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Abstract

This work describes the most important states used in the field of quantum information: coherent
states. We start with the definition of a Hamiltonian for a two-dimesional harmonic oscillator
from which we construct the eigenstates called Hermite-Gauss states and Laguerre-Gauss states,
which allow to describe the modes of a beam system. We continue describing the main coherent
and thermal states that can be defined from the same Hamiltonian, this time they are visualized
as eigenstates of the SU(1, 1) group generators and then for SU(2). Subsequently, a theoretical
system involving the input of a thermal state and an empty state in a beam splitter is discussed
and experimentally compared.

Resumen

El presente trabajo cubre los estados más destacados que se utilizan en el ámbito de la infor-
mación cuántica:los estados coherentes. Se inicia definiendo un hamiltoniano para un oscilador
armónico bidimensional del cual se construyen los eigenestados llamados estados de Hermite-
Gauss y estados de Laguerre-Gauss, los cuales permiten describir los modos de un sistema de
haces. Continuamos describiendo los principales estados coherentes y termicos que se pueden
definir a partir del mismo hamiltoniano, esta vez se visualizan como eigenestados de los gener-
adores del grupo SU(1, 1) y luego para SU(2). Posteriormente se aborda un sistema teórico que
implica el ingreso de un estado térmico y un estado vaćıo en un divisor de haces el cual se logra
comparar experimentalmente.
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Chapter 1

Introduction

Quantum mechanics has taken a new approach in recent years, showing its potential to extend
into domains traditionally governed by classical systems [1]. Quantum computation, quantum
communication, and quantum information are some of the new areas of growing interest, where
the former mainly seeks to overcome the limitations of classical computers by designing more
efficient algorithms [2, 3], communication seeks to transmit qubits between remote locations,
and quantum information perfects the speed of transmission and information processing [1,2,4].
These three areas are interrelated, and many of their advances, have been achieved through
the application of quantum optics, given its focus on how to achieve control, manipulation and
measurement of the properties of light [5,6]. In this work, we will focus on examining one of the
essential aspects of quantum optics and quantum information, specifically the quantum states
from the perspective of the harmonic oscillator. This decision is due to the importance of the
quantum harmonic oscillator in numerous areas, including quantum information processing [6–9].

The quantization of the electromagnetic field can be analogously analyzed as a many-particle
system description [10]. Systems where there are well-defined numbers of photons for each mode
of the field are described by the called Fock states or number states [11]. Since the quantization
of the electromagnetic field in terms of ladder operators can be described as the Hamiltonian
harmonic oscillator, Fock states can be obtained by repeated application of the creation operator
on the ground state, which allow determines the energy [10–12]. While the Fock state possesses
well-defined energy, it lacks a well-defined electric field; consequently, the expectation value of
the field operator for a Fock state is zero [12]. Mathematically these are essentially eigenstates
of the number operator, indicated its eigenvalue in number of photons excited in the calculated
mode [11]. The interest in these states resides in the fact that they represent the fundamental
states of the quantum theory of light and constitute a complete set of one-mode states that are
easy to manipulate. However, it’s important to note that their experimental implementation is
not straightforward [12].

Moreover, one of the most extensively researched states is the coherent state [10]. Coher-
ent states can be expressed as a superposition of Fock states [11], with the property that a
coherent state can repeatedly absorb photons from an electromagnetic field without changing
in any way [13, 14]. The coherent states, which are the closest equivalents to classical fields in
the classical limit, were initially discovered by Schrödinger and constructed by Glauber while
studying electromagnetic correlation functions [6,15]. These states can be represented as eigen-
states of the annihilation operators [11,13]. The construction of coherent states can be achieved
through two equivalent definitions [16,17], one of which involves identifying them as eigenstates
of the algebra’s annihilation operator, called Barut-Girardello coherent state. The coherent
states, defined by Gilmore-Perelomov coherent states, involve using a displacement operator on
the system’s empty state [14], in addition to coherent Perelomov states, squeezed states are
obtained that correspond to states of minimum uncertainty [37,38]. Coherent states are signifi-
cant as a laser’s output mimics them, and a single-mode laser that operates above its threshold
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CHAPTER 1. INTRODUCTION

generates coherent state excitation suitable for experimental and theoretical analysis [10,11].

When dealing with light sources that exhibit behavior in which a set of probabilities specifies
the radiation field’s range of states, the field’s state becomes a mixed state. Mixed states are
described using statistical distributions, a concept introduced in quantum mechanics through
the density operator [11,12].

One notable example of mixed states is thermal states. These states occur when examining
a single-mode electromagnetic field in thermal equilibrium with cavity walls at temperature
T [10, 12]. When radiation is weakly coupled to a thermal bath, the field can be treated as an
isolated system, described statistically using the density operator [12,18]. This scenario adheres
to Planck’s law, where the likelihood of n excited photons relies on a density operator based on
number states. Number states serve as the appropriate basis for the density operator because
the thermal distribution describes the system’s probabilities in its energy eigenstates, which
correspond to the number states [11].

Now, if we examine the transmission of light in optical systems defined as two-dimensional
harmonic oscillators, two further crucial states can be incorporated into those described earlier.
For beams that can be depicted in Cartesian coordinates, they display square symmetry, and
it is best to use Hermite-Gauss states to examine them. In cases where beams exhibit ring
symmetry, Laguerre-Gaussian states are utilized, allowing for the manipulation of the angular
momentum of light.

This is particularly significant in classical and quantum communications as photons have
the ability to carry orbital angular momenta (OAM). This property allows them to be used
as data carriers in classical communications, and in quantum communications, they can be
used to encode complementary information within a single photon [19,19,20,20–24,39]. Where
the findings have been effectively used in interferometry, quantum communication, functional
communication protocols, cryptography, imaging, and other areas [19,20,25–27].

However, as mentioned by Yao et al. in [20] and Shein et al. [25], the study of Gaussian
beams, is a relatively new field that has gained popularity over time and although it is a powerful
tool, the aforementioned states are still useful in the development of quantum computing, an
example of this can be seen in [30] where he showed that interference of genuine multi-particle
higher order Fock states is an effective approach in quantum simulations.

On the other hand, coherent states are valuable for exchanging information, establishing
quantum key protocols, and other applications [31–33]. Another advantage of coherent states is
their ability to generate entangled coherent states from their superposition [34], this generating
an advantage for quantum computation over classical computation, since the first is capable of
producing entangled qubits, like Browne indicate in [6], the counterpart to coherence in quantum
optics is the quantum mechanical superposition of the qubit, being the qubits basic elements of
quantum information technology [4,34]. One way to produce entangled coherent state is through
the use of a beam splitter [35], which consists of two inputs through which the states enter,
and two outputs through which the new states are obtained. This device can be represented
mathematically as an operator that transforms the system’s states [11, 12, 36].However, the
resulting state may or may not be an entangled state. For instance, if squeezed states are used
as inputs, the degree of squeezing for the input fields will determine the entanglement of the
output state of a beam splitter [36].

Besides entangling output optical fields, the beam splitter has multiple practical applications.
It can be used to simulate processes such as quantum state loss, photon loss, and thermal
environments [35,36].

Furthermore, thermal states provide a comprehensive depiction of quantum systems and
are utilized in a variety of circumstances such as quantum information processing, quantum
teleportation, or quantum cryptography protocols [27, 32, 39]. For this case, when the density
operator of the global system cannot be expressed as a weighted sum of tensor product states,
we refer to it as a mixed entangled state. Entanglement can be viewed as a form of correlation
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that permits more uncertainty in the states of local systems than in the state of the global
system, which is unachievable in classical statistics [6]. For instance, only when a non-classical
squeezed thermal state and vacuum enter the input port of a beam splitter, the output state
will be entangled only if the squeezed thermal state is non-classical [36].

This work explores the generation of Hermite-Gaussian states and Laguerre-Gaussian states,
enabling us to describe their associated modes. By incorporating the concept of orbital angular
momentum, we gain insights into how the radial and azimuthal quantum numbers obtained can
be linked to coherent states, which are here represented in two distinct formulations within the
Lie algebra framework. Finally, we delve into the of mixed states, particularly in the context of
thermal states. Explain in detail the scenario where a thermal state and a vacuum incident on
the input port of a beam splitter, and establish correlations for the output states.

