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A Sensor-Based Data Analytics for
Patient Monitoring in Connected

Healthcare Applications
Hassan Harb , Ali Mansour, Abbass Nasser, Eduardo Motta Cruz, and Isabel de la Torre Díez

Abstract—Nowadays, keeping a strong and good health is
one of the main concern of the general public or governments.
The Internet of Things (IoT) has been emerged as an efficient
solution to build smart healthcare systems deployed either
at hospitals or in-home. Such networks rely on biomedical
sensors which are used in electronics-based medical equip-
ment to remotely collect vital signs of patients (pressure,
temperature, hart rate, oxygen saturation etc.). Generally,
these biosensors are implemented on or inside the patient’s
body and take three types of record data such as numerical,
images and videos. However, the big data collected by var-
ious biomedical sensors along with the need of emergency
detection, the limited sensor energies, and the prediction of
the progress of patient situation are the major challenges for heath-based IoT applications. In order to overcome these
challenges, we propose, in this paper, an efficient sensor-based data analytics for real-time patient monitoring and
assessment to help both hospital and medical staff. The proposed mechanism consists in three phases: Emergency
detection, adapting sensing frequency and real time prediction of patient situation. Through simulations on real health
data, we show the effectiveness of our mechanism compared to other exiting techniques.

Index Terms— Internet of Things (IoT), connected heathcare, emergency detection, adaptive sampling rate,
data prediction, energy efficiency.

I. INTRODUCTION

TODAY, our world is facing three major challenges regard-
ing the public health: the increase number of aging or

elderly persons, the population growth, and the increasing
prevalence of severe diseases. This leads to complicate the
missions of both hospitals and medical staff (e.g. nurses and
physicians). Hence, the healthcare has taken, over the last
decade, more attention from governments, individuals and
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companies which invest and spend more money in providing
health care services and applications (the market is expected to
reach USD $10 trillion in 2022 [1]). Recently, the emergence
of the IoT technology and wireless sensors plays a key role in
the exponential increase of healthcare systems, e.g. known as
connected healthcare [2], [3]. This technology can provide
a low cost solution for patient monitoring and tracking at
anytime and anywhere, e.g. at hospital or in-home, then allows
a fast doctors access to patient data.

In connected healthcare, we divide sensors into three main
categories depending on the type of collected data: numer-
ical (for vital signs monitoring), images (like X-ray, dental
imaging, etc.) or videos (for surgery operations like car-
diology). Fig. 1 shows the most used types of biosensors
in connected healthcare [4] which can be classified as
follows:

• Epidermal biosensors: They aim to monitor the blood
glucose (Fig. 1 (a)), the lactate, the uric acid and the
urea (Fig. 1 (b)), the sweat alcohol (Fig. 1 (c)), and the
glucose monitoring and the therapy applied to human
forearm (Fig. 1 (d)).

• Tear-based biosensors: This type of sensors is a small
spring-like electrochemical devices designed in a form
of wearable contact lens tear applied to an artificial eye
(Fig. 1 (e)(f)(g)).
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Fig. 1. Various types of biomedical sensors (regenerated from [4]).

• Saliva-based biosensors: They are dielectric detectors
that are mostly mounted onto tooth and dedicated to
monitor the glucose level (Fig. 1 (h)), the salivary uric
acid concentrations (Fig. 1 (i)), and to detect floods and
fluids during ingestion like sugars and alcohol salinity
(Fig. 1 (j)).

Connected healthcare applications provide several
challenges: First, reducing the energy consumption in
the biosensors in order to save its limited power supply
and ensure a long time patient monitoring [5]–[7]. Second,
detecting emergency situations of the patient as fast as
possible and quickly reported to the medical staff in order to
take a suitable action [8]–[10]. Third, studying the progress
of the patient behavior and predicting his future situation are
important challenges in healthcare. By doing that, patient can
be given the adequate treatment before entering a critical
situation.

In order to overcome the above challenges, we propose
an efficient data analytics mechanism for real-time connected
healthcare applications. The proposed mechanism uses data
analytics techniques for prediction and reduction. In addition,
our mechanism consists in three phases: Emergency detection,
adapting sensing frequency and predicting patient situation
progress. We conducted a set of simulations on real health
data in order to show the efficiency of our mechanism while
comparing the results to other existing techniques.

The remainder of this paper is organized as follows:
Section II presents an overview on various data analytics
techniques related to connected healthcare existing in the
literature. In Sections III, IV and V, we detail the three
phases proposed in our mechanism respectively. Section VI
describes the implementation of our mechanism and explains
the obtained results. Finally, Section VII concludes the paper
and gives directions for future work.

