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1  |  INTRODUC TION

Scots pine (Pinus sylvestris L.) is widespread on the Iberian Peninsula 
at elevations ranging from 1000 to 2000 masl and under simi-
lar climatic conditions elsewhere in northern Europe (Montero & 
Martínez, 2000). On the other hand, Stone pine (Pinus pinea L.) is 
one of the most common species at lower altitude in coastal and 
continental areas of central Spain and is highly valued for its edible 
seeds (Abad Viñas et al., 2016). Recent decades have seen increasing 
demands for seedlings of both pine species for use in re-forestation 
of former agricultural lands in many rural areas of Europe. This pro-
cess is supported by the Green Deal Program of the European Union 
(European Commission, 2021) as an alternative to the traditional ag-
ricultural systems, to promote diversification of production and to 
further economic development of the rural area.

Reliable production of pine seedlings requires nursery prac-
tices that minimize the impact of diseases, which includes careful 

attention to sanitation. Among the disease problems of greatest con-
cern is damping-off, which significantly contributes to yield losses by 
causing vascular wilt in forest nurseries throughout the world (Nef 
& Perrin, 1999; Stewart et al., 2012; Tahat et al., 2021). Species of 
Fusarium are well-known as causal agents of damping-off (Dick & 
Dobbie, 2002; Machón et al., 2009), which can manifest itself as re-
duced rates of seedling emergence and/or post-emergence mortal-
ity, along with needle blight and root rot (Gordon et al., 2015; Luo & 
Yu, 2020). These pathogens may cause important losses in nurseries, 
and latent infections may later become symptomatic in plantations 
(Landeras et al., 2005). Their mechanism of action is based upon the 
production of a secondary metabolite known as fusaric acid (FA), 
a phytotoxin that can display strong toxicity in plants (López-Díaz 
et al., 2018). During the infection process, the fungus also secretes 
various specific compounds, such as cell-wall-degrading enzymes 
and mycotoxins, that potentially play important roles in its pathoge-
nicity (Zuriegat et al., 2021).
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Abstract
Scots pine (Pinus sylvestris) and Stone pine (Pinus pinea) are two important species 
used in re-forestation that are subject to damage by damping-off fungi in forest nurs-
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seedlings of eight different hosts were tested for aggressiveness on seeds and seed-
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F. oxysporum and F. verticillioides on seeds and seedlings did not differ significantly for 
either pine species. Our findings support previous studies that found that these are 
damping-off pathogens on the studied pines. Whereas most isolates proved to be 
pathogenic, some isolates of both Fusarium species showed to be non-pathogenic.
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Fusarium oxysporum (Fo) Schlecht. Emend. Snyd. & Hans has 
been ranked among the top 10 fungal pathogens in molecular 
plant pathology based on scientific/economic importance, caus-
ing vascular wilt disease in more than 100 different crops (Dean 
et al.,  2012; Husaini et al.,  2018). Its ample host range varies 
from vegetables, ornamentals, fruit and field crops (Haapalainen 
et al., 2016; Melo et al., 2019; Rana et al., 2017; Wang et al., 2008; 
Yadav et al., 2019; Zhang et al., 2021). But, despite showing a broad 
host range, strains of Fo are highly host-specific and are geneti-
cally and morphologically different (Kistler,  1997), a distinctive 
characteristic of the fungus that allow to cluster individual strains 
with the same host range into groups called formae speciales (Edel-
Hermann & Lecomte, 2019). On the other hand, Fusarium verticilli-
oides (Sacc) Niremberg (=F. moniliforme Sheldon) is well known for 
causing infections that reduce germination percentage (Venturini 
et al., 2013) and post emergence damping-off and root rot in maize 
(El-Demerdash et al., 2017). Particularly, it produces fumonisin my-
cotoxins, a secondary metabolite that is even implicated in human 
diseases (Blacutt et al., 2018).

