RADIOFÍSICA: VERIFICACIÓN DE LA CALIBRACIÓN DE FUENTES DE ALTA Y BAJA TASA DE DOSIS.

ANEXO 1 : Efecto Fotoeléctrico [18].

El efecto fotoeléctrico fue formulado por Einstein quien partió de una serie de hipótesis bastante atrevidas: asumió que la energía de la luz no estaba distribuida uniformemente en todo el espacio, sino que la energía de la luz se concentraría en paquetes separados. La cantidad de energía en cada región es una cantidad definida proporcional a la frecuencia de la onda luminosa. Además, el factor de proporcionalidad se llama constante de Planck (h = $6,626 \cdot 10^{-34}$ J \cdot s). Por lo que, la energía luminosa en un haz de frecuencia viene en paquetes (la cantidad de energía radiante de cada paquete se llama cuanto de luz o como luego se llamó: fotón), cada uno con una energía E = h·v. Es decir, estos cuantos de energía penetran en el medio y parte de su energía se convierte en energía cinética de los electrones, la cual puede haber perdido una parte cuando llega a la superficie. Cada electrón, al abandonar el cuerpo, tiene que realizar una cantidad de trabajo W (característica del cuerpo). Los electrones expulsados directamente desde la superficie con ángulos rectos tendrán las mayores velocidades perpendiculares a la superficie. La energía cinética máxima de uno de estos electrones:

$$E_c^{max} = h \cdot \nu - W$$

ANEXO 2: Efecto Compton [19].

Al pasar por una región donde hay electrones libres (inicialmente en reposo en el sistema de referencia del observador), se analiza la interacción de la radiación electromagnética incidente con v con estos electrones, dando lugar a otra con frecuencia menor con l', que es la radiación dispersada, cuya frecuencia o la longitud de onda depende de la dirección de la dispersión. Por ello, Compton encontró que la diferencia entre ambas longitudes de onda era función únicamente del ángulo Θ de dispersión:

$$\lambda' - \lambda = \lambda_c (1 - \cos \Theta)$$

donde λ_c es una constante cuyo valor es $2.4262 \cdot 10^{\text{-12}}$ m.

La radiación más usada en el día a día es la no ionizante. Esta se puede ver en dispositivos electrónicos: microondas, radio, teléfonos móviles, televisión, etc. Por otro lado, la ionizante tiene un uso mucho menor, aunque una de sus aplicaciones más importantes es dentro del campo sanitario: Rayos X para diagnóstico y radioterapia como procedimiento terapéutico contra el cáncer.

ANEXO 3 : Esquema de desintegración del 192-Ir [11].

ANEXO 4 : Espectro del isótopo 192 Ir.

ANEXO 5 : Creación de¹²⁵I.

ANEXO 6 : Esquema de desintegración de¹²⁵I.

ANEXO 7 : Espectro del radioisótopo 125 I.

ANEXO 8 : Esquema de la dferencia entre kerma y dosis.

ANEXO 9 : Esquema sobre la diferencia sobre la profundidad penetrante entre kerma y dosis.

Depth in medium (tissue, air, water, etc)

ANEXO 10 : Tabla con parámetros estadísticos usados para el tratamiento de datos.