In Chapter 2, from the Hamiltonian of the isotropic harmonic oscillator two dimension, we
first consider the linear momentum and the ladder operators, obtaining the so-called Hermite-
Gauss states; subsequently, we consider the angular momentum and define new ladder operators,
obtaining the Laguerre-Gauss states, which are related to the radial and azimuthal numbers. In
Chapter 3 and 4 the coherent and mixed states are introduced, described as eigenstates of the
generators of the group SU(1, 1) and SU(2) respectively, considering the Fock space and angular
momentum. In Chapter 5 the recognition of thermal states as the most well-known examples of
mixed states is a pivotal starting point for us to explore, both theoretically and experimentally,
the system where a thermal state and an empty state are entered independently to each of the
inputs of a beam splitter. This gives a new thermal state described by the result obtained in
both outputs. Finally, in Chapter 6 the results obtained are summarized and discussed.
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Chapter 2

Two Dimensional Isotropic
Harmonic Oscillator

The harmonic oscillator is quite useful to describe different physical events. For our work we will
take advantage of the relation of its eigenstates with the Gaussian beams [40]. For this purpose,
we’ll start from the Hamiltonian of the harmonic oscillator in two dimensions, considering first
the linear momentum, and then using orbital angular momentum, obtaining the Hermite-Gauss
(HG) and Laguerre-Gauss (LG) states, respectively. These allow to describe the beams of a
laser, thus receiving the name of Hermite-Gauss (HG) and Laguerre-Gauss (LG) modes in the
field of the study of lasers. In the words of Nienhuis the Hermite-Gaussian modes resemble the
factored eigenstates of the two-dimensional quantum harmonic oscillator [41].

We begin by considering the Hamiltonian of a particle of massm, moving in a two-dimensional
harmonic potential with frequency ω that depends on two coordinates, where ξ1 and ξ2 are the
position operators for the fist and second coordinate respectively. Similar for the momentum
operators η̂j , j = 1, 2, we’ll have the following Hamiltonian, it is an isotropic harmonic oscilla-
tor [42],

Ĥ =
1

2

∑
j=1,2

(
η̂2j
m

+mω2ξ̂2j

)
. (2.1)

By making a correct change of variables, we can write the Hamiltonian in dimensionless canonical
coordinates and in differential form, see Table 2.1.

Original Dimensionless Position space Moment space
Variables canonical variables

ξ̂j q̂j =

√
mω

ℏ
ξ̂j

ξ̂j = ξj

p̂j = pj

ξ̂j = iℏ
∂

∂ηj

q̂j = i
∂

∂pj

η̂j p̂j =
1√
ℏmω

η̂j

η̂j = −iℏ ∂

∂ξj

p̂j = −i ∂
∂qj

η̂j = ηj

p̂j = pj

Table 2.1: Re-normalized dimensionless canonical variables, where j = 1, 2, represents the corresponding
coordinate.
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CHAPTER 2. TWO DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR

Hence,

Ĥ =
ℏω
2

∑
j=1,2

(
q2j −

∂2

∂q2j

)
, (2.2)

It is possible to simplify this Hamiltonian by the use of ladder operators, which are defined as,

âj =
1√
2

(
qj +

∂

∂qj

)
, â†j =

1√
2

(
qj −

∂

∂qj

)
, j = 1, 2. (2.3)

For convenience, we will use the differential form of the ladder operators instead of the canonical
variable operators, which satisfy the following commutation relations:[

âk, â
†
l

]
= δkl,

[
Ĥk, âl

]
= −ℏωâk δkl,

[
Ĥk, â

†
l

]
= ℏωâ†k δkl, k, l = 1, 2. (2.4)

The Hamiltonian Ĥ can be expresed in terms of the anticonmmutador as,

Ĥ = ℏω
1

2

∑
j=x,y

{
â†j , âj

}
, (2.5)

and the number operator is N̂j = â†j âj , j = 1, 2.

2.1 Eigenvalues

Since the Hamiltonian commutes with every number operator, Ĥ and
∑

j=1,2 N̂j can have a set
of joint eigenstates [42], which will be denoted by |n1;n2⟩, where |n1;n2⟩ = |n1⟩ ⊗ |n2⟩,

The number operator acts on the states as:

N̂1 |n1;n2⟩ = n1 |n1;n2⟩ (2.6)

N̂2 |n1;n2⟩ = n2 |n1;n2⟩ (2.7)

Applying Ĥ (defined in eq.(2.5)) to the previous state |n1, n2⟩

Ĥ |n1;n2⟩ = En1;n2 |n1;n2⟩ (2.8)

it is easy see,

En1;n2 = ℏω (n1 + n2 + 1) . (2.9)

Normalizing the states we have that,

âj |nj⟩ =
√
nj |nj − 1⟩ (2.10)

â†j |nj⟩ =
√
nj + 1 |nj + 1⟩ (2.11)

this implies that when â operate on |nj⟩, it decrease n by one unit. Since there is no negative
energy, the lowest state known as the ground state is established.

|0; 0⟩ = |n1 = 0, n2 = 0⟩ . (2.12)

In the case of â†, it increase n by one unit so, the state |n1;n2⟩ can be obtained by the

successive application the operators â†1 â
†
2, such that

|n1;n2⟩ =
1√

n1!n2!

(
â†1

)n1
(
â†2

)n2

|0; 0⟩ . (2.13)

with nj = 0, 1, 2, . . . and j = 1, 2. with nj = 0, 1, 2, . . . and j = 1, 2. In the case of the beam
study, n1 and n2 denote the (transverse) mode numbers. So this can be understood as the
creation of excitation in the transversal modes starting from the vacuum state |0; 0⟩, [40, 41] .
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2.2. HERMITE-GAUSS STATES

2.2 Hermite-Gauss states

As we know that energy cannot be extracted beyond the lowest state, it is possible to know the
form of that state, on which the rest of the states will be built, for this we start from the fact
that,

⟨q|n1;n2⟩ = ψn1;n2(q1, q2), (2.14)

ψn1;n2(q1, q2) = ψn1(q1)ψn2(q2), (2.15)

Therefore, it is sufficient to study only one state ψnj (qj) to know the 2D harmonic oscillator’s
eigenstates. So for this part we will omit the subscript j, since we know beforehand that we
only use the one-dimensional ladder operators and it can belong to any of the possible spaces.
Using eq.(2.10) we can write the equation âj |nj = 0⟩ in the position space, as

⟨q| â |0⟩ = 1√
2

(
q +

∂

∂q

)
ψ0(q) = 0,

So we get the differential equation

qψ0(q) + ψ′
0(q) = 0 (2.16)

Solve and Normalizing

ψ0(q) =

(
1

π

)1/4

exp

(
−1

2
q2
)
, (2.17)

Which corresponds to a Gaussian function, [43].
The first excited state corresponds to applying the operator â† on the ground state, ψ1(q) =
⟨q| â† |0⟩. So for the nth excited state

⟨q|n⟩ = ⟨q|
(
â†
)n

√
n!

|0⟩ = 1√
n!

1
n
√
2

(
q − d

dq

)n

ψ0(q). (2.18)

We can rewrite the above as,

ψn(q) =
1
4
√
π

1√
2nn!

(
q − d

dq

)n

exp

{(
−q

2

2

)}
. (2.19)

Wave functions and the Hermite polynomials

If we consider the next identity operator [42],

exp

{(
−q

2

2

)}(
q − d

dq

)
exp

{(
q2

2

)}
= − d

dq
. (2.20)

Applying the operator n times,

exp

{(
−q

2

2

)}(
x− d

dq

)n

exp

{(
q2

2

)}
= (−1)n

dn

dqn
. (2.21)

Applying on the left-hand side exp
{(

q2

2

)}
and on the right-hand side exp

{(
−q2

)}
,(

q − d

dq

)n

exp

{(
−q

2

2

)}
= (−1)n exp

{(
q2

2

)}
dn

dqn
exp
{(

−q2
)}
. (2.22)

but

(−1)n exp

{(
q2

2

)}
dn

dqn
exp
{(

−q2
)}

= exp

{(
−q

2

2

)}
Hn(y),
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CHAPTER 2. TWO DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR

where Hn(q) are the Hermite polynomials,

Hn(q) =

[
(−1)neq

2 dn

d(q)n
e−q2

]
, (2.23)

and, (
q − d

dq

)n

exp

{(
−q

2

2

)}
= exp

{(
−q

2

2

)}
Hn (q) . (2.24)

So the states ψn, defined in eq.(2.19), can be written in terms of the Hermite polynomials,

ψn(q) =
1
4
√
π

1√
2nn!

exp

{(
−q

2

2

)}
Hn (q) , (2.25)

the functions ψ2n(q) are even (i.e. ψ2n(−q) = ψ2n) and ψ2n+1(q) are odd (i.e., ψ2n+1(−q) =
−ψ2n+1(q)) so, the Hermite polynomials H2n are even and H2n+1 are odd. The meaning of this
is the wave functions of even one-dimensional potentials have definite parity [42].

