

Universidad de Valladolid

FACULTAD DE CIENCIAS

TRABAJO FIN DE GRADO

Grado en Física

OBSERVACIÓN DEL AEROSOL ÁRTICO MEDIANTE DISTINTAS TÉCNICAS DE MEDIDA

Autora: Miriam Bastante Chichón

Tutores: David Mateos Villán Daniel González Fernández

2021-2022

Índice general

Abstract	1
Resumen	1
Abreviaturas	2
1. Introducción	3
1.1. Aerosoles atmosféricos	3
1.2. Técnicas de medición de aerosoles	6
1.3. Propiedades de los aerosoles	7
1.4. Objetivos	9
2. Instrumentación y metodología	
2.1. Características de las estaciones	
2.2. Instrumentación utilizada	
2.2.1. CIMEL-381	
2.2.2. SP1A	12
2.2.3. PFR	
3. Resultados	14
3.1. Comparación de los conjuntos de datos de Ny-Ålesund	14
3.2. Comparación en distintas localizaciones	25
3.3. Tendencias	
4. Conclusiones	
Bibliografía	
Índice de figuras	
Índice de tablas	
Anexo I	

Abstract

The main goal of this study is to analyse the differences between the measurements using different collocated photometers (CIMEL, PFR y SP1A) in Ny-Ålesund base. In addition, the differences between two CIMEL photometers situated at two nearby locations, Ny-Ålesund and Hornsund, are determined.

A comparison between different estimations of the Aerosol Optical Depth (AOD) and the Ångström Exponent (AE) are shown in this study. Both have been taken from the european proyect Rehearsol's data base in Ny-Ålesund and Hornsund.

The CIMEL from Ny-Ålesund has been used as a reference photometer. In 2017-2018 PFR measured an overestimation in AOD over the reference, meanwhile an underestimation was observed by SP1A. But three instruments present an uncertainty inside the AOD limits established by the World Meteorology Organization. The AE was overestimated in both PFR and SP1A instead.

In addition, it has been verified that the exact same air masses were not measured in Ny-Ålesund and Hornsund due to the comparison between the different CIMELs. In the study period, 2017-2020, AOD values are higher in Hornsund while AE values are lower.

The trends observed both annual and monthly from 2002 to 2020 are statistically negligible. Even though a slight decrease in AOD is shown in most of the analysed instruments and wavelengths.

Key words: AOD, AE, Svalbard, photometer, CIMEL, PFR, SP1A.

Resumen

El principal objetivo de este TFG es determinar las diferencias entre diferentes fotómetros (CIMEL, PFR y SP1A) situados en un mismo lugar, Ny-Ålesund. También, se determinan las diferencias entre dos fotómetros, CIMEL, situados en dos localizaciones cercanas, Ny-Ålesund y Hornsund.

Se presentan en este trabajo comparaciones entre las diferentes estimaciones del espesor óptico del aerosol (AOD) y del exponente de Ångström (AE) tomadas de la base de datos del proyecto europeo Rehearsol en Ny-Ålesund y Hornsund.

Se ha tomado como fotómetro de referencia el CIMEL situado en Ny-Ålesund. En el periodo de 2017 al 2018, se observa una sobreestimación del AOD del PFR y una subestimación del AOD del SP1A respecto al de referencia. En cambio, en el caso del AE se obtienen valores en ambos fotómetros, PFR y SP1A, superiores a los del CIMEL.

Las comparaciones entre el CIMEL situado en Ny-Ålesund y el situado en Hornsund determinan que, en el periodo de estudio (2017-2020), los valores de AOD son mayores en Hornsund mientras que los valores de AE son menores. Lo que indica que no se miden en ambas localizaciones las mismas masas de aire.

Las tendencias observadas tanto anuales como mensuales desde el 2002 al 2020, no son estadísticamente significativas. Aunque, se aprecia una ligera disminución de los valores del AOD en la mayor parte de los instrumentos y longitudes de onda analizados.

Se puede concluir que existe una buena concordancia entre los datos obtenidos en los diferentes fotómetros analizados.

Palabras clave: AOD, AE, Svalbard, fotómetro, CIMEL, PFR, SP1A.

Abreviaturas

AE: Ångström Exponent **AERONET: AErosol RObotic NETwork** AOD: Aerosol Optical Depth AWIPEV: Alfred Wegener Institute for Polar and Marine Research, AWI; and Polar Institute Paul Emile Victor, IPEV LIDAR: Light Detection and Ranging MAE: Mean Absolute Error MAPE: Mean Absolute Percentage Error MBE: Mean Bias Error NASA: National Aeronautics and Space Administration PFR: Precision Filter Radiometer **RADAR:** Radio Detection and Ranging **RMSE:** Root Mean Squared Error **RRMSE:** Relative Root Mean Square Error **TFPW:** Trend Free Pre-Whitening WMO: World Meteorological Organization

1. Introducción

1.1. Aerosoles atmosféricos

Los aerosoles se definen como un conjunto de partículas sólidas o líquidas en suspensión en un medio gaseoso (Baron y Willeke, 1993). Como los aerosoles son el producto de procesos físicos y químicos su composición y características son variables.

Los aerosoles se estudian desde diferentes puntos de vista abarcando campos diversos como contaminación atmosférica, procesos de combustión, clima, salud humana, ecosistemas... Un área de estudio de los aerosoles atmosféricos es el radiative forcing, que analiza el impacto climático de los aerosoles de forma directa e indirecta (ver Figura 1). Los efectos directos se deben a la interacción directa con la radiación solar y terrestre por absorción y scattering de la radiación incidente. Si el aerosol es muy absorbente se produce un efecto de calentamiento de la Tierra por absorción, mientras que si es poco absorbente se produce el efecto contrario de enfriamiento por dispersión de la radiación solar incidente. Los efectos indirectos se deben a la capacidad de los aerosoles para modificar las propiedades de formación de las nubes al igual que sus características radiativas, siendo capaces de modular el albedo y la cobertura de las nubes (González, 2021).

Figura 1. Forzamiento radiativo del clima terrestre entre 1750 y 2011, fuente de la imagen IPCC Fifth Assessment Report (AR5) [Intergovernmental Panel on Climate Change (IPCC), 2013].

Por su origen, se clasifican en antropogénicos y naturales. Las fuentes antropogénicas derivan de la actividad humana como humo de chimeneas, tubos de escape, minería abierta, explosiones...

Se incluye el smog producido por reacciones fotoquímicas, por lo que se observa un impacto a escala mundial de la actividad humana en los ciclos de azufre y nitrógeno. Los aerosoles naturales se componen principalmente de sal marina, polvo mineral, cenizas volcánicas, incendios...

Otra clasificación es por el diámetro aerodinámico, el cual es una combinación de los procesos de formación y del tamaño de las partículas. Como las partículas no son esféricas ni de igual

densidad, para su comparación y clasificación se define el diámetro aerodinámico equivalente como el diámetro de una partícula esférica de densidad 1 g/cm³ con los mismos efectos gravitatorios y velocidad en la atmósfera que la partícula de estudio (Baron y Willeke, 1993).

Se pueden distinguir distintos modos de distribuciones de tamaño (ver Figura 2), el modo de nucleación ($<0,02 \ \mu m$), el modo Aitken ($0,02-0,1 \ \mu m$), el modo de acumulación ($0,1-1 \ \mu m$) y el modo grueso ($>1 \ \mu m$).

El modo de nucleación o partículas ultrafinas: partículas provenientes de la condensación de vapores, y su formación depende de las condiciones de temperatura, presión, humedad relativa y concentración de vapor. El mayor número de partículas se encuentra entre 5 y 15 nm. Los gases precursores son el H_2SO_4 y el NH_3 . La vida media de estas partículas en la atmósfera es de horas, ya que se coagulan rápidamente o aumentan su tamaño por condensación (Kulmala et al., 2001).

El modo Aiken está formada por partículas de origen primario, natural o antropogénico, o de origen secundario, debido a la moda de nucleación. Estas partículas permanecen en la atmósfera un tiempo superior a las partículas anteriores (Marino, 2011).

El modo de acumulación se origina principalmente por el crecimiento de las partículas de moda Aiken por medio de reacciones en fase líquida en las gotas de agua de las nubes. Su vida media en la atmósfera es grande. Estas partículas tienen efectos ópticos dominantes por lo que afectan a la visibilidad (Marino, 2011).

Figura 2 Distribución esquemática del tamaño de los aerosoles, mostrando cuatro modelos y los mecanismos de formación y eliminación en la atmósfera. Las partículas del modo de acumulación pueden mostrar un carácter bimodal representado por la línea morada. Adaptación de Pieter (2017).

El modo grueso se forma principalmente por procesos mecánicos como la erosión de la superficie terrestre o por la explosión de burbujas en las superficies de mares y océanos. El crecimiento de las partículas de diámetro <1 µm no puede generar partículas de diámetro >1 µm. Por ese motivo, las partículas <1 µm son denominadas partículas finas, mientras que las de diámetro >1 µm son gruesas (Fernández, 2011; Marino, 2011).

Generalmente en la distribución de tamaños se observan dos formas de campana definidas claramente, una asociada con las partículas finas y otra con las partículas de modo grueso. Esta separación es importante ya que las partículas pertenecientes a los diferentes modos tienen orígenes y transformaciones diferentes. Igualmente, la forma de eliminación difiere dependiendo del modo al que pertenezcan, mientras que las partículas finas se depositan en el suelo por acción de la lluvia, las partículas gruesas se eliminan al caer al suelo por acción de la gravedad o del viento.

Si los aerosoles alcanzan altas capas de la atmósfera como la troposfera o la estratosfera, pueden ser transportados muy lejos de sus fuentes de emisión (Toledano, 2005). Especialmente en el caso del humo de los grandes incendios forestales, los aerosoles de erupciones volcánicas y el polvo mineral de los desiertos. Los aerosoles de tamaños mayores permanecen menos tiempo en suspensión debido a la acción de la gravedad. Por el contrario, los aerosoles más finos permanecen suspendidos en la atmósfera por más tiempo, incluso pueden permanecer años. El aerosol atmosférico en suspensión será transportado por la masa de aire que lo contiene en la misma dirección y sentido.

Finalmente se pueden clasificar los aerosoles dependiendo su origen y propiedades en cuatro tipos bien diferenciados: marítimo, desértico, ártico y continental.

El **aerosol marítimo** es uno de los más importantes a nivel climatológico. Está compuesto por sustancias solubles en agua (99,96%) y partículas salinas (0,04%). Este tipo de aerosol, por lo general, está compuesto por partículas gruesas generadas a partir de procesos mecánicos (Vergaz, 2001). En los estudios climáticos se diferencian tres tipos de aerosol marítimo: limpio, mineral y polucionado, dependiendo de donde se formen y las partículas que lo componen (D'Almeida et al., 1991).

El **aerosol desértico** es uno de los más abundantes en la atmósfera, desempeñando un papel importante en el clima ya que es un generador de turbiedad. Este tipo de aerosoles presentan una gran variabilidad en sus propiedades, desde ópticas a microfísicas. Existen numerosas fuentes de emisión de polvo mineral, destacando las regiones áridas o semiáridas de Oriente Medio, Asia y África. Este tipo de aerosol afecta de forma importante al balance radiativo de la Tierra por su poder de absorción y dispersión de la luz solar. En el aerosol desértico predominan las partículas gruesas e irregulares generadas por procesos mecánicos (Velasco, 2020; Vergaz, 2001).

El **aerosol ártico** proviene fundamentalmente del norte de Europa y Asia, y de los océanos circundantes. Está compuesto principalmente de partículas marinas y minerales. La atmósfera en estas regiones presenta poca carga de aerosoles. El aerosol ártico se debe a la localización del frente polar, que varía de invierno a verano. En invierno, el frente polar se sitúa en latitudes bajas, pudiendo llegar los aerosoles antropogénicos europeos hasta las regiones árticas. En verano, el frente polar se encuentra en latitudes altas, evitando el intercambio de aire con latitudes menores (Vergaz, 2001; Velasco, 2020).

El **aerosol continental** recoge varios tipos de aerosol con diferentes características, entre los que se diferencian el rural, el forestal y el urbano. El aerosol rural contiene sustancias solubles en agua y polvo, encontrándose en zonas continentales alejadas de grandes núcleos urbanos. El aerosol forestal es típico de las selvas sudamericanas y africanas, cargado de componentes biológicos. El aerosol urbano es propio de zonas con alto grado de polución antropogénica, sus componentes básicos son nitratos, sustancias con azufre y carbono, polvo mineral y cenizas (Vergaz, 2001).

1.2. Técnicas de medición de aerosoles

Existen múltiples técnicas para medir y obtener información de los aerosoles atmosféricos. Se diferencian dos tipos de técnicas las in-situ, basadas en el análisis directo de las muestras de partículas presentes en el aire, y las remotas, también denominadas teledetección, las cuales analizan la interacción del aerosol con una fuente de iluminación.

En las técnicas in-situ, se hace circular un flujo de aire sobre unos filtros o instrumentos que permiten el análisis físico, químico, morfológico, etc., en tiempo real o posteriormente. Estas medidas suelen utilizarse para medir la calidad del aire en los puntos donde se ubican las bombas que succionan el aire, por lo que son generalmente representativas localmente (González, 2021).

Por otro lado, las técnicas de teledetección son utilizadas principalmente para el estudio del cambio climático y del calentamiento global. Se puede distinguir entre las medidas a través de instrumentos en la superficie terrestre o de satélites. Los satélites tienen mayor cobertura espacial que los instrumentos de tierra, pudiendo alcanzar medidas por todo el globo terráqueo. Sin embargo, los instrumentos situados en la superficie ofrecen una cobertura temporal continua frente a los satélites, a excepción de los geoestacionarios, que toman una medida de un punto concreto cada órbita completa que realizan (González, 2021).

Como las medidas en tierra son habitualmente más precisas que las de los satélites, se utilizan medidas de varios puntos distribuidos en la superficie de la Tierra para calibrar y validar los datos obtenidos por los satélites. Ambas medidas son necesarias y complementarias, por eso existe una densa red de instrumentos en superficie como la red fotométrica AERONET (AErosol RObotic NETwork; Holben et al., 1998).

Se puede distinguir entre la teledetección activa y pasiva en función del tipo de fuente de iluminación utilizada. La teledetección activa presenta una fuente de iluminación propia, en comparación con la pasiva que recibe iluminación de una fuente existente, habitualmente natural como el sol, la luna o las estrellas. Los instrumentos de teledetección activa más utilizados son el LIDAR (Light Detection and Ranging), el RADAR (Radio Detection and Ranging) y el ceilómetro. El más destacado es el sistema LIDAR que emite pulsos de luz monocromática, mediante un láser pulsado que apunta al cenit. Los sistemas LIDAR pueden estar a nivel de superficie o en dispositivos aéreos (González, 2021). En teledetección pasiva destacan el fotómetro, el radiómetro, el espectrómetro o el espectroradiómetro. El

espectroradiómetro es el más completo siendo capaz de medir la intensidad de la radiación en varias bandas de longitud de onda, es decir, es multiespectral (Graham, 1999).

A través de la teledetección pasiva se obtiene una magnitud fundamental para el estudio de los aerosoles atmosféricos, el espesor óptico de aerosoles o AOD (Aerosol Optical Depth). La fotometría solar presenta el problema de que no está disponible durante la mitad del año, lo cual afecta especialmente en las zonas polares, ya que el Sol no sale durante meses, no pudiendo obtener datos del AOD durante periodos de tiempo prolongados. Por eso, se han desarrollado fotómetros lunares que aprovechan la irradiancia lunar extraterrestre lo cual es más complejo debido a que no emite radiación visible si no que a la Tierra llega la radiación solar reflejada sobre la Luna, la cual es muy variable. Otro tipo de fotometría, aunque con un grado menor de implantación, es la estelar, que se basa en obtener la radiación emitida por las estrellas. Para que estas medidas sean precisas se utiliza un telescopio que capta la radiancia de la estrella evitando la luz parásita producida por otras fuentes (González, 2021).

1.3. Propiedades de los aerosoles

En la atmósfera, el tamaño de las partículas no es despreciable respecto a la longitud de onda de la radiación. Las características químicas, físicas y ópticas de los aerosoles determinan la interacción con la radiación. Las partículas atmosféricas producen una discontinuidad en el índice de refracción con respecto al aire de su alrededor, lo cual provoca la dispersión de la luz en todas las direcciones, este suceso se explica en la teoría de scattering de Mie (Mie, 1908).

A continuación, se exponen los parámetros de los aerosoles atmosféricos más importantes y que se han utilizado en este trabajo.

1.3.1 Espesor óptico de aerosoles

El espesor óptico de aerosoles cuyas siglas en ingles son AOD (Aerosol Optical Depth) es un identificador de la cantidad de aerosol que hay en la columna atmosférica. La radiometría estudia los componentes de la atmósfera comparando el espectro de radiación solar directa en la superficie terrestre y el espectro solar extraterrestre. La diferencia observada entre ambos espectros se debe principalmente a la atenuación debida a los aerosoles (scattering de Mie) y moléculas (scattering de Rayleigh), y por la absorción selectiva debida a ciertos componentes de la atmósfera (Toledano, 2005).