II. RELATED WORK

Connected healthcare is becoming an essential solution
for hospitals that allows to record and analyze patient data,
take right decisions and finally save lives and money. In the
literature, we can find a lot of healthcare techniques ranging
from diagnosis to treatment and prevention [11]–[13]. The
authors of [14], [15] present an overview on data analytics
algorithms proposed in the literature for healthcare-based IoT
applications.

Some works in connected healthcare are focused on reduc-
ing big data collection using aggregation, compression and
prediction methods [16]–[23]. In [16], the authors propose a
Priority-based Compressed Data Aggregation (PCDA) tech-
nique in order to reduce the amount of heath data trans-
mitted. PCDA uses compressed sensing approach followed
by a cryptographic hash algorithm to save information accu-
racy before sending data for diagnosis. The authors of [17]
propose a two-level anomaly detection technique to remove
false alarms and detect an emergency situation of a patient.
The first level uses a game-theoretic approach in order to
search the spatiotemporal correlation among observed features.
In the second level, the Mahalanobis distance has been used
to ensure a general view for multivariate analysis. In [18],
a cloud-based connected healthcare system, called BigReduce,
is proposed. The objective of BigReduce is to minimize the
data processing cost at the base station according to two
schemes applied locally at the IoT sensors: reduction and
decision schemes. In [24], the authors propose a classification
technique based on a defined threshold where sensor’s readings
are classified into three types: urgent (above threshold), semi-
urgent (close to threshold) and nonurgent (less than threshold).
Furthermore, the authors introduce a routing protocol for
a medical sensor that enables transmitting packets during
gateway failure. Finally, the authors of [19] aim to extend
the lifetime of the wireless body network by selecting the
optimized paths between the nodes and the remote healthcare
sink. The proposed technique is based on a cluster routing
protocol combined with Q-learning approach.

Recently, the authors of [5], [8]–[10] open a new trend
in connected healthcare by proposing several frameworks
for a real-time patient monitoring and assessment. In [8],
a framework for a stress detection and evaluation has been
proposed. The framework works by detecting first stress sig-
nals according to skin conductance parameter, then the stress
level is evaluated through fuzzy inference system based on
patient vital signs, particularly heart rate, respiration rate, and
average blood pressure. In a recent work [9], the authors
propose a data management framework for data collection
and decision making in connected healthcare. The framework
relies on three algorithms: first, an emergency detection algo-
rithm aims to send critical records directly to the coordinator;
second, an adaptive sampling rate algorithm based on ANOVA
and Fisher test in order to allow each sensor to adapt its
sampling frequency to the variation of the patient situation;
third, a data fusion and decision making model is proposed
at the coordinator and it is based on a decision matrix and
the fuzzy set theory. Although its great advantages for the
patient monitoring and assessment, the proposed framework
suffers from several disadvantages: 1) sensors only send
critical records to the coordinator thus medical staff cannot
avoid patient enters a dangerous situation; 2) in case of
low critical patient none of the data will be archived in
the hospital thus, revising patient archive to check patient
progress by doctors is not possible; 3) ANOVA and Fisher
test are only sensitive to a significant variation in data, thus
adapting sensor rate for patients with medium criticality is not
possible.
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Unfortunately, although the proposed mechanisms and
techniques carry many advantages and tackle several problems
in connected healthcare, but they mainly suffer from several
drawbacks: 1) complexity which is not suitable to limited
resources of biosensors; 2) they propose separately data aggre-
gation, prediction or emergency detection; 3) they may solve
at most two problems from the above mentionned ones in con-
nected healthcare. However, our proposed mechanism consists
of a sequence of phases aiming to tackle problems ranging
from emergency detection to patient situation prediction.

III. PATIENT EMERGENCY DETECTION

Monitoring patient and rapidly acting after a critical situa-
tion constitute major tasks of medical staff, otherwise patient
may be in critical situation leading to his death. In the first
phase of our mechanism, we propose an emergency detection
algorithm allowing each biosensor to inform medical staff
about any abnormal situation. To verify abnormal situations,
let us first define the periodic patient monitoring model and
the Early Warning Score (EWS) guide.