So back to our two dimensional problem that the state eq.(2.15), can be written in terms of
Hermite polynomials,

ψn1;n2(q1, q2) =
1√

π2n1+n2n1!n2!
exp

{(
−q

2
1 + q22
2

)}
Hn1 (q1)Hn2 (q2) , (2.26)

Figure 2.1 shows the intensity distribution, |ψn1,n2(q1, q2)|2, for some Hermite-Gauss modes
in dimensionless canonical phase space, (q1, q2), for transversal excitation numbers n1;n2 =
0, 1, 2, 3. For highe-oders modes we can note that if the value of n1 remains invariant, the
increase of n2 will be seen as an upward separation of the mode and otherwise if the n2 axis
remains invariant, the mode will extend in space to the right. The mean value of the transversal
excitation numbers is associate with the number of modes in the corresponding direction [44,45].
Solutions of in terms of Hermite polynomials aren’t unique, it’s possible to construct alternate

Figure 2.1: Intensity distribution for Hermite-Gauss modes, |ψn1,n2
(q1, q2)|2. The first number corre-

sponds to n1 and the second to n2, so the mode shown in n1 = 0, n2 = 0 is the fundamental mode.
High-order modes, had a distribution most spread out radially than the fundamental mode.

solutions due to the isotropic dimensionless Hamiltonian of the harmonic oscillator, guarantee
the invariance of any of the axes compared to infinitesimal rotations generated by the angular
momentum operator, which will be conserved [13]. So in the next section we’ll focus in obtain
circular quanta operators.
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2.3. ANGULAR MOMENTUM

2.3 Angular momentum

To describe the system more broadly it is sometimes necessary to expand the problem about its
behavior on other physical elements that it affects, in this case the angular momentum.

Let’s start by considering the L̂3 component of angular momentum defined as

L̂3 = q̂1p̂2 − q̂2p̂1 = iℏ
(
â1â

†
2 − â†1â2

)
. (2.27)

Using the Hamiltonian seen in eq.(2.5), it is easy see
[
Ĥ, L̂3

]
= 0, this proves that both operators

have a basis of eigenvectors in common. So it is possible to write new operators as a combination
of the ladder operators â1, â2 (â†1, â

†
2), where these operators will act as azimutal operators.

2.3.1 Right and left circular quanta

We define new ladder operators, defined as,

â± =
1√
2
(â1 ∓ iâ2) , â†± =

1√
2

(
â†1 ± iâ†2

)
. (2.28)

The operators â± are commonly referred to as destruction operators right (−) and left (+)

“circular quanta”,, where â†± the corresponding creation operators [43]. Knowing the action
of the âj , j = 1, 2 operators and their respective adjoints operators for a state |ψn1;n2⟩. It is
expected the action of the operators â± on a state |ψn1;n2⟩, generates a combination of state
|ψn1−1,n2⟩, with |ψn1;n2−1⟩ .

Thus â± and â†± are analogous to the ladder operators âj , â
†
j , j = 1, 2. Being similar in their

commutation properties. [
â+, â

†
+

]
=
[
â−, â

†
−

]
= 1. (2.29)

2.3.2 Eigenvectors

To obtain the eigenvectors of the harmonic oscillator in this new base, consider the raising
operators â†+, â

†
− on the state |0; 0⟩, which will generate a new state, denoted by |n+;n−⟩, such

that

|n+;n−⟩ =
1√

(n+)! (n−)!

(
â†+

)n+
(
â†−

)n−
|n1 = 0;n2 = 0⟩ . (2.30)

Because of the way ladder operators are defined, the state |n+;n−⟩, will be a composition of the
states generated by |n1 = 0;n2 = 0⟩. More generally, since we have two options, n+ > n− and

n− > n+. If consider (â
†
+)

n+(â†+)
−n+ = I, eq.( 2.30), could rewrite,

|n+;n−⟩ =
1√

(n+)! (n−)!


(
â†+â

†
−

)n− (
â†+

)(n+−n−)
|n1 = 0;n2 = 0⟩ , n+ > n−(

â†+â
†
−

)n+
(
â†−

)(n−−n+)
|n1 = 0;n2 = 0⟩ , n− > n+

(2.31)

2.3.3 Eigenvalues

We are now interested in how n+ and n− are related to the eigenvalues of the angular momentum
operator and those of the harmonic oscillator Hamiltonian, so it is convenient to define new
numbers operators,

N̂+ = â†+â+ =
1

2

(
â†1â1 + â†2â2 − iâ†1â2 + iâ1â

†
2

)
, (2.32a)

N̂− = â†−â− =
1

2

(
â†1â1 + â†2â2 + iâ†1â2 − iâ1â

†
2

)
(2.32b)
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CHAPTER 2. TWO DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR

The eq.(2.5) and eq.(2.27) can be written as,

L̂3 = ℏ
(
N̂+ − N̂−

)
, (2.33)

Ĥ = ℏω
(
N̂+ + N̂− + 1

)
. (2.34)

Respectively.
Operating L̂3 and Ĥ on |n+;n−⟩,

L̂3 |n+;n−⟩ = ℏ(n+ − n−) |n+;n−⟩ , (2.35a)

Ĥ |n+;n−⟩ = ℏω(n+ + n− + 1) |n+;n−⟩ . (2.35b)

Where the eigenvalue of Ĥ is similar to that found in the previous section (eq.(2.9)). For the
case of eigenvalues of L̂3, it is convenient to definite,

ℓ = n+ − n−, (2.36)

to get
L̂3 |n+;n−⟩ = ℏ ℓ |n+;n−⟩ . (2.37)

Here we note that â†+ increases the angular momentum by a factor ℏ,

L̂3 â
†
+ |n+;n−⟩ = ℏ [(n+ + 1)− n−)] |n+ + 1;n−⟩ , (2.38)

Doing the same for â†− we find that the angular momentum increases by a factor −ℏ
With this we have, as expected, that the values of ℓ = 0,±1,±2,±3, . . . . However, it should

not be forgotten that H and L have the same base in common, therefore it is convenient to see
how the values n± are, with respect to the system, we can do n = n+ + n−, resulting in

Ĥ |n+;n−⟩ = ℏω(n+ 1) |n+;n−⟩ , (2.39)

Since the values of n± must satisfy the form of the eigenvalues of Ĥ, we have〈
N̂+ + N̂−

〉
= n+ + n− = n, (2.40)

where n can be any positive integer, but composed of any possible combination of n+ and n−,
that is, n+ could be zero and n− could be n, or perhaps n+ = n − 2 while n− = 2. The only
condition is that n± be positive integers or zero and their sum results in a number n.

For the case of L̂3, for an energy level (n+1)ℏω and knowing that ℓ = n+−n−, the possible
values of l are

ℓ = n , n− 2 , n− 4, . . . ,−n+ 2,−n. (2.41)

A way of to relate the possible values of l and the values of n± can be given from its construction,

If So〈
â†+â+

〉
= n+ = j;

〈
â†−â−

〉
= n− = n− j,

(2.42)

with j = 0, 1, . . . , n. Being the angular component〈
L̂3

〉
= ℏ (n+ − n−) = ℏ (n− 2j) , (2.43)

Likewise the states |n+ = n;n− = 0⟩, |n+ = 0;n− = n⟩, correspond to the maximum and min-
imum value for L̂3, which are visualized as the vectors of circular polarization (circular move-
ments to the right or to the left) of the classical field associated with a given value of the total
energy [43]

Since circular motions are described, it is convenient to change our system to polar coordi-
nates.
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2.4. LAGUERRE-GAUSS STATES

2.4 Laguerre-Gauss states

It is convenient to study the harmonic oscillator operators defined in eq.(2.28) in polar coordi-
nates:

q1 = r cos(ϕ), r ≥ 0, (2.44)

q2 = r sin(ϕ), 0 ≤ ϕ < 2π, (2.45)

it implies that,

ψn1, n2(q1, q2) −→ ψn1;n2(r, ϕ) =
e−

r2

2 Hn1 (r cos(ϕ))Hn2 (r sin(ϕ))√
π
√
n1!n2!2n1+n2

, (2.46)

and if we choose
⟨q(r, ϕ)|n+;n−⟩ = χn+,n−(r, ϕ), (2.47)

we have a new set of states, which are related to angular momentum [41,46]

χn+,n−(r, ϕ) =
(−1)n−n−!√

π
√
n−!(ℓ+ n−)!

rℓ exp

(
−1

2
(r)2

)
Lℓ
n−

(
r2
)
e(iℓϕ) (2.48)

Here Lℓ
n− is the generalized Laguerre polynomial of order n− and degree ℓ, where ℓ =

n+ − n− and ℓ = n , n − 2 , n − 4, . . . ,−n + 2,−n, with n the excited level. These states have
the form of the Laguerre–Gaussian modes [47], and allow to study the structure of the system
which consists of p dark concentric rings for a given azimuthal number ℓ [46].

If we define the azimuthal mode index ℓ and the radial mode index p [9],

p = n−,

ℓ =n+ − n−,
(2.49)

we may rewrite eq.(2.31) as

|p; ℓ⟩ = 1√
(p)! (p+ |ℓ|)!