La atenuación de la intensidad de la luz transmitida, si aproximamos la atmósfera a una capa plano-paralela, se expresa mediante la ley de Beer-Bouguer-Lambert:

$$I(\lambda) = I_0(\lambda) \cdot e^{-\tau(\lambda) m}$$
(1.1)

Siendo I_0 e I, respectivamente, la irradiancia extraterrestre y la irradiancia medida a nivel del suelo ambas a una longitud de onda λ , τ el espesor óptico total de la atmósfera para una longitud de onda concreta, y m la masa óptica, la cual se define como la relación entre el camino óptico en la dirección de observación y la vertical. Habitualmente se realiza una medida directa al sol para medir el AOD, por lo que se puede asumir un modelo plano paralelo de la atmósfera, pudiéndose expresar la masa óptica en función del ángulo cenital solar (θ) como:

$$m = \sec(\theta) \tag{1.2}$$

Esta fórmula al ser una aproximación deja de ser precisa para ángulos mayores de 60°, debido a la acción de la curvatura de la Tierra, al efecto de la refracción y al scattering múltiple que generan un cierto error. La fórmula empírica de Kasten and Young (1989) proporciona mayor precisión:

$$m = 1/(\cos\theta + 0.50572 \cdot (1.46468 - \theta)^{-1.6364})$$
(1.3)

Siendo θ el ángulo cenital solar en radianes.

El espesor óptico, $\tau(\lambda)$, representa la disminución en intensidad que sufre la radiación al atravesar la columna atmosférica. A partir de la ecuación (1.1) el espesor óptico atmosférico viene dado por:

$$\tau(\lambda) = -\frac{1}{m} \ln(I/I_0) \tag{1.4}$$

Para conocer la contribución debida a los aerosoles en el espesor óptico total, AOD ($\tau_a(\lambda)$), se utiliza la siguiente expresión:

$$\tau_a(\lambda) = \tau(\lambda) - \tau_R(\lambda) - \tau_g(\lambda) \tag{1.5}$$

donde $\tau_R(\lambda)$ representa al scattering de Rayleigh y $\tau_g(\lambda)$ las absorciones por parte de los gases atmosféricos. Los valores de AOD no consideran el espesor óptico de las nubes ya que se calculan para situaciones con el cielo despejado. Este parámetro, el espesor óptico de los aerosoles, es fundamental para el estudio de las propiedades de los aerosoles, como la turbiedad atmosférica (Toledano, 2005; González, 2021).

1.3.2. Parámetro alfa de Ångström

El scattering de Mie (1908) relaciona el tamaño de la partícula y la longitud de onda de la radiación incidente. Como el espesor óptico de los aerosoles presenta una dependencia con la longitud de onda, Ångström (1929) propuso la siguiente expresión parametrizada:

$$\tau_a = \beta \cdot \lambda^{-\alpha} \tag{1.6}$$

Donde β se denomina coeficiente de turbidez, es una constante que coincide con el espesor óptico de aerosoles correspondiente a 1µm, λ es la longitud de onda expresada en micrómetros y α es el parámetro alfa o exponente de Ångström (AE), que se relaciona con tamaño del aerosol. Los parámetros β y α caracterizan el aerosol dispersante y absorbente (Ångström, 1961).

El parámetro alfa puede variar entre 0 y 4, correspondiendo los valores más bajos a partículas más gruesas y los valores más altos asociados a partículas más finas. La dispersión de las partículas pequeñas tiene una fuerte dependencia espectral, aumentando para longitudes de onda cortas, mientras que la en las partículas grandes apenas presentan dependencia espectral. En el caso de los aerosoles, lo habitual es que el AE se encuentre entre 0 y 2.5 (Toledano, 2005).

Para el cálculo del AE se utilizan datos medidos de AOD en diferentes longitudes de onda. Según el rango elegido para calcular alfa, el resultado será distinto, lo que es un problema a la hora de comparar estudios distintos. Inicialmente, se calcula el valor de alfa en pares de longitudes de onda, denotándose como $\alpha(\lambda_1/\lambda_2)$. Tras tomar logaritmos en la expresión (1.6) se obtiene:

$$\ln \tau_a = \ln \beta - \alpha \cdot \ln \lambda \tag{1.7}$$

Esta expresión se verifica para cada longitud de onda, por lo que su resta permite obtener el valor del parámetro alfa:

$$\ln \tau_a \left(\lambda_1 \right) - \ln \tau_a \left(\lambda_2 \right) = -\alpha \left(\ln \lambda_1 - \ln \lambda_2 \right) \tag{1.8}$$

Otra opción para el cálculo del AE es a partir de 3 o más datos espectrales del AOD mediante un ajuste logarítmico por mínimos cuadrados. Un conjunto de valores espectrales de AOD permite conocer los valores de α y β . Este resultado se representa con las longitudes inicial y final de un rango espectral representativo, α (λ_1 - λ_2) (Toledano, 2005).

1.4. Objetivos

El estudio de los aerosoles atmosféricos es un tema importante debido a que afectan, como se ha comentado anteriormente, al clima terrestre. En este proyecto el objetivo principal es el estudio de diferentes instrumentos para determinar la concordancia entre sus medias y con ello entender mejor cómo son los aerosoles en la región del Ártico.

Los objetivos específicos que persigue este proyecto:

- Análisis multi-instrumental de los aerosoles de la región del círculo polar Ártico y la correlación entre ellos.
- Evolución temporal de los aerosoles del Ártico y determinación de la existencia de una correlación entre los sucesos de gran importancia climática y los aerosoles observados en esta región.

2. Instrumentación y metodología

2.1. Características de las estaciones

El clima en Svalbard está dominado por su situación septentrional (ver Figura 3), mientras que la corriente de Noruega y la de Spitsbergen occidental moderan sus temperaturas. El clima ártico se considera al lugar donde el aire polar frío del norte y oeste se encuentra con el aire marino suave y húmedo del sur. Por este motivo, en esta región se registran circulaciones ciclónicas muy activas, frentes con nubosidad, lluvias y fuertes vientos. Svalbard presenta un clima cambiante debido a los factores anteriormente expuestos, lo que genera diferencias significativas entre las diferentes regiones del archipiélago. La parte occidental es más cálida, mientras que el interior tiene un clima más continental que las costas (Pakszys et al., 2015).

Figura 3. Vista aérea de la localización del archipiélago Svalbard dentro del globo terráqueo. (https://earth.google.com/web)

Se han utilizado los datos proporcionados por la red AERONET de AOD, así como del exponente de Ångström de dos localizaciones en Svalbard: las estaciones de Ny-Ålesund (78°55'44" N, 11°51'39" E, a 46 m s.n.m) y de Hornsund (77°00'03" N, 15°33'36" E, a 10 m s.n.m.). En ambas localizaciones se utilizaba fotometría solar, pero en los últimos años se ha incluido la fotometría lunar en el CIMEL.

La estación principal de medida es la AWIPEV (Alfred Wegener Institute for Polar and Marine Research, AWI; and Polar Institute Paul Emile Victor, IPEV) de Ny-Ålesund, siendo la más septentrional del archipiélago de Svalbard. Las observaciones se han realizado en la base de investigación Ártica Franco-Alemana, AWIPEV, cuyo clima típico es de tundra. Esta base cuenta con una instrumentación científica muy completa dedicada al estudio de diversas disciplinas, como la biología, química, geología y la física atmosférica. Hornsund es el fiordo más meridional de la parte occidental de Spitsbergen, donde se sitúa la estación polar polaca. Esta estación se encuentra ubicada aproximadamente a 230 km en línea recta de la estación de Ny-Ålesund. La ubicación de estas estaciones, mostrada en la Figura 4, hace que existan diferencias en las masas de aire que se desplazan a las zonas de estudio (Pakszys et al., 2015; Pakszys y Zielinski, 2017).

Figura 4. Ubicación de las estaciones de estudio dentro del archipiélago de Svalbard. (https://earth.google.com/web)

2.2. Instrumentación utilizada

Las redes operativas tienen instrumentos estandarizados. Sus características se explican en este apartado, destacando sus diferencias y similitudes. En la Tabla 1 se exponen las principales características de los diferentes instrumentos utilizados en este trabajo (Toledano et al., 2012).

Instrumento	CIMEL	SP1A	PFR
Rango espectral	340 - 1640 nm	350 - 1050 nm	368 - 862 nm
\mathbf{N}^{o} de canales	9	17	4
Intervalos de medida al Sol	5 - 15 min	1 min	1 min
Incertidumbre del AOD	0.01 - 0.02	0.01	0.01
Ángulo de visión	1°	1°	2.5°

Tabla 1. Resumen de las características de los fotómetros solares

2.2.1. CIMEL-381

Este instrumento es un fotómetro solar multibanda que toma medidas automáticas de la irradiancia solar espectral y radiancias de cielo. Los últimos modelos de estos fotómetros presentan toma de medidas nocturnas de irradiancia lunar espectral.

Las mediciones en la red AERONET se realizan mediante fotómetros solares CIMEL-381 compuestos por un cabezal óptico, una caja de control electrónico y un sistema robotizado (Figura 5). En el cabezal óptico se encuentran instalados un conjunto de filtros de interferencia

espectral en el rango de 340-1640 nm, así como sensores de humedad y temperatura. Este cabezal se une a un colimador que limita el campo para evitar la luz parásita. Dos microprocesadores controlan el funcionamiento en tiempo real de la adquisición de datos y la dirección del movimiento del instrumento. El sistema robotizado presenta dos motores con movimientos en los ejes azimutal y cenital, que permiten orientar el cabezal del sensor en la dirección de la bóveda celeste para la medida requerida. Antes de una medición, el colimador del fotómetro solar calcula la posición del Sol en función de la hora, la latitud y la longitud para realizar las mediciones de radiancia directa; se orienta al sol con una precisión de aproximadamente 1°, posteriormente emplea un detector de cuatro cuadrantes para el seguimiento preciso del sol. Las mediciones se realizan de forma automática, suspendiendo cualquier medición en el caso de que el sensor de lluvia detecte precipitaciones. Las mediciones se realizan en secuencia de 3 medidas consecutivas de radiación directa a intervalos de 15 minutos (actualmente bajando a una resolución de 5 minutos), lo que permite detectar la contaminación por nubes (Holben et al., 1998; Herrero, 2021).

Figura 5. Componentes principales de un fotómetro solar CIMEL-318. Imagen tomada de Velasco Merino (2020).

Para obtener unos datos de calidad con los que calcular los valores de AOD y de AE, debe de realizarse una calibración previa. La precisión de los datos es de 0.01 (visible) o 0.02 (ultravioleta). La red de AERONET ofrece tres niveles de datos: 1.0 (datos brutos), nivel 1.5 (datos filtrados por la nube) y nivel 2.0 (datos de calidad garantizada) (Pakszys et al., 2015).

$2.2.2.~\mathrm{SP1A}$

El fotómetro solar tipo SP1A está fabricado por Dr. Schulz & Partner GmbH con 17 canales cubriendo un rango espectral entre 350 nm y 1050 nm. El campo de visión es de 1°, una resolución temporal de 1 minuto y el tiempo de medición para un espectro completo es < 5 s. Este instrumento también presenta un fotómetro lunar para la medición de la radiación lunar

directa durante la noche polar para derivar la profundidad óptica de los aerosoles y para las mediciones del brillo del cielo durante el día polar. El sensor óptico convierte la radiación incidente en una tensión que se amplifica hasta ocho órdenes de magnitud en función de la intensidad de la radiación entrante, realizándose los cálculos necesarios para la obtención de los parámetros ópticos como el AOD o el AE (Herber et al., 2002; Graßl y Ritter, 2019).

2.2.3. PFR

El Radiómetro de Filtros de Precisión (PFR) es un instrumento que mide de forma precisa la radiación solar directa en cuatro bandas espectrales estrechas centradas en las siguientes longitudes de onda: 368, 411, 501 y 862 nm. El PFR (Figura 6) presenta una cabeza de sensor óptico con amplificadores de señal y una caja electrónica con fuente de alimentación y registrador de datos. Está diseñado para funcionar de manera automática, el sensor de seguimiento electrónico se dirige al sol y lo sigue a través del cielo durante el día. Cada minuto se registra el promedio de diez mediciones individuales tomadas en 1.25 segundos, que permiten obtener las densidades ópticas de los aerosoles en cuatro longitudes de onda. Los datos están gestionados por el World Radiation Centre de Davos (Suiza) (Physikalisch-Meteorologisches Observatorium Davos World Radiation Center, 2012; Hermansen et al., 2003).

Figura 6. Imagen del fotómetro PFR. Imagen tomada de PMODWRC (2012).

3. Resultados

Los datos utilizados en este trabajo han sido proporcionados por el tutor, procedentes de la database de Svalbard del proyecto europeo Rehearsol. Las medidas de AOD y AE en se encuentran agrupadas en ficheros anuales con una resolución de 1 minuto, para poder comparar y analizar los datos.

En la base de Ny-Ålesund, se han realizado observaciones con tres instrumentos diferentes: PFR desde 2002 en la estación de Sverdrup, SP1A desde 2003 en la estación de AWIPEV y el CIMEL desde 2017 en la estación de AWIPEV. Mientras que en el asentamiento de Hornsund, se han realizado observaciones con un único instrumento el CIMEL desde 2005. Para buscar las medidas en común, nos centraremos en el análisis de tres longitudes de onda: 368-380 nm, 500 nm y 860-870 nm y el AE.

3.1. Comparación de los conjuntos de datos de Ny-Ålesund

Para esta comparación se considera como instrumento de referencia el CIMEL de AWIPEV, en el caso de comparar otros instrumentos sin incluir el CIMEL se considera como referencia el SP1A. Se utilizan los datos válidos desde finales de marzo del 2017 hasta finales de septiembre del 2018. En la Tabla 2 se pueden observar las fechas de inicio y fin, así como el número de datos válidos de cada instrumento.

Instrumento	CIMEL AWIPEV	SP1A	PFR
N^{Ω} de datos	3305	71477	47063
Inicio	01/06/2017	21/03/2017	01/04/2017
Fin	21/09/2018	03/10/2018	16/09/2018

Tabla 2. Intervalos de estudio de los distintos fotómetros utilizados.

Como se puede apreciar en la Tabla 2 cada instrumento utilizado tiene diferentes fechas tanto de comienzo para la toma de datos válidos como de finalización de la toma de los datos, así como diferencias sustanciales entre el número de datos obtenidos entre cada uno de ellos. El CIMEL presenta un número de datos más reducido, teniendo en cuenta que comienza a funcionar aproximadamente dos meses más tarde que el resto de los instrumentos a comparar.

A continuación, se muestran las correlaciones entre los valores de AOD por pares de instrumentos para tres longitudes de onda del 2017 al 2018. Las diferencias no son homogéneas a lo largo del año, sino que son variables dependiendo de la estación en un año.

Figura 7. Valores de AOD para tres longitudes de onda en Ny-Ålesund durante el periodo de 2017 a 2018 de (a) CIMEL AWIPEV, (b) SP1A y (c) PFR.

Se aprecia en la Figura 7 que, para todos los fotómetros, el AOD disminuye al aumentar la longitud de onda; existe una relación inversamente proporcional entre el AOD y la longitud de onda. Esto se debe a que los aerosoles más habituales dispersan con mayor facilidad la luz en rangos cercanos al azul (longitud de onda corta) que los cercanos al rojo (longitud de onda larga).

Figura 8. Evolución temporal de los valores de AOD de los diferentes fotómetros para longitudes de onda de (a) 368-381 nm, (b) 500 nm y (c) 860-870 nm.

En la Figura 8, se aprecia como existen menos diferencias entre los diferentes fotómetros en longitudes de onda larga (≈ 870 nm), frente a las demás longitudes de onda analizadas. Sin

embargo, se puede observar una diferencia mayor entre los valores de AOD del PFR frente al resto de instrumentos.

Figura 9. Evolución temporal de los valores del exponente de Ångström de los diferentes fotómetros entre 2017 y 2018.

El exponente de Ångström presenta variaciones apreciables entre los diferentes fotómetros como se puede observar en la Figura 9. El fotómetro CIMEL tiene valores de AE menores que los dos fotómetros con los que se compara en Ny-Ålesund. El PFR presenta valores ligeramente superiores al CIMEL, sin embargo, los valores de AE del SP1A llegan a ser el doble, en muchos de los casos, que los fotómetros con los que se compara. Esta diferencia apreciable del SP1A respecto al resto, hace pensar que son valores calculados del AE están sobreestimados. Los valores más habituales de AE para las zonas del Ártico presentan un amplio rango de entre 0.5 y 1.8, asociándose los valores más altos al aerosol continental limpio y los más bajos al marítimo limpio (Toledano et al., 2012).