A. Periodic Patient Monitoring
In health applications, data collection is usually done

through small biosensors which are implemented on the
patient body in order to collect its vital signs (such as Heart
Rate (HR), Systolic Blood Pressure (SBP), Respiration Rate
(RR), Oxygen Saturations (OS), Body Temperature (BT),
etc). Assume we have a set P of γ patients as follows:
P = [P1, P2, . . . , Pγ ] where each patient p ∈ P is assigned
various types of biosensors to collect the set of vital signs,
e.g. V = [H R, SB P, RR, OS, BT, . . . ], of the patient.
For analysis purposes, we assumed that each biosensor B p

v ,
assigned to the patient p, periodically monitors one vital sign,
v ∈ V , then it sends the collected records toward the sink.
Thus, each B p

v collects a vector t R p
v of τ records during a

period time t as follows: t R p
v = [r1, r2, . . . , rτ ].

B. Early Warning Score (EWS) Guide
EWS is a guide based on vital signs, e.g. V , and used by

medical staff within hospital in order to track the criticality
level of a patient. For each vital sign v ∈ V , the collected
record ri ∈ t R p

v is compared to a normal range in order
to calculate a score si between 0 and 3; 0 means normal
record where other values indicate abnormal situation with
increasing of severity when the score increases. Hence, a set
of record scores t S p

v = [s1, s2, . . . , sτ ] is calculated for each

t R p
v . Meanwhile, EWS is used to determine the appropriate

response of the medical staff where low score yields to
minimize the frequency of patient’s monitoring while high
score requires an immediate response from the emergency
team. Fig. 2 shows one of the most used EWS guides devel-
oped in UK and widely distributed, called National EWS
(NEWS) [25].

C. Emergency Detection Algorithm
As mentioned previously, biosensors collect vital signs in

a periodic way. However, this data collection model produces
a huge amount of data which leads to quickly deplete the

Fig. 2. National Early Warning Score (NEWS).

available energy of sensors as well as to complicate the
data analysis. Obviously, a native intuition is to enforce each
biosensor to send only critical records, e.g. those have scores
>0, during a period to the medical staff, while ignoring
the transmission of normal records. Although this approach
reduces the data transmission but prevent the monitoring of
patient’s progress. Hence, in order to overcome this problem,
we propose to find relationships among records collected at
each period before sending them toward the sink. In this
paper, we are interested in the Simple Linear Regression (SLR)
method to find data relationships thanks to two reasons: first,
it is less complex and suitable to limited biosensor resources;
second, health data are naturally linearly related.

Mathematically, given two vectors of data with equal size,
X = [x1, x2, . . . , xτ ] and Y = [y1, y2, . . . , yτ ], then the SLR
equation can be calculated according to equation 1. In our
case, X represents the records collected during a period time
t while Y indicates their order numbers.

y = a + bx, (1)

where

a =
∑τ

i=1 yi × ∑τ
i=1 x2

i − ∑τ
i=1 xi × ∑τ

i=1 xi yi

τ × ∑τ
i=1 x2

i − (
∑τ

i=1 xi )2

and

b = τ × ∑τ
i=1 xi yi − ∑τ

i=1 xi × ∑τ
i=1 yi

τ × ∑τ
i=1 x2

i − (
∑τ

i=1 yi )2

Thus, based on the EWS guide and the SLR equation,
Algorithm 1 describes the emergency detection process which
is applied at each biosensor itself. The algorithm takes as input
the vector of records collected by a biosensor during a period
time t . Then, it calculates the score for each record and it
only sends it to the medical staff in case of critical record,
e.g. having score >0 (lines 1-6). At the end of the period,
the biosensor calculates the coefficients (a and b) of SLR
equation based on the whole records in t R p

v , and sends them
to the sink for archive purpose (lines 7-8).

In order to clarify the process of Algorithm 1,
let us consider an illustrative example. Suppose a HR
biosensor collects a vector of 10 readings during a
period t : t R p

H R = [88, 90, 91, 91, 90, 90, 93, 100, 112, 135].
Consequently, based on equation 1, the biosensor first cal-
culates the SLR coefficients a = 77 and b = 3.8
then, according to EWS, it computes the vector of scores
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Algorithm 1 Emergency Detection Algorithm

Require: A patient: p, A biosensor: B p
v , A period time: t ,

Records collected during t: t R p
v = [r1, r2, . . . , rτ ].

Ensure: A set of critical records.
1: for each record ri ∈ t R p

v do
2: calculate score si of ri according to EWS
3: if si > 0 then
4: send ri

5: end if
6: end for
7: calculate a and b for t R p

v based on equation 1
8: send a and b

corresponding to records in t R p
H R as follows: t S p

H R =
[0, 0, 1, 1, 0, 0, 1, 1, 2, 3]. Therefore, the biosensor sends
the SLR coefficients followed by the critical records,
e.g. [77, 3.8, 91, 91, 93, 100, 112, 135], to the medical staff.