(
â†+â

†
−

)p
(
â†+

)|ℓ|
|0; 0⟩ , ℓ > 0,(

â†−

)|ℓ|
|0; 0⟩ , ℓ < 0.

(2.50)

by projecting over the complete basis |r;ϕ⟩ we get the corresponding wave function ψp,ℓ(r, ϕ) in
the transverse (dimensionless) parameters.

ψp,ℓ(r, ϕ) = ⟨r;ϕ|p; ℓ⟩ ,

=
1√
π
(−1)p

√
p!

(p+ |ℓ|)!
r|ℓ|e−

1
2
r2L|ℓ|

p (r2)eiℓϕ,
(2.51)

in terms of the associated Laguerre polynomials L
|ℓ|
p (ρ2) [46].

Figure 2.2 shows the intensity distribution, |ψp,ℓ(r, ϕ)|2, for some Laguerre-Gauss modes, for
radial and azimuthal numbers p, ℓ = 0, 1, 2, 3. For highe-oders modes we can note that for p = 0,
(first column) with ℓ = 1, 2, 3 exists only a single-ring mode called doughnut modes, for p = 1
and ℓ = 1, 2, 3 we observe two rings so in general for ℓ ̸= 0, the intensity pattern of LG beams
had p + 1 concentric rings, if ℓ = 0 there are p rings around the center Gaussian mode, then ℓ
determines its size [23,48].

Now operating L̂3 and Ĥ on |p; ℓ⟩,

L̂3 |p; ℓ⟩ = ℏ ℓ |p; ℓ⟩ , (2.52a)

Ĥ |p; ℓ⟩ = ℏω(2p+ ℓ+ 1) |p; ℓ⟩ , (2.52b)

11



CHAPTER 2. TWO DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR

Figure 2.2: Intensity distribution for Laguerre-Gauss modes, |ψp,ℓ(r, ϕ)|2. The first number corresponds
to the radial number p and the second to the azimuthal number ℓ, so the mode shown in p = 0, ℓ = 0 is
a Gaussian mode.

from Ĥ we obtain the relation
n = n1 + n2 = 2p+ |ℓ|, (2.53)

the absolute value in ℓ indicate that n is always a positive number. Some authors work with
the so-called radial number operator ⟨p̂⟩ = p = 0, 1, 2, . . . [9, 46]. Both representations, with
the same Hilbert space bases (H = H1 × H2, spanned by the eigenstates |n1;n2⟩, ) are in
essence equivalent and equally valid due to there is no structurally determined symmetry in free
space. So in rectangular coordinates the mode fields are described by a set of Hermite-Gaussian
functions resulting in Hermite-Gaussian modes being appropriate for treat problems with square
symmetry, whereas in polar coordinates they are described by Laguerre-Gaussian functions, so
the Laguerre-Gauss modes are appropriate to treat problems with axial symmetry [44, 45, 49].
In quantum physics and even more in quantum optics there are two families of states that
are of great interest, the pure states, which are those that are completely coherent and the
mixed states that are a superposition of the coherent states, both analyzed theoretical and
experimental [50]. So far, we have approached the eigenstates of the harmonic oscillator from
the perspective of the creation and destruction operators and their representation in the linear or
polarized basis, however, using the harmonic oscillator we can study the coherent states, which
are the most classical of the states of the oscillator, these means constitutes a state of minimum
uncertainty. However, coherent states may be constructed for an angular momentum system
with some differences of the oscillator coherent states [51]. And consider that the Laguerre-
Gauss states cover the whole Hilbert space, where the transverse momentum and the orbital
angular momentum are conserved. This Hilbert space can be partitioned and each partition
can be represented in terms of the Lie group generators SU(1, 1) and SU(2) [51, 52], different
representations of the system can be studied in coherent and mixed states.
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Chapter 3

States Associated with the Group
SU(1, 1)

The circular quanta right and left creation and annihilation operators given in (2.28) allow the
construction of a dimensionless representation of the algebra su(1, 1)

K̂+ = â†+â
†
−, K̂− = â+â−, K̂0 =

1

2

(
â†+â+ + â†−â− + 1

)
, (3.1)

where K̂0, K̂+ y K̂− are the generators of this algebra, being K̂± ladder operators, and

K̂2 =
1

4

[(
â†+â+ − â†−â−

)2
− 1

]
(3.2)

the Casimir operator. They satisfy the commutation relations,[
K̂+, K̂−

]
= −2K̂0,

[
K̂0, K̂±

]
= ±K̂±,

[
K̂2, K̂j

]
= 0. (3.3)

The corresponding group SU(1, 1) is the simplest non-abelian (i.e. non-commutative) group,
so the Lie algebra corresponding to this group considers different representations of irreducible,
discrete, continuous and supplementary unitary series. However, the discrete representations
of this algebra are used for the description of physical systems [37, 38, 53], where the standard
orthonormal basis for this representation is

K̂+ |k;m⟩ =
√
(2k +m)(m+ 1) |k;m+ 1⟩ , (3.4)

K̂− |k;m⟩ =
√
(2k +m− 1)m |k;m− 1⟩ , (3.5)

K̂0 |k;m⟩ = (k +m) |k;m⟩ , (3.6)

K̂2 |k;m⟩ = k (k − 1) |k;m⟩ , (3.7)

where k > 0 is the so-called Bargmann parameter. Knowing this, we can now study some
different representations generated by this Lie algebra.

3.1 Radial representation

Using the standard representation (3.4)–(3.7) |k;m⟩ = k (k − 1) |k;m⟩, to obtain the eigenvalue

of the Casimir operator, and applying K̂2 = 1
4

(
(N̂+ − N̂−)

2 − 1
)
to the state |n+;n−⟩, we get

K̂2 |n+;n−⟩ =
1

4

[
(n+ − n−)

2 − 1
]
|n+;n−⟩ =

1

4

[
ℓ2 − 1

]
|n+;n−⟩ , (3.8)
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Comparing (3.7) and (3.8), we have k2 − k − 1

4

[
ℓ2 + 1

]
= 0, and it is easy to get

k =
1

2
(|ℓ|+ 1). (3.9)

Similarly, for the rest of the operators. It’s convenient to define new states in terms of p and k
given in (2.49), such that

|n+;n−⟩ → |k; p⟩ . (3.10)

Then

K̂2 |k; p⟩ = k (k − 1) |k; p⟩ , (3.11)

K̂0 |k; p⟩ = (k + p) |k; p⟩ , (3.12)

K̂+ |k; p⟩ =
√
(2k + p)(p+ 1) |k; p+ 1⟩ , (3.13)

K̂− |k; p⟩ =
√

(2k + p− 1)p |k; p− 1⟩ . (3.14)

The raising and lowering operators K̂± acting on a Laguerre-Gauss mode |p, ℓ⟩ increase or
decrease the radial number p, however don’t change the value of ℓ, this implies that, they
conserve the Bargmann parameter for any value of p, with p ≥ 0, [9, 46].

The Bargmann parameter k = (|ℓ|+ 1) /2 = 1/2, 1, 3/2 depends only on the azimuthal num-
ber operator, implies there will be two subspaces labeled with the same Bargmann parameter,
one for each sign of the mean value of the azimuthal number except for zero. This allows us to
define a relation between the Bargmann subspace basis and the Laguerre-Gauss states:

⟨r;ϕ|k; p⟩ ≡ ⟨r, ϕ||ℓ| = 2k − 1; p⟩ = ψ2k−1, p(r, ϕ), (3.15)

with ⟨r;ϕ|k; p⟩ defined in eq(2.51).
The ladder operators K̂± acting on |k; p⟩ increase or decrease the radial number p. Thus,
each infinite dimensional Bargmann subspace consists of states with equal azimuthal excitation
number and progressive radial excitation number.

If now the group generators are used to define a unitary operator, acting on the lowest state
|k;m = 0⟩, we obtain the Gilmore-Peremolov coherent states.