Tras estudiar la evolución temporal del AOD de los diferentes fotómetros, se pueden analizar las diferencias que presenta cada instrumento frente al de referencia, CIMEL AWIPEV.

PFR VS CIMEL AWIPEV

Figura 10. Comparación para (a) 3868-380 nm, (b) 500 nm y (c) 862-870 nm del AOD de los fotómetros PFR y CIMEL. (d) Comparación del AE de los fotómetros PFR y CIMEL.

Se puede apreciar en la Figura 10 que existe una pequeña sobre estimación del PFR respecto al CIMEL, existiendo más dispersión en la longitud de onda más larga (≈ 870 nm). Los valores del AOD son bastante similares en ambos instrumentos, sin embargo, los valores del exponente de Ångström difieren más siendo superiores en el PFR.

Figura 11. Comparación para (a) 3868-380 nm, (b) 500 nm y (c) 862-870 nm del AOD de los fotómetros SP1A y CIMEL. (d) Comparación del AE de los fotómetros SP1A y CIMEL.

En la comparación entre el SP1A y el CIMEL AWIPEV (ver figura 11) se puede observar una ligera diferencia entre los datos obtenidos entre ambos instrumentos. Existe una ligera subestimación del SP1A respecto al CIMEL en los valores de AOD, en cambio, en los valores de AE el SP1A presenta valores sustancialmente superiores a los calculados por el CIMEL.

Figura 12. Comparación para (a) 3868-380 nm, (b) 500 nm y (c) 862-870 nm del AOD de los fotómetros SP1A y PFR. (d) Comparación del AE de los fotómetros SP1A y PFR.

Se puede apreciar en la Figura 12 que son mayores los valores del AOD obtenidos por el PFR frente a los del SP1A, viéndose que la diferencia se incrementa en el rango de unos 860 nm. Respecto a los valores del AE se observa una diferencia notable entre los dos instrumentos de medida, obteniéndose valores que llegan incluso al doble del valor del SP1A respecto del PFR. Como se ha comentado anteriormente, esta diferencia tan clara se debe probablemente una sobreestimación de este instrumento al realizar los cálculos para obtener el exponente de Ångström.

En la Figura 13 se puede apreciar las diferencias por pares de instrumentos, tanto de las distintas longitudes de onda analizadas como del exponente de Ångström.

Figura 13. Evolución temporal desde mayo del 2017 a octubre de 2010 de las diferencias entre los diferentes instrumentos por parejas. (a)Diferencias entre PFR y CIMEL de AOD, (b) diferencias entre PFR y CIMEL de AE, (c) diferencias entre SP1A y CIMEL de AOD, (d) diferencias entre SP1A y CIMEL de AOD, (e) diferencias entre PFR y SP1A de AOD y (f) diferencias entre PFR y SP1A de AE.

En la comparación entre el PFR y el CIMEL, como se podía intuir en figuras anteriores, las diferencias de AOD sobrestiman ligeramente el PFR respecto del CIMEL. En cambio, en el caso de AE no se observa una tendencia clara de que los datos sean superiores o inferiores de un fotómetro respecto del otro, esto puede deberse a que al ser valores bajos de AOD el AE tiene bastante error.

Como se puede ver en los histogramas de la Figura 14, la comparativa del AOD entre el SP1A y el CIMEL presentan una menor dispersión de los valores, que en el resto de los instrumentos. En cuanto a las diferencias observadas entre el PFR y el SP1A del AOD, se ve que apenas hay valores negativos siendo claramente los valores del PFR ligeramente superiores a los del SP1A.

En el caso de la comparativa del AE, la diferencia entre el PFR y el CIMEL es de las que menor dispersión presenta. En cambio, al comparar el SP1A y el CIMEL se observa una dispersión mayor desplazada hacia los valores positivos al igual que en la comparativa del PFR y SP1A, pero en este caso se desplaza hacia valores negativos.

Figura 14. Histogramas de las diferencias de los diferentes instrumentos por parejas con las curvas normales para cada longitud de onda. Las líneas discontinuas representan la medida de la diferencia de AOD de cada longitud de onda. Los gráficos (a) y (b) reflejan la comparación de las diferencias entre el PFR y el CIMEL, los (c) y (d) muestran la comparación de las diferencias entre el SP1A y el CIMEL y los (e) y (f) manifiestan la comparación de las diferencias entre el PFR y el SP1A. Resultados para el AOD a tres longitudes de onda: a), c), e) y para el AE: b), d), f).

En el caso de la comparación del PFR y del CIMEL, las diferencias medias del AOD son positivas por lo que más de la mitad de los valores del PFR son mayores que los del CIMEL. Se observa que las medias de las diferencias del AOD disminuyen a mayor longitud de onda. En las diferencias del AE, se observa que los valores se encuentran bastante dispersos tanto a la derecha como a la izquierda del 0, por lo que no se encuentra diferencia clara entre ambos fotómetros.

En la comparación del SP1A y del CIMEL, la media de las diferencias del AOD se encuentra en valores negativos lo que indica que los valores del CIMEL son superiores a los del SP1A, pero no existe mucha dispersión de estos valores como se puede apreciar en la curva normal. Las medias de las diferencias del AOD apenas difieren en relación con la longitud de onda. En el caso de las diferencias del AE, el pico del histograma se encuentra representado para valores positivos, es decir, siendo mayores los valores del SP1A que los del CIMEL. Se observa una curva aplanada y amplia horizontalmente lo que indica que la desviación estándar es elevada.

Finalmente, la comparativa del PFR y del SP1A, muestra un desplazamiento de la media de las diferencias del AOD hacia valores positivos, es decir, los valores del PFR son ligeramente superiores a los del SP1A. Existe una mayor dispersión de los valores en la longitud de onda de 500 nm, existiendo diferencias más grandes entre ambos instrumentos. En el caso de las diferencias del AE, se observa bastante dispersión de las medidas siendo la media de los valores del SP1A mayor que los del PFR. Al igual que en la anterior comparación, la curva es aplanada y amplia horizontalmente indicando que la desviación estándar es elevada.

Basándonos en el artículo de Willmott (1982), no es suficiente utilizar el coeficiente de correlación de Pearson (r) ni el coeficiente de determinación (r²) para determinar la correlación entre el valor observado (O) y el valor predicho por el modelo (P). Esto se debe a que no tienen valor práctico real en la evaluación del rendimiento del modelo. Por eso además de indicar los valores de r^2 y de los coeficientes de la recta de regresión (a y b), se calculan otros cuatro tipos de medidas de diferencias que se explican más adelante. La recta de regresión (P_i = a + b O_i) es un modelo lineal que relaciona la variable P con O.

Las medidas de diferencia que se observan en la Tabla 4 son el error medio de sesgo (MBE), la varianza de la distribución de las diferencias representada por s_d^2 , el error medio cuadrático (RMSE) y el error absoluto medio (MAE). Además, se incluyen el error medio cuadrático relativo (RRMSE) que indica el porcentaje de variación en la precisión del RSME, el error de porcentaje medio absoluto (MAPE) que es una medida relativa que determina el error en unidades de porcentaje en lugar de en unidades de la variable, y un índice de acuerdo (d) introducido por Willmott y Wicks (1980). El índice de acuerdo (d) es una medida descriptiva, que se puede aplicar para realizar comparaciones cruzadas entre modelos. Estos índices toman la siguiente forma:

$$MBE = N^{-1} \sum_{i=1}^{N} (P_i - O_i)$$
(3.1)

$$s_d^2 = (N-1)^{-1} \sum_{i=1}^N (P_i - O_i - MBE)^2$$
(3.2)

$$RMSE = \left[N^{-1} \sum_{i=1}^{N} (P_i - O_i)^2 \right]^{0.5}$$
(3.3)

$$MAE = N^{-1} \sum_{i=1}^{N} |P_i - O_i|$$
(3.4)

$$d = 1 - \left[\frac{\sum_{i=1}^{N} (P_i - O_i)^2}{\sum_{i=1}^{N} (|P_i'| - |O'_i|)^2} \right] \quad 0 \le d \le 1$$
(3.5)

 $\mathrm{Con}\ P_i'=P_i-\overline{0}\ \mathrm{y}\ O_i'=O_i-\overline{0}$

$$RRMSE = \frac{RMSE}{\overline{O}} \cdot 100 \tag{3.6}$$

$$MAPE = \frac{100}{N} \cdot \left[\sum_{i=1}^{N} \frac{|P_i - O_i|}{|P_i|} \right]$$
(3.7)

En la Tabla 3 también se muestran el valor medio de P (\overline{P}) , valor medio de O (\overline{O}) , la desviación estándar de la variable P (s_p) y la desviación estándar de la variable O (s_o) .

Las mejores medidas globales del rendimiento del modelo son el RMSE y el MAE, ya que ofrecen estimaciones del error medio, siendo el MAE menos sensible que el RSME a los valores extremos, pero evita la exponenciación físicamente artificial que es un artefacto del razonamiento estadístico-matemático del que procede el RMSE (Willmott, 1982; Despotovic et al., 2016).

	$\lambda(\mathrm{nm})$	Ν	P	$\overline{0}$	s _p	S ₀	a	b	r^2
FR A	368	41536	0.07	0.08	0.05	0.05	0.0074	0.96	0.97
vs P. PS1. PFF	500	41536	0.05	0.06	0.04	0.04	-0.0064	0.94	0.93
\downarrow 1 A \downarrow 0 \downarrow 0	870	41536	0.018	0.03	0.016	0.017	-0.0048	0.89	0.87
PS P	AE	41536	1.8	1.4	0.4	0.19	0.38	0.98	0.20
R ~	368	2147	0.07	0.07	0.04	0.04	-0.0050	0.98	0.98
5 PF CA PFF	500	2147	0.05	0.05	0.03	0.03	-0.0035	0.99	0.97
$\overset{\mathrm{A}}{\wedge} \overset{\mathrm{A}}{\wedge}$	870	2147	0.02	0.02	0.014	0.014	-0.0004	0.96	0.93
0 0	AE	2147	1.5	1.5	0.18	0.18	0.59	0.60	0.33
A A	381	2607	0.07	0.06	0.04	0.04	0.0042	1.01	0.98
SP1 CA SP1∤	500	2607	0.05	0.04	0.03	0.03	0.0055	0.99	0.98
$P \downarrow VS$	870	2607	0.02	0.02	0.014	0.014	0.0064	0.96	0.95
O G	AE	2607	1.4	1.83	0.19	0.51	1.05	0.20	0.32

Tabla 3. Medidas cuantitativas de cada fotómetro y de las diferencias entre dos fotómetros. Las tres primeras filas de cada comparación indican el AOD de cada longitud de onda estudiada y la cuarta el exponente de Ångström.

	$\lambda(\rm{nm})$	MBE	s_d^2	RMSE	MAE	d	$\begin{array}{c} \text{RRMSE} \\ (\%) \end{array}$	$\begin{array}{c} \text{MAPE} \\ (\%) \end{array}$
R A K	368	-0.011	0.00008	0.014	0.011	0.98	17	18
PFI PFI	500	-0.010	0.00010	0.014	0.010	0.96	24	26
$\uparrow \uparrow \uparrow$	870	-0.008	0.00004	0.010	0.008	0.92	38	78
д д О	AE	0.3	0.14	0.5	0.3	0.43	35	17
ы В С	368	-0.007	0.00003	0.009	0.007	0.99	12	13
5 PF CA PFI	500	-0.004	0.00003	0.006	0.004	0.99	12	11
$\downarrow \downarrow $	870	-0.0013	0.000015	0.004	0.002	0.98	18	14
0 0	AE	0.003	0.03	0.17	0.12	0.75	11	8
A	381	0.005	0.00003	0.007	0.006	0.99	11	9
SP1 CA SP1.	500	0.006	0.000016	0.007	0.006	0.99	15	13
$P \downarrow VS$	870	0.006	0.000010	0.007	0.006	0.94	41	33
0 G	AE	-0.40	0.19	0.59	0.4	0.54	32	28

Tabla 4. Medidas cuantitativas de las diferencias entre dos fotómetros. Las tres primeras filas de cada comparación indican el AOD de cada longitud de onda estudiada y la cuarta el exponente de Ångström.

El número de datos utilizados en el estudio es elevado, por lo que los valores obtenidos son representativos. Se aprecian por lo general desviaciones estándar de P y O grandes al comparar con los valores medios de estas variables, y con pendientes de las rectas de regresión que rondan la unidad en el caso de los valores de AOD, mientras que difieren mucho de la unidad en el caso del AE. El r^2 es cercano al 0.95 en la mayoría de los casos del AOD e incluso superior, mientras que el AE presenta valores del r^2 bastante bajos cercanos al 0.3, lo que implica que no existe mucha correlación entre los dos instrumentos comparados.

El MBE es negativo en las dos primeras comparaciones lo que implica que el instrumento comparado con el de referencia sobrestima sus valores de AOD mientras que, en la última comparación, el CIMEL AWIPEV-SP1A subestima los valores de AOD. En el caso de los valores de AE ocurre el fenómeno contrario, es decir, en las dos primeras comparaciones se subestiman los valores respecto al de referencia, y en el último se sobreestima.

Las diferencias entre el MAE y el RMSE se deben especialmente a la ponderación de cada $(P_i - O_i)$ por su cuadrado lo que genera valores más elevados de RMSE al haber valores extremos presentes. Aunque los valores del RMSE son mayores a los del MAE, las diferencias no son importantes a excepción de los valores de AE entre el PFR-SP1A y el CIMEL AWIPEV-SP1A.

El índice de correlación (d) es elevado en la mayor parte de los valores de AOD, mientras que es más bajo en el caso de los valores de AE. Al analizar los valores de RRMSE se observan errores porcentuales no muy elevados, indicando una aceptable precisión del RSME, a excepción de algunos valores puntuales del AOD y AE, posiblemente por la existencia de valores extremos. La precisión del modelo se considera excelente si el valor de RRSME<10%,

buena si <20%, regular si 20%-30% y pobre si >30%. En el caso del MAPE si los porcentajes son <10% la precisión es muy buena, 10%-20% la precisión es buena, 20%-50% la precisión es regular y si son >50% la precisión es mala. Como en la mayoría de los casos estudiados los valores del MAPE <20%, es decir, que en promedio los valores se alejan menos del 20% de los del instrumento de referencia (Despotovic et al., 2016).

Se ha utilizado para calcular el valor de la masa óptica la fórmula empírica de Kasten and Young (1.3). Para la obtención del ángulo cenital (θ) se han utilizado los valores de la latitud y longitud de Ny-Ålesund (78.923°N 11.9208°E), del día y la hora para cada valor, ya que este ángulo depende del ángulo horario y de la declinación solar.

Se obtuvieron un total de 41536 pares de puntos entre 2017 y 2018 para la comparación entre el PFR y el SP1A, que se puede ver representado en la Figura 15. Se aprecia que las diferencias de AOD se encuentran la mitad de los valores dentro de los límites de WMO U95 (WMO, 2005). Aun así, un número elevado de los valores se encuentran fuera de esos límites. Posiblemente los puntos que se encuentran muy por encima de los límites WMO U95 puedan ser atribuidos a puntos contaminados por nubosidad. Esto se debe a que no se usan los mismos métodos de detección de nubes en ambos instrumentos por lo que el cloud-screening, en particular del SP1A, puede estar dando resultados erróneos. Se aprecia claramente una sobrestimación de los valores de AOD del PFR respecto al SP1A, disminuyendo las diferencias para el valor de AOD a 870 nm, encontrándose las diferencias entre 0 y 0.05. En cambio, el AE presenta una dispersión muy grande encontrándose la mayor parte de los valores fuera de los límites de WMO U95, encontrándose la mayor parte de las diferencias entre - 0.1 y -0.02. Los valores de la masa óptica se reparten entre 2 y 8 en los valores de AOD, mientras que el AE se concentra en especial entre 3 y 6.

Figura 15. Diferencias de AOD (a) entre PFR y Sp1A y (b) entre CIMEL y PFR en Ny-Ålesund versus masa óptica en el período 2017-2018. Las líneas continuas indican los límites U95.

Figura 16. Diferencias de AOD entre CIMEL y SP1A en Ny-Ålesund versus masa óptica en el período 2017-2018. Las líneas continuas indican los límites U95.

Se obtuvieron un total de 2147 pares de puntos entre 2017 y 2018 para la comparación entre el CIMEL y el PFR, que se puede ver representado en la Figura 15. Los valores de las diferencias de AOD están dentro de los límites de WMO U95. Se aprecia una pequeña del PFR sobreestimación respecto del CIMEL, encontrándose prácticamente todos los valores dentro de los límites WMO U95 en el caso del AOD a 870 nm. En cambio, el AE presenta una dispersión muy grande encontrándose la mayor parte de los valores fuera de los límites de WMO U95, las diferencias se reparten tanto para valores positivos como negativos, por lo que no se tendencia aprecia una clara de sobreestimación o subestimación de un instrumento respecto de otro. Los valores de la masa óptica se reparten entre 1.5 y 7 tanto en los valores de AOD como de AE.