The presence of F. oxysporum and F. verticillioides in Euro-
pean forest nurseries has previously been reported (Martín-Pinto 
et al., 2006; Nef & Perrin, 1999). Fusarium oxysporum has generally 
been considered the most damaging species in this genus, although 

F. verticillioides can also be an important cause of disease of forest 
seedlings in nurseries (Martín-Pinto et al., 2008; Pawuk, 1978). The 
effect of these two species on Scots, and especially on Stone pine 
emergence and survival of seedlings has not been well studied.

Intraspecific variation in aggressiveness in Fusarium spp. has been 
frequently observed, with some strains being non-pathogenic sapro-
phytes (Edel-Hermann et al., 1997, 2001). Consequently, to understand 
the role species play in causing disease one must start with confirma-
tion of pathogenicity. Here, we present results of tests designed to 
evaluate the aggressiveness of Fusarium oxysporum and F. verticillioides 
isolates on Stone and Scots pine under greenhouse conditions.

2  |  MATERIAL S AND METHODS

2.1  |  Fungal strains and host plants

In total, 12 isolates of F. verticillioides and 10 isolates of F. oxyspo-
rum were obtained from diseased seedlings from one of eight differ-
ent green emergence (when green tissue of seedling was observed), 
and mortality were recorded weekly hosts growing in forest nurser-
ies in northern Spain (Table 1). Single conidium sub-cultures of each 
isolate were maintained on potato dextrose agar (PDA) at 23°C in 

Isolate Species Host Origin

Climatea

T (°C) HR (%)

Fo-1 F. oxysporum Pinus nigra Valladolid 7.5 75.0

Fo-2 F. oxysporum P. nigra Soria 6.2 72.3

Fo-3 F. oxysporum P. nigra Valladolid 7.5 75.0

Fo-4 F. oxysporum P. nigra Soria 6.2 72.3

Fo-5 F. oxysporum P. nigra Valladolid 7.5 75.0

Fo-6 F. oxysporum P. pinea Soria 6.2 72.3

Fo-2P F. oxysporum Quercus ilex Soria 6.2 72.3

Fo-4P F. oxysporum Q. pyrenaica Soria 6.2 72.3

Fo-5P F. oxysporum P. pinea León 6.3 76.5

Fo-6P F. oxysporum P. nigra Valladolid 7.5 75.0

Fv-1 F. verticillioides P. nigra Valladolid 7.5 75.0

Fv-3 F. verticillioides P. pinea Valladolid 7.5 75.0

Fv-4 F. verticillioides P. pinea Soria 6.2 72.3

Fv-5 F. verticillioides P. pinaster Soria 6.2 72.3

Fv-6 F. verticillioides P. pinea Valladolid 7.5 75.0

Fv-7 F. verticillioides P. radiata Valladolid 7.5 75.0

Fv-8 F. verticillioides P. uncinata Valladolid 7.5 75.0

Fv-2P F. verticillioides P. nigra Valladolid 7.5 75.0

Fv-3P F. verticillioides P. sylvetris Valladolid 7.5 75.0

Fv-4P F. verticillioides P. nigra Soria 6.2 72.3

Fv-5P F. verticillioides P. pinea Soria 6.2 72.3

Fv-6P F. verticillioides P. pinea León 6.3 76.5

aHR, relative humidity; T, temperature. Both are daily means during the sampling periods.

TA B L E  1 Code name, host and location 
of the Fusarium isolates used in the 
aggressiveness test on Scots and Stone 
pine.
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a growth chamber as described by Chala et al. (2011), before start-
ing the experiment. Pine seeds were obtained from a commercial 
forest nursery (Viveros Fuenteamarga S.L.) in Cabezón de Pisuerga, 
Valladolid, Spain. The seed provenances ES.08 (Montaña Soriano-
Burgalesa) for P. sylvestris and ES.01 (Meseta Norte) for P. pinea were 
selected for the experiment.

2.2  |  Aggressiveness test

To produce inoculum, monosporic isolates were subcultured on 
PDA in 9 cm Petri plates and incubated at 23°C in the dark. After 
7 days, 15 agar plugs from each colony margin were placed into 
an Erlenmeyer flask containing 200 mL of potato dextrose broth 
(PDB) and cultured at 23°C in the dark in an orbital shaker at 
200 rpm to stimulate sporulation (Muñoz-Adalia et al., 2018). Five 
days later, microconidia of each isolate were collected by filtration 
through glass fibre (90 μm), and their density was estimated micro-
scopically using a haemocytometer and adjusted through the ad-
dition of sterile distilled water (SDW) to obtain a suspension with 
106 microconidia mL−1.

