrate |———
valence estimation
fuzzy rules

skin temperature

motor performance
estimation fuzzy rules
— ¢~ physical
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)

arousal

arousal estimation action primitives
fuzzy rules selection fuzzy rules

valence

Figure 2.6. Simplified diagram of the two-stage fuzzy logic model for generating action
primitives in an upper extremity rehabilitation robot (Mihelj et al., 2009).

Affective and emotional states have also been used to control devices, such
as modulating the assistance provided by a haptically controlled robot based
on user emotions. Emotions were estimated by a fuzzy logic model that
considered the 3-dimensional emotion model (arousal, dominance, and
valence) using HR mean, SCL mean, and SCR frequency as inputs (Guerrero et
al., 2013). Similarly, arousal and valence have been determined using
normalized GSR, HR, and EMG signals as inputs to a fuzzy logic control scheme
characterized by 22 rules as shown in Figure 2.7 (Mandryk and Atkins, 2007).
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Figure 2.7. Determination of arousal and valence from GSR, EMG and HR information
(Mandryk and Atkins, 2007).

Emotion recognition, considering either pleasant, neutral, or unpleasant
states, has been addressed using EEG, BVP, SKT, and SCL recordings and
developing gradient boosting machines (GBMs) and convolutional neural
networks (CNNs) (GUmusli et al., 2020). Models were developed to recognize
six and even eight basic emotions employing various classification methods
such as SVM and k-nearest neighbors (KNN) (Khezri et al., 2015; Picard et al.,
2001). Detection of basic emotions considering two, three, or four states was
also investigated using HR and SCL measurements and employing a
Classification and Regression Trees (CART) algorithm (Hariharan and Adam,
2015). Several studies have used physiological signals to map emotions in a
two-dimensional model of arousal and valence (Kim and André, 2008; Koelstra
et al., 2012).

Affection recognition has been developed considering three target affective
states, such as anxiety, engagement, and liking, using SVM-based recognition
models with different features derived from physiological signals (Liu et al.,
2008). Differentiating of stress and normal states has been carried out using
SVM and features derived from BVP, GSR, and PD signals. Finally, a
classification method was developed to detect three levels of stress using
pulse rate, RESP rate, SKT, and GSR features (Badesa et al., 2014).

2.3. Experimental design

This section details the experimental design employed to investigate the
accuracy and responsiveness of EMG-driven control (section 2.3.1) and the
impact of the EMG-based visual feedback on user performance (section 2.3.2).
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2.3.1. Accuracy and responsiveness of the EMG-driven
control

The first study was conducted to evaluate the accuracy and responsiveness of
the EMG-driven bilateral assistance with the RobHand exoskeleton (Cisnal et
al., 2021). Ten healthy subjects (7 males, 3 females) over 18 years old with no
neurological or motor impairment, volunteered for the study and provided
written informed consent.

The subjects wore a 5DT Data Glove (5DT Technologies) to measure the
actual position of the dominant hand (corresponding to the non-paretic hand
of the patient), while the sEMG of the muscles responsible for that hand
movement were recorded, and also the recognized hand gesture. The subjects
wore the hand exoskeleton on the non-dominant hand (corresponding to the
paretic hand of the patient), which replicated the gestures recognized from
the sEMG signals analysis (Figure 2.8).

Figure 2.8. The left-handed subject wearing the 5DT Data Glove on the dominant hand
and the exoskeleton on the non-dominant hand. The sEMG electrodes are attached to
the target muscles of the forearm of the dominant hand (Cisnal et al., 2021).

The subjects were asked to perform an initial calibration followed by ten
one-minute tests, with a 5-minute rest between tests to avoid the appearance
of muscle fatigue. Each test consisted of performing and maintaining hand
gestures (rest, open and close) with the dominant hand. The gesture to be
performed was indicated on the computer screen and was randomly
generated every 5s.
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2.3.2. Influence of the feedback on the wuser’s
performance

The second study was conducted to evaluate the influence of the visual EMG-
based visual feedback on the subject’s performance when performing EMG-
driven bilateral therapies with the RobHand exoskeleton (Cisnal et al., 2023).
Eighteen subjects (23%3.4 years old) with no neurological or motor
impairment volunteered and provided written informed consent.

The subjects wore the hand exoskeleton on the non-dominant hand (in the
case of a patient, it would correspond to the paretic hand), while the SEMG
signals were recorded from the target muscles of the dominant hand (in the
case of a patient, it would correspond to the healthy hand) (Figure 2.9).

Figure 2.9. The right-handed subject wearing the hand exoskeleton on the non-
dominant hand while the SEMG electrodes are attached to the target muscles of the
forearm of the dominant hand (Cisnal et al., 2023).

Subjects performed an initial calibration and four one-minute experimental
tests (named A, B, C and D) with a three-minute break between tests to avoid
muscular fatigue. To avoid the appearance of learning order effect, the four
tests were randomly performed. Each test consisted of performing and
maintaining a hand gesture (rest, open or close) with the dominant hand. The
target gestures were randomly generated every three seconds. Each test was
characterized by a different combination of two feedback sources (Table 2.1):
kinesthetic and EMG-based visual feedback. While the kinesthetic feedback
was provided by the movement of the hand exoskeleton based on the EMG-
driven bilateral control, the EMG-based visual feedback was provided by the
computer screen.
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Table 2.1: Test configuration for evaluating user performance based on the presence
of feedback sources, including kinesthetic and EMG-based visual feedback.

Kinesthetic Feedback EMG-Based Visual Feedback
Test A V) v)
Test B (V) (x)
Test C (x) v)
Test D (x) (x)

The overall system configuration employed in the experimental protocol is
depicted in Figure 2.10. The participant is instructed to execute a specific hand
gesture (i.e., open, close, or rest) using their dominant hand, guided by visual
and auditory information provided by the computer. Concurrently, the
recorded EMG signals are transmitted to the microcontroller for gesture
recognition and generation of control signals to actuate the exoskeleton
accordingly. The recognized gestures are then transmitted to the PC to update
the EMG-based visual feedback. Additionally, both the recognized and target
gestures are stored in a SQL database as temporal series for subsequent
offline analysis. The provision of EMG-based visual feedback and kinesthetic
feedback from the exoskeleton movement is dependent on the specific test
being conducted (i.e., test A, B, C, or D).

EMG-BASED FEEDBACK e
1 GESTURES
TARGET GESTURE _— >

Computer SQL Server
Database

EMG SIGNALS
(dominant hand)

Subject

Hand Exoskeleton

RECOGNIZED GESTURE

CONTROL SIGNALS

Electronics KINESTHESTIC FEEDBACK
(non-dominant hand)

Figure 2.10. Experimental setup diagram, showing the data flow between subsystems:
visual information from the computer (yellow lines), EMG and control signals (red
lines), data transmission (blue lines), and exoskeleton movement (green lines). The
presence of the source of feedback (dotted lines) varies depending on the specific test
(Cisnal et al., 2023b).
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2.4. Performance assessment

During the different studies that compose the present Doctoral Thesis,
performance assessments were carried out to evaluate the real-time control
performance of the rehabilitation system based on motion intention
recognition. In the specific case of an assistive rehabilitation robot based on
gesture recognition, a reliable and natural human-robot interaction requires a
combination of a good responsiveness and accurate gesture detection. Large
delay times can exert adverse consequences and can negatively influence the
user satisfaction towards robot-assisted therapy (Yang and Dorneich, 2015).
Likewise, wrongly movement assistance negatively affects satisfaction and can
even lead to physical damage. Hence, determining the relevant time delays
and gesture classification metrics of the robotic system for an efficient HRI is
essential (Cisnal et al., 2021). Additionally, similarity measurements for time
series and parametric statistical tests are used to evaluate user performance
under different feedback setup conditions when using the EMG-driven hand
exoskeleton (Cisnal et al., 2023b).

2.4.1. Classification accuracy

Evaluation metrics play a critical role in evaluating the effectiveness of
classification problems. There are two types of classification problems
according to the number of classes: binary classification and multi-class
classification (Tharwat, 2018). The quality of the classifier can be expressed
using a confusion matrix, which is a table that records the number of
occurrences between two raters: the rows of the table represent the
predicted classes, while the columns show the actual/true classes.