Se obtuvieron un total de 2607 pares de puntos entre 2017 y 2018 para la comparación entre el CIMEL y el SP1A, que se puede ver representado en la Figura 16. La mayor parte de los valores de las diferencias de AOD están dentro de los límites de WMO U95. Existe

una pequeña subestimación del SP1A respecto del CIMEL. En cambio, el AE presenta una dispersión muy grande, las diferencias se reparten tanto para valores positivos como negativos, aunque con un mayor número de valores negativos.

3.2. Comparación en distintas localizaciones

En este apartado se va a comparar el mismo instrumento, CIMEL, en diferentes localizaciones dentro de la península de Svalbard, es decir, comparamos los datos en Ny-Ålesund frente a los de Hornsund. Estas localizaciones en línea recta están aproximadamente a unos 230 km por lo que los resultados no deberían diferir en exceso.

Se toman los datos válidos desde finales de julio del 2017 hasta finales de agosto del 2020. En la siguiente tabla se muestran las fechas de inicio y fin, así como el número de datos válidos de cada instrumento.

Instrumento	CIMEL AWIPEV	CIMEL Hornsund
N^{o} de datos	3305	2280
Inicio	01/06/2017	22/07/2017
Fin	25/09/2020	04/10/2020

Tabla 5. Intervalos de estudio de los distintos fotómetros utilizados.

Se observa una diferencia de unos mil datos entre una localización y otra, teniendo más datos en la estación de AWIPEV. Como no hay muchos datos entre esas fechas y que concuerden entre ambas localizaciones para poder compararlas, se ha utilizado un intervalo temporal mayor que en el anterior apartado.

En primer lugar, se observa la evolución temporal tanto del AOD y del AE en ambas estaciones.

Figura 17. Evolución temporal del AOD obtenido por el CIMEL en Ny-Ålesund y en Hornsund.

Existe claramente una diferencia entre las longitudes de onda estudiadas, mientras la de 380 nm presenta valores de AOD entre un rango amplio entre $0.05 \ge 0.6$, la de 870 nm presenta

valores menores que los de longitudes de onda más cortas y en un rango aproximado de 0-0.4. Si comparamos los periodos en los que ambos instrumentos presentan valores, el CIMEL de Hornsund está activo más meses del año que el CIMEL de AWIPEV, pero tiene un número menor de datos para analizar. Solo se pueden realizar comparaciones en los periodos en los que ambos aparatos funcionen al mismo tiempo.

Figura 18. (a), (b) y (c) Evolución temporal del AOD en 380 nm, 500 nm y 870 nm, respectivamente para los fotómetros CIMEL. (d) Evolución temporal del AE en las estaciones de Ny-Ålesund y Hornsund.

En la Figura 18, se muestra una comparativa entre los valores de AOD entre las dos estaciones para las diferentes longitudes de onda y una comparación del exponente de Ångström. Como se ha comentado anteriormente se puede observar con mayor claridad los periodos de estudio, es decir, aquellos en los que hay datos de ambas localizaciones simultáneamente.

Al comparar los valores de AOD para cada longitud de onda en cada localización se observa una gran dispersión de los datos, pero existen mayores valores de AOD en Hornsund que en Ny-Ålesund. Sin embargo, en el caso del exponente de Ångström los valores son mayores en la estación de Ny-Ålesund.

Figura 19. Comparación de los fotómetros CIMEL entre Ny-Ålesund y Hornsund. Comparativa del AOD para (a) 380 nm, (b) 500 nm y (c) 870 nm. (d) Comparativa del AE.

Si analizamos las diferencias entre ambas localizaciones se puede observar cómo la mayor parte de los valores de AOD en Hornsund superan a los de Ny-Ålesund para todas las longitudes de onda. En el histograma, las medias de las diferencias se encuentran en valores negativos lo que implica que en la estación de Hornsund se obtienen valores más altos de AOD. A penas existe diferencia entre las tres longitudes de onda analizadas en cuanto a la media de las diferencias, pero si se aprecia que la curva de distribución presenta mayor aglutinamiento de los datos alrededor de la media en el caso de los 870 nm.

Si analizamos el exponente de Ångström, los valores en Ny-Ålesund son mayores a los obtenidos en Hornsund, siendo las diferencias más importantes en los años 2017 y 2020. El histograma realizado a las diferencias del AE (ver figura 21) presenta frecuencias más altas para diferencias positivas, lo que concuerda con lo analizado en el grafico anterior.

Como en estas medidas existen pocos datos en relación con el número de datos analizados en el apartado anterior entre los diferentes instrumentos, no se puede analizar con claridad las diferencias entre los diferentes meses del año ya que solo hay datos en unos intervalos muy pequeños entre los meses de junio y agosto.

Figura 20. Diferencias de AOD en la gráfica superior, (a), y del AE en la gráfica inferior, (b), respecto los meses de estudio.

Figura 21. Histogramas de las frecuencias de las diferencias de AOD en (a) y de AE en (b) entre los fotómetros CIMEL entre Ny-Ålesund y Hornsund.

En el apartado anterior se han explicado tanto el significado de los índices que aparecen en las tablas como la interpretación de alguno de sus valores, por lo que solo evaluaremos los valores de la comparación de ambas localizaciones.

En número de datos en este caso es pequeño 143 respecto a los obtenidos en el apartado anterior entre los diferentes fotómetros, pero es suficiente para determinar los diferentes parámetros estadísticos y estudiar sus diferencias. Las desviaciones estándar de P y O grandes comparadas con los valores medios de estas variables, y con pendientes de las rectas de regresión no muy similares pero que difieren bastante de la unidad especialmente para los valores del AE. El r^2 es muy bajo indicando que no existe mucha correlación entre las dos localizaciones comparadas.

El MBE es negativo lo que implica que en Hornsund los valores de AOD son mayores que en Ny-Ålesund. En el caso de los valores de AE son superiores en Ny-Ålesund que en Hornsund. Las diferencias entre el MAE y el RMSE se deben especialmente a la ponderación de cada $(P_i - O_i)$ por su cuadrado lo que genera valores más elevados de RMSE al haber valores extremos presentes. Aunque los valores del RMSE son mayores a los del MAE, las diferencias no son importantes.

El índice de correlación (d) es superior al 50% por lo que existe correlación, aunque no muy buena, en los valores de AOD y en el AE. Al analizar los valores de RRMSE se observan errores porcentuales bastante elevados (>50%), indicando una pobre precisión del RSME, posiblemente por la existencia de valores extremos. En el caso del MAPE los valores obtenidos se acercan al 50% o incluso lo superan por lo que los datos del AOD en las diferentes localizaciones son bastante diferentes. Mientras que el AE presenta un MAPE de aproximadamente un 30% por lo que su precisión es regular.

Tabla 6. Medidas cuantitativas entre los fotómetros cada ubicación y de las diferencias entre las dos localizaciones de los fotómetros. Las tres primeras filas de cada comparación indican el AOD de cada longitud de onda estudiada y la cuarta el exponente de Ångström.

	$\lambda(\mathrm{nm})$	Ν	P	$\overline{0}$	<i>s</i> _p	S ₀	a	b	r^2
s CH CA ·CH	380	143	0.07	0.08	0.05	0.04	0.0029	0.82	0.41
	500	143	0.05	0.06	0.03	0.03	0.010	0.63	0.30
$P \downarrow V$	870	143	0.02	0.03	0.011	0.02	0.016	0.13	0.050
0	AE	143	1.5	1.1	0.2	0.4	1.21	0.28	0.35

Tabla	7. Medi	idas cuantitativ	vas de las	diferenci	as entr	e las dos	localizacio	ones de los	s fotóm	etros. l	_as tres	primeras
filas c	le cada	comparación	indican e	I AOD d	e cada	longitud	de onda	estudiada	aylac	uarta e	el expo	nente de
Ångst	röm.											

	$\lambda(\mathrm{nm})$	MBE	s_d^2	RMSE	MAE	d	$\begin{array}{c} \text{RRMSE} \\ (\%) \end{array}$	$\begin{array}{c} \text{MAPE} \\ (\%) \end{array}$
н	380	-0.012	0.0014	0.04	0.03	0.76	47	42
s CI CA CH	500	-0.013	0.0008	0.03	0.02	0.70	50	49
$P \rightarrow V$	870	-0.015	0.0004	0.03	0.017	0.49	73	101
\bigcirc	AE	0.4	0.11	0.5	0.4	0.59	45	29

Figura 22. Diferencias de AOD entre fotómetros CIMEL en Hornsund y Ny-Ålesund versus masa óptica en el período 2017-2020. Las líneas continuas indican los límites U95.

Se ha utilizado para calcular el valor de la masa óptica la fórmula empírica de Kasten and Young (1.3). El ángulo cenital depende de la latitud y longitud de Ny-Ålesund (78.923°N, 11.9208°E), del día y la hora para cada valor. No existe apenas diferencia entre calcular la masa óptica con las coordenadas de Ny-Ålesund o Hornsund, porque es pequeña la variación.

Se obtuvieron un total de 143 pares de puntos entre 2017 y 2020 y se pueden observar en la Figura 22 los resultados de las diferencias de AOD y AE entre las diferentes localizaciones en relación con la masa óptica (m). Los valores de AOD, en general, son superiores en Hornsund como se aprecia en la gráfica ya que las diferencias son negativas. Una gran parte de las diferencias se encuentran dentro de los límites de WMO U95 a pesar de la distancia entre ambos sitios. Sin embargo, existen muchos datos que miden diferentes condiciones de aerosol entre ambas localizaciones. Se aprecia que los datos estudiados se encuentran entre 1.5 y 5 de valor de masa óptica.

3.3. Tendencias

A continuación, se muestra un gráfico con la media de cada año desde el 2002 hasta el 2020 de cada fotómetro analizado y con las barras de error que representan la desviación estándar de los datos de cada año. Las medias de los valores anuales únicamente vienen reflejados los valores obtenidos en los meses con luz solar, es decir, desde aproximadamente mayo hasta agosto.

Figura 23. Evolución anual del AOD para (a) 380 nm, (b) 500 nm y (c) 870 nm. La gráfica (d) representa la evolución anual del exponente de Ångström. Las barras indican la desviación estándar de la media anual.

En la Figura 23 se aprecia como algunos años la desviación estándar es muy superior a otros, además los puntos que presentan una desviación estándar elevada son aquellos en los que la media anual difiere en exceso con los valores de años anteriores y posteriores. En la evolución anual del AOD de 380 nm el fotómetro SP1A presenta un valor muy por encima del resto de años con una desviación estándar excesivamente grande, por lo que ese valor no es válido. Ocurre lo mismo con este mismo instrumento en medida del AE, pero en un año diferente al valor erróneo del AOD. Tanto el PFR como el CIMEL AWIPEV presentan desviaciones menores que el resto de fotómetros para los diferentes parámetros estudiados.

Para el cálculo de las tendencias de los parámetros AOD y AE, se ha utilizado el método de Yue y Pilon (Yue Pilon, 2002) donde las pendientes se estiman utilizando el enfoque de Theil-Sen (Sen, 1968). Este método utiliza el procedimiento de preblanqueo sin tendencia (TFPW). Posteriormente, se utiliza la prueba de Mann-Kendall en las series mezcladas de tendencia y residuos para la evaluación del nivel de significación de la tendencia. Se ha utilizado una variación del método de Yue y Pilon que empíricamente proporciona mejores resultados. Esta diferencia consiste en que los valores utilizados para calcular la significación se vuelven a inflar dividiéndolos por (1 - AR(1)), donde AR(1) es un modelo autorregresivo cuyo valor de la serie en el momento t solo depende de la observación previa (Bronaugh, 2019).

El test de Mann-Kendall es una prueba no paramétrica, es decir, que es válida para todas las distribuciones, pero sus datos no deben tener correlación serial. Se puede utilizar para pocos datos, sin embargo, esto hace que la prueba tenga una alta probabilidad de no encontrar una tendencia. La hipótesis nula es que no hay tendencia en los datos, mientras que la alternativa es que los datos presentan una tendencia. Si el p-valor de la prueba es inferior al nivel de significación, en este caso 0,05, demuestra que existe una tendencia en los datos de la serie temporal (Buhairi, 2010).

Tanto el método de Yue y Pilon como el test de Mann-Kendall se llevaron a cabo dentro del software estadístico R mediante el paquete de funciones "zyp" (<u>http://cran.r-project.org/package=zyp</u>).

Figura 24. Evolución mensual del AOD obtenido por el PFR en los meses en los que las medidas son más constantes. Donde (a) pertenece a mayo, (b) a junio, (c) a julio y (d) a agosto.

Figura 25. Evolución mensual del AOD obtenido por el SP1A en los meses en los que las medidas son más constantes. Donde (a) pertenece a mayo, (b) a junio, (c) a julio y (d) a agosto.

Una vez realizado el análisis de tendencias anuales y mensuales, se han obtenido los siguientes estadísticos: tendencia, p-value e intervalo de confianza de 95%. En la Tabla 8 se observan los estadísticos de la evolución anual para cada instrumento estudiado, mientras que en las tablas 8, 9, 10, 11 y 12 se encuentran los estadísticos de la evolución por meses.

Figura 26. Evolución mensual del AOD obtenido por el CIMEL en Hornsund en los meses en los que las medidas son más constantes. Donde (a) pertenece a mayo, (b) a junio, (c) a julio y (d) a agosto.

Figura 27. Evolución del AE de los diferentes fotómetros representados en colores distintos para los meses en los que las medidas son más constantes. Donde (a) pertenece a mayo, (b) a junio, (c) a julio y (d) a agosto.

Se aprecia cómo en todas las gráficas de los distintos instrumentos, salvo picos puntuales, los valores de AOD del mes de mayo son superiores al resto de los meses. Si comparamos las gráficas de los diferentes instrumentos existen picos en todos los instrumentos de medida de AOD que reflejan medias mayores que el resto de los años, compatibles con posibles sucesos ocurridos que provoquen un aumento del AOD. Los picos notables en mayo son en 2006, 2008 y 2014. Los picos más notables en junio son en 2003, 2007, 2011 y 2016, estos últimos no se observa en el CIMEL situado en Hornsund. Los picos más notables en julio se dan en 2004, 2009, 2015 y 2019. En el caso de agosto, los picos mayores se dan en 2014 y 2019.

Los picos observados de AOD repetidos en todos los instrumentos utilizados se deben a sucesos reales que produjeron el aumento del AOD, no a errores instrumentales o de medida. No se ha realizado el estudio del CIMEL AWIPEV ya que solo tenemos medidas de cuatro años, lo cual es un periodo muy corto de tiempo para ver la evolución anual del AOD o del AE.

Se aprecia un pico de AE en 2005 para todos los meses únicamente el PFR, esto puede ser por un error en las medidas de ese año. El resto de los instrumentos presentan fluctuaciones unos respecto de los otros, siendo el mes de mayo en el que menos diferencias existen entre las medias anuales. Los valores con los que se han realizado los gráficos pertenecientes a las figuras 23, 24, 25, 26 y 27, junto con la desviación estándar y el número de datos válidos para cada medida se encuentran en el Anexo I.

Tabla 8	3. Valor	es de	tendend	cia	anuales	de los	s instrum	entos	utilizados	en la	s diferent	es longitude	s de	onda	del
AOD y	del AE	E. Los	valores	en	amarillo	o son	aquellos	que	presentan	una t	tendencia	significativa	ya	que el	p-
valor<(0.05.														

Variable	tendencia (AOD-unidad/año)	p-value	Intervalo Confianza 95%
PFR 368 nm	-0.00037	0.23	[-0.0019, 0.0014]
$\rm PFR~500~nm$	-0.00040	0.20	[-0.0014, 0.00093]
$\mathbf{PFR} \ 862 \ \mathrm{nm}$	-0.00055	0.023	[-0.0013, 0.00015]
PFR AE	0.0051	0.32	[-0.0046, 0.017]
${\rm SP1A}~381~{\rm nm}$	-0.0011	0.30	[-0.0035, 0.00096]
${\rm SP1A}~500~{\rm nm}$	-0.0011	0.13	[-0.0028, 0.00091]
${\rm SP1A}~860~{\rm nm}$	-0.00094	0.13	[-0.0019, 0.00019]
SP1A AE	0.0094	0.84	[-0.012, 0.040]
CH 380 nm	-0.0047	0.0011	[-0.0080, -0.0022]
CH 500 nm $$	-0.0036	0.0022	[-0.0056, -0.00092]
CH 870 nm $$	-0.0019	0.0022	[-0.0032, -0.00062]
CH AE	0.0031	0.43	[-0.018, 0.020]

Al analizar los valores de tendencia anual obtenidos se aprecian tendencias muy pequeñas, negativas en el caso del AOD para el PFR, el SP1A y el CIMEL de Hornsund. Sin embargo, teniendo en cuenta que la tendencia será significativa si el p-valor <0,05 solo las tendencias de AOD del CIMEL de Hornsund y la del AOD a 862 nm del PFR son estadísticamente significativas. La tendencia negativa en estos casos indica que existe una disminución muy ligera del AOD a lo largo de los años, pero esta no es muy notable ya que no con todos los instrumentos es apreciable.