3.2 Gilmore-Perelomov coherent states

The Gilmore-Perelomov coherent states for the su(1, 1) algebra are defined [37],

|k; ζ⟩ = eξK̂+−ξ∗K̂− |k; 0⟩ = (1− |ζ|2)keξK̂+ |k; 0⟩ = (1− |ζ|2)k
∞∑
p=0

√
Γ(p+ 2k)

p! Γ(2k)
ζp |k; p⟩, (3.16)

where ξ = 1
2θe

−iω, ζ = ( ξ
|ξ|) tanh |ξ| = − tanh

(
1
2θ
)
e−iω. With ω ∈ [0, 2π), −∞ < θ < ∞, and

the parameter ζ is restricted by |ζ| < 1, this condition shows that these states are defined in the
interior of a unit disk [37,38]. Being the states |k; ζ⟩ normalized but not orthogonal:

⟨k; ζ1|k; ζ2⟩ = (1− |ζ1|2)k(1− |ζ2|2)k(1− |ζ∗1ζ2|2)−2k. (3.17)

In dimensionless canonical space,

⟨r;ϕ|k; ζ⟩ = (1− |ζ|2)k
∞∑
p=0

√
Γ(p+ 2k)

p!Γ(2k)
ζp ⟨r;ϕ|k; p⟩ , (3.18)

=

(
1− |ζ|2

)k√
π(2k − 1)!

r2k−1e−
1
2
r2eiℓϕ

∞∑
p=0

(−ζ)pL2k−1
p

(
r2
)
, (3.19)
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3.2. GILMORE-PERELOMOV COHERENT STATES

where we have used the identity

(1− α)m+1
∞∑
n=0

αnLm
n (x) = exp

{
α

α− 1
x

}
(3.20)

and make ψk;ζ = ⟨r, ϕ|k; ζ⟩, where

ψk,ζ =


Ak,θ e

i(2k−1)ϕ, ℓ > 0,
Ak,θ, ℓ = 0,

Ak,θ e
−i(2k−1)ϕ, ℓ < 0,

(3.21)

being

Ak,θ =

[
1 + tanh

(
θ
2

)
1− tanh

(
θ
2

)]k r2k−1

√
1

π(2k − 1)
exp

{
−1

2

(
1 + tanh

(
θ
2

)
1− tanh

(
θ
2

)) r2}. (3.22)

These states are also eigenstates of the OAM, and present the same characteristics as those
introduced in [46]. However, we present their analysis in terms of the Bargmann parameter,
given the relation |ℓ| = 2k − 1, so they are shape invariant in the time evolution. The average
number of sharp rings in the state ψk,ξ is

p = 2k
|ζ|2

|ζ|2 − 1
. (3.23)

Figure 3.1 shows the probability of distribution and probability for (3.21). We can highlight
that the densities are equivalent to the intensity distribution for Laguerre-Gauss modes with
p = 0, ℓ (see Figure 2.2). This is due to the fact that it is a coherent state that maintains the
value of p but varies ℓ by varying the Bargamm’s parameter given its relationship (3.9).

Figure 3.1: Probability distribution in the constant azimuthal number basis {|k;m⟩} for a Gilmore-
Perelomov coherent states |k; ζ⟩ for Bargmann parameter a) k = 1

2 and b) k = 4. In c) the probability
density function, |⟨r, ϕ|k; ζ⟩|2, of the wave function in dimensionless configuration space for different
coherent phase values θ = 0, π/2, π, for Bargmann parameter k = 1

2 ,
3
2 , 4.

On the other hand, in Figure 3.2 we show the phase distribution of (3.21). Here we can
emphasize that the number of vortices is directly proportional to the value of ℓ, in similar way
there exists a rotation that depends of the θ value, which will be cyclic in a period of π.

Other states in the su(1, 1) representation are the coherent states of Barut and Girardelo,
which are constructed as eigenstates of ladder operators representing discrete series [54], as we
will show in the following section.
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Figure 3.2: Phase distribution for a Gilmore-Perelomov coherent states, arg(⟨r, ϕ|k; ζ, θ⟩), in dimen-
sionless configuration space for different coherent phase values θ = 0, π/2, π, for Bargmann parameter
k = 1

2 ,
3
2 , 4.

3.3 Barut-Girardello coherent states

The Barut-Girardello coherent states for the su(1, 1) algebra, [37,54], are such that

K̂−|k; z⟩ = z|k; z⟩, (3.24)

with z ∈ C and k the Bargmann parametrer. The expansion of these states on an orthonormal
basis is,

|k; z⟩ = zk−1/2√
I2k−1(2 |z|)

∞∑
n=0

zn√
n!Γ(2k + n)

|k; z⟩ , (3.25)

with Iν(x), a modified Bessel function of the first kind of ν–order:

Iν(z) =
∞∑
n=0

(
1
2z
)ν+2n

n!Γ(ν + n+ 1)
. (3.26)

The Barut-Girardello coherent states are normalized but not orthogonal [37].
For real negative coherent parameter, z < 0, the Barut-Girardello coherent state is given by

⟨r, ϕ|k; z⟩ = (−1)−k+1/2e−z√
π I2k−1(2|z|)

e−
1
2
r2J2k−1

(
2
√
−z r

)
ei(2k−1)ϕ, (3.27)

and therefore takes a Bessel function form in dimensionless canonical space.
Figure 3.3 shows the probability distribution and probability density for eq.(3.27), similar

to the Gilmore-Peremolov states presented previously. The density is equivalent to the intensity
distribution for Laguerre-Gauss modes, see (2.2), with p = 0, ℓ, but in reverse.

Figure 3.4 shows the phase distribution of (3.27), where anew the number of vortices is
directly proportional to the value of ℓ. However, remarkable differences are shown at θ = π, the
process being cyclic with a period of 2π.

Coherent states are highly efficient as they represent the most classical states attainable.
Nevertheless, in laboratory settings, mixed states are often created. These states cannot be
characterized by state vectors, but instead by a density operator [12]. Given their nature, these
are usually found as thermal states, and given their importance for this work, we will analyze
their representation in the group basis SU(1, 1).
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Figure 3.3: Probability distribution in the constant azimuthal number basis, {|k;m⟩} for a Barut-
Girardello coherent states, |k; z⟩ for Bargmann parameter a) k = 1/2 and b) k = 4. In c) probability
density function, |⟨r, ϕ|k; z⟩|2, of the wave function in dimensionless configuration space for different
coherent phase values θ = 0, π/2, π, for Bargmann parameter k = 1/2, 3/2, 4.

3.4 Thermal states

We now considered the thermal state ρth, with β the Boltzmann’s constant, T the temperature
of the system, and Ĥ the Hamiltonian [11,12],

ρth =
e−βĤ

Tr
(
e−βĤ

) , β =
1

kBT
, (3.28)

For our case, we take the Hamiltonian related to the harmonic oscillator eq.(2.34) in terms of
the su(1, 1) algebra operators,

Ĥ = 2ℏωK̂0, (3.29)

and has a diagonal form,

Ĥ = 2ℏω

[ ∞∑
u=1

∞∑
v=0

(u
2
+ v
) ∣∣∣u

2
; v
〉〈u

2
; v
∣∣∣
+
+

∞∑
u=2

∞∑
v=0

(u
2
+ |v|

) ∣∣∣u
2
; v
〉〈u

2
; v
∣∣∣
−

]
, (3.30)

in the basis |k; p⟩±, with k = u/2 and v = p, and where we use the positive subscript to refer to
zero and positive azimuthal numbers, ℓ ≥ 0, and the negative subscripts to negative azimuthal
numbers, ℓ < 0.

Thus, the thermal state in this basis is

ρth =

(
eℏωβ − 1

)2
eℏωβ

{ ∞∑
u=1

∞∑
v=0

e−ℏω(u+2v)β
∣∣∣u
2
; v
〉〈u

2
; v
∣∣∣
+
+ +

∞∑
u=2

∞∑
v=0

e−ℏω(u+2v)β
∣∣∣u
2
; v
〉〈u

2
; v
∣∣∣
−

}

=
1

n(n+ 1)

{ ∞∑
u=1

∞∑
v=0

[
n

(n+ 1)

]u+2v ∣∣∣u
2
; v
〉〈u

2
; v
∣∣∣
+
+ +

∞∑
u=2

∞∑
v=0

e−ℏω(u+2v)β
∣∣∣u
2
; v
〉〈u

2
; v
∣∣∣
−

}
in terms of the Boltzmann parameter β or the average excitation number [12]

e−ℏωβ =
n

n+ 1
. (3.31)
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Figure 3.4: Phase distribution for a Barut-Girardello coherent states, arg(⟨r, ϕ|k; z, θ⟩), in dimen-
sionless configuration space for different coherent phase values θ = 0, π/2, π, for Bargmann parameter
k = 1/2, 3/2, 4.

Unlike the traditional representation of coherent states in the Fock basis, here we have de-
veloped coherent states based on radial and azimuthal numbers. We established the relationship
between these numbers and transverse numbers in the previous section (see eq.(2.49)). Both
the Gilmore-Perelomov and Barut-Girardello coherent states, exhibit radial information in their
probability density, indicating that the coherence is characterized by the preservation of the
number of rings. In the same way as in the Laguerre-Gauss states, the azimuthal number |ℓ|
establishes the width of the ring, although the coherent state parameter θ can also modify the
width of the ring. The differences between the Gilmore-Peremolov coherent states and the Barut-
Girardello coherent states become apparent when examining their phase structures. While both
exhibit vortices defined by the azimuthal number linked to the Bargmann parameter (eq.(3.9)),
their periods differ, and the coherent states of Barut-Girardello also feature ring rotations at
θ = π.