For binary classification, the confusion matrix is shown in Figure 2.11. True
Positive (TP) and True Negative (TN) are the number of positive and negative
classes that are correctly classified. Meanwhile, the numbers of misclassified
negative and positive instances are denoted by False Positive (FP) and False
Negative (FN), respectively (Hossin and Sulaiman, 2015).

From the confusion matrix, many metrics for evaluating the classification
effectiveness can be calculated (Grandini et al., 2020). Accuracy (Acc) is the
most popular classification, although some complement metrics such as
precision or recall, are also used to express all the relevant information about
the algorithm performance. Accuracy measures how much the algorithm is
correctly predicting in the entire set of data by evaluating the percentage of
correct predictions over the total number of samples. Accuracy is calculated
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using equation (1), which considers the sum of TP and TN elements at the
numerator and the sum of all entries at the dominator.

True/Actual Class

Positive (P) Negative (N)

@ £
% o True Positives False Positive
5 E (TP) (FP)
O
0}
e
=
I
9 o False Negative  True Negative
(AT (FN) (TN)
e
P=TP+FN N=FP+TN

Figure 2.11. Confusion matrix for a binary classification problem. There are two true
classes: positive (P) and negative (N). The output of the predicted class is either true (T)
or false (F).

The precision, or positive predictive value (PPV), quantifies the correctly
predicted positive classes among the total predicted positive classes. Precision
is calculated using equation (2).

TP

Precision = ———_ 5
recision TP FP (2)

Recall measures the fraction of positive classes that are correctly classified.
It is also known as true positive rate (TPR), and it is calculated using equation

(3).

Recall = — (3)
S = TP ¥ FN
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The EMG-based gesture recognition control is considered a classification
problem since it requires determining one gesture out of three possible
gestures (open, close and rest). Hence, the confusion matrix and
abovementioned metrics are used to evaluate the performance of the gesture
recognition algorithm (Cisnal et al., 2021).

2.4.2. Time delay analysis

The study of responsiveness of the EMG-based rehabilitation system is carried
out using the following time-related metrics (Cisnal et al., 2021). Some of them
were proposed by Li. et al. in the work in which they quantified the time delay
of an EMG-based pattern recognition control of a virtual arm (Li et al., 2010),
the rest are proposed in the context of this work.

Motion-selection time (MST) is the time needed by the controller to
accurately determine a certain gesture. Hence, MST is calculated as the time
interval from the onset of the motion to the instant the controller accurately
predicts that motion.

Motion-onset time (MOT) is calculated as the time interval from the
onset of the gesture change movement to the instant the assistive robot starts
that movement.

Motion-completion time (MCT) is calculated as the time interval from
the onset of the gesture change movement to the instant the assistive robot
correctly reaches the next gesture.

Motion-completion rate is the percentage of successfully motions,
considering that a motion is successful when it is performed within a time
limit. The time limit is established based on clinical experience and is 5s to
ensure that the movement is not too slows so as not to demotivate or annoy
the user.

A time diagram representing the time parameters (MST, MOT and MCT) is
shown in Figure 2.12 to enhance comprehension. These time-delay metrics
are characterized by events that define their onset and end time: motion onset
time of the subject (MOuyman), the motion onset time of the assistive robot
(MOrogot), the motion end time of the assistive robot (MEgrosor), and the time
in which the controller accurately detects the gesture (AGDcrry).
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Figure 2.12. Timing diagram showing the time-related metrics: MST, MOT, MCT (Cisnal
etal, 2021).

2.4.3. Time series similarity measurement

A similarity measure is mathematically defined as a real-valued function that
quantified the similarity between two entities, in this context between two
time series. Similarity measures can be divided into lock-step measures that
calculate the one-to-one point Lp-norm or distance between two series or
using elastic measurements that do not considered a fixed step, such as the
Dynamic Time Warping (DTW) or the Longest Common Subsequence (LCSS)
(Ding et al., 2008).

Lock-step measures are commonly used since they are relatively
straightforward, intuitive and their low linear computational cost. However,
since distance is computed from i-th point of one time series to the i-th point
of another series, this method is highly sensitive to noise and time
misalignments (Ding et al., 2008). Therefore, two time series must be time-
synchronized before calculating the distance measurements, since local time
shifting can’t be handled.

Synchronization of two time series x and y can be performed by calculating
the lag at which their cross-correlation (rx») is the highest. ry, is computed
based on equation (4), where h is the lag and * denote the complex conjugate.

N-h-1
x(n+h)-y*(n), 0<h<N-1
=] 2, DY@

re), -(N-1)<h<o0

(4)
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The most typical examples of distance metrics are the Manhattan distance
(L1 norm) and the Euclidean distance (L2 norm). L1 norm is calculated as the
sum of the absolute difference of the values of the time series as shown in
equation (5), while L2 norm is calculate as the square root of the sum of the
square time series values as expressed in equation (6).

Nsamples

Lixy) = Z lx; — yil (5)

i=0

L,(x,y) = (6)

were x; and y; are elements of x and y, respectively. The comparison of
distance measurements between time series with different durations requires
a previous normalization. These metrics can be normalized by multiplying by
the sampling period (Ts).

2.4.4. Statistical analysis

Statistical analysis is a powerful tool in scientific research, allowing for fair
comparisons of data across multiple groups and provides valuable insights into
the relationship between variables. One commonly used method for this type
of analysis is Multifactorial additive Analysis of Variance (ANOVA), which
enables researchers to assess multiple dependent variables simultaneously.
This approach is particularly useful when dealing with more than two
independent groups, as it allows researchers to determine whether there is a
statistically significant difference between the means of those groups.

The ANOVA is based on testing the null hypothesis that the mean values of
all groups are equal. If the null hypothesis is rejected, it means that at least
one pair of groups differs significantly on at least one variable, indicating that
the independent variable explains a significant amount of variance in the
dependent variable. However, ANOVA does not provide information about
which group means are significantly different from each other. To uncover
specific differences between three or more group means, post hoc tests are
used. Post hoc tests, such as Duncan’s Multiple Range test, measure specific
differences between pairs of means.

Duncan's Multiple Range test is a post hoc test that compares all possible
pairs of group means to identify which pairs differ significantly. This test is
based on a ranking system that compares the distance between group means
with the standard error of the mean. The test identifies significant differences
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between groups by dividing the mean square error by the number of degrees
of freedom to calculate the standard error of the mean. This standard error is
then compared to the difference between the means of each pair of groups.
If the difference between the means is greater than the standard error, the
two means are significantly different.

The statistical analysis of ANOVA and Duncan’s Multiple Range test relies
on several important assumptions: normality, homogeneity of variances, and
independence. Normality refers to the requirement that the data follows a
normal distribution, ensuring that the sample means are normally distributed.
Homogeneity of variances implies that the variability among the groups being
compared is approximately equal. Independence requires that each
observation is independent to the others, meaning that the values of one
observation do not influence or depend on the values of other observations.

It is important to note that obtaining reliable and valid results depends on
adhering to these assumptions. When the assumption of normality is violated,
it can lead to Type | or Type Il errors. Type | error occurs when a significant
difference is detected between groups when no true difference exists. Type Il
error occurs when a true difference between groups exists, but it is not
detected as statistically significant. Violations of homogeneity of variances
assumption can lead to biased estimates of group differences and impact the
validity of the statistical tests. Therefore, assessing the assumptions of
normality and homogeneity is crucial to ensure the reliability and validity of
the results and minimize the potential for Type | and Type Il errors.

Overall, statistical analysis, including ANOVA and post hoc analysis, is a
crucial tool for making fair comparisons between groups and determining
specific differences between means. They allow to identify significant
relationships between variables and gain a deeper understanding of the
mechanisms underlying their research questions.

In the present Doctoral thesis, we evaluated the influence of EMG-based
visual biofeedback on users’ performance (Cisnal et al., 2023). Prior
conducting the analysis, normality and homogeneity of variances were
verified. ANOVA was used for evaluating the effects of independent variables
such as the type of test, test order, and individual on user performance. Next,
we performed a Duncan’s Multiple Range test to evaluate the differences in
user performance with the presence or absence of two different types of
feedback (EMG-based visual feedback and kinesthetic feedback from the
motion exoskeleton) by calculating the difference between pairs of means.
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Chapter 3

3. Results

In this chapter, the most relevant results of the Doctoral Thesis are
summarized. Section 3.1 introduces the designed embedded solutions for
physiological signal acquisition, while section 3.2 elaborates on the
development of biocooperative control strategies. The results of the
performance assessment are provided in section 3.3.