Seeds of Scots and Stone pine were surface sterilized with 30% 
H2O2 for 30 and 60 min, respectively, due to the lower hardiness 
of Scots seeds, and then washed five times with SDW. Afterwards, 
seeds were sown in 200 mL containers (AGRIPROTECTOR S.L.) filled 
with peat moss. Five millilitres of the suspension of either F. oxyspo-
rum or F. verticillioides were deposited directly in the container next 
to the pine seeds. Control pots were treated with 5 mL of SDW. After 
inoculation, no pesticide was applied. The experiment was installed 
under a completely randomized design with factorial arrangement 
of the treatments (Fusarium strains vs. pine species). Each treatment 
was represented by four replicates of 10 seeds per container of ei-
ther Stone pine or Scots pine, inoculated with F. oxysporum or F. ver-
ticillioides. All containers were randomly arranged on a bench and 
maintained in a greenhouse for 11 weeks seedling for the duration of 
the experiment. At the end, the pathogen was re-isolated only from 
inoculated seedlings. As a whole, an isolate was regarded as aggres-
sive if it induced significantly lower emergence or greater mortality 
than the water controls.

2.3  |  Data analysis

Seedling emergence and mortality data sequences, as response vari-
ables, were studied by a repeated measures analysis using the soft-
ware Statistica 7.0 (99 ed., StatSoft Inc.) to test for variation over 
time of the effect of Fusarium isolates on both pine species. At the 
end of the trial (11 weeks), one-way analysis of variance (ANOVA) 
and Dunnett test (p ≤ .05) was run using the XLStats software to 
compare the effect of each isolate against the control treatment.

3  |  RESULTS

3.1  |  Seedling emergence

In general, emergence began the second week after seeds were 
sown for both pine species and continued until the seventh week in 
Scots pine and the ninth week in Stone pine, with significant influ-
ence of time on emergence (p ≤ .05), where Scots pine presented the 
fastest germination and emergence.

Cumulative emergence at the end of the trial (11th week) showed 
that Scots pine seedlings exhibited a higher susceptibility to Fusarium, 
as revealed by the high number of Fusarium isolates (21 out of the 22 
tested; p ≤ .05), which caused a significant reduction on emergence 
relative to controls (Figure 1). Isolate Fo-4P caused the lowest Scots 
pine emergence (12.5%; p = .000), followed by isolate Fv-8 (16.25%; 
p = .000) and Fo-2P (18.75%; p = .000), whereas isolate Fo-3 (61.25%; 
p = .999) did not significantly affect the emergence. In Stone pine, 
only 16 Fusarium isolates showed lower emergence than the control, 
with isolates Fv-6 (42.50%; p = .00), Fv-7 (45.63%; p = .00) and Fv-3P 
(46.25%; p = .00) the most aggressive to this species (Figure 2).

3.2  |  Seedling mortality

Cumulative seedling mortality was first observed in the 5th and 6th 
week after sowing for Scots and Stone pine, respectively, with sig-
nificant effect of time on the number of dead plantlets in both pine 
species (p ≤ .05). At the final time point (11 weeks), most Fusarium 

F I G U R E  1 Emergence (%) in Scots pine 
(P. sylvestris) 11 weeks after inoculation 
with different Fusarium isolates. Black 
bars are not significantly different from 
controls according to Dunnett test 
(p > .05).
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isolates (18 out of 22, p ≤ .05) had shown a significant effect on 
mortality of Scots pine. Here, isolate Fo5 induced the highest rate 
of mortality (59.21%, p = .00), followed by Fo4P (58.09%, p = .00) 
and Fo2P (55.77%, p = .00). Only the treatments with Fo-1 (2.78%, 
p = .081), Fo-2 (0.00%, p = .354), Fo-3 (0.00%, p = .999) and Fo-4 
(3.12%, p = .052) failed to show differences relative to the control in 
both the pine species (Figures 3 and 4). In Stone pine, overall mortal-
ity was lower than in Scots pine, and fewer isolates (10 out of 22, 
p ≤ .05) were aggressive to seedlings of this species.