If we now consider the superposition of the states, it is possible to obtain them as thermal
states eq.(3.28). If we consider the two possible values of the azimuthal number ±ℓ the density
operator will be established as the sum of the density operators for each system. However, the
thermal states associated with the group SU(1, 1) are not optimal for examining a system with a
relatively small number of photons, because although the average value of these can be handled,
their shape here described , associated to the group SU(1, 1), is established in an infinite Hilbert
space [38], where this characteristic can be observed in the fact that the value of the azimuthal
number ℓ ∈ ±∞. For this reason, when looking for a finite Hilbert space that allows minimizing
the work, we will consider the group SU(2) in the next chapter.
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Chapter 4

States Associated with the Group
SU(2)

In a similar way as we obtained the states in the representation of SU(1, 1), we obtain those
for the Lie algebra su(2), which is spanned by the generators J+, J− and J0, satisfying the
commutation relations,[

Ĵ+, Ĵ−

]
= 2Ĵ0,

[
Ĵ0, Ĵ±

]
= ±Ĵ±,

[
Ĵ2, Ĵj

]
= 0, j = 1, 2, (4.1)

where the ladder operators can be rewritten as Ĵ± = Ĵ1 ± iĴ2. In the Jordan-Schwinger repre-
sentation of the su(2) algebra [56] in terms of our circular polarization operators1, we have

Ĵ+ = â†+â−, Ĵ− = â+â
†
−, Ĵ0 =

1

2

(
â†+â+ − â†−â−

)
, Ĵ2 =

1

4
N̂
(
N̂ + 2

)
, (4.2)

with N̂ = N̂+ + N̂−, previously defined (2.32). Similarly as we did in the study of group
generators su(1, 1), for su(2), by applying the operators described in eq.(4.2), to a state , we
can obtain its corresponding eigenvalues, where in general form,

Ĵ+ |j;m⟩ =
√

(j −m)(j +m+ 1) |j;m+ 1⟩ ,

Ĵ− |j;m⟩ =
√

(j +m)(j −m+ 1) |j;m− 1⟩ ,
Ĵ0 |j;m⟩ = m |j;m⟩ ,
Ĵ2 |j;m⟩ = j(j + 1) |j;m⟩ ,

(4.3)

4.1 Radial representation

In a similar way to what was done in the previous chapter, applying the operators defined in
(4.2) to the state |n+, n−⟩, and comparing with (4.3), we find that for its radial representation
it is enough to write j and m as:

j =
n+ + n−

2
=
n

2
=

2p+ |ℓ|
2

, m =
n+ − n−

2
=
ℓ

2
, (4.4)

where the eq.(4.3), establishes that the lowest and the highest state to which the rising and
lowering operators can be applied are

Ĵ± |j;±j⟩J = 0 (4.5)

1It’s possible to describe it also in terms of the ladder operators of the Cartesian canonical variables.
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CHAPTER 4. STATES ASSOCIATED WITH THE GROUP SU(2)

so j = 0, 1/2, 1, 3/2, 2, . . . and j ≥ m ≥ −j. The parameter j implies there will be two subspaces
label with the same value, one for each sign of the mean value of the azimuthal number except
for zero. This allows us to define

⟨r;ϕ|j;m⟩ ≡ ⟨r, ϕ|p = j − |m|; |ℓ = 2m⟩ = ψj−|m|,2m(r, ϕ), (4.6)

so the ladder operators Ĵ± acting on |j,m⟩ increase or decrease the azimuthal number ℓ/2. Thus,
each subspace consists of states with equal radial excitation number and progressive azimuthal
excitation number. To construct the coherent states in this representation an operator must be
defined in terms of the ladder operators SU(2), from the previous section, we can deduce that
these will be the Gilmore-Perelomov coherent states.

4.2 Gilmore-Perelomov coherent states

The Gilmore-Perelomov coherent states for the su(2) algebra are defined [57,58],

|j; ξ⟩ = e(ξĴ+−ξ∗Ĵ−)|j; 0⟩ = (1 + |τ |2)−jeτ Ĵ+ |j; 0⟩

=
(
1 + |τ |2

)−j
j∑

m=−j

√
(2j)!

(j +m)!(j −m)!
τ j+m |j;m⟩ ,

(4.7)

where ξ = 1
2θe

−iω, τ = tan
(
1
2θ
)
e−iω, 0 ≤ θ ≤ π, 0 ≤ ω ≤ 2π. As in the previous representation,

the CS-GPs are not orthogonal:

⟨j; ξ1|j; ξ2⟩ =
(1 + τ∗1 τ1)

2j

(1 + |τ1|)2 (1 + |τ2|)2
. (4.8)

If we want to write this result in terms of ℓ and p, we will see that it becomes more complex
compared to the previous section, this is because the term j is written in terms of both, so
we must be very careful when making the change in the sum. This case will not be discussed
here. However, it is possible to obtain the SU(2) Perelomov coherent states, for the harmonic
oscillator in two dimensions in terms of j and m, in a similar way as it was obtained for SU(1, 1),

⟨r;ϕ|j; ξ⟩ =
(
1 + |τ |2

)−j
j∑

m=−j

√
(2j)!

(j +m)!(j −m)!
τ j+m ⟨r;ϕ|j;m⟩ (4.9)

=

(
1 + |τ |2

)−j

√
π

e−
1
2
r2

j∑
m=−j

√
(2j)!

(j +m)!
(τ)j+m(−1)j−|m|r2|m|L

2|m|
j−|m|

(
r2
)
e2imϕ. (4.10)

This result is similar to the one found in [59], for the standard SU(2) Perelomov coherent states
for two-dimensional harmonic oscillator. However, here we provide a brief analysis of their
relationship with the states of Laguerre-Gauss and Hermite-Gauss.

In Figure 4.1 we show the probability distribution and the probability density for eq.(4.10),
we can note that the density is very similar to the intensity distribution for the Hermite-Gaussian
modes, being a result of interest that emphasizes the relationship that exists with the quantum
numbers p and ℓ and the numbers n1 and n2 of the modes.

In Figure 4.2 we show the phase distribution of (4.10). We can notice that the phase
structures shift occurs in a more abrupt way compared to the plots shown in the previous section.
The number of variations in the distribution or in the phase structure is directly proportional
to 2j + 1. Similar results have been found in recent studies on the structure of light [60,61].
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4.3. BARUT-GIRARDELLO COHERENT STATES

Figure 4.1: Probability distribution in the constant excitation basis, {|j;m⟩}, for Gilmore-Perelomov
coherent states, |j; ξ⟩, for the parameter (a) j = 1/2 and (b) j = 4. In c) probability density function,
arg(⟨r, ϕ|j; ξ, θ⟩), in dimensionless configuration space for different coherent phase values θ = 0, π/2, π for
j = 1/2, 3/2, 4.

Figure 4.2: Phase distribution for a Gilmore-Perelomov coherent states, arg(⟨r, ϕ|j; ξ, θ⟩), in dimension-
less configuration space for different coherent phase values θ = 0, π/2, π, for j = 1/2, 3/2, 4.

4.3 Barut-Girardello coherent states

For the Barut-Girardello coherent states, there is no representation, because Ĵ−|j;m⟩ = ξ|k; z⟩,
but for the lowest state Ĵ−|j;−j⟩ = 0.

4.4 Thermal states

Similar to how the thermal state was constructed in the previous section, we can write its
representation for su(2), by first writing the Hamiltonian (2.34) such that,

Ĥ = ℏω(ĴN + 1), (4.11)
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CHAPTER 4. STATES ASSOCIATED WITH THE GROUP SU(2)

where we defined a total number operator, ĴN |j;m⟩ = 2j|j;m⟩, and has a diagonal form,

Ĥ = ℏω
∞∑
u=0

u/2∑
v=−u/2

(u+ 1)
∣∣∣u
2
; v
〉〈u

2
; v
∣∣∣ , (4.12)

in the basis |j;m⟩, with u = 2j = n+ + n− and v = 2m = n+ − n−. Thus, the thermal state in
this basis is

ρ̂th =
(
1− e−ℏωβ

) ∞∑
u=0

u/2∑
v=−u/2

e−ℏωuβ
∣∣∣u
2
; v
〉〈u

2
; v
∣∣∣ = ∞∑

u=0

nu

(n+ 1)u+1

u/2∑
v=−u/2

∣∣∣u
2
; v
〉〈u

2
; v
∣∣∣ ,
(4.13)

where the first equality is written in terms of the Boltzmann parameter and the second one is
in terms of the average excitation number (3.31).