IV. ADAPTING SENSING FREQUENCY (ASF)
In health applications, data collected by each biosensor are

highly correlated to the situation of the monitored patient;
more the situation is stable more the data redundancy is.
Hence, we categorize the situation of a patient into 3 levels:

• Low risk: in which patient is in a normal situation where
all the collected records are in the normal range. This
situation requires minimum patient observations from the
medical staff.

• Medium risk: it indicates that the patient is in unstable
situation where the collected records vary between normal
and critical scores. In this level, the patient needs periodic
attention from the medical staff.

• High risk: In this level, all the collected records are
critical and the patient enters a dangerous situation that
requires a continuous monitoring.

Obviously, low and high criticality situations yield to a
significant redundancy level among the collected data. This
leads to consume the biosensor energy and overloading the
medical staff by sending redundant information. To reduce
data collection, we adapt the sensing frequency of each
biosensor. The basic idea of our approach is to dynamically
adapt the sensing frequency of each biosensor to fit with the
dynamic variation of the monitored vital sign.

Admitting that records collected in consecutive periods are
generally similar, our algorithm works on rounds where each
round equals to β periods. Subsequently, we aim to determine
the stability level of a patient during a round then to dynam-
ically adapt the sensing frequency of a biosensor in the next
round, accordingly to reach the stability level; more the patient
situation is unstable more the sensing frequency is increased
and vice versa. Derived from t R p

v , we define the subset s
t R p

v

which only contains the records with a score s in t R p
v , where

s ∈ [0, 3]. Accordingly, s
t S p

v is the subset with scores s of

t S p
v for the set of records t R p

v . Thus, t R p
v = ∪3

i=0
i
t R p

v while

t S p
v = ∪3

i=0
i
t S p

v . Let |X | be the norm zero, e.g. the number
of elements of a set X . For the sake of simplicity, let assume
a round consists of 2 periods t and w with equal size τ
where two record vectors t R p

v and w R p
v are collected in t

and w respectively. Then, the stability level, noted as stab,
of the vital sign v of a patient p can be calculated as the
overlap between the number of similar records (having the
same scores) in t R p

v and w R p
v as shown in the following

equation:

stab(t R p
v , w R p

v ) =
∑3

k=0 min(|kt R p
v |, |kw R p

v |)
min(|t R p

v |, |w R p
v |) × 100 (2)

where |kt R p
v | means the number of recods with score k in t R p

v .
Therefore, stab will range between 0 and 100 while 0 means
that patient is in a fully stable situation and 100 indicates a
severe unstable situation of the patient.

In order to calculate its new sensing frequency (indicated
as τ �) for the next round based on the obtained stability level,
the biosensor uses the following equation:

τ � = 100 − stab(t R p
v , w R p

v )

100
× τ (3)

The idea behind the above equation is that the biosensor
decreases its sensing frequency when a low/high criticality
situation is detected and increases it when a medium criticality
is noticed. This allows the biosensor to avoid collecting records
with similar scores either in low or critical situation and to
collect more records when patient situation is unstable.

Finally, in order to make our algorithm more efficient,
we propose to adjust a minimum sensing frequency, e.g.
τ �

min ∈ [0, 100], when calculating the new sampling one.
The optimal value of τ �

min is determined by the medical staff
based on the criticality level of the patient situation and the
observed vital sign. Therefore, if the new sensing frequency
of a biosensor (τ �) is less than the minimum assigned (τ �

min ),
then the biosensor adapts its new sensing frequency to τ �

min
and not to τ � in order to save the integrity of the monitored
condition.

Algorithm 2 describes the adaptive sensing frequency
process which is applied at each biosensor B p

v , at the end
of each round. For each period in the round, the algorithm
calculates the scores of records collected during the period
while counting the number of records having same scores
(lines 1-6). Then, the overlap between the scores of periods
within the round is calculated according to equation (2)
(line 7). After that, the biosensor computes its new sampling
and adapts its sensing frequency to the new one only if it is
greater than the minimum frequency assigned (τ �

min ) or to the
τ �

min otherwise (lines 8-10).
Let us consider an illustrative example for Algorithm 2.