3.1. Embedded systems for physiological signal
acquisition

This section presents the two embedded system for physiological signal
acquisition that have been developed. The first one was specially designed for
the implementation of rehabilitation therapies based on sEMG signals (Cisnal
et al., 2021). The second solution features a wearable design with enhanced
versatility, enabling the acquisition of a broader range of physiological signals
to facilitate the development of multimodal biocooperative controls (Cisnal et
al., 2023a).

The primary objective behind the design and develop embedded electronic
systems for physiological signal acquisition is to overcome certain limitations
identified in prior studies. Specifically, these include the high cost of such
systems, which is a major obstacle to universal access, as well as the use of
computers as the data processing platforms, which presumably increases the
latency time of the entire rehabilitation platform. As a solution of these
challenges, custom-made systems have been developed with the goal of
minimizing overall costs. Additionally, these systems incorporate a real-time
microcontroller (MCU) for advanced on-board processing.
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Both systems are based on the TMS320F28069M MCU (Texas Instruments,
Texas, USA), whose Harvard architecture is optimized to perform real-time
tasks. The MCU is characterized by a two-core architecture resulting in a large
system bandwidth. C28x core and CLA (Control Law Accelerator) execute code
independently and interface using a specialized data bus (CLA Bus). The high
efficiency 32-bit C28x core runs up to 90 KHz and. It also equipped with 256
Kb Flash embedded memory, 100KB of RAM and 2 KB of one-time
programmable (OTP) ROM. Additionally, the MCU integrates multiple
peripherals such as a 12-bit analog-to-digital converted (ADC) with a sampling
rate up to 3.46 MSPS (mega samples per second), serial port communication
peripherals (SPI, i2C, UART...), ePWM (enhance Pulse Width Modulation)
modules and timers. Normal current consumption is 245 mA, allowing low-
power operating modes.

3.1.1. EMG acquisition system

EMG-driven control strategies are widely used in rehabilitation robotics.
Muscular electrical activity resulting from MUAP superposition (raw sEMG
signals) can be acquired by surface electrodes and proper conditioning
circuits. Therefore, a custom-made application-specific integrated circuit
(ASIC) was designed to capture and preprocess the sEMG signals, which are
subsequently converted by an ADC for its transmission to the
TMS320F28069M MCU, especially dedicated to real-time processing
operations.

The 2-channel EMG data acquisition ASIC developed is characterized by a
24-bit resolution differential channels and 112 DB of dynamic range (DR). The
channels consist of an instrumentation amplifier of gain 50 followed by an RC
low-pass filter with a cutoff frequency of 150 Hz. The channels are designed
to compensate differential input offset to prevent the instrumentation
amplifier from saturation. Additionally, the ASIC has the MCP3912 (Microchip
Technology Inc., AZ, USA) Analog Front End (AFE), which is characterized by
synchronous Delta-Sigma ADCs, which interfaces with the TMS320F28069M
MCU using SPI communication and other digital control signals.

The 4-layer Printed Circuit Board (PCB) has split ground planes to separate
analog, digital, and power circuitries to ensure signal integrity (Figure 3.1, a).
Discrete Surface Mounted Device (SMD) components are placed on the top
and bottom layers, resulting a board size is 50.8x33 mm, with an active area
of 10 cm? (Figure 3.1, b). The PCB was purposely designed to enable direct fit
of the LAUNCHXL-F28069M MCU, thereby eliminating the need of wiring
(Figure 3.1, c). The chip consumes 3 mW from 3.3 V DC power supply.
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Figure 3.1. EMG acquisition system layout (a) PCB layout (b) final solution (c) board
plugged-in the MCU.

The main characteristics of the proposed EMG signal acquisition system are
outlined in Table 3.1. The system is powered by a 5 V supply derived from the
MCU, despite the admissible power supply ranging from 3 to 12V. Additionally,
the Delta-Sigma ADCs are fully configurable, and he configuration details
specifically established in this thesis are presented in Table 3.1.

3.1.2. Multimodal acquisition system

The proposed embedded wearable system integrates multiple sensors
modalities, high-efficiency real-time MCUs, and wireless communication,
providing a highly flexible and capable platform for the development of
biocooperative controllers. The system is battery-powered and integrates five
sensors (IMU, ECG, EMG, GSR, and SKT), which directly interface with the
TMS320F28069M MCU for real-time data processing and control (Figure 3.2).
The recorded and processed data can be transmitted by a CC2650 (Texas
Instruments, TX, USA) Bluetooth low energy (BLE) MCU. Additionally, a JTAG
port allows temporary access to the MCUs.
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Table 3.1: Technical specifications of the EMG acquisition system, encompassing
general characteristics and configuration parameters of the Delta-Sigma ADCs.

General Characteristics Values
Supply voltage 3.3-12V/5v@
Supply voltage 5V
Total Current Consumption 0.9 mA
Active area 10 cm?
Board dimensions 50.8x33 mm
EDS input protection 17 KV
Acquisition channels 2 ch.
AZ- ADC Performance Values
Frequency sample 200 Hz®?
Acquisition bandwidth 195 Hz @
Digital Signal Resolution 24 bits @
Operating frequency 3.3 MHz®
Differential input impedance 232 KQ®
DD CMRR 100 dB
Signal-to-Noise Ratio (SNR) 94 dB

(@ Established configuration.
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Figure 3.2. High level block diagram of the proposed multimodal embedded system
(Cisnal et al., 2023a).

An ICM-20948 9-axis MEMS device (InvenSense, CA, USA) allows to track
the motion of the user wearing the device. It consists of a gyroscope, an
accelerometer and a compass with programmable sensitivities and filters. It
also embeds a digital motion processor (DMP) aimed to reduce the
computational load associated to the motion algorithm from the MCU, thus
improving system performance. The ICM-20948, which is powered at 1.8 V,
communicates with the TMS320F28069M using Fast Mode i2C.

The fully integrated single-lead ECG front-end AD8232 (Analog Devices Inc.,
MA, USA), powered at 3.3 V, amplifies, and filters the ECG signals. It also
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incorporates an AC lead-off detection mode. The recorded ECG signals are
analog-to-digital converted in the MCU with 12-bit resolution and two
additional digital signals interface with the MCU to indicate whether the snap-
lead pre-gelled electrodes are properly attached and connected using a jack
connector.

A 2-channel electromyographic signal acquisition module is also integrated
into the printed circuit board. The electronic circuit of the module is the same
as described in section 3.1.1. The GSR measurements are based on a low
constant voltage technique. A low electrical potential is applied between two
electrodes attached to two hand fingers and the resulting current flow is
amplified by the LM324 quadruple operational amplifier (Texas Instruments,
TX, USA) and then, filtered. The analog output is transmitted to the MCU to be
ADC.

The MLX90614 infrared (IR) thermometer (Melexis, Belgium) allows to
measure the body temperature without physical contact and thus, facilitating
its continuous monitoring. The MLX90614 is characterized by an IR-sensitive
thermopile detector chip and conditioning circuit, which includes a low-noise
amplifier, a 17-bit ADC and a digital signal processing unit. It transmits the
temperature measurements with up to 0.02 C resolution to the MCU via i2C
and it is powered at 3.3 V.

The CC2650 MCU is a system-on-chip (SOC) that provides an ultralow power
BLE using a 2.4 GHz RF transceiver. The MCU is built on an ARM® Cortex®-M3
processor for the application layer and BLE protocol stack management and
on ARM Cortex®-MO processor for the autonomous low-level radio control
and processing related to the physical and link layers. The CC2650 MCU
interfaces with the TMS320F28069M using one of the following serial
communications: i2C, SPI or UART. No external antenna is required since the
PCB integrates one on the top cooper layer, flowing TlI’s design specifications.