Choosing which of the representations we have discussed is the best will depend on the
system to be analyzed. Thus, coherent states can be adapted from the study of the interaction
of matter with an electric field [62], studies of optical media [63], to their application in quantum
information [31], as well as in quantum communication.

Much information about coherent states can be found in the literature. Currently the
panorama is being expanded by making use of thermal states [32], for example they have been
used with the intention of generating a distribution of quantum keys (secret key generator) with
a view to generating wireless quantum communication. Therefore, in the next chapter we will
focus on the study of thermal states.
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Chapter 5

An Experiment with Thermal States

Thermal states have had a recent boom in their possible applications. Among other things,
they have been used to generate Ghost images, which involves generating two images of an
object through two detectors, where one will not see the object and the other will. None of the
detectors will form an image by itself, but can be reconstructed. The effect can be achieved
with reduced visibility by means of correlated thermal light, thus mimicking it in the classical
environment [64]. At the same time, this allows the development of ideas about teleportation
which consists of translate any quantum state from one place to another, without physically
moving it [27]. In general we find that it is important to obtain a beam correlation, which is
achieved by separating the light derived from a thermal source, this is possible if it is incident
on a beam splitter (BS), which will separate the light in two different paths [11,12].

5.1 Beam Splitter

The beam splitter consist in two input and two output arms of beams, for a classical beam
splitter with a classical light field of complex amplitude E1 incident on one of the inputs, there
will be two output beams E2 and E3. As pointed out in [12], if R and T are the (complex)
reflectance and transmittance respectively of the beam splitter, then

E2 = RE1 E3 = TE1. (5.1)

For the quantum beam splitter, if both cases were compatible for any number of photons we
could replace classical complex field amplitudes Ei by a set of annihilation operators âi. But
given the commutation relations, we find that

â2 = Râ1 + T ′â0, â3 = T â1 +R′â0, (5.2)

where â0 represents the field operator of the classically vacant input mode. R′ and T ′ indicated
the existence of two sets of transmittances and reflectances, allowing for the possibility of an
asymmetric beam splitter. So if we only have one input beam, the other input will have a
vacuum state, where fluctuations will continue to affect the system [12]. The input and output
modes are related according to

â2 =
â0 + i â1√

2
, â3 =

i â0 + â1√
2

. (5.3)

Thus, the beam splitter can be represented by a unitary transformation, defined by

Ûbs(ζ) = exp
[
ζâ†0â1 − ζ∗â†1â0

]
, (5.4)

where ζ = θ e−iϕ, with θ, ϕ ∈ R, being θ an amplitude and ϕ the phase difference between the
reflected and transmitted fields [36]. The quantum and classical treatments of beam splitters
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CHAPTER 5. AN EXPERIMENT WITH THERMAL STATES

agree for coherent and thermal beams (“classical”-like light beams), but with a single or few
photons, the classical approach to beam splitting produces erroneous results [12]. Here we will
focus on the thermal states affecting a quantum beam splitter. But here we can ask ourselves
what we call the thermal state, which is what we will describe in the next section.

5.2 Thermal states

A thermal state is a description of a thermal light, this means, a light beam emitted by a thermal
sourse (a source in thermal equilibrium) can be described by a density matrix [12,32],

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| , (5.5)

where ψi are the states vectors, and pi is the probability of the system being in the ith state of
the ensamble |ψi⟩, considering the temperature T of a system described by its Hamiltonian Ĥ,
the thermal state can be written

ρ̂th =
e−βĤ

Tr
(
e−βĤ

) , (5.6)

with β = 1/(kBT ) the Boltzmann’s constant and Tr the trace:

Tr
(
e−βĤ

)
=

∞∑
n=0

e−Enβ. (5.7)

From (5.5) and (5.6), is easy to deduce that

pi = ⟨ψi| ρ̂ |ψi⟩ =
e−βEi∑
i e

−βEi
, (5.8)

more in particulary, here pi in the probability that the mode is thermally excited in the i-
th level [12]. If we now consider a two-dimensional isotropic harmonic oscillator in thermal
equilibrium, we have,

e−βĤ =

∞∑
n1;n2=0

e−ℏω(n1+n2+1)β |n1;n2⟩ ⟨n1;n2| , (5.9)

and

Tr
(
e−βĤ

)
= eℏωβ

(
eℏωβ − 1

)−2
. (5.10)

Hence, finally we have

ρ̂th =
(
1− e−ℏωβ

)2 ∞∑
n1;n2=0

e−ℏω(n1+n2)β |n1;n2⟩ ⟨n1;n2| . (5.11)

If we consider the average number of photons, then

n =
1

e−ℏωβ−1
(5.12)

and the thermal state is

ρ̂th =
∞∑

n1;n2=0

nn1+n2

(n+ 1)n1+n2+2
|n1;n2⟩ ⟨n1;n2| . (5.13)

This is how thermal states are described by a density operator, and are considered “classical”
beams, since they are indistinguishable mixed states, knowing their probability helps to char-
acterize the system [11, 12]. In the following we will make use of a thermal state for a system
described by the Hamiltonian of a harmonic oscillator, which will enter on one of the inputs of
a BS, which will allow us to study the correlations for each output arm.
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5.3. BEAM SPLITTER IN A THERMAL STATE

5.3 Beam Splitter in a thermal state

Considerer a general beam splitter with two inputs, 1 and 2, whose unitary transformation is
described by

Ûbs(ζ) = exp
[
ζâ†1a2 − ζ∗â†2a1

]
. (5.14)

Now if we introduce a thermal state ρ in one of the inputs in the beam splitter and an empty
state in the other input, as shown in Figure 5.1, a new thermal state ρ̂th−bs will be obtained

ρ̂bs = Ûbs(ζ)ρ̂
input
th Û †

bs(ζ), (5.15)

the normalized thermal state ρ̂inputth is,

ρ̂inputth =
(
1− e−ℏωβ

) ∞∑
n=0

e−nℏωβ |0;n⟩N N ⟨0;n| , (5.16)

where the subscripts on the bra and ket denote the base in which we are using, in this case N
denoted Fock’s basis.

Figure 5.1: Experimental setup where a light is input from a thermal source, and an empty state is
input from the other input, resulting in two output beams.

Considering the Schwinger adimensionless relations, with ladder operators in ‘Cartesian’
coordinates [65],

Ĵ+ ≡ â†1â2, Ĵ− ≡ â†2â1, (5.17)

it is possible to write the beam splitter operator in terms of the rising and lowering angular
momentum operators

Ûbs(ζ) = exp
[
ζĴ+ − ζ∗Ĵ−

]
, (5.18)

so it is convenient to write ρ̂inputth in the base of Schwinger J . We observe that the operators
in this representation equation (5.17) are equivalent to those presented in the previous section
equation (4.2). Therefore, so we can write

j =
n1 + n2

2
, m =

n1 − n2
2

. (5.19)

Considering the scenario where n1 = 0 and n2 = n, where n represents the total number of
excitations of the system, we can express the states |0;n⟩N its terms of j and m, as:

|n1;n2⟩N |j; m⟩J
|0; 0⟩N |0; 0⟩J

|0; 1⟩N

∣∣∣∣12;−1

2

〉
J

|0; 2⟩N |1;−1⟩J
...

...
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The subscript J in the bras and kets will represent the base of the angular momentum. These
relations must satisfy,

Ĵ± |j;±j⟩J = 0. (5.20)

So rewritting equation (5.16)

ρ̂inputth =
(
1− e−ℏωβ

) ∑
j=0,1/2,1,...

e−2jℏωβ |j;−j⟩J J⟨j;−j| , (5.21)

which can be expressed in terms of n but in J bases, this is,

ρ̂inputth =
(
1− e−ℏωβ

) ∞∑
n=0

e−nℏωβ
∣∣∣n
2
;−n

2

〉
J J

〈n
2
;−n

2

∣∣∣ , (5.22)

Now it is enough to act the unitary operator of the BS to the left Ûbs(ζ) |j;−j⟩J , to later obtain

its conjugate this is J⟨j;−j| Û
†
bs(ζ).

To achieve this we will follow a series of steps. First using the disentangling relations, we
can rewritten eq.(5.18), like

Ûbs(ζ) = exp
[
ζĴ+ − ζ∗Ĵ−

]
= exp

[
A+Ĵ+

]
exp
[
ln(A0)Ĵ0

]
exp
[
A−Ĵ−

]
, (5.23)

Where A+, A−, A0 are coefficients that can be determined by means of the Masashi-Ban formulas
described in [66]. Which indicates that the coefficients for the normal order decomposition are

A+ = e−iϕ tan(θ), A− = −eiϕ tan(θ), A0 = cos−2(θ), (5.24)

so that

Ûbs(θ, ϕ) = exp
[
e−iϕ tan(θ)Ĵ+

]
exp
[
− ln

(
cos2(θ)

)
Ĵ0

]
exp
[
−eiϕ tan(θ)Ĵ−

]
. (5.25)

Now we can operate on a state |j,−j⟩J ,

Ûbs(θ, ϕ) |j;−j⟩J = (cos2(θ))j exp
[
e−iϕ tan(θ)Ĵ+

]
|j;−j⟩J .