Media	$\overline{x} = \frac{\sum x_i}{N}$	Medida de tendencia central. Representa el "centro de masas" del conjunto de datos con el que se trabaja.
Mediana		Medida de tendencia central. Es un valor del conjunto de datos con los que se trabaja que deja a la mitad de datos por encima y la otra mitad por debajo, una vez se hayan colocado de menor a mayor.
Moda		Medida de tendencia central. Es el valor de dicha variable que más se repite, con mayor frecuencia.
Desviación (teórico- experimental)	valor exp — valor teórico (valor teórico) · 100	Medida de dispersión entre los dos valores.
Desviación típica	$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{N - 1}}$	Medida de dispersión. Representa la diferencia de cada valor frente a la media de esa magnitud.
Cuartil q _i	cuartil(x ₁ : x _N ; 1,2 3)	Medida de posición no central. Se encarga de dividir la población de datos en cuatro partes iguales.
Percentil	percentil ($x_1: x_N; \frac{\text{percentil}}{100}$)	Medida de posición no central. Divide en cien partes iguales al conjunto de datos.
Rango intercuartílico	$RIC = q_3 - q_1$	Medida de dispersión. Expresa la diferencia entre el primer cuartil q_1 y el tercero q_3 .
Curtosis	$C_{R} = \frac{q_{3} - q_{1}}{2 \cdot (\text{percentil } 90 - \text{percentil } 10)}$	Medida de forma (apuntamiento). Se mide el reparto de las medidas entre el centro y los extremos; tomando como referencia la distribución de Gauss. Es decir, determina el grado de concentración de los valores alrededor de la zona central de la distribución de datos.
Coeficiente de correlación	$R = \frac{\sigma_{xy}}{\sigma_x \cdot \sigma_y}$	Es un parámetro bidimensional. Mide la correlación que existe entre dos conjuntos de datos o distribuciones.

ANEXO 11 : Ejemplo de hoja de cálculo para fuentes ¹²⁵I destinadas para BQ de melanoma ocular.

		In the carrier of	The rearrant of the rearrant o	Contrast Contrast Contrast			
Envia nº			12		6.03	ImCi (semilla)	N.
Madala		Behia	25 \$16	Actividad aparente	144.62	mCi (total)	
focha de medida		4-ma	v-22	Half-life	59.43	dias	-
nserio		LDR	y-we	Order ID	BBDI	IREO01452	-
dectrómetro		PTW		Recibida	3-1	nav-22	
Ranse		Low		TKRA(ref)	7.65	uGy:m2/h	
Bias		100% (300 VdC)		Fecha calibración	5-1	nav-22	
Nk		5.532E+05	Gy:m2/(h-A)	Dias desde calibración	-1		
TRKA(hoy)		7,74	µGy-m2/h	Decay factor	1,012		
		024					
resion		934	9/3		-		
Temperatura		43,7	1013 15 (10) 273 15	inie ve	_		
pe		1,091	(1013.15/p)*(1+273.15	P295.15	1.2		
sobrerrespuesta por ano	rurd			NI .	N.6		
		1,099					
		1,057910	103				
	Lectura (pC)	Lectura (pA)	TRKA (µGy m2/h)	DTKRA(%)			
Prueba		0	0,00	-100,00			
					1		
	Lecturas pC	Lecturas(pA)	TRKA (µGy m2/h)	DTKRA(%)	_		
MI	821,0	13,683	8,01	3,43	Balancian Barris		
512	808,7	13,478	7,89	1,88	Primera linea	Primer alojamiento	
M3	775,5	12,925	7,36	-2,31	_		
M4	700,4	12,773	7,48	-3,43	Second Second		
MIS	708,0	13.327	7,49	-5,65	oegunua inca		
	804.2	13,527	7,80	1.31	-		Primer contenedor
Ma	820.1	13,465	8.00	3.31	Tensora linea		
Ma	811.0	13,503	7.91	2.17	Tereta mea		
MIR	828.0	13,800	8.08	431		Segundo alojamiento	
MIL	805.3	13,422	7.85	1.45	Cuarta linea		
M12	797.1	13,285	7,77	0.41			
MI3	787.1	13,118	7.68	+0.85			1
M14	799,6	13.327	7,80	0,73	Ouinta linea		
M15	790,0	13,167	7,71	-0,48		entre santantes	
M16	776,7	12,945	7,58	-2,16		Tercer alojamiento	
M17	823,5	13,725	8,03	3,74	Sexta linea		
M18	764,2	12,737	7,45	-3,73			and the second second
M19	803,3	13,388	7,84	1,20			Segundo contenedor
M20	776,0	12,933	7,57	-2,24	Soptimu Tinta	FE1563/829	101 P.20400
M21	818,1	13,635	7,98	3,06	A COMMENTATION	日本のない	19:67A
M22	821,9	13,698	8,02	3,54		1 (B) (4 (S) ()	100000
M23	800,9	13,348	7,81	0,89	Octava linns	36. 30.00	
M24	821,9	13,698	8,02	3,54		239 CP.	5.35125
Media		13,325	7,798			100.00	To Control
Desviación		0,332	0,194			160-01	19-26-192
			Com 2 h J		7.66	627.292	262062
TKRA(hoy)		7,74	µGy·m2·h-1		6,09	2000	23.2.2
TKRA(medida)		7,80	µGy·m2·h-1	TKRA~M fpt-Nk*10*(-12)			27 di 19
Desviación		0,72	70				
incidencias	Técnico	P Otero y P Zalama	Físico	Dr Miguel			