Suppose a round consists of 2 periods t and w of size
10 records, e.g. τ = 10. Then, assume the calculated
scores for both periods are t S p

v = [0, 0, 0, 1, 1, 1, 1, 2, 2, 3]
and wS p

v = [0, 0, 1, 1, 2, 2, 2, 2, 3, 3] respectively. There-
fore, the similar scores in t S p

v can be aggregated as

t S p
v = [(0, 3)(1, 4)(2, 2)(3, 1)] and for wS p

v as w S p
v =

[(0, 2)(1, 2)(2, 4)(3, 2)]. After that, stab(t R p
v , w S p

v ) =
min(3,2)+min(4,2)+min(2,4)+min(1,2

) 10×100 = 70. Consequently,

τ � = 100−70
100 × 10 = 3. So, if we take a minimum frequency

τ �
min = 2 then, the biosensor adapts its sensing frequency for

the next round to 3 while if we take τ �
min = 4 then the new

sampling is adapted to 4.
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Algorithm 2 Adapting Sensing Frequency Algorithm

Require: A patient p, A biosensor: B p
v , A round of β periods,

Initial period size: τ , A minimum sensing frequency: τ �
min .

Ensure: New sensing frequency: τ �.
1: for each period i in the round, where i ∈ [1, β] do
2: calculate the vector of scores i S p

v for i R p
v according to

EWS
3: for k = 0 to 3 do
4: calculate |ki R p

v |
5: end for
6: end for
7: calculate stab(1 R p

v , 2 R p
v , . . . , β R p

v )

8: calculate τ � based on equation (3)
9: τ � = max(τ �, τ �

min)
10: return τ �

V. PATIENT SITUATION PROGRESS PREDICTION

As mentioned before, the patient may enter in a critical
situation leading to his death at any time. Hence, predicting
the progress situation of a patient is very important for both
doctors and nurses; from one hand, doctors can avoid a
critical situation using pretreatment and, on the other hand,
it helps nurses to estimate the needed attention for the patient.
Therefore, after generating data for each biosensor, we propose
a prediction algorithm in order to allow the medical staff to be
updated on the situation of a patient and takes the appropriate
action. Indeed, several prediction techniques are proposed by
researchers like linear and logistic regression, decision tree,
random forecast, neural network, etc. These techniques are
introduced in various domains such as stock production, sci-
entific studies, sport monitoring, financial sector, psychology,
etc. In this paper, we are focusing on the Long Short-Term
Memory (LSTM) which is a famous prediction method and
widely adapted in various applications. Let first recall the
LSTM prediction method, then we adapt it to the connected
healthcare case.

A. Recall of LSTM
Generally, the Long Short-Term Memory (LSTM) [26] is

an artificial and enhanced version of the recurrent neural
network (RNN) model. It is well-suited to classify, process
and make predictions based on time series data. Compared
to RNN, LSTM enjoys several advantages: first, remembering
data for a long time period even with huge size; second, clas-
sifying data into important or not; third, supporting multiple
layers to process data instead of single one.

Formally, the architecture of LSTM consists of a network
of cells and has three gates for the flow of information: input,
output and forget gates (Fig. 3). Each cell has three inputs:
Previous cell state (ut−1), previous hidden state (ht−1) and the
input at the current time (xt ). Furthermore, each cell contains
four neural networks where each of them has three parameters:
first, the number of blocks (O) indicating the capacity of the
neuron; second, the number of time steps (E) which represents
the size of the input vector (xt ) used to predict the next time
step (yt ); third, the number of features (F ) which indicates
the dimensions feed at each time step.

Fig. 3. LSTM cell architecture.

B. Applying LSTM in Our Mechanism
As biosensors collect data in a sequential manner; Sequenc-

ing prediction shows its efficiency and performance regarding
the analysis of the health data over time. This makes connected
healthcare a suitable domains to apply LSTM model. Indeed,
like adapting sensing frequency, our prediction algorithm
proposed for tracking a patient situation progress works in
rounds. Assume each round equals to β periods, then we
divide periods within each round into two parts: α periods
for training data sets and the remaining β − α periods for
data testing and prediction. Thus, after regenerating data for
α periods according to the SLR, we run the patient situation
algorithm in order to predict data for the remaining periods
and store them in the sink node. Thus, medical staff can access
the data and predict the patient severity in the next periods.