The device is powered by a battery or via a USB-C port if the battery is being
recharged. The system integrates a MCP73831 dedicated integrated circuit
(Microchip Technology Inc., AZ, USA), which is based on a constant
voltage/constant current (CVVC) charging method. The charge management
controller continuously monitors the battery voltage and starts its recharge if
the voltage drops below a threshold. A 3.7V 3500 mAh rechargeable lithium-
ion polymer battery (68x55x7 mm) provides an estimated life of 5 hours,
considering that a maximum power consumption of 1250 mW.

The 2-layer PCB was designed to optimize signal integrity and its layout is
based on the different submodules (Figure 3.3, a). The power planes are split,
and 12 mil wide traces are used, except for 24 mil wide power signals. For
reducing assembling costs, all components are placed on the top layer, except
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for the thermometer. The resulting board size is 63x83 mm, including three
holes for screw fixing to the box (Figure 3.3, b).

£

= Tu23t ser

(a) (b)

Figure 3.3. Multimodal acquisition system (a) PCB layout (b) Final solution (Cisnal et al.,
2023a).

3.2. Biocooperative rehabilitation systems

This section aims to present three biocooperative control strategies for upper-
limb rehabilitation using the acquisition systems described in the previous
section 3.1. An EMG-driven bilateral control for hand robotic rehabilitation is
detailed in section 3.2.1. In section 3.2.2, a VR-based exergame using hand
gesture detection and arm tracking is presented. Lastly, an AAN control for
robotic wrist rehabilitation therapy is described in section 3.2.3.

3.2.1. EMG-driven control for hand robotic
rehabilitation

A threshold EMG-driven control has been proposed for conducting bilateral
training with the RobHand rehabilitation robot (section 2.1.1). The
exoskeleton is worn on the impaired hand to provide assistance in motion,
while surface electrodes are attached to the forearm muscles and olecranon
of the healthy limb for recording the EMG signals (Figure 3.4).
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Figure 3.4. User performing EMG-driven bilateral therapy using the RobHand
rehabilitation platform. The exoskeleton is worn on the impaired hand, while
disposable electrodes are attached to the forearm muscles of the healthy hand to
capture EMG signals (Cisnal et al., 2023b).

The embedded system described in section 3.1.1 was used to record the
SEMG signals of the ED and the FDS muscles, responsible for the extension and
flexion of the hand fingers. The acquired signals were processed by the MCU
to recognize the gesture performed by the healthy hand (rest, open or close),
generating the proper pulse width modulation (PWM) signals so the
rehabilitation exoskeleton placed on the paretic hand moves to replicate the
detected gesture (Figure 3.5).

EMG Acqusition System LAUNCHXL-F28069M | -------,
DR General-Purpose i CLA '
RST Input/Output | |
<"1 (GPIO) Module [ ' HAND
Emo o — ! ||[exoskeLETON
Serial Peripheral | || ~-----)
Interface(SPI) >
x Module > C28x
© CPU d [
Enhanced Pulse <€y, ! i =
Width Modulator ' '
(ePWM) Module D ' “
PWM signals
HEALTHY PARETIC

Figure 3.5. Simplified block diagram of the implementation of the EMG-driven control
on the RobHand platform for assisted bilateral therapy (Cisnal et al., 2021).

The EMG signals, which are recorded at 200 Hz, are filtered for baseline
noise and electromagnetic interferences removal and then, rectified and
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normalized to compare the electrical activity between muscles (Figure 3.6). A
notch center frequency (50 Hz cuff-off frequency; 20 Q-factor) and a high-pass
FIR filter (0.01 Hz stopband frequency; 10 Hz passband frequency: 80 dB
minimum stopband attenuation; 0.1 dB maximum passband ripple) are
applied to the raw EMG signals. The rectification is based on a 10-point RMS
and a low-pass FIR filter (1 KHz passband edge frequency; 2 Hz stopband edge
frequency; 4 dB maximum passband ripple; 10 dB minimum stopband
attenuation), resulting in a down-sampling of 20 Hz. The normalization is
performed with respect to the MVC.

. 4
ol 0D

Filtering Rectification Normalization

Figure 3.6. SEMG signal recording and processing, including filtering, rectification, and
normalization (Cisnal et al., 2021).

The MVC values and EMG-based thresholds are computed in a calibration,
which is user and rehabilitation session-specific. In the calibration procedure,
subjects are asked to relax, open, and close their hand for 8 s each (Figure 3.7).
The MVC values (MVCep and MVCeps) are calculated as the maximum value of
their corresponding rectified EMG signal (rEMG), as indicated in equation (7).

MVCFDS/ED = max(rEMGFDS/ED) (7)

The extensor and flexor threshold, defined as € and p, correspond to the
maximum limit values corresponding to muscular deactivation of the FDS and
ED muscles, respectively. They are calculated following equations (8) and (9).

g = MINEMG) 4 ®)
MVC,,

e min(rEMG_;) o1 9)
MVCFDS

The gesture recognition module (Figure 3.7) only depends on the
instantaneous normalized EMG signals (nEMG) and the two EMG-based
thresholds (4 and €). Considering that A, B and C are defined according to
equations (10)-(12).
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Figure 3.7. Control loop implemented for the calibration process and threshold-based
EMG-driven control (Cisnal et al., 2021).

A—nEMG,, > ¢ (10)
B — NEMG, . > (11)
C - NEMG,, > NEMG (12)

The gesture (rest, open or close) is updated every 50 ms based on equations
(13)-(15) Note that for any combination of inputs, only one output (REST,
OPEN or CLOSE) is true.

REST =A-B (13)
OPEN =A-(B+C) (14)
CLOSE =B-(A+C) (15)

The rest gesture is recognized when the normalized signals are lower than
their corresponding EMG-based threshold. The open gesture is detected when
the normalized sEMG signal from the ED muscle is larger than both the
extensor threshold (€) and the normalized signal from the FDS muscle if it
exceeds the flexor threshold (u). Analogously, the closed gesture is detected
when the normalized sSEMG signal from the FDS muscle is larger than the flexor
threshold (u) and the normalized signal from ED muscle in case it exceeds the
extensor threshold (€). Figure 3.8 shows the signal processing of the presented
EMG-driven control: raw and normalized signals based on user’s residual
muscle activity, thresholds, and recognized gestures.
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Figure 3.8. Threshold EMG-driven control: raw EMG signals of ED and FDS muscles,
normalized signals, EMG-based threshold, and recognized gestures (Cisnal et al.,
2023b).

Incorporation of EMG-based visual feedback to the presented EMG-driven
bilateral therapy is feasible. The proposed biofeedback approach involves two
variable-length bars, labelled as ‘Opening force’ and ‘Closing force’. These bars
are named so as to correspond to the extensor and flexor muscle activity and
have been designed to enhance the user-friendliness of the therapy (Figure
3.9).

Closing force

Opening force

Figure 3.9. EMG-based visual feedback consisting of two variable length bars (Cisnal et
al., 2023b).

The length of the bar indicates the instantaneous value of the normalized
SEMG signals (nEMGgp and nEMGeps) and their color indicates the recognized
gesture (Table 3.2) according to equations (13)-(15). The visual feedback is
updated at 20 Hz, corresponding to the frequency of the normalized EMG
signals and gesture recognition rate.

Table 3.2: Color of the bars of the EMG-based visual feedback depending on the
recognized gesture.

Recognized Opening force Closing force
gesture bar bar
Rest Red Red
Closed Red Green
Opened Green Red
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3.22. EMG&IMU-based control for upper-limb
rehabilitation

A VR-based exergame for upper-limb rehabilitation was developed using the
multimodal embedded system (section 3.1.2). The system is worn on the
user’'s arm to track the arm and hand movements, and thus enabling
interaction with the virtual environment. Two pairs of surface electrodes are
attached to the ED and FDS forearm muscles, along with one reference
electrode to the olecranon, for recording EMG signals.

The objective of the exergame is to collect as many coins as possible within
a fixed time by moving the arm towards the coins with a relaxed or open hand,
and then closing the hand to take the coin (Figure 3.10). The difficulty of the
game is adjusted online based of the elapsed time from each coin collection.
Modifications are made to the degree of hand closure as well as size and
relative position of the new coin respect to the last one to maintain patient
motivation.