ANEXO 12 : Ejemplo de hoja de cálculo para fuentes ¹²⁵I destinadas para BQ de próstata.

SOURCECHI	ECK 4PI TKI	RA calcul	ation					
Instructions	Cover only this coloured cells							
Isotope	I-125			-				
Half-life	1425,6	hours						
			1			1		
Sourcecheck 4pi S/N	121655							
Cal. Cert. Number	1601041							
Model of seeds	IsoCord I25.S17plus							
Calibration Nk	5,90E+05	Gym2/(Ah)	1	Diff	Actions			
	5,90E-01	uGym2/(pAh)		<3%	OK			
SourceStrand adapter	T33005.1.130			>3% & <5%	Repeat and investig	ate		
Reference T	293,2	к	1	>5%	Repeat. If the diff p	ersist, the pl	ysician mu	st decide if
Reference P	1013,25	hPa (=mBar)		-				
Knol								
Ksat	1							
Electrometer S/N		1		N	lote: Position 1 is the	bottom pos	ition in the	well,
Certified Reponse	1			p	osition 10 is the upp	ermost posit	ion	-
Measure date	Order Number	TKRA cert (uGym2/h)	Reference Date	Number of seeds	How should them be placed	k_pos	t_decay (days)	TKRA in a date uGyn
10/5/16	161110	1,0835	14/3/16	5	3 to 7	1,011	57	· ·
10/5/16	161721	0,612	9/5/16	5	3 to 7	1,011	1	
17/5/16		0,66	16/5/16	5	3 to 7	1.011	1	1
17/5/16		0,612	16/5/16	5	3 to 7	1,011	1	
19/5/16	161413	0,66	16/5/16	5	3 to 7	1,011	3	
19/5/16	161522	0,66	16/5/16	5	3 to 7	1,011	3	
19/5/16	161831	0,66	16/5/16	5	3 to 7	1,011	3	
24/5/16	161612	0,66	23/5/16	5	3 to 7	1,011	1	
24/5/16	161612	0,66	23/5/16	5	3 to 7	1,011	1	
31/5/16	161923	0,66	30/5/16	5	3 to 7	1,011	1	
2/6/16	161923	0,66	30/5/16	5	3 to 7	1,011	3	
2/6/16	161823	0,66	30/5/16	5	3 to 7	1,011	3	
2/6/16	161923(2)	0,66	30/5/16	5	3 to 7	1,011	3	
7/6/16	161613(1)	0,66	6/6/16	5	3 to 7	1,011	1	
7/6/16	161613(2)	0,66	6/6/16	5	3 to 7	1,011	1	
7/6/16	162033(1)	0,66	6/6/16	5	3 to 7	1,011	1	0
9/6/16	162033(1)	0,612	6/6/16	5	3 to 7	1,011	3	
9/6/16	1616131(1)	0,664	6/6/16	5	3 to 7	1,011	3	
14/6/16	162022	0,664	13/6/16	5	3 to 7	1,011	1	
14/6/16	162222	0,5635	13/6/16	5	3 to 7	1,011	1	
16/6/16	162022	0,664	13/6/16	5	3 to 7	1,011	3	
16/6/16	162222	0,5635	13/6/16	5	3 to 7	1,011	3	-
21/6/16	162221	0,664	20/6/16	5	3 to 7	1,011	1	1
21/6/16	162131	0,612	20/6/16	5	3 to 7	1,011	1	
23/6/16	162131	0,612	20/6/16	5	3 to 7	1,011	3	
23/6/16	162221	0,664	20/6/16	5	3 to 7	1,011	3	
30/6/16	162022	0,612	27/6/16	5	3 to 7	1,011	3	
30/6/16	162022	0,664	27/6/16	5	3 to 7	1,011	3	
5/7/16	162629	0,664	4/7/16	5	3 to 7	1,011	3	
19/7/16	162141	0.664	18/7/16	5	3 to 7	1,011	1	