Scots pine was clearly more susceptible to Fusarium damage 
than Stone pine based on differences in the number of seedling 

emergence and post-emergence mortality. In general, isolates that 
caused damage on Stone pine also affected Scots pine, the exception 
being isolate Fo-4 which caused significant mortality only on Stone 
pine, showing the interaction effect (p ≤ .05) between fungal damage 
and pine species (Table 2).

4  |  DISCUSSION

Both Scots and Stone pine were susceptible to damage caused by 
Fusarium spp., with Scots pine being more severely affected, both 

F I G U R E  2 Emergence (%) in Stone pine 
(P. pinea) 11 weeks after inoculation, with 
different Fusarium isolates. Black bars are 
not significantly different from controls 
according to Dunnett test (p > .05).

F I G U R E  3 Mortality (%) in Scots 
pine (P. sylvestris) seedlings 11 weeks 
after inoculation with different Fusarium 
isolates. Black bars are not significantly 
different from controls according to 
Dunnett test (p > .05).

F I G U R E  4 Mortality (%) in Stone 
pine (P. pinea) seedlings 11 weeks after 
inoculation with different Fusarium 
isolates. Black bars are not significantly 
different from controls according to 
Dunnett test (p > .05).
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in terms of pre- and post-emergence damping-off. These results are 
in agreement with previous studies (Kacprzak et al., 2001; Manka 
et al.,  2001). Likewise, Magnani  (1975) had observed that P. pinea 
was more resistant to damping-off by F. oxysporum than P. pinaster, 
P. brutia, P. halepensis, P. canariensis, P. radiata and P. wallichiana. De-
spite this higher resistance of P. pinea to damping-off, in our assays, 
emergence and post-emergence survival were severely affected in 
both species. This points out the need for effective management of 
these fungi either by biological control (Carvalho et al., 2014; Kh-
illare et al., 2021), chemical control (Gote et al., 2021; Swiecimska 
et al., 2020) or abiotic stress approaches, which refer to the plant de-
fence triggered by plant-derived substances, previously synthesized 
in response to some abiotic stress, that induce the secretion of fun-
gal catabolic enzymes and cause a rapid stopping of the pathogen 
metabolism (Stepien & Lalak-Kańczugowska, 2021; Ray et al., 2022).

The pathogenicity of F. oxysporum may depend on the produc-
tion of enzymes, such as the tomatinase Tom1, that is involved in the 
infection process of the host and is required for full aggressiveness 
in tomato (Pareja-Jaime et al., 2008). In the case of F. verticillioides 
on maize or soybean, or F. circinatum on pines, the pathogenicity 
increases with the amount of inoculum present in seeds (inoculum 
potential), which negatively affects the emergence and survival of 
the crops (Pedrozo & Little, 2017; Woodward et al., 2022).

Emergence of Scots pine seeds was affected significantly by all 
Fusarium isolates except isolate Fo-3. The germination/emergence 
stage was revealed as the most sensitive for this pine since older 
stages were less affected. The higher susceptibility of Scots pine 
during germination may be related to the relatively small size of its 
seeds (5.7–7.2 g per 1000 seeds; Farinha et al., 2018) as compared 
to those of Stone pine (867.0 ± 8.0 g per 1000 seeds; Udval & Bat-
khuu, 2013). Thus, the larger Stone pine seeds with greater reserves 
may deploy more effective defensive measures, and the thicker 
testa may limit the rate of fungal penetration.