Formally, our patient progress algorithm based on the LSTM
model can be applied according to the following steps:

1) Receiving training data: At each round, the algorithm
generates record vectors of the first α periods according
to SLR equation, e.g. R�p

v = [1 R�p
v , 2 R�p

v , . . . , α R�p
v ], for

each biosensor B p
v which acts as the training data for

this biosensor.
2) Data normalization: Usually, the normalization is used

to scale up data with different types into the same range
[0, 1]. In our simulations we used the MinMaxScaler
algorithm in order to normalize data received from the
biosensors as a preprocessing step before doing any
prediction process. For each t R�p

v ∈ R�p
v , a Min-Max

scaling is typically done according to the following
equation:

r �n
i = r �

i − (t R�p
v )min

(t R�p
v )max − (t R�p

v )min
. (4)

where r �n
i is the normalized value for the record r �

i ∈
t R�p

v ; (t R�p
v )min and (t R�p

v )max are the minimum and
maximum records in t R�p

v respectively.
3) Determining neural network parameters: It indicates the

selection of the values of the number of blocks (O),
the number of time steps (E) and the number of features
(F ). Indeed, in order to evaluate their impacts, the values
of O and E are varied in our simulations where F is
fixed to 1, because we predict a recorded data for each
biosensor separately.

4) Training the LSTM: The objective of this step is
to allow the LSTM to study the variation between
the training data in order to predict the future data.
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TABLE I
SIMULATION ENVIRONMENT

This step is usually based on two concepts: loss function
and optimizer. The loss function allows to calculate the
variation between the training data where the optimizer
is an iterative method that randomly uses a sample of
data in order to optimize the error in the loss function.
In this paper, we used the Mean Square Error (MSR)
(see equation (5)) as a loss function accompanied with
the Adam optimizer [27].

M SE(R�p
v ) =

∑α
q=1

∑τ
k=1

(
rk − (q R�p

v )mean
)

α × τ
. (5)

where rk ∈ q R�p
v and (q R�p

v )mean is the mean value of

q R�p
v .

5) Predicting data: It represents the final step of LSTM
which allows the medical staff to predict the data of the
remaining β − α periods in the round. Subsequently,
when receiving the data of the first α periods the
algorithm uses the last E values of the periods in order
to predict all values of the remaining periods.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of our mechanism,
we used real health data collected from MultipleIntelligent
Monitoring in Intensive Care (MIMIC) database of Phys-
ioNet [28]. MIMIC contains data for about 72 patients where
recorded on vital signs including Heart Rate (HR), Systolic
Blood Pressure (SBP), Respiration Rate (RR) and Oxygen
Saturation (OS). Every second, the biosensor collects new
reading for each vital sign then it sends toward the coordinator
for archive purpose. In our simulation, we used a file that
includes a log of about 100000 readings for each patient.
We assume that each biosensor reads the data from its corre-
sponding file for a period of time, then it sends them toward a
coordinator placed at 50 meters after applying our mechanism.
We implemented the algorithms used in our mechanism based
on Java simulator and we compared the obtained results to
those obtained in the technique proposed in [9], e.g. modified
local emergency detection (MLED).

Table I summarizes the parameters used in our simulation
with their tested values.

A. Sensing Frequency Adaptation Study
In Fig. 4, we show how each biosensor adapts its sensing

frequency after applying our algorithm (see Algorithm 2,
referred as ASF in upper graph in each subfigure) and that
proposed in [9] (referred as MLED in lower graph in each
subfigure) for various types of patient situations. We fixed the

Fig. 4. Variation of sensing sensor frequency during rounds, τ = 3600,
β = 2.

period size (τ ) to 3600 records and the round size β to 2
periods. Indeed, three observations are eminent according to
the obtained results: first, both algorithms allow each biosensor
to dynamically adapt its sensing frequency after each round.
However, the sensing frequency using ASF is more adapted
than that using MLED. This is because, ASF relies on adapting
sensor frequency according to the stability of patient where
MLED only adapts sensor frequency if the variation among
collected records meets the Fisher threshold. Second, sensing
adaptation is almost fix for biosensors of the same patient
in both algorithms. This confirms the correlation between
vital signs of the same patient. Third, sensing frequency of
each biosensor is more adapted with low and high patient
situations compared to patient with medium criticality. This
is because the variation among records collected in low and
high situations is less significant than that with of medium
patients situation.

B. Data Transmission Study From Biosensors
Fig. 5 shows the percentage of data sent from each

biosensor to the sink node after applying the emergency
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Fig. 5. Percentage of records sent from biosensors for a medium patient
criticality level.

detection and adapting sensing frequency algorithms (referred
as EDASF). The simulations are made with respect to three
parameters: the period size (τ ), the round size (β) and the
minimum sensing frequency threshold (τ �

min = 20%). The
obtained results show that the data transmission is highly
reduced using our algorithms compared to MLED algorithm.
This is due to the sensing frequency which is more adapted
using our algorithms (see results of Fig. 4). Indeed, we observe
that HR, SBP, RR and OS biosensors reduce up to 94%, 52%,
39% and 40% of its data transmission respectively compared
to MLED. In addition, using our algorithm, we can show that:

• The percentage of data transmission is almost fix for each
biosensor when increasing the period size (Fig. 5(a)).
This is because, the stability of patient situation will
not highly changed within 1 to 2 hours, 3600 and 7200
records respectively.