En cuanto al exponente de Ångström, no existe ninguna tendencia estadísticamente significativa, pero en todos los casos los valores obtenidos de tendencia son positivos, es decir, que existiría una tendencia creciente a valores de AE, indicando una mayor presencia de partículas finas. Una causa detrás de este hecho puede atribuirse al aumento de eventos de transporte de quema de biomasa desde Canadá y Rusia hacia la zona ártica europea.

Tabla 9. Valores de tendencia en mayo de los instrumentos utilizados en las diferentes longitudes de onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia significativa ya que el p-valor<0.05.

Variable	Tendencia (AOD-unidad/año)	p-value	Intervalo Confianza 95%
PFR 368 nm	-0.0037	0.00025	[-0.0073, -0.00083]
$\rm PFR~500~nm$	-0.0026	0.000091	[-0.0049, -0.00059]
$\rm PFR$ 862 nm	-0.0022	0.000010	[-0.0032, -0.00077]
PFR AE	0.0089	0.053	[-0.0077, 0.021]
${\rm SP1A}~381~{\rm nm}$	-0.0015	0.11	[-0.0052, 0.00062]
${\rm SP1A}~500~{\rm nm}$	-0.00092	0.15	[-0.0045, 0.0011]
${\rm SP1A} \ 860 \ {\rm nm}$	-0.00096	0.15	$\left[-0.0035, 0.00081 ight]$
SP1A AE	-0.0089	0.036	[-0.028, 0.015]
CH 380 nm	-0.0077	0.0019	[-0.017, -0.00039]
CH 500 $\rm nm$	-0.0060	0.0012	[-0.013, -0.00024]
CH 870 nm	-0.0029	0.0060	[-0.0072, 0.00088]
CH AE	-0.019	0.20	[-0.035, 0.0032]

Tabla 10. Valores de tendencia en junio de los instrumentos utilizados en las diferentes longitudes de onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia significativa ya que el p-valor<0.05.

Variable	Tendencia (AOD-unidad/año)	p-value	Intervalo Confianza 95%
$\rm PFR~368~nm$	-0.00078	0.13	[-0.0031, 0.00035]
$\rm PFR~500~nm$	-0.00062	0.077	[-0.0021, 0.00046]
$\rm PFR~862~nm$	-0.00022	0.84	$\left[-0.00096, 0.00030 ight]$
PFR AE	-0.010	0.091	[-0.023, 0.0098]
${\rm SP1A}~381~{\rm nm}$	-0.0013	0.59	$\left[-0.0051, 0.0011 ight]$
${\rm SP1A}~500~{\rm nm}$	-0.00083	0.39	[-0.0037, 0.00049]
${\rm SP1A} \ 860 \ {\rm nm}$	-0.00084	0.43	[-0.0020, 0.00035]
SP1A AE	0.0053	0.90	[-0.022, 0.024]
CH 380 nm	-0.0041	0.0086	[-0.012, -0.00088]
CH 500 nm $$	-0.0027	0.012	[-0.0076, -0.00027]
CH 870 nm $$	-0.00039	0.080	[-0.0027, 0.00066]
CH AE	-0.029	0.19	[-0.051, 0.0051]

Variable	Tendencia (AOD-unidad/año)	p-value	Intervalo Confianza 95%
$\rm PFR$ 368 nm	-0.00022	0.97	[-0.0040, 0.0033]
$\rm PFR~500~nm$	-0.00018	1	[-0.0025, 0.0021]
$\rm PFR~862~nm$	-0.00011	0.97	[-0.0012, 0.0013]
PFR AE	0.0014	0.54	[-0.012, 0.016]
${\rm SP1A}~381~{\rm nm}$	-0.00013	0.50	[-0.0044, 0.0042]
${\rm SP1A}~500~{\rm nm}$	0.00019	0.50	[-0.0028, 0.0023]
${\rm SP1A} \ 860 \ {\rm nm}$	0.000006	0.50	[-0.0019, 0.0011]
SP1A AE	0.017	0.34	[-0.025, 0.061]
CH 380 nm $$	0.00037	0.43	[-0.0060, 0.0051]
CH 500 nm $$	-0.000079	0.30	[-0.0054, 0.0040]
$\rm CH~870~nm$	0.00060	0.30	[-0.0027, 0.0016]
CH AE	0.020	0.059	[-0.017, 0.078]

Tabla 11. Valores de tendencia en julio de los instrumentos utilizados en las diferentes longitudes de onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia significativa ya que el p-valor<0.05.

Tabla 12. Valores de tendencia en agosto de los instrumentos utilizados en las diferentes longitudes de onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia significativa ya que el p-valor<0.05.

Variable	Tendencia (AOD-unidad/año)	p-value	Intervalo Confianza 95%
PFR 368 nm	0.0020	0.027	[0.000071, 0.0060]
$\rm PFR~500~nm$	0.0012	0.053	[-0.000042, 0.0044]
$\rm PFR~862~nm$	0.00019	0.44	[-0.00067, 0.0015]
PFR AE	0.0026	0.69	[-0.0085, 0.016]
${\rm SP1A}~381~{\rm nm}$	0.0031	0.34	[-0.0039, 0.0089]
${\rm SP1A}~500~{\rm nm}$	0.0016	0.043	[-0.00087, 0.0054]
${\rm SP1A}~860~{\rm nm}$	0.00030	0.22	[-0.00055, 0.0019]
SP1A AE	0.0013	0.96	[-0.029, 0.033]
CH 380 nm $$	-0.00062	0.83	[-0.0056, 0.0033]
CH 500 nm $$	-0.00095	0.83	[-0.0047, 0.0034]
CH 870 nm $$	-0.00068	0.38	[-0.0026, 0.0019]
CH AE	0.011	0.19	[-0.026, 0.051]

Analizando las tablas de tendencias mensuales se puede apreciar que el único mes en el que se pueden apreciar tendencias significativas estadísticamente es el mes de mayo, en el resto de meses existen algunos instrumentos con tendencias significativas, pero a penas solo de alguna longitud de onda del AOD. En julio no se observa ninguna tendencia significativa para ningún fotómetro. Las tendencias de mayo para el AOD son negativas y muy pequeñas, pero lo que indica es que tanto en el PFR como en el CIMEL de Hornsund se obtienen valores ligeramente menores con el paso de los años. La tendencia del exponente de Ångström del SP1A es significativa y es ligeramente negativa, los valores del AE de mayo son cada vez menores.

Kabanov (2020) realiza un estudio comparando las variaciones interanuales y estacionales del AOD en Spitsbergen entre 2002 y 2018. En ese estudio, al igual que en este, se obtiene una tendencia de disminución del AOD, sin embargo, las tendencias no son estadísticamente significativas. Como el fotómetro utilizado por Kabanov fue el SP1A en Ny-Ålesund se puede comparar el nivel de significación en ambos estudios, aunque en ambos supera el nivel de significación de 0.05, en el de Kabanov la tendencia es más significativa que en el actualmente realizado. Kabanov concluye que las oscilaciones del AOD anual en Ny-Ålesund están determinadas por los aerosoles finos, los cuales tienen un efecto importante en el comportamiento estacional del AOD. Por ese motivo, probablemente las tendencias no sean significativas debido a la variabilidad de los datos obtenidos.

4. Conclusiones

Hemos analizado los datos registrados por diversos fotómetros: CIMEL, SP1A y PFR en los sitios de AERONET en Ny-Ålesund para el período de 2017 a 2018 y en Hornsund período de 2017 a 2020.

Tras comparar los diferentes instrumentos dentro de la misma localización, Ny-Ålesund, se puede observar que el fotómetro que presenta valores más altos de AOD es el PFR y el que presenta valores más bajos es el SP1A. Como el CIMEL es el fotómetro de referencia se puede decir que el PFR sobreestima sus valores de AOD, mientras que el SP1A los subestima. En cambio, al comparar el AE ambos valores sobreestiman respecto del CIMEL. Existe una clara dependencia del AOD con la longitud de onda, siendo menor el valor del AOD cuanto mayor sea la longitud de onda.

La correlación del AOD entre los diferentes fotómetros es muy alta, >95% en la mayoría de los casos, aunque la variabilidad entre los datos es elevada. El error cuadrático medio y el error absoluto medio no son muy elevados, concluyendo que los valores del fotómetro de referencia no difieren mucho respecto de los del fotómetro con el que se compara. Sin embargo, respecto al AE la correlación entre las parejas de instrumentos es pequeña, aunque los errores obtenidos son <35% en la mayor parte de los casos.

Al comparar diferentes estaciones, Hornsund y Ny-Ålesund, se observa que los valores de AOD en Hornsund son mayores que los observados en Ny-Ålesund. Existe bastante variabilidad entre los datos lo cual queda reflejado en la Tabla 7 al analizar tanto las desviaciones estándar como los errores de las diferencias. Al realizarse el estudio con los mismos instrumentos calibrados y analizados por AERONET, se permite una comparación directa de los datos de AOD y AE en ambas localizaciones. En varios estudios anteriores como el de Pakszys y Zielinski (2017), se compara Hornsund y Ny-Ålesund en el mismo periodo, pero no con los mismos instrumentos. Este llega a la conclusión de que existe una correlación alta entre las observaciones de AOD, pero con una variabilidad mayor y tendencia hacia valores más altos en el caso de Hornsund. En el estudio de Hansen et al. (2022) en el que se evaluaron medidas en ambos con el fotómetro CIMEL también se obtienen valores superiores en Hornsund que en Ny-Ålesund. Ambos estudios concuerdan con lo obtenido en este trabajo.

Para hacer el estudio de tendencias se han utilizado la media de los valores anuales de cada fotómetro desde 2002 hasta 2020, aunque de algunos fotómetros no tenemos tanto rango de estudio. Los valores medios anuales de AOD varían aproximadamente entre 0.01 y 0.22 en la mayor parte de los fotómetros. Los valores medios presentan una desviación estándar bastante elevada, similares en todos los instrumentos a excepción del SP1A que presenta en ciertas fechas valores de AOD muy extremos generando una desviación estándar muy grande. Se ha considerado el fotómetro CIMEL el de referencia debido a que presenta una calibración y análisis de los datos obtenidos proporcionados por la red AERONET. En los meses de julio el AOD es ligeramente superior al resto de los meses estudiados, mientras que en el AE la mayor parte de sus valores anuales se encuentran entre 0.8 y 2. La mayoría de las tendencias del AOD son negativas y no son significativas estadísticamente. El CIMEL de Hornsund es el instrumento cuyas tendencias de AOD presentan mayor significación estadística. Además, presenta mayor variabilidad de los datos respecto al resto de instrumentos, ya que los eventos llegan a ambas estaciones en momentos diferentes, lo que está relacionado con la circulación de las masas de aire y la orografía de la zona circundante.

Bibliografía

Ångström, A. (1961). Techniques of Determining the Turbidity of the Atmosphere. Tellus, 13(2), 214-223. https://doi.org/10.3402/tellusa.v13i2.9493

Bronaugh, D. y Werner, A. (2019). Zhang + Yue-Pilon Trends Package. http://cran.r-project.org/package=zyp

Buhairi, M. (2010). Analysis of Monthly, Seasonal and Annual Air Temperature Variability and Trends in Taiz City - Republic of Yemen. *Journal of Environmental Protection*, 1(4), 401-409. https://doi.org/10.4236/jep.2010.14046

d'Almeida, G. A., P. Koepke, E. P. Shettle (1991) Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak Publishing, 561 pp.

Despotovic, M., Nedic, V., Despotovic, D. y Slobodan Cvetanovic, S. (2016). Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. *Renewable and Sustainable Energy Reviews*, 56, 246-260. https://doi.org/10.1016/j.rser.2015.11.058.

Fernández Camacho, R. (2011). Origen y características de las partículas finas y ultrafinas en el aire ambiente de Huelva. [Tesis doctoral, Universidad de Huelva]. DSpace. http://hdl.handle.net/10272/5497

González Catón, R. (2021). Desarrollo de nuevos métodos de procesado de daros de redes fotométricas para el análisis de propiedades del aerosol atmosférico. [Tesis doctoral, Universidad de Valladolid]. UVaDOC. http://uvadoc.uva.es/handle/10324/46439

Graham, S. (17 de septiembre de 1999). *Remote Sensing.* Earth Observatory. https://earthobservatory.nasa.gov/features/RemoteSensing/remote_08.php

Graßl, S. y Ritter, C. (2019). Properties of Arctic Aerosol Based on Sun Photometer Long-Term Measurements in Ny-Ålesund, Svalbard. *Remote Sensing*, 11(11), 1362. https://doi.org/10.3390/rs11111362

Hansen, G., Zielinski, T., Pakszys, P., Ritter, C., Gilardoni, S., Eleftheriadis, K., Kouremeti,
N. Mateos, D., Herrero, S., Kazadzis, S., Mazzola, M., Stebel, K. (2022). Re-evaluation and
Homogenization of Aerosol Optical Depth Observations in Svalbard (ReHearsol)ReHearsol
Final Report. Report 03/2022. NILU. <u>https://www.researchgate.net/publication/358923139</u>

Herber, A., Thomason, L. W., Gernandt, H., Leiterer, U., Nagel, D., Schulz, K.-H., Kaptur, J., Albrecht, T., Notholt, J. (2002). Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. *Journal of Geophysical Research*, 107(D10), AAC 6-1-AAC 6-13. <u>https://doi.org/10.1029/2001JD000536</u>

Hermansen, O., Schmidbauer, N., Lunder, C., Stordal, F., Schaug, J., Braathen, O.-A., Holmèn, K. (2003). Greenhouse gas monitoring at the Zeppelin station. Annual report 2002. Report 879/03. NILU. Herrero Anta, S. (2021). Análisis de la presencia de una pluma de aerosol mineral en el Ártico detectada mediante fotometría solar. [Trabajo fin de máster, Universidad de Valladolid]. UVaDOC. https://uvadoc.uva.es/handle/10324/49602

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998).
AERONET - A federated instrument network and data archive for aerosol characterization.
Remote Sensing of Environment, 66(1), 1-16. <u>https://doi.org/10.1016/S0034-4257(98)00031-5</u>

Kabanov, D. M., Ritter, C. y Sakerin, S. M. (2020). Interannual and seasonal variations in the aerosol optical depth of the atmosphere in two regions of Spitsbergen (2002–2018). *Atmospheric Measurement Techniques*, 13, 5303–5317. https://doi.org/10.5194/amt-13-5303-2020

Kulmala, M., Maso, M. D., Makela, J. M., Pirjola, L., Vakeva, M., Aalto, P., Miikkulainen, P., Hameri, K.,O'DowdC. (2001). On the formation, growth and composition of nucleation mode particles. Tellus B, 53(4), 479-490. https://doi.org/10.1034/j.1600-0889.2001.530411.x

Marino, D. J. G. (2011). Estudio teórico experimental sobre respuestas biológicas a compuestos orgánicos de relevancia Ambiental. [Tesis doctoral, Universidad Nacional de La Plata]. SEDICI. http://sedici.unlp.edu.ar/handle/10915/2744

Pakszys, P. y Zielinski, T. (2017). Aerosol optical properties over Svalbard: a comparison between Ny-Ålesund and Hornsund. *Oceanologia*, 59(4), 431-444. https://doi.org/10.1016/j.oceano.2017.05.002

Pakszys, P., Zielinski, T., Markowicz, K., Petelski, T., Makuch, P., Lisok, J., Chilinski, M., Rozwadowska, A., Ritter, C., Neuber, R., Udisti, R., Mazzola, M. (2015). Annual Changes of Aerosol Optical Depth and Ångström Exponent over Spitsbergen. En: Zielinski, T., Weslawski, M., Kuliński, K. (eds), *Impact of Climate Changes on Marine Environments* (23–36). Springer.