Figure 3.10. Upper-limb rehabilitation using a VR-based exergame. The embedded
platform is place on the arm user and two pairs of surface electrodes are attached to
the ED and FDS muscles and the reference electrode is attached to the olecranon
(Cisnal et al., 2023a).

The sEMG signals captured from the ED and FDS muscles as well as the
linear acceleration and angular velocity data from the ICM-20948 are
transmitted to the TMS320F228069M MCU. Real-time algorithms for arm
orientation estimation and hand gesture detection (open, rest and close) are
executed on the MCU. The gesture and orientation are then transmitted via
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BLE at a rate of 20 Hz to a PC, which updates the limb movements in the VR
environment, allowing the hand to interact with the virtual coins (as shown in
Figure 3.11). The VR scenario was developed using the Unity game engine.

01 unity
TMS320F2869M MCU f

EMGgp
EMG Hand Gesture  |Gesture
EMGgp L
Sensor Estimation
€C2650 |

yy.z MCU | Gesture
o 2 Arm Orientation |ROtxy.z f{eiture
sz | " Estmation o (R

Figure 3.11. Schematic diagram of the VR-based exergame for upper-limb rehabilitation
(Cisnal et al., 2023a).

The hand gesture recognition algorithm is the one presented in section
3.2.1. Regarding arm orientation estimation, the 16-bits 3 axis gyroscope and
accelerometer of the ICM-20948 are set to full-scale range of +250 dps
(degrees per second) and 2 g (19.6 m/s2), resulting in 131 LSB/dps and 16384
LSB/g ADC resolution, respectively. The sample rate is configured to 100 Hz
and 400 KHz Fast Mode i2Cis selected to transmit both linear acceleration and
angular velocity to the MCU. On the MCU, the orientation estimation is carried
out by implementing the model developed by M. Stanley (“Open Source
Sensor Fusion,” 2015). The accelerometer and gyroscope readings are entered
to this model, which is based on an indirect Kalmar filter. The linear
acceleration, angular velocity and estimated arm orientation readings are
shown in Figure 3.12.
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Figure 3.12. Recorded linear acceleration (top plot), recorded angular velocity (middle
plot) and estimated orientation (bottom plot). Solid lines indicate raw data and dashed

lines indicate filtered data (Cisnal et al., 2023a).
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3.2.3. Assist-as-needed control for wrist robotic
rehabilitation

An AAN control strategy that adapts the level of assistance of a wrist
rehabilitation robot (section 2.1.2) based on the emotional state and the
motor performance of the patient has been proposed. Biomechanical
measurements from the encoder and force sensor embedded on the
rehabilitation robot are used to determine the motor performance. ECG, GSR
and SKT values recorded with the embedded system (section 3.1.2) are used
to estimate the emotional state of the user considering the two-dimensional
model (arousal and valence).

The user must wear the embedded system to register their SKT with the IR
thermometer. Two disposable pre-gelled electrodes are attached to the torso,
and one on the umbilical region of the user for ECG recording. GSR
measurement is accomplished by placing two electrodes on the index and
middle fingertips (Figure 3.13).

Figure 3.13. User undergoing rehabilitation using the wrist robotic platform based on
an AAN control strategy, while wearing the embedded platform on the arm to register
SKT. To record ECG signals, disposable electrodes are attached to the user’s torso, and
electrodes are placed on the fingertips of the hand to capture GSR (Cisnal et al., 2023a).

The AAN paradigm is applied to a closed-loop admittance control with a
reference trajectory. The mechanical admittance (Y) of a system is defined as
the ratio of its displacement (x) and its force (F), as expressed in equation (16).
This definition is usually related to a mass-spring-damper system,
characterized by a mass (m), a stiffness (k) and a viscous damping (b) (Mlhelj
and Podobnik, 2013).

57



Chapter 3. Results

V) =5= ms?2+bs+ k (16)

X 1
F

The objective of an admittance control is to shape the mechanical
admittance of a device such that it possesses desired characteristics. Hence,
M, B, and K parameters are updated (increase, decrease, or no change) every
second according to assistance level of the robot. The level of assistance is
determined by a two-stage fuzzy logic model (Figure 3.14), which is similar in
nature to that presented by Mihelj et al. (Mihelj et al., 2009).

Force

Motor performance

Motion

GSR
(SCL, SCR)

ECG Arousal
(HR) Valence

SKT

Figure 3.14. AAN control strategy based on a two-stage fuzzy logic model which
consider the motor performance and emotional state of the user (Cisnal et al., 2023a).

Before the training session, the user must relax for 30 seconds to determine
their physiological resting values. The first stage of the fuzzy logic evaluates
the motor performance based on the biomechanical information (force and
motion) provided by the force sensor and encoders of the rehabilitation robot.
The first stage also determines whether to increase, decrease or maintain the
arousal and valence in function of the variations in HR, SCL, SCR frequency and
SKT, all of them normalized with respect to their resting values. The algorithm
that determines the changes in valence and arousal is based on the ones
presented by Mandryk et al. (Mandryk and Atkins, 2007) and Guerrero et al.
(Guerrero et al., 2013).

The Pan-Tompkins’s algorithm (Pan and Tompkins, 1985) was used to
detect the R events, and hence the heart rate from the ECG signals recorded
at 500 Hz (Figure 3.15). The algorithm applies a series of filters to the ECG
signal and squares the filtered signal to amplify the QRS contribution and then,
uses adaptive thresholds to detect the peaks of the processed ECG signals.
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06

ECG (mV)
o
2

Time (s)

Figure 3.15. R events of an ECG signal from a person at rest (Cisnal et al., 2023a).

The skin conductance (SC), recorded by the GSR module at a 225 Hz, is low
pass filtered (10 Hz cut-off frequency) to eliminate the high-frequency noise,
which may cause false-positive detection of phasic events. The tonic
component (SCL) and phasic component (SCR) are extracted from the filtered
SC (Figure 3.16) using a deconvolution technique (Mufioz et al., 2018).
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Figure 3.16. Raw and filtered skin conductance and its tonic (SCL) and phasic (SCR)
components (Cisnal et al., 2023a).

In the second stage, the decision involves determining whether to increase,
maintain or decrease the assistance level based on the variations in arousal,
valence, and motor performance identified in the previous stage. The
physiological signals (GSR, ECG and SKT) are processed in the MCU and the
extracted features (HR, SCL, SCR, and SKT) are sent to the PC via BLE. These
features are then combined with the biomechanical data (force, position, and
velocity) are entered into the fuzzy model. This model estimates the assistance
level and updates the mechanical admittance of the robot. The force, position
and velocity data are sent from the robot to the PC, while the admittance
parameters, namely K, B and M, are transmitted from the PC to the robot
(Figure 3.17).
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Figure 3.17. Schematic diagram of the AAN control strategy for wrist rehabilitation.

3.3. Performance assessment

The evaluation of the HRI of the EMG-driven hand exoskeleton was performed
by assessing system responsiveness and gesture recognition accuracy (section
2.4.2). The experimental setup, as detailed in section 2.3.1, was used. The
results of the time delay analysis are presented in Figure 3.18. The mean and
standard deviation of the MST and the MOT were 0.48+0.59 s and 0.55+0.60
s, respectively. The MCT was 1.90+1.65 s, varying from 0.98 s (from close to
rest gesture) to 3.42 s (from open to close gesture). The MCT is dependent on
the actuators speed and was deemed to be sufficiently long to ensure user
safety during the rehabilitation. The motion-completion rate was 100 %, as
MCT did not exceed the predefined time limit of 5 s in any case.

The confusion matrix that presents the performance of the EMG-based
gesture recognition control is depicted in Figure 3.19. The confusion matrix
was obtained by comparing the actual hand gestures recorded by the 5DT
Data Glove and the corresponding gestures recognized by the EMG-based
control. Before calculating the confusion matrix, data was cleaned to eliminate
the gesture transition period (time needed to move the hand from one gesture
to another) to avoid false negatives. The gesture transition period was
considered 0.9s (maximum MST value) starting when a transient period is
detected by the glove. The overall accuracy of the gesture recognition is 97%
and misclassifications during the gestures are minimal (fewer than 0.06 s). This
means that in 98.4% of cases, error is not noticeable in the exoskeleton, as the
actuators do not start moving in the opposite direction to the intended
movement.
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Figure 3.18. Time delay analysis of the EMG-driven bilateral control with the hand
exoskeleton (Cisnal et al., 2021).
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Figure 3.19. Confusion matrix of the EMG-based gesture recognition (Cisnal et al.,
2021).