Let κ = cos(θ) and λ = e−iϕ tan(θ)

κ2j exp
[
λĴ+

]
|j;−j⟩J = κ2j

∞∑
l=0

(λ)l

l!
Ĵ+ |j;−j⟩J (5.26)

= κ2j
2j∑
k=0

(λ)k
[

(2j)!

(2j − k)!(k)!

]1/2
|j;−j + k⟩BS

J . (5.27)

Finally, with Ûbs(θ, ϕ) ≡ Ûbs

Ûbs |j;−j⟩J = κ2j
2j∑
k=0

(λ)k
(
2j

k

)1/2

|j;−j + k⟩BS
J , (5.28)

in terms of n,

Ûbs

∣∣∣n
2
;−n

2

〉
J
= κn

n∑
k=0

(λ)k
(
n

k

)1/2 ∣∣∣n
2
;−n

2
+ k
〉BS

J
. (5.29)
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Now we have everything necessary to obtain the thermal state ρ̂tbs, defined in (5.15):

ρ̂bs = (1− γ)

∞∑
n=0

γnÛbs

∣∣∣n
2
;−n

2

〉
J J

〈n
2
;−n

2

∣∣∣ Û †
bs

= (1− γ)
∞∑
n=0

γnκ2n
n∑

k=0

(λ)k
(
n

k

)1/2 n∑
l=0

(λ∗)l
(
n

l

)1/2 ∣∣∣n
2
;−n

2
+ k
〉BS

J

BS

J

〈n
2
;−n

2
+ l
∣∣∣

= (1− γ)
∞∑
n=0

γnκ2n
n,l∑
k=0

(λ)k(λ∗)l
[(
n

k

)(
n

l

)]1/2 ∣∣∣n
2
;−n

2
+ k
〉BS

J

BS

J

〈n
2
;−n

2
+ l
∣∣∣ , (5.30)

where γ = e−ℏωβ. Therefore ρ̂bs given by eq.(5.30) is the output thermal state of the beam
splitter. In the Fock basis,

ρ̂bs = (1− γ)
∞∑
n=0

γnκ2n
n∑

k,l=0

(λ)k(λ∗)l
[(
n

k

)(
n

l

)]1/2
|k;n− k⟩BS

N
BS
N ⟨l;n− l| , (5.31)

Substituting κ and λ, and

κ2n
n∑

k,l=0

(λ)k(λ∗)l = [cos(θ)]2n [tan(θ)]k+l e−ikϕeilϕ = µk+lκ2n−k−lνk+l. (5.32)

where κ = cos(θ), µ = e−iϕ, ν = sin(θ),

ρ̂bs = (1− γ)

∞∑
n=0

γn
n∑

k,l=0

[(
n

k

)(
n

l

)]1/2
µk−lκ2n−k−lνk+l |k;n− k⟩BS

N
BS
N ⟨l;n− l| , (5.33)

In terms of the mean number of photons, n or γ = e−ℏωβ = n
n+1 , we have [12]

ρ̂bs =
∞∑
n=0

nn

(n+ 1)n+1

n∑
k,l=0

[(
n

k

)(
n

l

)]1/2
µk−lκ2n−k−lνk+l |k;n− k⟩BS

N
BS
N ⟨l;n− l| , (5.34)

With this information we now ask ourselves what is the probability of obtaining a certain
state at the output of the beam splitter? To answer this we will make use of an arbitrary state
|a, b⟩BS

N , so the probability of that state will be,

Pa,b =
BS
N ⟨a; b| ρ̂bs |a; b⟩BS

N (5.35)

Then

Pa,b = (1− γ)
∞∑
n=0

γn
n∑

k,l=0

[(
n

k

)(
n

l

)]1/2
µk−lκ2n−k−lνk+l BS

N ⟨a, b| |k;n− k⟩BS
N

BS
N ⟨l;n− l|a; b⟩BS

N ,

= (1− γ)

∞∑
n=0

γn
n∑

k,l=0

[(
n

k

)(
n

l

)]1/2
µk−lκ2n−k−lνk+lδa,kδb,n−kδa,lδb,n−l

= (1− γ)γa+b

(
a+ b

a

)
κ2bν2a (5.36)

Replacing the terms

Pa,b =
na+b

(n+ 1)a+b+1

(
a+ b

a

)
[cos θ]2b [sin θ]2a . (5.37)

Figure 5.2 shows the probability distribution for a 50 : 50 symmetric beam splitter making use
of (5.37), as well as the experimental probability, in both cases with n ≈ 6 and θ = π/4.
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Figure 5.2: Theoretical probability distribution (left) and experimental probability distribution (right)
for a 50 : 50 symmetric beam splitter.

By fitting the experimental data with the theoretical data, we find that the experimental
system behaves best as the one corresponding to a 35 : 65 beam splitter, as shown in Figure 5.3.

Figure 5.3: Theoretical probability distribution for a 35 : 65 symmetric beam splitter.

Given the information provided by other experimental systems of thermal sources [67], the
discrepancies observed between the theoretical and experimental data can be attributed to fluc-
tuations, since the grouping effect presented by thermal light increases the probability that the
fluctuations exceed the expected average in the number of photons measured in the detectors.
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Chapter 6

Conclusions and perspectives

In this work, from an isotropic harmonic oscillator Hamiltonian in two dimensions, we have
obtained Hermite-Gauss and Laguerre-Gauss states.

The Hermite-Gauss states are described by transverse excitation numbers and describe the
modes of beams that have a square structure, called Hermite-Gauss modes. The intensity
distribution shows radial dispersion. Compared to with the fundamental mode, the mean value
of the transverse excitation numbers is associated with the number of modes in the corresponding
direction.

The Laguerre-Gauss modes are described by the radial and azimuthal numbers and describe
the modes of beams with radial structure. The intensity distribution is constructed using rings,
where the number of rings is related to the radial number and the width of the rings is defined
by the azimuthal number.

With these results, we use the known Gilmore-Perelomov and Barut-Girardelo coherent
states in terms of the radial and azimuthal number. First for the SU(1, 1) group representation,
we find that it is possible to define new coherent states that have a relation with a Bargmann
parameter defined in terms of the azimuthal number. This establishes that there are two sub-
spaces with the same Bargmann parameter. In addition, the probability density has a similar
structure to the intensity distribution of the Laguerre-Gauss modes. In the phase structure, the
azimuthal number is directly proportional to the number of vortices.

For the coherent states in the SU(2) representation, only Gilmore-Perelomov states are
found. The spin quantum number j described in terms of the radial and azimuthal numbers can
be regarded as equivalent to the Bargann parameter. The phase transitions are proportional to
the value of the spin number. The probability density are similar to the intensity distribution of
the Hermite-Gauss modes, this implies that the phase structure does not contain any vortices.

In addition to coherent states, for those systems that need a study that takes into account
their statistical behavior, there are mixed states. Considered here are the thermal states, which
can be written in terms of the Boltzmann constant or the average of photons, which have
been discussed from the representations of SU(1, 1) and SU(2). For the case of SU(1, 1) group
generators, we can obtain the thermal states, which are written as the sum of the density
operator for ℓ ≥ 0 with the density operator corresponding to ℓ < 0.

The SU(2) thermal states allow to study theoretically in an efficient way the behavior of
introducing a thermal state and a vacuum state into the corresponding inputs of beam splitter,
resulting in a new output thermal state. However, when studying the correlations, it is ideal
to write the output thermal state in the Fock basis to study the number of excitations of the
system. This also provides a simple way to compare the theoretical and experimental data. An
analysis of the results shows a discrepancy between the theoretical and experimental data. This
can be produced by different factors, such as the sensitivity of the sensors. The fluctuations and
the nature of the thermal light, that in the experiment increase the reading for the number of
photons, giving an opportunity to extend the theoretical model developed here.
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CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

In conclusion, the coherent states presented here are interesting due to their behavior and
the versatility of their parameters to explain the system. The work presented is not complete
and we are currently still expanding and developing the topic presented here, together with
theoretical and experimental researchers from several universities. It is hoped that this analysis
will provide the framework for future studies and allow us to go beyond coherent states and
create a more complete analysis of thermal states. And this since here the thermal states have
been studied only from the perspective of their number of excitations, leaving the opportunity
to explore them considering the radial and azimuthal numbers. The analysis of their possible
entanglement and experimental comparison could help advance the development of novel aspects
of quantum information, such as the creation of protocols in quantum key distribution and in
the preparation of distant states.
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