Physikalisch-Meteorologisches Observatorium Davos World Radiation Center. (2012). Precision Filter Radiometer. http://elovep.co.kr/uploaded/product/83/con1 a2c6014d95ce2ef85f74fdc55ebb52a00.pdf

Pieter, B. (2017). Applicability of provisional NRVs to PGNPs and FCNPs. https://doi.org/10.13140/RG.2.2.18241.25445

Sen, P.K. (1968). Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 63(324), 1379-1389. http://dx.doi.org/10.1080/01621459.1968.10480934

Toledano Olmeda, C. (2005). Climatología de los aerosoles mediante la caracterización de propiedades ópticas y masas de aire en la estación. "El Arenosillo" de la red AERONET. [Tesis doctoral, Universidad de Valladolid]. UVaDOC. http://uvadoc.uva.es/handle/10324/29641 Toledano, C., Cachorro, V., Gausa, M., Stebel, K., Aaltonen, V., Berjon, A., Ortis, J.P., de Frutos, A.M., Bennouna, Y., Blindheim, S., Myhre, C.L., Zibordi, G., Wehrli, C., Kratzer, S., Hakanson, B., Carlund, T., de Leuww, G., Herber, A. (2012). Overview of Sun photometer measurements of aerosol properties in Scandinavia and Svalbard. Atmos. Environ. 52, 18-28. https://doi.org/10.1016/j.atmosenv.2017.06.014

Velasco Merino, C. (2020). Identificación de tipos de aerosol mediante medidas fotométricas. Aplicación al transporte de aerosol sahariano hasta el Caribe. [Tesis doctoral, Universidad de Valladolid]. UVaDOC. http://uvadoc.uva.es/handle/10324/46441

Vergaz Benito, R. (2001). Propiedades ópticas de los aerosoles atmosféricos. Caracterización del área del Golfo de Cádiz. [Tesis doctoral, Universidad de Valladolid]. http://goa.uva.es/wp-content/uploads/2021/03/VERGAZ-Ricardo.pd

Willeke, K. and Baron, P. A. (1993). Aerosol measurement: Principles. Techniques and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey

Willmott, C. J. (1982). Some Comments on the Evaluation of Model Performance. *Bulletin of the American Meteorological Society*, 63(11), 1309–1313. <u>https://doi.org/10.1175/1520-</u>0477(1982)063<1309:SCOTEO>2.0.CO;2

Willmott, C. J. y Wicks, D. E. (1980). An empirical method for the spatial interpolation of monthly precipitation within California. *Physical geography*, 1(1), 59-73. <u>https://doi.org/10.1080/02723646.1980.10642189</u>

WMO. (2005). Experts workshop on a global surface-based network for long term observations of column aerosol optical properties. WMO TD No. 1287 (GAW Report No. 162), World

Yue, S., Pilon, P., Phinney, B. y Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. *Hydrological Processes*, 16(9), 1807-1829. <u>https://doi.org/10.1002/hyp.1095</u>

Índice de figuras

Figura 1. Forzamiento radiativo del clima terrestre entre 1750 y 2011, fuente de la imagen IPCC Fifth
Assessment Report (AR5) [Intergovernmental Panel on Climate Change (IPCC), 2013]
Figura 2 Distribución esquemática del tamaño de los aerosoles, mostrando cuatro modelos y los
mecanismos de formación y eliminación en la atmósfera. Las partículas del modo de acumulación
pueden mostrar un carácter bimodal representado por la línea morada. Adaptación de Pieter (2017).
Figura 3. Vista aérea de la localización del archipiélago Svalbard dentro del globo terráqueo.
(https://earth.google.com/web)
Figura 4. Ubicación de las estaciones de estudio dentro del archipiélago de Svalbard.
(https://earth.google.com/web)
Figura 5. Componentes principales de un fotómetro solar CIMEL-318. Imagen tomada de Velasco
Merino (2020)
Figura 6. Imagen del fotómetro PER. Imagen tomada de PMODWRC (2012)
Figura 7 Valores de AOD para tres longitudes de onda en Ny-Ålesund durante el periodo de 2017 a
2018 de (a) CIMEL AWIPEV (b) SP1A v (c) PER
Figura 8. Evolución temporal de los valores de AOD de los diferentes fotómetros para longitudes de
onda de (a) $368-381$ nm (b) 500 nm v (c) $860-870$ nm 16
Figura 9 Evolución temporal de los valores del exponente de Ángström de los diferentes fotómetros
entre 2017 v 2018
Figura 10, Comparación para (a) 3868-380 nm. (b) 500 nm v (c) 862-870 nm del AOD de los
fotómetros PER y CIMEL (d) Comparación del AE de los fotómetros PER y CIMEL 17
Figura 11. Comparación para (a) $3868-380$ nm. (b) 500 nm v (c) $862-870$ nm del AOD de los
fotómetros SP1A v CIMEL (d) Comparación del AE de los fotómetros SP1A v CIMEL 18
Figura 12. Comparación para (a) $3868-380$ nm. (b) 500 nm v (c) $862-870$ nm del AOD de los
fotómetros SP1A v PER. (d) Comparación del AE de los fotómetros SP1A v PER. 18
Figura 13 Evolución temporal desde mayo del 2017 a octubre de 2010 de las diferencias entre los
diferentes instrumentos por pareias (a)Diferencias entre PER y CIMEL de AOD. (b) diferencias entre
PER y CIMEL de AE. (c) diferencias entre SP1A y CIMEL de AOD. (d) diferencias entre SP1A y CIMEL de
AOD (e) diferencias entre PER v SP1A de AOD v (f) diferencias entre PER v SP1A de AE
Figura 14. Histogramas de las diferencias de los diferentes instrumentos por pareias con las curvas
normales para cada longitud de onda. Las líneas discontinuas representan la medida de la diferencia
de AOD de cada longitud de onda. Los gráficos (a) v (b) reflejan la comparación de las diferencias
entre el PFR y el CIMEL, los (c) y (d) muestran la comparación de las diferencias entre el SP1A y el
CIMEL v los (e) v (f) manifiestan la comparación de las diferencias entre el PFR v el SP1A. Resultados
para el AOD a tres longitudes de onda: a), c), e) y para el AE: b), d), f),
Figura 15. Diferencias de AOD (a) entre PFR v Sp1A v (b) entre CIMEL v PFR en Nv-Ålesund versus
masa óptica en el período 2017-2018. Las líneas continuas indican los límites U95
Figura 16. Diferencias de AOD entre CIMEL y SP1A en Ny-Ålesund versus masa óptica en el período
2017-2018. Las líneas continuas indican los límites U95
Figura 17. Evolución temporal del AOD obtenido por el CIMEL en Ny-Ålesund y en Hornsund
Figura 18. (a), (b) y (c) Evolución temporal del AOD en 380 nm. 500 nm y 870 nm. respectivamente
para los fotómetros CIMEL. (d) Evolución temporal del AE en las estaciones de Ny-Ålesund v
Hornsund
Figura 19. Comparación de los fotómetros CIMEL entre Ny-Ålesund y Hornsund. Comparativa del
AOD para (a) 380 nm, (b) 500 nm y (c) 870 nm. (d) Comparativa del AE

Figura 20. Diferencias de AOD en la gráfica superior, (a), y del AE en la gráfica inferior, (b), respecto
los meses de estudio
Figura 21. Histogramas de las frecuencias de las diferencias de AOD en (a) y de AE en (b) entre los
fotómetros CIMEL entre Ny-Ålesund y Hornsund 29
Figura 22. Diferencias de AOD entre fotómetros CIMEL en Hornsund y Ny-Ålesund versus masa óptica
en el período 2017-2020. Las líneas continuas indican los límites U95 31
Figura 23. Evolución anual del AOD para (a) 380 nm, (b) 500 nm y (c) 870 nm. La gráfica (d)
representa la evolución anual del exponente de Ångström. Las barras indican la desviación estándar
de la media anual
Figura 24. Evolución mensual del AOD obtenido por el PFR en los meses en los que las medidas son
más constantes. Donde (a) pertenece a mayo, (b) a junio, (c) a julio y (d) a agosto
Figura 25. Evolución mensual del AOD obtenido por el SP1A en los meses en los que las medidas son
más constantes. Donde (a) pertenece a mayo, (b) a junio, (c) a julio y (d) a agosto 34
Figura 26. Evolución mensual del AOD obtenido por el CIMEL en Hornsund en los meses en los que
las medidas son más constantes. Donde (a) pertenece a mayo, (b) a junio, (c) a julio y (d) a agosto. 35
Figura 27. Evolución del AE de los diferentes fotómetros representados en colores distintos para los
meses en los que las medidas son más constantes. Donde (a) pertenece a mayo, (b) a junio, (c) a julio
y (d) a agosto

Índice de tablas

Tabla 1. Resumen de las características de los fotómetros solares	11
Tabla 2. Intervalos de estudio de los distintos fotómetros utilizados	14
Tabla 3. Medidas cuantitativas de cada fotómetro y de las diferencias entre dos fotómetros. Las tre	es
primeras filas de cada comparación indican el AOD de cada longitud de onda estudiada y la cuarta e	el
exponente de Ångström	22
Tabla 4. Medidas cuantitativas de las diferencias entre dos fotómetros. Las tres primeras filas de ca	ida
comparación indican el AOD de cada longitud de onda estudiada y la cuarta el exponente de	
Ångström	23
Tabla 5. Intervalos de estudio de los distintos fotómetros utilizados	26
Tabla 6. Medidas cuantitativas entre los fotómetros cada ubicación y de las diferencias entre las do)S
localizaciones de los fotómetros. Las tres primeras filas de cada comparación indican el AOD de cac	ła
longitud de onda estudiada y la cuarta el exponente de Ångström	30
Tabla 7. Medidas cuantitativas de las diferencias entre las dos localizaciones de los fotómetros. Las	
tres primeras filas de cada comparación indican el AOD de cada longitud de onda estudiada y la	
cuarta el exponente de Ångström.	31
Tabla 8. Valores de tendencia anuales de los instrumentos utilizados en las diferentes longitudes de	e
onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia	-
significativa va que el p-valor<0.05	36
Tabla 9. Valores de tendencia en mayo de los instrumentos utilizados en las diferentes longitudes d	le
onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia	
significativa va que el p-valor<0.05	37
Tabla 10. Valores de tendencia en junio de los instrumentos utilizados en las diferentes longitudes	de
onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia	
significativa va que el p-valor<0.05.	37
Tabla 11. Valores de tendencia en julio de los instrumentos utilizados en las diferentes longitudes d	le
onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia	
significativa va que el p-valor<0.05.	38
Tabla 12. Valores de tendencia en agosto de los instrumentos utilizados en las diferentes longitude	s
de onda del AOD y del AE. Los valores en amarillo son aquellos que presentan una tendencia	
significativa va que el p-valor<0.05	38
Tabla 13. Datos anuales del PFR, incluye las medias, el número de datos de cada año y la desviaciór	า
típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström	48
Tabla 14. Datos anuales del SP1A, incluye las medias, el número de datos de cada año y la desviació	ón
típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström	48
Tabla 15. Datos anuales del CIMEL AWIPEV, incluve las medias, el número de datos de cada año y la	а
desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de	
Ångström	49
Tabla 16. Datos anuales del CIMEL Hornsund, incluve las medias, el número de datos de cada año v	/ Ia
desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de	
Ångström	49
Tabla 17. Datos mensuales de mayo del PFR, incluve las medias, el número de datos de cada año v	la
desviación típica de cada año del AOD para las diferentes longitudes de onda v del exponente de	
Ångström	49
Tabla 18. Datos mensuales de mayo del SP1A, incluye las medias, el número de datos de cada año v	Y
la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de	:
Ångström	50

cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del
exponente de Ångström
Tabla 20. Datos mensuales de mayo del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 21. Datos mensuales de junio del PFR, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 22. Datos mensuales de junio del SP1A, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 23. Datos mensuales de junio del CIMEL AWIPEV, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 24. Datos mensuales de junio del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 25. Datos mensuales de julio del PFR, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 26. Datos mensuales de julio del SP1A, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de
Ångström
cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 28. Datos mensuales de julio del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 29. Datos mensuales de agosto del PFR, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 30. Datos mensuales de agosto del SP1A, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 31. Datos mensuales de agosto del CIMEL AWIPEV, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström
Tabla 32. Datos mensuales de agosto del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström

Anexo I

Tablas de datos anuales

Tabla 13. Datos anuales del PFR, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	A	OD 368 nn	n	AOD 500 nm			AOD 862 nm			AE		
Año	Media	Nº datos	sd	Media	Nº datos	sd	Media	Nº datos	sd	Media	Nº datos	sd
2002	0.0865	9726	0.0634	0.0626	9726	0.0487	0.0319	9726	0.0348	1.2723	9691	0.3013
2003	0.1139	18448	0.0749	0.0830	18448	0.0571	0.0405	18448	0.0440	1.3849	18442	0.3515
2004	0.1071	9662	0.0768	0.0777	9662	0.0637	0.0363	9662	0.0555	1.4720	9661	0.3551
2005	0.1130	17519	0.0647	0.0783	17519	0.0510	0.0410	17519	0.0431	1.3807	17499	0.3983
2006	0.1173	11807	0.0854	0.0832	11807	0.0667	0.0508	11807	0.0555	1.2077	11805	0.3967
2007	0.0951	23746	0.0529	0.0692	23746	0.0556	0.0327	23746	0.0638	1.5846	23616	0.2914
2008	0.1071	9662	0.0768	0.0777	9662	0.0637	0.0363	9662	0.0555	1.4720	9661	0.3551
2009	0.1391	25250	0.0470	0.1028	25250	0.0335	0.0484	25250	0.0213	1.3008	25250	0.2838
2010	0.1025	23487	0.0447	0.0770	23487	0.0342	0.0415	23487	0.0249	1.1408	23487	0.2754
2011	0.0924	8293	0.0345	0.0629	8293	0.0217	0.0269	8293	0.0160	1.5362	8293	0.2650
2012	0.1234	35050	0.0499	0.0898	35050	0.0366	0.0423	35050	0.0232	1.3360	35050	0.2208
2013	0.1014	33796	0.0518	0.0741	33796	0.0372	0.0356	33796	0.0238	1.3136	33796	0.2893
2014	0.1123	22912	0.0428	0.0775	22912	0.0297	0.0333	22912	0.0152	1.4649	22912	0.1942
2015	0.1101	40885	0.1015	0.0788	40885	0.0809	0.0364	40885	0.0372	1.4035	40885	0.2625
2016	0.0852	30728	0.0449	0.0580	30728	0.0303	0.0241	30728	0.0134	1.5096	30728	0.2123
2017	0.0822	26812	0.0369	0.0585	26812	0.0274	0.0250	26812	0.0124	1.4627	26812	0.2028
2018	0.0907	20251	0.0671	0.0638	20251	0.0519	0.0282	20251	0.0231	1.4070	20251	0.1877
2019	0.1358	32075	0.1052	0.1053	32075	0.0756	0.0405	32075	0.0317	1.4661	32075	0.2320
2020	0.1056	6611	0.0193	0.0713	6611	0.0133	0.0308	6611	0.0058	1.4668	6611	0.0996

Tabla 14. Datos anuales del SP1A, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	4	AOD 368 nn	า	AOD 500 nm			AOD 862 nm			AE		
Año	Media	Nº datos	sd	Media	Nº datos	sd	Media	Nº datos	sd	Media	Nº datos	sd
2003	0.0999	899	0.0282	0.0693	899	0.0246	0.0622	899	0.0221	0.7098	822	0.4435
2004	0.1187	11521	0.0559	0.0870	11521	0.0447	0.0351	11521	0.0188	1.5652	11450	0.4971
2005	0.1159	4290	0.0669	0.0817	4290	0.0450	0.0231	4290	0.0192	2.4868	4276	1.2822
2006	0.1209	8521	0.1534	0.0922	8521	0.1201	0.0433	8521	0.0436	1.2273	8521	0.2231
2007	0.0956	18577	0.0357	0.0669	18577	0.0242	0.0319	18577	0.0102	1.3914	18577	0.1451
2008	0.1187	11521	0.0559	0.0870	11521	0.0447	0.0351	18299	0.0188	1.5652	11450	0.4971
2009	0.1370	30025	0.4212	0.1006	30025	0.0326	0.0480	30025	0.0134	1.2772	30025	0.2699
2010	0.6092	30006	2.2879	0.0481	30006	0.0287	0.0277	30006	0.0221	1.3541	29893	0.2585
2011	0.1070	34090	0.0309	0.0668	34090	0.0196	0.0331	34090	0.0087	1.3656	34090	0.1860
2012	0.1000	28386	0.0336	0.0684	28386	0.0237	0.0334	28386	0.0111	1.4235	28386	0.1657
2013	0.0713	24691	0.0353	0.0508	24691	0.0240	0.0220	24691	0.0105	1.5214	24691	0.3685
2014	0.0720	18824	0.0398	0.0575	18824	0.0289	0.0228	18824	0.0120	1.5860	18824	0.3277
2015	0.1414	35555	0.2376	0.1119	35555	0.1690	0.0541	35555	0.0746	1.1375	35555	0.2407
2016	0.1180	35785	0.6094	0.0565	35785	0.0274	0.0251	35785	0.0105	1.3216	35785	0.2340
2017	0.0730	40161	0.0313	0.0497	40161	0.0220	0.0180	40161	0.0099	1.7899	40160	0.4185
2018	0.0807	31316	0.2208	0.0553	31316	0.0557	0.0219	31316	0.0243	1.6246	31315	0.3437
2019	0.1058	23042	0.0555	0.0797	23042	0.0448	0.0378	23042	0.0230	1.3429	23042	0.2085
2020	0.1082	33971	0.3002	0.0718	33971	0.0421	0.0300	33971	0.0173	1.4986	33971	0.2075