Inconsistent pathogenic behaviour according to the host growth 
stage has also been found in other studies. For example, in tissues 
infected by F. verticillioides, only the infections occurring at seedling 
and young plant stages of maize showed high radicle decay ability 
(Venturini et al., 2013), although Sousa et al. (2021) recently found 

that in the reproductive phenological stages, the plant was more 
susceptible to the infection of the same pathogen. Infections of F. ox-
ysporum at the early seedling growth stage of Lupinus luteus showed 
that the disease was particularly aggressive after the change from 
autotrophic to heterotrophic phase of the plant, that is, up to 72 h 
of growth (Morkunas et al.,  2004). Likewise, when employing the 
ectomycorrhiza Laccaria laccata as a biocontrol against F. oxyspo-
rum in Pinus pinea at various growth stages, there was a successful 
achievement at 18 weeks after sowing, although the treatment failed 
to control the disease at pre-emergence and late damping-off stage 
(Machón et al., 2009).

Emergence of Scots pine was faster than that of Stone pine, with 
the first seedlings appearing in all the treatments at the 3rd and 4th 
week, respectively. Also, the first symptoms of mortality were ob-
served earlier in Scots pine (5th week) than in Stone pine (6th week). 
These results may be related to the natural faster emergence of 
Scots pine but may also show the higher specific susceptibility of 
this species. It is also known that many plants have evolved a protec-
tion system to combat fungal infections and possess intricate mech-
anisms which, once triggered by the pathogen, transduce signals to 
activate a defence pathway that involves specific proteins (Husaini 
et al., 2018).

Both Fusarium species were pathogenic on Scots and Stone pine, 
and the aggressiveness of F. verticillioides isolates was not different 
from that of F. oxysporum. The absence of significant pathogenic 
differences between these two species has also been shown for 
Plantago psyllium (Elwakil & Ghoneem, 1999), P. nigra (Martín-Pinto 
et al., 2004) and P. palustris (Pawuk, 1978). Therefore, although F. ox-
ysporum has been traditionally regarded as the most pathogenic spe-
cies of the genus, F. verticillioides should be regarded as a potential 
contributor to a damping-off complex, in the absence of evidence to 
the contrary.

Although all Fusarium isolates used in this study were obtained 
from diseased seedlings, some proved to be only weakly or non-
pathogenic, as in the case of isolate Fo-3. Many isolates obtained 
from diseased seedlings of other pine species (P. nigra, P. pinaster, 
P. uncinata and P. radiata) did not significantly damage seeds or 
seedlings of Scots and Stone pine (Machón et al., 2009), whereas 

Variable Source Df
Mean square 
(MS) Probability (p)

Emergence Fusarium strain (F) 21 6105.4 .000

Pine species (P) 1 10363.7 .000

F × P 21 136.5 .000

Error 132 35.6

Mortality Fusarium strain (F) 21 4.5389 .000

Pine species (P) 1 37.9593 .000

F × P 21 2.8789 .000

Error 132 .6309

Note: Data converted through arcsine transformation.
Abbreviation: df, degrees of freedom.

TA B L E  2 Mean squares and probability 
for the main effect and interactions of 
Fusarium strains and pine species on the 
emergence and mortality of the plant 
seedlings.
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isolates from Quercus ilex and Q. pyrenaica (Fo-2P and Fo-4P) were 
among the most damaging to Scots pine. Thus, our data indicate 
that the host range of some F. oxysporum isolates includes both 
pines and oaks, which argues against application of the forma spe-
cialis concept (Booth, 1971), that is, the ability to cause disease in 
a unique host. In this sense, further studies with a larger sampling 
of isolates and hosts would be needed to better assess the validity 
of this concept for species of Fusarium associated with seedling 
diseases in pines.

Our findings support previous studies that found that F. oxys-
porum and F. verticillioides are damping-off pathogens on Scots and 
Stone pines. Their pathogenicity on seeds and seedlings of the pines 
reveals wide differences among isolates, including some with no 
pathogenic effect. It also provides new information on the suscepti-
bility of Stone pine to pre- and post-emergence damping-off caused 
by Fusarium spp. The aggressiveness of F. verticillioides on both pine 
species is reported for the first time, while Stone pine was observed 
to be more resistant to damping-off than Scots pine. Apparently, the 
aggressiveness of isolates of either species was not related to the 
host of origin.
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