_											
				_							
_											
	-						-				
			14.4.1.1.1.4	-							
he ph	iysician mu	st decide if continue	e with the implant								<u> </u>
				-							-
				-							-
DOS	ition in the	well	-		-						
posit	ion	iron,									
	İ	-		-							-
_	It decay	TKRA in measure	Measure(pC)	time (s)	P(mBar)	T(°C)	kot	TKRA measured	DIFFERENCE		
	(days)	date uGym2/h						uGym2/h			
,011	57	0,5571	257,3	60	919	20,3	1,061	0,543	-2,62%		
,011	1	0,6049	289,1	60	917	23,3	1,069	0,614	1,53%		
,011	1	0,6523	309,9	60	939	23	1,053	0,649	-0,57%		
,011	1	0,6049	277,2	60	939	23,9	1,055	0,581	-3,91%		
,011	3	0,6373	297,6	60	934	23,5	1,057	0,626	-1,85%		
,011	3	0,6373	308,7	60	934	23,5	1,057	0,649	1,81%		
,011	3	0,6373	294,2	60	934	21,2	1,053	0,615	-3,42%		
,011	1	0,6523	306,7	60	922	23,7	1,066	0,650	-0,37%		
,011	1	0,6523	304,4	60	922	23,2	1,065	0,644	-1,22%		
,011	1	0,6523	308,3	60	935	23,6	1,057	0,648	-0,71%		
,011	3	0,6373	295,6	60	927,5	24,8	1,065	0,626	-1,84%		
,011	3	0,6373	296,5	60	927,5	25,6	1,066	0,628	-1,38%		
,011	3	0,6373	296,9	60	926,5	24	1,064	0,628	-1,51%		
,011	1	0,6523	310,6	60	935	24,7	1,059	0,654	0,25%		
,011	1	0,6523	315,4	60	933	23	1,057	0,663	1,59%		
,011	1	0,6523	313,4	60	933	23	1,057	0,663	1,59%		
,011	3	0,5909	207,4	60	933,5	23	1,057	0,562	-4,90%		
,011	3	0,0412	212.1	60	933,5	2.3	1,057	0,664	0.78%		
011	<u></u>	0,0505	761	60	924	22,0	1,005	0,553	-0 70%		-
011	3	0,5570	303.4	60	934	22.1	1,005	0,535	-0.82%	_	-
.011	3	0.5441	257.1	60	934	22.8	1,054	0,540	-0.82%		1
.011	1	0.6563	309.2	60	933	24.7	1.061	0,652	-0.67%		
.011	i	0,6049	286.1	60	933	22	1.055	0,600	-0.82%		
.011	3	0,5909	270.5	60	933	26.1	1,064	0.572	-3,22%		
,011	3	0,6412	306,7	60	933	24,4	1,060	0,646	0,79%		-
,011	3	0,5909	276,3	60	932	24,4	1,061	0,583	-1,42%		
,011	3	0,6412	299,9	60	932	22,1	1,056	0,629	-1,84%		
,011	3	0,6412	300,9	60	932,5	23,9	1,059	0,634	-1,18%		
011	1	0.6563	307.6	60	021	25.2	1.063	0.650	-0.94%		
,011	1	0,0303	507,0	00	931	22,2	1,005	0,030	-0,7470		

ANEXO 13 : Ejemplo de hoja de cálculo para fuentes ¹⁹²Ir.