Tabla 15. Datos anuales del CIMEL AWIPEV, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm			AOD 500 nm			AOD 862 nm			AE		
Año	Media	Nº datos	sd	Media	Nº datos	sd	Media	Nº datos	sd	Media	Nº datos	sd
2017	0.0578	1652	0.0306	0.0421	1652	0.0249	0.0191	1652	0.0127	1.4245	1652	0.2533
2018	0.0905	1653	0.0625	0.0664	1653	0.0474	0.0320	1653	0.0252	1.3292	1653	0.2665
2019	0.0829	1045	0.0397	0.0600	1045	0.0321	0.0269	1045	0.0265	1.4730	1045	0.3124
2020	0.1116	9499	0.0759	0.0804	9499	0.0561	0.0376	9499	0.0330	1.4236	9499	0.3244

Tabla 16. Datos anuales del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm			AOD 500 nm			AOD 862 nm			AE		
Año	Media	Nº datos	sd	Media	Nº datos	sd	Media	Nº datos	sd	Media	Nº datos	sd
2005	0.1299	88	0.0652	0.0943	88	0.0474	0.0459	88	0.0212	1.2555	88	0.1777
2006	0.1951	240	0.1938	0.1357	240	0.1267	0.0623	240	0.0470	1.2801	240	0.2684
2007	0.1443	320	0.0812	0.1122	320	0.0828	0.0706	320	0.0829	1.1114	320	0.4509
2008	0.1546	2008	0.1277	0.1139	2008	0.1173	0.0570	2008	0.1094	1.4018	2008	0.2592
2009	0.1522	1522	0.0694	0.1104	1522	0.0526	0.0515	1522	0.0405	1.3353	1522	0.2592
2010	0.1476	610	0.0753	0.1152	610	0.0677	0.0688	610	0.0651	1.0619	610	0.3689
2011	0.1273	1603	0.0464	0.0923	1603	0.0372	0.0483	1603	0.0310	1.2588	1603	0.4074
2012	0.1146	1603	0.0492	0.0848	1603	0.0373	0.0401	1603	0.0250	1.3253	1603	0.2619
2013	0.1201	1223	0.0628	0.0900	1223	0.0534	0.0506	1223	0.0464	1.1549	1223	0.3118
2014	0.1052	1283	0.0519	0.0812	1283	0.0409	0.0404	1283	0.0312	1.2185	1283	0.2917
2015	0.1749	670	0.2111	0.1345	670	0.1715	0.0571	670	0.0699	1.4270	670	0.2496
2016	0.0655	364	0.0399	0.0468	364	0.0287	0.0294	364	0.0142	0.9121	364	0.3301
2017	0.0919	1552	0.0586	0.0670	1552	0.0457	0.0287	1552	0.0211	1.4917	1552	0.3169
2018	0.0875	728	0.0764	0.0686	728	0.0622	0.0351	728	0.0330	1.1913	728	0.2949
2019	0.1344	1476	0.0933	0.1026	1476	0.0736	0.0474	1476	0.0397	1.3312	1476	0.2754
2020	0.0972	914	0.0721	0.0713	914	0.0525	0.0346	914	0.0274	1.2830	914	0.3283

Tablas de datos de mayo

Tabla 17. Datos mensuales de mayo del PFR, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	A	AOD 368 nm			AOD 500 nm			AOD 862 nm			AE		
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	
2002	0.1037	0.0438	3009	0.0734	0.0330	3009	0.0345	0.0231	3009	1.3459	0.1725	3007	
2003	0.2111	0.0785	2867	0.1469	0.0596	2867	0.0747	0.0461	2867	1.2777	0.2351	2867	
2004	0.1697	0.0750	2675	0.1190	0.0700	2675	0.0558	0.0724	2675	1.5422	0.3680	2675	
2005	0.1417	0.0458	4162	0.0992	0.0380	4162	0.0628	0.0345	4162	1.0121	0.1952	4162	
2007	0.1137	0.0620	3843	0.0922	0.1030	3843	0.0574	0.1391	3843	1.5400	0.2762	3721	
2008	0.2112	0.0806	6128	0.1436	0.0499	6128	0.0676	0.0598	6128	1.4279	0.1513	6090	
2009	0.1664	0.0466	4988	0.1142	0.0307	4988	0.0555	0.0255	4988	1.3523	0.4509	4988	
2010	0.1144	0.0429	2880	0.0822	0.0317	2880	0.0400	0.0223	2880	1.2955	0.2185	2880	
2011	0.1290	0.0191	772	0.0845	0.0130	772	0.0321	0.0060	772	1.6704	0.0933	772	
2012	0.1524	0.0515	9584	0.1115	0.0398	9584	0.0569	0.0270	9584	1.2158	0.1932	9584	
2013	0.0933	0.0452	6289	0.0674	0.0326	6289	0.0318	0.0214	6289	1.3696	0.2537	6289	
2014	0.1486	0.0328	3690	0.0991	0.0214	3690	0.0426	0.0117	3690	1.4876	0.1612	3690	
2015	0.1014	0.0324	7630	0.0697	0.0238	7630	0.0302	0.0119	7630	1.4629	0.1439	7630	
2016	0.1046	0.0495	2322	0.0713	0.0337	2322	0.0282	0.0131	2322	1.5556	0.0942	2322	
2017	0.1065	0.0370	8885	0.0772	0.0290	8885	0.0330	0.0131	8885	1.4434	0.2252	8885	
2018	0.0880	0.0132	1143	0.0709	0.0176	1143	0.0317	0.0128	1143	1.2691	0.3161	1143	
2019	0.0985	0.0366	12416	0.0701	0.0184	12416	0.0265	0.0105	12416	1.5676	0.2311	12416	
2020	0.1162	0.0144	2453	0.0795	0.0108	2453	0.0335	0.0063	2453	1.4902	0.1198	2453	

	AOD 368 nm		n	A	<mark>OD 500 nr</mark>	n	A	OD 862 nr	n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2003	0.1113	0.0078	240	0.0775	0.0084	240	0.0755	0.0287	240	0.7177	0.5811	203
2004	0.1214	0.0388	4295	0.0831	0.0247	4295	0.0298	0.0118	4295	1.7744	0.5025	4287
2005	0.0687	0.0224	666	0.0532	0.0163	666	0.0072	0.0063	666	3.3046	1.1902	664
2006	0.2472	0.2171	2760	0.1852	0.1743	2760	0.0770	0.0604	2760	1.4061	0.1776	2760
2007	0.1202	0.0275	3947	0.0818	0.0163	3947	0.0362	0.0077	3947	1.5221	0.1054	3947
2008	0.1609	0.0351	3154	0.1287	0.0286	3154	0.0583	0.0100	3154	1.4691	0.0917	3154
2009	0.1131	0.0429	4818	0.0903	0.0276	4818	0.0413	0.0085	4818	1.4892	0.2599	4818
2010	0.0712	0.0247	5666	0.0587	0.0180	5666	0.0296	0.0056	5666	1.5438	0.0828	5666
2011	0.1111	0.0241	7898	0.0680	0.0147	7898	0.0327	0.0060	7898	1.4552	0.1571	7898
2012	0.1141	0.0298	7447	0.0780	0.0208	7447	0.0383	0.0099	7447	1.4174	0.1056	7447
2013	0.0619	0.0128	4161	0.0417	0.0093	4161	0.0149	0.0056	4161	1.8648	0.3836	4161
2014	0.1295	0.0186	1069	0.0976	0.0134	1069	0.0440	0.0071	1069	1.3924	0.0557	1069
2015	0.0986	0.0292	8273	0.0752	0.0219	8273	0.0404	0.0110	8273	1.0790	0.1398	8273
2016	0.0986	0.0500	2868	0.0690	0.0353	2868	0.0293	0.0128	2868	1.4094	0.1628	2868
2017	0.0819	0.0258	11814	0.0547	0.0173	11814	0.0189	0.0070	11814	1.8165	0.3014	11814
2018	0.0608	0.0129	1905	0.0431	0.0096	1905	0.0191	0.0064	1905	1.4526	0.2748	1905
2019	0.1307	0.0578	12888	0.0993	0.0469	12888	0.0480	0.0241	12888	1.2900	0.1504	12888
2020	0.1010	0.0189	6459	0.0716	0.0126	6459	0.0307	0.0070	6459	1.4854	0.1558	6459

Tabla 18. Datos mensuales de mayo del SP1A, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

Tabla 19. Datos mensuales de mayo del CIMEL AWIPEV, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm			AOD 500 nm			A	OD 862 nr	n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2018	0.0744	0.0198	98	0.0549	0.0149	98	0.0310	0.0133	98	1.1188	0.2531	98
2019	0.0901	0.0386	647	0.0638	0.0292	647	0.0261	0.0213	647	1.5885	0.2183	647
2020	0.1056	0.0383	2037	0.0766	0.0353	2037	0.0383	0.0330	2037	1.3891	0.3047	2037

Tabla 20. Datos mensuales de mayo del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	А	OD 368 nr	n	Α	OD 500 nr	n	А	OD 862 nr	n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2005	0.1946	0.0655	6	0.1357	0.0453	6	0.0616	0.0200	6	1.3871	0.1202	6
2006	0.4234	0.2597	63	0.2837	0.1678	63	0.1155	0.0580	63	1.4438	0.2905	63
2007	0.1075	0.0211	90	0.0755	0.0152	90	0.0350	0.0116	90	1.4128	0.2564	90
2008	0.2385	0.2527	311	0.1874	0.2545	311	0.1172	0.2601	311	1.2953	0.3016	311
2009	0.1491	0.0466	195	0.1065	0.0348	195	0.0526	0.0253	195	1.2902	0.2895	195
2010	0.1531	0.1125	111	0.1243	0.1103	111	0.0821	0.1125	111	1.0121	0.3859	111
2011	0.1109	0.0328	325	0.0808	0.0285	325	0.0442	0.0275	325	1.2100	0.3770	325
2012	0.1121	0.0359	116	0.0842	0.0263	116	0.0416	0.0155	116	1.2314	0.1573	116
2013	0.0954	0.0321	164	0.0678	0.0223	164	0.0326	0.0126	164	1.3111	0.2095	164
2014	0.1276	0.0402	378	0.0965	0.0320	378	0.0491	0.0266	378	1.2145	0.2975	378
2015	0.0623	0.0113	42	0.0432	0.0078	42	0.0192	0.0031	42	1.4334	0.0751	42
2018	0.1056	0.0466	73	0.0844	0.0415	73	0.0533	0.0394	73	0.9776	0.3434	73
2019	0.1102	0.0510	309	0.0794	0.0390	309	0.0361	0.0279	309	1.4189	0.3043	309
2020	0.1193	0.0652	64	0.0914	0.0607	64	0.0562	0.0597	64	1.0903	0.3338	64

Tablas de datos de junio

Tabla 21. Datos mensuales de junio del PFR, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	А	OD 368 nr	n	Α	OD 500 nr	n	AOD 862 nm					
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2002	0.0786	0.0331	1855	0.0546	0.0257	1855	0.0295	0.0238	1855	1.2444	0.2811	1855
2003	0.1272	0.0535	631	0.0999	0.0479	631	0.0394	0.0406	631	1.4621	0.1140	631
2004	0.0813	0.0504	1131	0.0590	0.0496	1131	0.0232	0.0495	1131	1.6355	0.2181	1131
2005	0.0778	0.0393	2326	0.0535	0.0301	2326	0.0211	0.0252	2326	1.6313	0.2258	2324
2006	0.0638	0.0064	349	0.0402	0.0042	349	0.0164	0.0035	349	1.6129	0.1945	349
2007	0.0955	0.0340	3184	0.0658	0.0240	3184	0.0226	0.0102	3184	1.7721	0.1454	3184
2008	0.0931	0.0329	4961	0.0615	0.0257	4961	0.0281	0.0208	4961	1.4993	0.3454	4961
2009	0.1130	0.0259	4567	0.0804	0.0199	4567	0.0364	0.0135	4567	1.3899	0.2083	4567
2010	0.0766	0.0175	4113	0.0549	0.0125	4113	0.0284	0.0093	4113	1.2285	0.3394	4113
2011	0.1210	0.0167	986	0.0831	0.0158	986	0.0295	0.0146	986	1.7479	0.1960	986
2012	0.0899	0.0464	5336	0.0627	0.0269	5336	0.0252	0.0139	5336	1.5438	0.1375	5336
2013	0.0775	0.0268	5288	0.0578	0.0194	5288	0.0280	0.0144	5288	1.2964	0.3366	5288
2014	0.0737	0.0156	4155	0.0531	0.0150	4155	0.0237	0.0129	4155	1.4327	0.2558	4155
2015	0.0806	0.0155	5587	0.0570	0.0120	5587	0.0251	0.0096	5587	1.4485	0.2666	5587
2016	0.1116	0.0251	3547	0.0767	0.0178	3547	0.0366	0.0139	3547	1.3971	0.2322	3547
2017	0.0644	0.0113	5366	0.0453	0.0088	5366	0.0215	0.0058	5366	1.3391	0.1805	5366
2018	0.0668	0.0203	4925	0.0458	0.0142	4925	0.0189	0.0054	4925	1.4884	0.2040	4925
2019	0.0754	0.0156	4822	0.0530	0.0148	4822	0.0241	0.0102	4822	1.4182	0.2912	4822

Tabla 22. Datos mensuales de junio del SP1A, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	А	OD 368 nr	n	A	AOD 500 nm		AOD 862 nm		n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2003	0.1749	0.0140	86	0.1327	0.0127	86	0.0597	0.0059	86	1.3509	0.1080	86
2004	0.0667	0.0118	1846	0.0465	0.0092	1846	0.0275	0.0163	1846	1.3345	0.6671	1785
2005	0.0555	0.0158	617	0.0421	0.0109	617	0.0096	0.0078	617	2.7705	1.4144	612
2006	0.0611	0.0120	1662	0.0453	0.0087	1662	0.0235	0.0046	1662	1.2825	0.1252	1662
2007	0.1129	0.0344	5178	0.0765	0.0240	5178	0.0361	0.0099	5178	1.4351	0.0925	5178
2008	0.0852	0.0232	5329	0.0616	0.0167	5329	0.0303	0.0068	5329	1.4937	0.1756	5329
2009	0.0870	0.0250	2712	0.0677	0.0185	2712	0.0326	0.0061	2712	1.5402	0.1244	2712
2010	0.0586	0.0283	4252	0.0480	0.0202	4252	0.0249	0.0081	4252	1.5856	0.1642	4252
2011	0.1291	0.0293	11691	0.0800	0.0191	11691	0.0376	0.0076	11691	1.4341	0.1329	11691
2012	0.0845	0.0314	4940	0.0566	0.0223	4940	0.0291	0.0102	4940	1.3950	0.1960	4940
2013	0.0498	0.0092	3090	0.0354	0.0078	3090	0.0140	0.0062	3090	1.7997	0.6033	3090
2014	0.0447	0.0135	5515	0.0387	0.0095	5515	0.0157	0.0072	5515	1.6054	0.4190	5515
2015	0.0777	0.0164	6077	0.0606	0.0120	6077	0.0339	0.0070	6077	0.9858	0.2152	6077
2016	0.1011	0.0187	4210	0.0700	0.0132	4210	0.0306	0.0058	4210	1.3853	0.1293	4210
2017	0.0544	0.0120	5556	0.0366	0.0090	5556	0.0142	0.0061	5556	1.7059	0.4534	5555
2018	0.0557	0.0176	5499	0.0378	0.0123	5499	0.0142	0.0056	5499	1.6730	0.3300	5499
2019	0.0616	0.0109	4393	0.0449	0.0077	4393	0.0213	0.0047	4393	1.3513	0.1842	4393
2020	0.0692	0.0118	5207	0.0493	0.0094	5207	0.0218	0.0093	5207	1.4750	0.2906	5207

Tabla 23. Datos mensuales de junio del CIMEL AWIPEV, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm			AOD 500 nm			Δ	OD 862 nr	n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2017	0.0567	0.0133	572	0.0400	0.0101	572	0.0195	0.0083	572	1.3557	0.2791	572
2018	0.0646	0.0225	252	0.0468	0.0193	252	0.0243	0.0175	252	1.2884	0.3048	252
2019	0.0714	0.0121	78	0.0520	0.0117	78	0.0258	0.0116	78	1.3245	0.2601	78
2020	0.0650	0.0155	1422	0.0484	0.0142	1422	0.0237	0.0144	1422	1.3632	0.3263	1422