The influence of the EMG-based visual feedback on the user performance
when performing EMG-driven bilateral assisted therapies was also evaluated.
The experimental setup was detailed in section 2.3.2. The sequences of
recognized gestures are delayed with respect to the sequence of target
gestures (Figure 3.20, a). Both signals were time-synchronized (Figure 3.20, b)
by calculating the delay based on the cross-correlation (section 2.4.2). The
average time delay (T4) used for the synchronization, which depends on the
user response time (Tr) and the motion-selection time (MST), was 0.88+0.14 s.
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(a) (b)

Figure 3.20. Target and recognized sequence of gestures of one subject (a) Raw data;
(b) Time-synchronized data (Cisnal et al., 2023b).

The user performance was evaluated by using lock-step distance measure
(section 2.4.2). The time series related to hand gestures are coded considering
the following order: “Open < Rest < Closed” (“Open” = -1, “Rest” = 0 and
“Close” = 1). As an error between open and closed gesture is more serious
than an error between either of them or rest gesture, the L2 norm is used since
the quadratic cost penalize this type of error more than the L1-norm. Hence,
the L2 distance between the target gesture and the synchronized gesture time
series are computed as a similarity measurement.

Table 3.3 shows the results of the multifactorial additive ANOVA, which was
performed to evaluate the influence of three independent variables (type of
test, test order and individual) on the L2 distances.

Table 3.3: Results of the Multifactorial additive ANOVA assessing the impact of the
three independent variables (type of test, test order and individual) on the L2 distances.

Df Sum Sq. Mean Sq. F Value Pr (>F)
Test * 3 3.366 1.1221 4.028 0.0124
Order 3 1.037 0.3456 1.241 0.3054
Individual ~ *** 17 20.933 1.2313 4.420 2.43 e-05
48 13.373 0.2786

Residuals

*** Denotes significance at the (<0.001) level and * at the (<0.5) level.

No statistically significant differences were found in the order in which the
tests were perform (F (3) = 1.241, p = 0.3054). Additionally, statistically
significant differences were found in the average of L2 by type of test
performed (F (3) = 4.028, p=0.0124). A Duncan post-hoc test (Table 3.4)
revealed significant pairwise difference between performance in test A and C
(p =0.0497) and between performance in test B and C (p = 0.0412).
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Table 3.4: Results of the Duncan's Multiple Range Test showing pairwise comparisons
and significant differences among the variables.

Test A Test B Test C
TestB 0.8775 - -
Test C 0.0497 * 0.0412 * -
Test D 0.3557 0.3121 0.2451

* Denotes significance at the (<0.5) level.

The distribution of the L2 distances according to the type of performed test
is shown in Figure 3.21. L2 distances were 3.39+0.70,3.43+0.75,2.89+0.71,
3.17 £ 0.73 for test A, B, C and D, respectively. Finally, homoscedasticity was

T+*“+

L2 distance
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Test

Figure 3.21. L2 distances for the four performed tests (Cisnal et al., 2023b).

An important feature of the wearable and multimodal embedded system
presented in section 3.1.2, apart from its notable computational capabilities
and high versatility, is its power consumption. It has a battery life of 5 hours
and maximum power usage of around 1250 mW. To perform a power
consumption analysis, the system is divided into three components: the
sensor modules, TMS320F28069M MCU, and CC2650 MCU.

Regarding to the sensor modules, when active and set to the defined
specifications, the EMG, IMU, ECG, GSR, and TEMP modules consume 40.6
mW, 5.6 mW, 0.6 mW, 3.3 mW, and 5.6 mW, respectively. In sleep mode,
these modules consume 9.6 mW, 0.02 mW, 0.001 mW, 2.6 mW, and 0.01 mW,
respectively.

Additionally, the power consumption of the TMS320F28069M MCU was
analyzed for the two presented rehabilitation scenarios: EMG&IMU-based
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control for upper-limb VR-based exergame (section 3.2.2) and the AAN control
for a wrist rehabilitation robot (section 3.2.3). Figure 3.22 details the average
power consumption of each peripheral for each application. During data
acquisition from the sensors, the DMA is triggered to transfer the data to the
internal memory, while the CLA module independently processes the signal.
The DMA's energy consumption is proportional to the number of active
channels and the amount of data and transfer rate, while the CLA energy
consumption depends on the algorithm's complexity.

203 mW 249 mW = 12C
7/ | m ADC

48% m SPI

m CLA
m CPU

(a) (b)

Figure 3.22. Breakdown of the power consumption for the two scenarios: (a)
EMG&IMU-based control and (b) AAN control (Cisnal et al., 2023a).

The system's power consumption is heavily influenced by the application
and MCU configuration, with the energy consumption of the MCU being highly
variable based on the computational load. When the computation is over, the
MCU can be programmed to enter an IDLE mode, which reduces power
consumption from 272.3 mW to 82.5 mW. Motion recognition control has a
power consumption of 203 mW, while adaptive control has a power
consumption of 249 mW.

The CC2650 module's power consumption is primarily due to BLE
communication, with the average power consumption being proportional to
the amount of data transmitted. When streaming raw data from all five sensor
modules at 1 kHz, the maximum power consumption for BLE communication
can reach 32.7 mW. In the proposed scenarios, the CC2650 MCU only receives
information through the i2C interface and sends it to a central node using BLE,
with no additional modules or data processing being carried out, which would
increase the module's power consumption.
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4. Discussion

In this Doctoral Thesis, the main aspects that limit the use of biocooperative
systems have been addressed: hardware and reliability. First, a real-time
embedded system is developed for acquisition of EMG signals. This system is
integrated into a hand robotic exoskeleton, enabling EMG-driven bilateral
assistive therapies. The evaluation focuses on assessing the impact of the real-
time embedded system on the performance of the developed EMG-driven
rehabilitation platform. The accuracy and responsiveness of the system were
determined, which are essential parameters for assessing the quality of the
human-robot interaction. The proposed EMG-driven rehabilitation system is
further investigated by incorporating EMG-based visual feedback. The
influence of this visual biofeedback on the user's performance during the
execution of bilateral therapies is evaluated. The findings suggest that this
type of feedback could benefit patients in increasing their control over the
movement of the robotic platform. Lastly, a wearable real-time embedded
system for multimodal signal acquisition was developed and tested by
implementing two biocooperative control strategies. This versatile and low-
cost system provides reliable signals for the implementation of real-time
biocooperative controls for a wide range of neuromotor rehabilitation
applications.

In this chapter, the aforementioned findings are discussed in accordance
with the hypothesis and results presented in previous chapters. Each finding
is given its own dedicated section, resulting in three distinct sections. Within
these sections, a comprehensive analysis of the research findings and their
implications in the field of rehabilitation robotics is provided.
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4.1. EMG-driven hand rehabilitation robot

A systematic review according to PRISMA (Reporting Items for Systematic
Reviews and Meta-Analyses) was conducted to compare the performance in
terms of accuracy and latency of the proposed EMG-driven robotic
rehabilitation platform with other similar works. Articles in various databases
(IEEE Explorer, Web of Science and PubMed) using specific keywords and
inclusion/exclusion criteria were searched to answer the question “What is
the latency time of EMG-driven hand rehabilitation robots?”. Nine articles met
the criteria, and only two of them reported latency times (Table 4.1).

Table 4.1: Published data regarding the accuracy and temporal information of EMG-
driven robots for hand rehabilitation.