Tasha	())	2 mar 22		1	10.5	Ici I	Easka collineat
Fecha		3-mar-22		Actividad	10,5	CI	Fecha calibración
Cámara		Pozo			389,7	GBq	17-teb-22
nserto		HDR		Half-life	73,831	días	
Electrómetro		PTW TM33005	sn 121655	Nº serie	D	90E-677	Días desde calibració
Range		High		Recibida	2-mar-22		14
Bias		100% (400 Vd	C)	TKRA(ref)	42,86	mGy·m2·h-1	(Certificado) +- 5%
Presión		931	mbar	Dimensiones	0,9 x 4,57	mm2	
Temperatura		23,3	°C				
fpt		1,100		(1013/p)*(T+273.15)/295.15		
Nk		9,296E+05	Gy·m2·h-1·A-1		Factor de cali	oración 07/03/16	
	microC	Serie1 (nA)	Serie2 (nA)	Serie3 (nA)		0	
11	2215	36.92	Genez (IIA)	0		10	
12	2215	36 91666667			7	20	
13	2213	36 88333333	-	, i i i i i i i i i i i i i i i i i i i		30	
14	2213	0				40	
15		0				50	
1.6	2	0				50	
17		0				70	
18		0		-		80	
1.9	-	0				90	
1 10		0				100	
1.11		0				110	
112		0	-			110	
L12		0	-	-		120	
L13		0	-		6	130	
L14		0		2	-	140	
L15		0				150	
L16		0				160	
L17		0				170	
L18	<u> </u>	0				180	
L19		0				190	
L20		0	-			200	
L21		0				220	
L22		0				230	
L23		0	-			240	
L24		0		-			
L25		0					
Media		36,906					
Desviación		12,240					
TKRA(hoy)		37,58	mGy·m2·h-1				
TKRA(medida)		37,75	mGy·m2·h-1	TKRA=Nk*M*fp	t*10^(-6)		
Desviación		0,45	%			_	
Se verifica tamb	bién						
	Verificación pos	sicional intrínseo	a				
	Verificación pos	sicional extrínse	ca				
	Verificaciones o	de seguridad			1		
Mediante placa	de verificación	v observación d	irecta con cctv				
Constan en el o	ertificado las pr	uebas de fugas	v ausencia de c	ontaminación			
Medida prelimin	ar	2212					
Radiofísico:		Jesus Mª de Fi	rutos Baraja				

ANEXO 14 : Adaptador para semillas individuales. [Manual SourceCheck^{4 π}. Cámara de ionización de pozo tipo 33005].

PŤW

SOURCECHECK 4m Cámara de ionización de pozo tipo 33005 Manual de operaciones - Aplicación

1.6 Adaptador para semillas individuales

Instrucciones de uso: Adaptador de SOURCECHECK para semillas individuales T33005.1.100

- Retire el adaptador de semillas.
- Cargue el adaptador de semillas con una semilla. Para ello, mantenga el adaptador de semillas con el extremo apuntando hacia abajo de modo que la semilla se deposite en el extremo del adaptador. Para la medición, la semilla tiene que estar situada, siempre, en el extremo del adaptador.
- Introduzca el adaptador en el detector.
- Para actividades bajas se recomienda realizar mediciones de intervalo.

Figura 6: Adaptador de SOURCECHECK para semillas individuales T33005.1.100

Instrucciones de uso del adaptador de SOURCECHECK para semillas compatible con sistemas Nucletron T33005.1.150

- Conecte el adaptador directamente con el aplicador del dispositivo seedSelectron (Nucletron). El adaptador ya tiene que estar colocado dentro del detector.
- Cargue el adaptador con una semilla. Para la medición, la semilla tiene que estar situada, siempre, en el extremo del adaptador.
- Espere hasta que el valor de medición se estabilice (aproximadamente 1 minuto). Registre el valor medido.
- Para actividades bajas se recomienda realizar mediciones de intervalo.

Figura 7: Adaptador de SOURCECHECK para semillas compatible con sistemas Nucletron T33005.1.150

ANEXO 15 : Adaptador para cadenas de semillas. [Manual SourceCheck^{4π}. Cámara de ionización de pozo tipo 33005].