	A	OD 368 nr	n	A	OD 500 nr	n	Α	.OD 862 nr	n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2005	0.0869	0.0149	6	0.0595	0.0092	6	0.0256	0.0027	6	1.4907	0.1283	6
2006	0.0936	0.0234	5	0.0616	0.0144	5	0.0266	0.0058	5	1.4948	0.1246	5
2007	0.2237	0.0723	19	0.1863	0.0728	19	0.1347	0.0782	19	0.7231	0.3576	19
2008	0.1084	0.0539	410	0.0795	0.0425	410	0.0361	0.0239	410	1.4139	0.2376	410
2009	0.1052	0.0259	260	0.0755	0.0198	260	0.0355	0.0100	260	1.3335	0.1407	260
2010	0.1750	0.0887	7	0.1395	0.0879	7	0.0891	0.0873	7	1.1166	0.4987	7
2011	0.1429	0.0455	600	0.0994	0.0340	600	0.0405	0.0168	600	1.5829	0.2553	600
2012	0.0828	0.0310	208	0.0604	0.0216	208	0.0251	0.0084	208	1.4511	0.1303	208
2013	0.1240	0.0415	25	0.0859	0.0400	25	0.0487	0.0309	25	1.1747	0.3481	25
2014	0.0579	0.0199	204	0.0487	0.0168	204	0.0258	0.0151	204	1.0769	0.2279	204
2015	0.0803	0.0250	98	0.0572	0.0228	98	0.0264	0.0212	98	1.4498	0.2452	98
2016	0.0588	0.0140	67	0.0405	0.0131	67	0.0273	0.0127	67	0.9232	0.2317	67
2018	0.0696	0.0260	186	0.0549	0.0217	186	0.0305	0.0172	186	1.1011	0.3200	186
2019	0.0615	0.0145	558	0.0462	0.0119	558	0.0219	0.0098	558	1.3171	0.2195	558
2020	0.0746	0.0254	146	0.0580	0.0215	146	0.0349	0.0175	146	1.0008	0.2101	146

Tabla 24. Datos mensuales de junio del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

Tablas de datos de julio

Tabla 25. Datos mensuales de julio del PFR, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm		n	A	OD 500 nr	n	A	OD 862 nr	n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2002	0.0977	0.1522	888	0.0723	0.1065	888	0.0329	0.0393	888	1.1546	0.2458	888
2003	0.0549	0.0168	2551	0.0425	0.0144	2551	0.0172	0.0109	2551	1.4960	0.3258	2549
2004	0.1261	0.0995	585	0.0968	0.0783	585	0.0398	0.0426	585	1.5964	0.3232	585
2005	0.0697	0.0255	1622	0.0479	0.0168	1622	0.0171	0.0102	1622	1.7207	0.1813	1622
2006	0.0630	0.0423	2582	0.0441	0.0429	2582	0.0204	0.0413	2582	1.4287	0.3119	2582
2007	0.0629	0.0158	4978	0.0453	0.0119	4978	0.0169	0.0093	4978	1.6333	0.1763	4978
2008	0.1005	0.0444	300	0.0694	0.0326	300	0.0291	0.0134	300	1.4819	0.2201	300
2009	0.1401	0.0470	8816	0.1050	0.0375	8816	0.0492	0.0248	8816	1.3227	0.2329	8816
2010	0.0668	0.0207	2350	0.0508	0.0158	2350	0.0227	0.0080	2350	1.3268	0.2643	2350
2011	0.0833	0.0490	1496	0.0546	0.0185	1496	0.0246	0.0173	1496	1.4960	0.1977	1496
2012	0.0844	0.0266	4318	0.0639	0.0211	4318	0.0292	0.0118	4318	1.3216	0.1784	4318
2013	0.0735	0.0242	2996	0.0567	0.0188	2996	0.0243	0.0096	2996	1.3738	0.1644	2996
2014	0.0803	0.0455	2697	0.0574	0.0360	2697	0.0233	0.0146	2697	1.5002	0.1721	2697
2015	0.1601	0.2019	7883	0.1207	0.1633	7883	0.0517	0.0679	7883	1.4410	0.2173	7883
2016	0.0609	0.0186	7400	0.0422	0.0134	7400	0.0170	0.0061	7400	1.5357	0.2561	7400
2017	0.0569	0.0148	6398	0.0400	0.0112	6398	0.0155	0.0045	6398	1.5785	0.1392	6398
2018	0.0493	0.0124	2720	0.0323	0.0084	2720	0.0143	0.0033	2720	1.4587	0.0903	2720
2019	0.2766	0.1376	5378	0.2025	0.0960	5378	0.0804	0.0350	5378	1.4505	0.1541	5378

	A	OD 368 nr	n	A	<mark>OD 500</mark> nr	n	A	OD 862 nr	n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2004	0.1518	0.0695	3640	0.1210	0.0557	3640	0.0469	0.0226	3640	1.4875	0.3487	3638
2005	0.0586	0.0180	509	0.0420	0.0106	509	0.0105	0.0092	509	2.8504	1.5898	506
2006	0.0428	0.0085	1342	0.0326	0.0053	1342	0.0185	0.0024	1342	1.1612	0.1422	1342
2007	0.0709	0.0127	5282	0.0500	0.0081	5282	0.0257	0.0041	5282	1.3145	0.0879	5282
2008	0.0498	0.0110	3007	0.0384	0.0069	3007	0.0191	0.0030	3007	1.5524	0.0870	3007
2009	0.1176	0.0280	8616	0.0991	0.0243	8616	0.0503	0.0133	8616	1.1255	0.2056	8616
2010	0.0397	0.0160	3137	0.0378	0.0116	3137	0.0222	0.0044	3137	1.4061	0.2145	3137
2011	0.0875	0.0227	6909	0.0551	0.0162	6909	0.0288	0.0066	6909	1.2616	0.1508	6909
2012	0.0679	0.0208	3101	0.0443	0.0149	3101	0.0221	0.0073	3101	1.4917	0.2155	3101
2013	0.0691	0.0248	3731	0.0476	0.0163	3731	0.0221	0.0075	3731	1.4154	0.1031	3731
2014	0.0556	0.0418	3925	0.0471	0.0336	3925	0.0170	0.0130	3925	1.7326	0.3473	3925
2015	0.2811	0.3490	9349	0.2327	0.2950	9349	0.1068	0.1299	9349	1.1183	0.1794	9349
2016	0.0661	0.0182	7959	0.0458	0.0129	7959	0.0224	0.0055	7959	1.1889	0.1710	7959
2017	0.0463	0.0113	6581	0.0305	0.0088	6581	0.0090	0.0051	6581	2.1458	0.5480	6581
2018	0.0384	0.0122	3126	0.0249	0.0090	3126	0.0070	0.0040	3126	2.1633	0.5519	3125
2019	0.0866	0.0127	523	0.0613	0.0088	523	0.0284	0.0045	523	1.4087	0.0656	523
2020	0.1418	0.1151	6194	0.0997	0.0812	6194	0.0361	0.0281	6194	1.6742	0.1307	6194

Tabla 26. Datos mensuales de julio del SP1A, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

Tabla 27. Datos mensuales de julio del CIMEL AWIPEV, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm			A	OD 500 ni	n	A	OD 862 ni	n		AE	
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2017	0.0491	0.0133	770	0.0356	0.0106	770	0.0155	0.0079	770	1.4860	0.2094	770
2018	0.0472	0.0132	133	0.0316	0.0097	133	0.0134	0.0044	133	1.5568	0.1385	133
2020	0.1655	0.1288	1862	0.1157	0.0896	1862	0.0434	0.0312	1862	1.6095	0.2957	1862

Tabla 28. Datos mensuales de julio del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm		n	AOD 500 nm		А	OD 862 nr	n		AE		
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2005	0.0633	0.0219	13	0.0465	0.0128	13	0.0222	0.0045	13	1.2827	0.2218	13
2007	0.2805	0.1563	34	0.2634	0.1623	34	0.2257	0.1666	34	0.3789	0.2184	34
2008	0.0699	0.0426	256	0.0514	0.0311	256	0.0212	0.0128	256	1.5177	0.2237	256
2009	0.1157	0.0367	258	0.0885	0.0300	258	0.0418	0.0170	258	1.2830	0.2174	258
2011	0.0921	0.0162	88	0.0715	0.0145	88	0.0438	0.0117	88	0.9284	0.1461	88
2012	0.0721	0.0306	171	0.0556	0.0252	171	0.0241	0.0140	171	1.4193	0.2310	171
2013	0.0768	0.0240	229	0.0582	0.0182	229	0.0286	0.0101	229	1.2140	0.1437	229
2014	0.0594	0.0327	117	0.0491	0.0246	117	0.0263	0.0123	117	0.9945	0.2458	117
2015	0.2650	0.2605	349	0.2077	0.2115	349	0.0853	0.0852	349	1.4328	0.1828	349
2016	0.0649	0.0308	169	0.0459	0.0220	169	0.0290	0.0130	169	0.9348	0.3005	169
2017	0.0669	0.0243	322	0.0508	0.0220	322	0.0295	0.0212	322	1.1663	0.4260	322
2018	0.0676	0.0492	75	0.0505	0.0372	75	0.0235	0.0165	75	1.3051	0.1609	75
2019	0.2392	0.0974	233	0.1791	0.0721	233	0.0728	0.0296	233	1.4773	0.1506	233
2020	0.1257	0.1070	268	0.0877	0.0761	268	0.0358	0.0300	268	1.5422	0.2034	268

Tablas de datos de agosto

Tabla 29. Datos mensuales de agosto del PFR, incluye las medias, el número de datos de cada año y la	desviación
típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.	

	AOD 368 nm			А	OD 500 nr	n	A	OD 862 nr	n	AE			
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	
2002	0.0850	0.0591	1507	0.0620	0.0562	1507	0.0333	0.0566	1507	1.3746	0.2989	1505	
2003	0.0627	0.0244	4923	0.0476	0.0218	4923	0.0213	0.0208	4923	1.4458	0.4304	4922	
2004	0.0677	0.0260	2478	0.0504	0.0243	2478	0.0224	0.0247	2478	1.5111	0.3594	2478	
2005	0.0542	0.0290	1199	0.0408	0.0284	1199	0.0234	0.0308	1199	1.4766	0.5250	1181	
2006	0.0697	0.0569	1286	0.0472	0.0392	1286	0.0333	0.0496	1286	1.3489	0.5494	1286	
2007	0.0714	0.0271	2589	0.0502	0.0210	2589	0.0188	0.0169	2589	1.7205	0.2700	2587	
2009	0.1286	0.0309	4449	0.1032	0.0230	4449	0.0481	0.0101	4449	1.1865	0.1036	4449	
2010	0.0601	0.0097	739	0.0453	0.0074	739	0.0195	0.0039	739	1.3883	0.0841	739	
2011	0.0913	0.0265	3713	0.0631	0.0210	3713	0.0300	0.0180	3713	1.4232	0.2924	3713	
2012	0.0922	0.0313	4169	0.0684	0.0239	4169	0.0289	0.0094	4169	1.3939	0.1920	4169	
2013	0.0673	0.0189	2114	0.0526	0.0153	2114	0.0226	0.0098	2114	1.3857	0.2871	2114	
2014	0.1219	0.0329	5452	0.0858	0.0236	5452	0.0359	0.0131	5452	1.4696	0.1834	5452	
2015	0.0684	0.0406	6710	0.0480	0.0276	6710	0.0186	0.0105	6710	1.5558	0.1731	6710	
2016	0.0761	0.0620	4721	0.0530	0.0430	4721	0.0197	0.0150	4721	1.5820	0.1412	4721	
2017	0.0688	0.0324	3100	0.0504	0.0268	3100	0.0199	0.0117	3100	1.5286	0.1253	3100	
2018	0.1303	0.1216	4310	0.0941	0.0967	4310	0.0407	0.0419	4310	1.4264	0.0934	4310	
2019	0.2041	0.1028	4343	0.1872	0.0481	4343	0.0673	0.0363	4343	1.3665	0.1139	4343	

Tabla 30. Datos mensuales de agosto del SP1A, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm			Δ	OD 500 nr	n	AOD 862 nm			AE		
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2004	0.0837	0.0024	40	0.0666	0.0025	40	0.0286	0.0051	40	1.3983	0.2219	40
2005	0.0243	0.0056	23	0.0212	0.0050	23	0.0052	0.0049	23	2.8600	1.9683	23
2006	0.0440	0.0109	605	0.0343	0.0078	605	0.0185	0.0030	605	1.1958	0.1166	605
2007	0.0767	0.0293	622	0.0518	0.0189	622	0.0234	0.0076	622	1.5135	0.0962	622
2008	0.7807	2.5497	1648	0.0626	0.0270	1648	0.0276	0.0093	1648	1.5487	0.1634	1648
2009	0.1187	0.3205	3855	0.0967	0.0250	3855	0.0496	0.0112	3855	1.0041	0.0841	3855
2010	0.9931	2.9527	5679	0.0292	0.0081	5679	0.0181	0.0045	5679	1.3646	0.1697	5679
2011	0.0827	0.0132	4675	0.0522	0.0082	4675	0.0268	0.0055	4675	1.3170	0.1689	4675
2012	0.0752	0.0245	3338	0.0516	0.0170	3338	0.0237	0.0064	3338	1.4831	0.1948	3338
2013	0.0486	0.0171	2877	0.0378	0.0121	2877	0.0188	0.0056	2877	1.3309	0.1834	2877
2014	0.0924	0.0287	4399	0.0731	0.0201	4399	0.0268	0.0076	4399	1.6429	0.1775	4399
2015	0.0720	0.0431	5043	0.0565	0.0301	5043	0.0268	0.0119	5043	1.1416	0.2147	5043
2016	0.2206	1.2007	6076	0.0524	0.0417	6076	0.0223	0.0153	6076	1.3173	0.2167	6076
2017	0.0566	0.0201	2889	0.0398	0.0159	2889	0.0130	0.0066	2889	1.8476	0.2495	2889
2018	0.1279	0.1508	4897	0.0986	0.1242	4897	0.0388	0.0543	4897	1.6355	0.2143	4897
2019	0.1917	0.0106	110	0.1547	0.0064	110	0.0690	0.0033	110	1.2813	0.0521	110
2020	0.1160	0.6593	6790	0.0554	0.0196	6790	0.0210	0.0084	6790	1.5473	0.1208	6790

Tabla 31. Datos mensuales de agosto del CIMEL AWIPEV, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm			A	AOD 500 nm			OD 862 nr	n	AE		
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2014	0.1219	0.0329	5452	0.0858	0.0236	5452	0.0359	0.0131	5452	1.4696	0.1834	5452
2017	0.0750	0.0718	179	0.0564	0.0595	179	0.0233	0.0265	179	1.5143	0.1798	179
2018	0.1395	0.1230	242	0.1015	0.0921	242	0.0407	0.0364	242	1.5262	0.2242	242
2020	0.0799	0.0412	1494	0.0570	0.0283	1494	0.0224	0.0112	1494	1.5681	0.1316	1494

Tabla 32. Datos mensuales de agosto del CIMEL Hornsund, incluye las medias, el número de datos de cada año y la desviación típica de cada año del AOD para las diferentes longitudes de onda y del exponente de Ångström.

	AOD 368 nm			А	OD 500 nr	n	AOD 862 nm			AE		
Año	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos	Media	sd	Nº datos
2005	0.1075	0.0260	10	0.0792	0.0189	10	0.0393	0.0061	10	1.2029	0.1555	10
2006	0.0584	0.0089	21	0.0386	0.0078	21	0.0174	0.0052	21	1.4635	0.1359	21
2007	0.1640	0.0220	10	0.1392	0.0253	10	0.0994	0.0252	10	0.6339	0.1479	10
2008	0.1175	0.0479	217	0.0849	0.0363	217	0.0361	0.0208	217	1.4936	0.2544	217
2009	0.1172	0.0259	181	0.0933	0.0227	181	0.0473	0.0195	181	1.1584	0.1886	181
2011	0.1166	0.0293	166	0.0858	0.0248	166	0.0515	0.0201	166	1.0216	0.2134	166
2012	0.0995	0.0348	140	0.0768	0.0255	140	0.0385	0.0178	140	1.1808	0.3406	140
2013	0.0872	0.0366	172	0.0697	0.0325	172	0.0436	0.0296	172	0.8892	0.3023	172
2014	0.1227	0.0486	251	0.0933	0.0349	251	0.0391	0.0170	251	1.4370	0.1994	251
2015	0.0827	0.0330	131	0.0592	0.0286	131	0.0286	0.0249	131	1.4674	0.3570	131
2016	0.0705	0.0570	124	0.0518	0.0404	124	0.0314	0.0164	124	0.8707	0.4078	124
2017	0.0912	0.0563	1140	0.0659	0.0448	1140	0.0265	0.0199	1140	1.5784	0.2063	1140
2018	0.1386	0.1268	184	0.1090	0.1034	184	0.0497	0.0507	184	1.3647	0.2374	184
2019	0.2508	0.0618	181	0.1985	0.0494	181	0.0861	0.0222	181	1.3388	0.0904	181
2020	0.0828	0.0395	400	0.0610	0.0274	400	0.0287	0.0102	400	1.2822	0.2952	400