• By varying the round size from 2 to 3 periods,
each biosensor increases its data transmission to the
master node (Fig. 5(b)). This is due to the variation
among records which will increase when the round size
increases.

• The data transmission from each biosensor is slowly
increased when increasing the minimum sensing fre-
quency threshold (Fig. 5(c)).

C. Comparison Study: Raw Data vs Adaptive Data vs
Sent Data vs Regenerated Data

Fig. 6 shows an illustrative example for comparison
between raw data, adaptive data after applying ASF algorithm,
sent data according to Algorithm 1 and regenerated data after
applying the SLR equation at the sink. In each subfigure
(a, b and c), the upper graph shows the difference between
raw and adpative data; while, in the lower graph, we show
the comparison between raw, sent and regenerated data. The
comparison is made according to three patient situations: low,
medium and high risks. The obtained results allow several
observations: 1) ASF algorithm eliminates redundancy among
collected records by reducing data collection in all cases

Fig. 6. Comaprison between raw vs adaptive vs sent vs regenerated
data for a portion of 1000 collected HR records.

(curves blue and green in Figs. 6(a) to 6(c)). Also, we confirm
the behavior of ASF by collecting more data in the medium
critical situation due to the unstability of the monitored vital
sign. Second, the emergency detection algorithm allows to
reduce the data transmission from each biosensor to the sink
by sending only the critical records with SLR coefficients.
Thus, by comparing raw and sent curves, we show that in low
risk, only the SLR coefficients are sent to the sink without any
records (Fig. 6(a)) while, in medium patient situation, a few of
records are sent (Fig. 6(b)) and, finally, in high risk situation,
all the records are sent to the medical staff (Fig. 6(c)). Third,
by comparing the raw and the regnerated data, we show that
data regenerated at the sink allow to save the situation of each
patient before storing data in the sink.

D. Energy Consumption Study in Biosensor
In this section, we study the energy consumed in each

biosensor depending on the patient situation (Fig. 7). Since
the energy consumption is highly related to the amount of
data transmission, thus our algorithms will highly outper-
form MLED in terms of saving biosensor energies. However,
in order to evaluate our algorithms in real world scenarios,
we compared our algorithms to the naïve approach where
all collected data are sent to the medical staff. We fixed
the initial energy to 13000 energy unit and we assumed that
each collected record consumes 0.1 unit and each sent record
requires 0.7 unit. The obtained results show that our algorithms
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Fig. 7. Energy consumption in each biosensor during rounds, τ = 3600,
β = 2, τ �

min = 20�.

can prolong the lifetimes of HR, SBP, RR and OS biosensors
up to 6, 6, 5 and 4 times respectively compared to the naïve
approach. We can also observe that the best biosensor, in terms
of its lifetime, is not the same in all cases. For instance,
the lifetime of HR biosensor is largely extended with low and
medium patient situations while SBP acts as the best biosensor
with high criticality situation. This is because, the variation
among collected records is not the same for all biosensors
of the same patient. Finally, we notice that the lifetime of
biosensors in medium risk situation is almost less extended
compared to low and high risk situations which confirms the
behavior of our algorithms.

E. Patient Situation Progress Study Using LSTM
In this section, we show the efficiency of LSTM algorithm

in terms of predicting the situation progress of a patient. In our
simulations, we take a portion of regenerated data, stored in
the sink, of a patient in medium criticality situation collected
during 10 rounds. Each round consists of 2 periods of 3600
records (1 hour) of each one (e.g. β = 2). Then, in order to
make the scenario more realistic, we divided the rounds into
two equal parts of 5 rounds for each; the first round in each part
acts as the training data (e.g. α = 1) while the 4 remaining
rounds in the part represent the tested data that should be
predicted by the medical staff for the patient. Fig. 8 shows the
variation between the raw data (blue curve) and the predicted
data (orange curve) obtained after applying LSTM over the
training data (green curve). We fixed the number of steps E
to 600 records which means that the medical staff predicts
the future situation of a patient based on the previous records
collected during the last 10 minutes. The obtained results show
a good accuracy of LSTM regarding various monitored vital
signs of a patient. Thus, the medical staff will have an accurate
information about the patient situation progress for the next 8
hours (e.g. 4 rounds) thus, they can prevent patient to enter in a
critical situation and the nurses can determine the appropriate
observations needed for that patient. We can also observe that

Fig. 8. Variation between raw and predicted data generated using LSTM
method for a medium patient criticality situation, β = 2, α = 1 round,
E = 600.

the accuracy of the predicted data is conserved for HR and RR
biosensors more than for SBP and OS. This is due to the small
variation of the records collected for HR and RR compared to
that among records for SBP and OS.