Figura 10: Soporte portasemillas

1.7 de semillas

Instrucciones de uso del adaptador de SOURCECHECK para cadenas de semillas T33005.1.130

El adaptador está compuesto de una guía y un soporte portasemillas para la cadena de semillas (Figura 8 a Figura 10). Se pueden medir las cadenas completas o secciones de una cadena.

- Introduzca el adaptador en el detector.
- · Para medir secciones de una cadena de semillas proceda según las indicaciones del fabricante de la cadena de semillas.
- · Utilice pinzas para introducir la cadena de semillas o una sección de esta en el soporte portasemillas. Ver "Tabla 1: Factores de corrección para cadenas de semillas de I-125 o secciones de cadenas de semillas en las posiciones respectivas de los adaptadores" para la colocación correcta de una sección de cadena de semillas en el soporte portasemillas.
- · Utilice pinzas para fijar el material portador trenzado entre las semillas en el soporte portasemillas.
- Introduzca el soporte portasemillas en la guía. El soporte portasemillas se tiene que introducir hasta el tope del desplazamiento.

D933.196.00/05 es

ANEXO 16 : Adaptador para fuentes de carga diferida. [Manual SourceCheck^{4 π}. Cámara de ionización de pozo tipo 33005].

SOURCECHECK ^{4//} Cámara de ionización de pozo tipo 33005 Manual de operaciones - Aplicación

1.5 Adaptador para fuentes de carga diferida

Instrucciones de uso: Adaptador universal HDR T33004.1.012, T33004.1.013, T33004.1.014, T33004.1.015 und T33004.1.016

- Seleccione el adaptador apropiado para el dispositivo de carga diferida en función de las indicaciones en la placa descriptiva.
- Conecte el adaptador directamente al tubo guía del dispositivo de carga diferida.

Figura 3: Adaptador universal HDR T33004.1.014 (similar para .012 hasta .016)

Instrucciones de uso: Adaptador para sistemas de carga diferida de Nucletron T33002.1.009

 Conecte el adaptador T33002.1.009 directamente al tubo guía del dispositivo microSelectron (Nucletron)

Figura 4: Adapta

Adaptador para sistemas de carga diferida de Nucletron T33002.1.009

Instrucciones de uso: Adaptador de SOURCECHECK Valencia-Leipzig T33005.1.160

El adaptador está diseñado para uso con el aplicador tipo Valencia, Leipzig o uno equivalente. Se admiten aplicadores de 28 mm y 36 mm.

- · Coloque el adaptador sobre el detector.
- Introduzca el aplicador dentro del adaptador.
- Para la medición, coloque la fuente por medio del dispositivo de carga diferida dentro del aplicador.

Figura 5: Adaptador de SOURCECHECK Valencia-Leipzig T33005.1.160

ANEXO 17 : Tabla de datos teóricos para la recogida de medidas en el caso de fuentes LDR destinada para BQ de próstata.

Fuente I25.S17PLUS1-40	
Certificado (teórico) (µGy/h)	0.5640
Tiempo transcurrido (h)	1632
Decaída (teórico) (µGy/h)	0.2551
$N_k \left(\frac{Gy \cdot m^2}{h \cdot A}\right)$	0.5898
k _{P,T}	1.059

ANEXO 18 : Tabla de la lectura de corriente frente a la posición de la fuente respecto al fondo de cámara.

Posición (mm)	Corriente (nA)
5 /	20 78
0.4	29.78
12.4	30.73
17.4	22.2
21.4	24.27
21.4	34.27
25.4	35.01
29.4	35.64
33.4	36.13
37.4	36.49
41.4	36.75
45.4	36.93
49.4	37.01
53.4	37.01
57.4	36.92
61.4	36.74
65.4	36.46
69.4	36.08
73.4	35.55
77.4	34.88
81.4	34.05
85.4	33.04
89.4	31.81
93.4	30.33
97.4	28.59
101.4	26.53
105.4	24.21
109.4	21.72
113.4	19.19
117.4	16.77
121.4	14.39
125.4	12.32
129.4	10.49
133.4	8.91

ANEXO 19 : Datos teóricos para llevar a cabo la verificación de la calibración de la actividad de las fuentes recubiertas de un isótopo, destinadas para usar en el tratamiento mediante Braquiterapia para el melanoma ocular.