Ref Control type Accuracy Delay?
- Point-in-Polygon (PIP)
l., 202 Al :0.944 -
(Secciani et al., 2020) (3 predefined gestures) ccuracy: 0.9
EMG-dri |
(Leonardis et al., netfv:rrll\{cind(gtil::ine Force error: i
2015) 20.7%
force)
(Ben et al., 2017) Threshold algorithm - -
Linear Bayes classifier Accuracy’:
Lu etal., 2017 . Y
(Luetal, ) (6 predefined gestures) 98.1+4.9 % es
Classification algorithm Accuracy:
Zh t al., 2019 ) Y
(Zhang etal., ) (6 predefines gestures) 86.38 % es
(Park et al., 2020) EMG-based intent - -
inference method
(Burns et al., 2019) Neural network - -
Forest classifier Accuracy:
Park l., 201 -
(Park et al,, 2018) (3 predefined gestures) 77.9-85.2%
Neural Network Accuracy:

(Chen et al., 2021)

(4 predefined gestures)

98.7+0.53 %

1Accuracy for neurologically intact subjects. 2Whether delay analysis of the system is carried out.

The overall accuracy of the gesture recognition module was 0.97, and
misclassifications during the gesture were small, which means that the error
is not perceived in the exoskeleton in most cases. The accuracy results are
comparable to other control systems proposed in the literature, varying from
77.9% to0 98.7% (Table 4.1).

Regarding to the responsiveness analysis, (Lu et al., 2017) conducted a
temporal analysis of a hand exoskeleton controlled by EMG signals. However,
the five time parameters provided are not readily comparable with our
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findings. Additionally, they were inconclusive regarding the delay experienced
by the user, as they were primarily influenced by the mechanical structure of
the exoskeleton and the waiting time for commands. In (Zhang et al., 2019),
the "control speed" was measured as the number of actions correctly
performed in one minute and provided an average “time per action” of 1.4s,
which is comparable to the MCT (the MCT of the proposed control in the
RobHand is 1.90 £1.65 s). However, the "time per action" value alone does not
provide enough information about the lag, as the computational time could
be very large while the actuators could be very fast, resulting in a low "time
per action."

Due to the limited results, the systematic review was expanded to look for
embedded systems for EMG gesture recognition integrated in hand
rehabilitation robots. It yielded some studies that specify the computational
time of the classification algorithm, ranging from 0.58-2.8 ms (Benatti et al.,
2014, 2015; J. Liu et al., 2014), but comparisons are not possible due to the
lack of information on EMG acquisition and data preprocessing. More
information on control latency was available in studies on hand prostheses
based on EMG, with reported times ranging from 100-600 ms (Chu et al., 2006;
Ryser et al., 2017; Tam et al., 2020), but no reliable comparison can be made
due to inaccurate definitions and uncertain time periods.

In summary, the presented system is characterized by its low-cost
embedded EMG acquisition system, which has enabled the implementation of
a real-time EMG-driven control for performing rehabilitation bilateral
therapies with a hand robotic exoskeleton. The distinctive feature of the
designed 2-channel EMG acquisition device is its cost, estimated at
approximately 30€ for low-scale production. The key advantage of
implementing EMG-based control within the real-time embedded system lies
in the reduction of latency, while maintaining high accuracy in gesture
recognition.

4.2. Influence of visual biofeedback on the users’
performance

Significant statistical differences in subject performance were observed during
execution of EMG-driven bilateral therapies based on the type of provided
feedback. Specifically, users’ performance significantly improved when only
the EMG-based visual feedback (test C) was present compared to the presence
of only kinesthetic feedback (test B) and both feedbacks (tests A). Therefore,
it can be concluded that the visual biofeedback enhanced the user motor
control. It provided users a simple way to monitor and regulate their EMG
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activation levels with respect to the previously predefined activation
thresholds, and thus enabling to have a better self-control the movement of
the hand exoskeleton.

The biofeedback is provided earlier in time than the kinesthetic feedback
and therefore, the user has a longer reaction time to self-regulate their EMG
activation levels. In fact, the user can directly adjust the force being exerted
at the moment by influencing the position controller input through real-time
visual EMG feedback. On the other hand, kinesthetic feedback requires the
user to first feel the movement performed by the exoskeleton's actuators
before modulating the exerted force, resulting in a delayed force modulation
(Figure 4.1). Consideration should be given to the electromechanical
characteristics of the actuators, including their low dynamic response and
limited speed due to the rehabilitation application. Note that relevant time
delays for the human-robot interaction have been preciously determined,
MST, MOT and MCT.

mvc Thresholds
EMG | emc o | rEme . |nEMG [ Gesture |Gesture. [ Position |JLT Movement
acquisition Rectification Normalization - Actuator [————>
sytem recognition controller
EMG-based Kinesthetic
feedback feedback

Figure 4.1. The control loop used for the threshold EMG-driven control of the RobHand
specifying the origin of each feedback (Cisnal et al., 2023b).

On the other hand, the fact that EMG-biofeedback results in a significantly
higher performance than in the presence of both feedbacks may be due to the
fact that the kinesthetic feedback is more straightforward than the visual
biofeedback and hence, users do not need to consciously pay attention to it.

In summary, in the presence of visual feedback, the user adjusts his/her
force based on the data provided by the gesture recognition module (nEMG
signals and detected gesture) and anticipates the response of the exoskeleton.
On the other hand, with kinesthetic feedback, the user adjusts his/her force
after the exoskeleton has performed the action. If the user notices that the
movement performed by the exoskeleton does not align with their intention,
the user can correct it by modulating their muscle activity, but this process
takes longer than if they had corrected it based on real-time EMG visual
feedback.
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4.3. Wearable embedded multimodal acquisition
system

The research introduced a cost-effective wearable embedded multimodal
platform designed for the implementation of biocooperative control in the
field of neuromotor rehabilitation. A significant observation from the
examination of related studies in biocooperative control is that most of them
incorporated only a restricted set of sensors and relied on expensive and often
bulky commercial systems, lacking the necessary processing capabilities.

One approach to reduce the bulkiness of acquisition systems is the
integration of sensors directly into the system. For instance, a previous study
proposed integrating multiple sensors, including ECG, GSR, SKT, PPG, and force
sensors, into the handle of an end-effector rehabilitation (Jakopin et al., 2017).
Similarly, in other fields, researchers have embedded ECG, GSR,
accelerometers, and force sensors onto wheelchairs (Postolache et al., 2014)
or integrated direct contact sensors onto steering wheels to measure ECG,
GSR, Sp02 levels, and SKT signals (Heuer et al., 2010). However, it should be
noted that while this integration approach reduces bulkiness, it may also limit
flexibility.

Recent research emphasizes the need for wearable sensing devices that are
small, low-cost, and possess high computational power to detect human
physical activity and emotions through multimodal fusion strategies. In order
to promote portability and comfort, the number of sensors used must be
chosen carefully, ensuring that the system is fast, energy-efficient, and
convenient. Additionally, a smaller set of sensors placed in optimal locations
can increase user acceptance (Qiu et al., 2022).

Several studies have attempted to create affordable wearable platforms.
For instance, some works have focused on the development of integrated
EMG sensors (Benatti et al., 2015; Brunelli et al., 2016; Oriicii and Selek, 2019),
while others have specifically developed ECG sensors (Athavipach et al., 2019;
Nguyen et al., 2017), or solely utilized IMU sensors (Marta et al., 2020). In
contrast, other works have integrated more than one sensor into the platform,
such as ECG and GSR (Villar et al., 2021), IMU and ECG (D’Mello et al., 2019)
and GSR, SKT and IMU (Huan et al., 2022). However, these studies have not
sufficiently addressed the need for versatility in terms of the number of
sensors required to implement biocooperative control systems.

The presented wearable, multimodal and low-cost solution overcome these
limitations. It integrates five sensors (IMU, EMG, SKT, GSR, and ECG) and its
highly configurable, thus offering a more comprehensive approach for
biocooperative control strategies in the context of neurorehabilitation. The
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platform’s high-efficiency real-time MCU provides ample processing
capabilities and its high flexibility, concerning sensor diversity and wireless
communication, allows the development of a numerous rehabilitation
applications.

Two potential applications using different signals and rehabilitation
approaches were proposed. Arm motion tracking using IMU data, hand
gesture recognition through EMG signals, HR detection from ECG signals, SCL
and SCR extraction from GSR data and SKT monitoring were carried out. It was
verified that the system's low cost does not compromise the quality of the
signals, that is reliable enough for the proposed scenarios and good
performance is expected in other related applications. Additionally, the
system power consumption for the two scenarios were analyzed and showed
that they are within the energy constraints of the system. It can record and
process real-time multimodal information for at least 5 hours.