Fig. 9 shows the accuracy of LSTM with respect to the
number of steps (E) between 600 (e.g. 10 minutes) and 3600
(e.g. 1 hour) records. Obviously, the decreasing value of E
will lead to increase the accuracy of LSTM. This is because
a future record is mostly correlated with its nearest previous
records than the far ones. Therefore, the obtained results show
more accurate level with a number of steps equals to 600
records.

F. Further Discussions
In this section, we give further consideration to our pro-

posed mechanism while summarizing the obtained results
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Fig. 9. Variation between raw and predicted data generated using LSTM
method for a low patient criticality situation, β = 2, α = 1 round, F=HR.

TABLE II
COMPARISON BETWEEN ASF AND MLED MECHANISMS

of ASF and MLED in terms of parameters shown
in Table II.

From the sensing frequency adaptation point of view, both
mechanisms adapt dynamically the sensing frequency of the
sensor after each round according to the variation of the
monitored condition. However, the stability level used in ASF
algorithm allows each sensor to adapt more their frequency
sensing than the Fisher test used in MLED. Therefore, in the
applications, where a dynamic adaptation for the sensing fre-
quency of sensors without respecting any threshold, the ASF
algorithm becomes more suitable.

From the data transmission reduction point of view, EDASF
algorithm outperforms the MLED in terms of reducing the
amount of data collection and transmission compared to
MLED. Subsequently, EDASF can reduce from 39% to 94%
compared to MLED depending on the variation of the mon-
itored vital sign. Consequently, when the priority for the
application is the reduction of the amount of data transmission
in order to make less complex the analysis of data at the sink
side, the EDASF algorithm becomes more suitable.

From the energy consumption point of view, our ASF
algorithm can largely reduce the energy consumption due
the huge reduction in the data collection and transmission
compared to th naíve mechanism. Subsequently, it can extend
the sensor lifetime by 4 to 6 times depending on the chosen
values of the used parameters.

From the data accuracy point of view, both algorithms
EDASF and MLED ensure a high level of data integrity
without any loss of information. This is because the LSTM

method used in our mechanism can accurately regenerate the
raw data collected by the sensors while, in MLED, the integrity
of data is ensured through the Fisher threshold assigned by the
expert.

Indeed, the selection of the threshold values and the process-
ing complexity of the LSTM are two main challenges facing
our mechanism. From one hand, selecting the appropriate
values of thresholds is very essential in our mechanism which
highly affects the results. Indeed, we believe that threshold
values should be determined by the decision makers or experts
depending on the monitored features (e.g. vital signs). On the
other hand, the processing complexity of the LSTM is highly
dependent on the desired level of accuracy needed to predict
the patient situation progress; more we need to increase the
accuracy of LSTM more the processing complexity is, and
vice versa. In order to overcome this problem, we can simply
increase the resources at the sink node or to decrease the
number of blocks used in LSTM.

VII. CONCLUSION AND FUTURE WORK

Connected healthcare will continue to rise in order to
improve the quality of care and provide low cost solutions for
hospitals. In this paper, we have proposed an energy-efficient
data analytics mechanism for a real-time patient monitoring
and assessment. The proposed mechanism is mainly based on
three phases: Emergency detection, adapting sensing frequency
and patient situation progress prediction. Through simulations
on real health data, we demonstrated the effectiveness of our
mechanism in terms of saving the energy of each biosensor
and reducing data redundancy, compared to other existing
techniques.

As future work, we have three main directions to enhance
our mechanism. First, we seek to adapt our proposed approach
to take into account the correlation between neighboring nodes
when sending the data to the sink. As the sensor nodes send
their data at the same time (at the end of each period),
collisions between packets are likely to happen repeatedly.
Then it is essential for sensor nodes to be able to detect this
repeated collision and introduce a phase shift between the two
transmission sequences in order to avoid further collisions.
Second, we plan to allow our mechanism to adjust the sensing
frequency on the basis of the available energy beside the
redundancies between readings collected in different periods.
Third, we seek to adapt our platform to take into account
various biomedical data like images for organs, video for
operations, etc.
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