Presión (mbar)	934
Temperatura (°C)	23.7
Corrección presión y temperatura	1.091
Corrección por altitud (tras corrección de presión y temperatura)	1.058
Nk $\left(\frac{Gy \cdot m^2}{h \cdot A}\right)$	$5.532 \cdot 10^5$
Actividad aparente (mCi/semilla)	6.03
Actividad aparente total (mCi/ total)	144.62
Vida media (h)	1426.32
Modelo	Bebig I25.S16
TKRA de referencia (fabricante) (µGy/h)	7.74
Día calibración por fabricante	04/05/2022
Día verificación	05/05/2022
Dimensión fuente (mm ²)	4.5x0.8
Días entre calibración por fabricante y verificación en el hospital (h)	24

ANEXO 20 : Estudio de distintos parámetros estadísticos de la actividad en TKRA y de la diferencia entre el valor teórico y experimental para fuentes destinadas para BQ de melanoma ocular.

	TKRA (µGy/h)	Diferencia (%)
Media	7.798	0.72
σ	0.194	2.51
q1	7.652	-1.17
q2	7.824	1.04
q3	7.985	3.12
Percentil 90	8.017	3.54
Percentil 10	7.513	-2.97
RIC	0.333	4.30
C _R	0.330	0.33

ANEXO 21 : Datos teóricos para llevar a cabo el estudio de BQ de próstata.

Vida media (horas)	1425.6
SourceCheck 4π	121655
Número del certificado de la calibración	1601041
Modelo de fuentes	IsoCord I25.S17plus
Nk $\left(\frac{Gy \cdot m^2}{h \cdot A}\right)$	$5.823 \cdot 10^5$
Inserto	T33005.1.130
k _{pol}	1
k _{sat}	1

ANEXO 22 : Percentiles extremos de las diferencias.

Percentil	Diferencia (%)
2,5	-5
5	-4
95	2
97,5	3

ANEXO 23 : Datos teóricos necesarios para verificar la calibración de la fuente HDR.

Presión (mbar)	931
Temperatura (°C)	23.3
Corrección presión y temperatura	1.100
Nk $\left(\frac{\text{Gy} \cdot \text{m}^2}{\text{h} \cdot \text{A}}\right)$	929600
Actividad (Ci)	10.5
Vida media (h)	1771.94
Número de serie	D90E-677
TKRA de referencia (fabricante) (μ Gy/h)	42.86
Día calibración por fabricante	17/02/2022
Día fuente recibida	02/03/2022
Día verificación	03/03/2022
Dimensión fuente (mm ²)	0.9x4.57
Días entre calibración por fabricante y verificación en el hospital (h)	336

ANEXO 24 : Respuesta axial de la cámara de ionización tipo pozo: curva de respuesta con otro detector, con el fin de poder compararla con la obtenida experimentalmente. [20]

Cabe destacar que esta curva está realizada a través de valores relativos de la ionización. En este caso, está normalizada a 1.

La respuesta máxima de la cámara se obtuvo para la posición de la fuente a una altura de 51 mm, es decir, una posición de 46 mm desde el fondo de la cámara.

Cabe destacar que no se trata del mismo modelo de cámara de pozo empleada en el HCUV: SOURCECHECK (4π); sin embargo se obtiene una respuesta de dicha cámara respecto a su fondo bastante similar en ambos estudios.

ANEXO 25 : Tabla en función del valor de la correlación.

R=-1	Correlación inversa perfecta
-1 <r<0< td=""><td>Correlación inversa</td></r<0<>	Correlación inversa
R=0	Sin correlación
0 <r<1< td=""><td>Correlación directa</td></r<1<>	Correlación directa
R=1	Correlación directa perfecta