The wearable system was design by balancing complexity, price, and
performance, taking into account parameters such as volume, flexibility,
energy consumption, onboard processing, and signal quality. Due to its low
cost, compact size, and comfort, the platform shows great potential for
rehabilitation applications. While it may not be appropriate for applications
that demand high signal quality or a long-term battery life, such requirements
are not typically expected in rehabilitation applications. Therefore, the
presented platform is a promising advancement in the development of
wearable technologies for neuromotor rehabilitation.
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5. Conclusions

In recent years, the developing of affordable biocooperative rehabilitation
systems for improving the QOL of people suffering neuromotor disabilities has
become a major challenge. Despite the growing interest of scientific literature
in neuromotor rehabilitation robotics, limitations in current systems have
made them accessible only to large academic medical centers and researcher
laboratories. The excessive cost of physiological recording systems limits the
accessibility of biocooperative controls for neuromotor rehabilitation even
further.

Current research focuses on design innovative controls aiming to achieve a
more natural HRI that enhances patient motivation towards rehabilitation.
However, these studies overlook the potential utilization of biocooperative
systems in clinic practice and focus on merely academic purposes. For
instance, numerous EMG-based robotic control strategies have been
suggested in literature, detecting numerous hand gestures with high accuracy.
However, these approaches require robots with multiple degrees of freedom
and entail substantial computational expenses, rendering them infeasible and
unreliable for practical applications. Moreover, these techniques rely on
numerous EMG signals, which call for several electrodes to be fixed onto the
patient, thereby adding to the already time-intensive clinical regimen of
physical therapy personnel. By reducing the number of electrodes, costs,
power consumption, and user comfort can all be improved.

The present Doctoral Thesis is focused on providing affordable technology
and developing control strategies, intended to provide a real use of
biocooperative systems by motor-disabled people. In this chapter, the main
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contributions and conclusions of the articles included in this compendium of
publications are indicated in section 5.1 and section 5.2, respectively. In the
last section 5.3., future endeavors related to this research are enumerated.

5.1. Contributions

In this section, the contributions of three articles that address the use of
technology in neuromotor rehabilitation are highlighted. The first article
presents a hand exoskeleton that supports EMG-driven assisted rehabilitation
by using a custom-made low-cost EMG real-time embedded solution. The
second article evaluates the influence of EMG-based visual biofeedback on the
user performance when performing EMG-driven bilateral exercises with the
robotic hand exoskeleton. Finally, the third article presents a low-cost and
wearable embedded system that integrates the most used sensors in
neuromotor rehabilitation and hence, enables the development of real-time
biocooperative controls for a wide of range applications in this field. These
articles showcase the potential of technology in promoting motor recovery
and improving rehabilitation outcomes in patients with neuromotor
impairments. The main contributions and potential impact in the field of
neuromotor rehabilitation provided by the results of this compendium of
publications are the following:

I Design and development of a low-cost EMG acquisition system for real-
time EMG-driven therapies. Integration of the system in the Robhand
rehabilitation platform, including additional electronic circuitry (Cisnal
et al., 2021).

Il. Development of a non-pattern recognition-based EMG-driven control
for bilateral robotic hand rehabilitation. Integration of the control in the
real-time embedded platform (Cisnal et al., 2021).

Il Performance evaluation of the EMG-driven exoskeleton in terms of
accuracy and latency and comparison with previous works. It was
detected that the HRI evaluation of EMG-based robotic rehabilitation
systems in the current literature is inadequate. While studies have
concentrated on providing accuracy metrics to evaluate the
performance of gesture recognition, they have failed to provide latency
metrics, which is essential for achieving optimal HRI (Cisnal et al., 2021).

V. Design and implementation of an EMG-based visual feedback. Despite
the usefulness of EMG feedback in neuromotor rehabilitation
applications has been demonstrated, to the best of our knowledge, this
was the first time that EMG feedback in combination with rehabilitation
robots have been investigated (Cisnal et al., 2023b).
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V. Evaluation of the performance of the users when providing EMG-based
visual feedback during EMG-driven bilateral therapies. We found that
EMG feedback led to significant improvements in performance (Cisnal
et al., 2023b).

VL. Design and development of a low-cost, wearable, embedded and
multimodal acquisition system for the implementation of
biocooperative systems in neuromotor rehabilitation. Feasibility of the
system and power consumption was tested (Cisnal et al., 2023a).

VII. Design and development of two biocooperative control strategies for
neuromotor rehabilitation by means of the proposed embedded
multimodal acquisition system. An EMG&IMU-based control using VR-
based therapies and AAN control using a wrist rehabilitation robot
(Cisnal et al., 2023a).

5.2. Main conclusions

The development and evaluation of the proposed low-cost biocooperative
rehabilitation systems have shown promising results (Cisnal et al., 2021)
(Cisnal et al., 2023a). These systems have proven the feasibility of
implementing biocooperative controls without the need for expensive
commercial systems that are typically bulky and lack processing capabilities.
The advantages associated with these embedded solutions for physiological
signal acquisition, in addition to their low cost and versatility, include enabling
the development of real-time biocooperative controls with reduced latency
while maintaining high accuracy. These characteristics make embedded
acquisition solutions an attractive option for the development of
biocooperative control systems that are accessible and affordable for
rehabilitation in clinical settings. Furthermore, the use of these systems can
also pave the way for the development of new applications in the fields of
human-robot interaction and assistive robotics.

It has been shown that the incorporation of EMG-based visual feedback can
significantly improve the performance of individuals undergoing EMG-driven
assisted therapies. By providing real-time biofeedback, the subjects were able
to monitor and modulate their EMG responses, resulting in better control of
the exerted force. Thus, it can be inferred that EMG-based visual feedback has
the potential to facilitate the rehabilitation learning process, as it helps users
develop a better understanding of how to self-regulate their muscle
activations. This could ultimately enhance patient motivation and contribute
to better motor recovery outcomes (Cisnal et al., 2023b).
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As a last point, there is a need for greater emphasis on responsiveness and
latency times in EMG-driven rehabilitation systems (Cisnal et al., 2021).
Previous studies have primarily focused on accuracy of gesture classification,
neglecting important information regarding system latency. While some
studies have addressed system latency, the measured values are often
imprecisely defined. It is crucial to establish clear and standardized definitions
of latency times for rehabilitation robotics to ensure homogeneity in this field
of research. By doing so, we can ensure that the development of EMG-based
rehabilitation systems is optimized for the benefit of patients.

5.3. Future research lines

Research on neurorehabilitation using biocooperative systems has shown
promising results in recent years, highlighting the potential of these
technologies to improve the quality of life of patients undergoing
neurorehabilitation. Several future research questions can be derived from
this investigation.

Firstly, it is important to focus on people with neurological disabilities.
While this research has shown positive results in healthy individuals, it is
important to explore the potential benefits for motor recovery in individuals
with neurological impairments. By doing so, it may be possible to identify
specific adaptations or modifications that can further enhance its
effectiveness for this population. Additionally, it would be convenient to
develop a unified protocol for the evaluation of the human-robot interface by
measuring latency times, which would allow comparisons between different
rehabilitation robots.

The use of EMG-based visual feedback is another area where future
research can be directed. As the technology has been proven effective in
healthy individuals through this study, it is crucial to investigate its potential
advantages for those with neurological disorders. Additionally, the use of
more complex visualizations of EMG-based feedback, such as in combination
with other virtual reality objects, should be further explored to determine if it
has a positive impact on user performance.

Finally, future research should focus on implementing more advanced
biocooperative controls using the proposed multimodal embedded platform,
which could provide further insights into the capabilities of the system.
Additionally, the reduction of electronic size and energy consumption will
improve its wearability, resulting in better user acceptance. Therefore,
researchers should work towards developing energy-efficient and compact
systems that could be easily integrated into wearable devices, making them
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more comfortable for the user to wear. This would not only improve user
acceptance but also enable remote monitoring of patients' progress, leading
to more personalized treatment plans.

Overall, the potential benefits of bioocoperative systems in
neurorehabilitation are clear, and future research should focus on refining
these systems to better serve the needs of individuals with neurological
impairments. Continued research in this area has the potential to make a
significant impact on the quality of life for those undergoing
neurorehabilitation.
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